CN111369763B - 一种精神障碍患者攻击防范系统 - Google Patents
一种精神障碍患者攻击防范系统 Download PDFInfo
- Publication number
- CN111369763B CN111369763B CN202010275106.8A CN202010275106A CN111369763B CN 111369763 B CN111369763 B CN 111369763B CN 202010275106 A CN202010275106 A CN 202010275106A CN 111369763 B CN111369763 B CN 111369763B
- Authority
- CN
- China
- Prior art keywords
- patient
- grade
- danger
- bluetooth beacon
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B21/00—Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
- G08B21/02—Alarms for ensuring the safety of persons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/0205—Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
- A61B5/1116—Determining posture transitions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
- A61B5/1126—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb using a particular sensing technique
- A61B5/1128—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb using a particular sensing technique using image analysis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4803—Speech analysis specially adapted for diagnostic purposes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6802—Sensor mounted on worn items
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B21/00—Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
- G08B21/18—Status alarms
- G08B21/22—Status alarms responsive to presence or absence of persons
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/20—ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/40—ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/20—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the management or administration of healthcare resources or facilities, e.g. managing hospital staff or surgery rooms
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/60—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
- G16H40/63—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/60—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
- G16H40/67—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B21/00—Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
- G08B21/02—Alarms for ensuring the safety of persons
- G08B21/04—Alarms for ensuring the safety of persons responsive to non-activity, e.g. of elderly persons
- G08B21/0438—Sensor means for detecting
- G08B21/0453—Sensor means for detecting worn on the body to detect health condition by physiological monitoring, e.g. electrocardiogram, temperature, breathing
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Medical Informatics (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Molecular Biology (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Physiology (AREA)
- Business, Economics & Management (AREA)
- Primary Health Care (AREA)
- Epidemiology (AREA)
- Dentistry (AREA)
- Cardiology (AREA)
- General Business, Economics & Management (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Oral & Maxillofacial Surgery (AREA)
- General Physics & Mathematics (AREA)
- Emergency Management (AREA)
- Pulmonology (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Medical Treatment And Welfare Office Work (AREA)
Abstract
本发明提供一种精神障碍患者攻击防范系统,包括计算机,可穿戴设备,第一蓝牙信标,第二蓝牙信标,管理员移动终端:所述计算机分别与可穿戴设备连接,第一蓝牙信标,第二蓝牙信标,管理员移动终端;所述计算机判断当患者最终危险状态系数大于预设值且第一蓝牙信标与第二蓝牙信标之间的物理距离小于预设值时则向管理员移动终端发出警报。本发明的有益效果是:当精神障碍患者处于设定危险等级的不稳定状态,危险状态系数较大时且接近高危人群时,计算机及时向高危人群的管理人员发出警报,管理人员快速做出应急措施,可以降低高危人群被精神障碍患者攻击的危险。
Description
技术领域
本申请涉及信息技术领域,具体涉及一种精神障碍患者攻击防范系统。
背景技术
《严重精神障碍管理治疗工作规范(2018年版)》公布的危险性评估标准较简单,只考虑了行为表现而忽略了多因素危险性,与病理性精神症状分离严重,只能用作简单分级方便随访管理,无法对是否发病、病情轻重进行准确评估,大部分基层管控人员人手有限又身兼数职,多靠电话随访,不能起到有效监管作用。
发明内容
为了解决通过精神障碍患者生理信号数据和行动影像数据对精神障碍患者精神状态进行评估和预警的问题,本发明提供一种精神障碍患者攻击防范系统,包括计算机,可穿戴设备, 第一蓝牙信标,第二蓝牙信标,管理员移动终端:
所述计算机分别与可穿戴设备,第一蓝牙信标,第二蓝牙信标,管理员移动终端连接;
第一蓝牙信标由精神障碍患者随身佩戴,第二蓝牙信标设置于高危人群活动场所;
所述计算机计算精神障碍患者最终危险状态系数;
所述计算机判断当患者最终危险状态系数大于预设值且第一蓝牙信标与第二蓝牙信标之间的物理距离小于预设值时则向管理员移动终端。
进一步的,所述计算机执行以下步骤:
S1:通过患者佩戴的可穿戴设备和患者行动范围的安防监控设备获取患者的心跳数据,体感姿势数据,语音数据,监控视频数据;
S2:依据所述心跳数据,所述语音数据,体感姿势数据,监控视频数据分析患者行为,自动生成患者行为数据,并有患者行为数据获取患者危险等级数据;
S3:依据用户危险等级数据获取患者最终危险状态系数。
进一步的,
所述危险等级包括低危,中危,高危三个级别。
进一步的,
所述步骤S3包括以下步骤:
S31:依据以下规则确定等级分值:
等级低每项分值为1,
等级中每项分值为10,
等级高每项分值为100,
对目标列归类,
Y对应17X1的矩阵,对应第1~17特征,如果有相应的特征,则标记为1,否则标记0,则有
令最终的评分为Yfen,则有
如果Yfen=0,则病人正常,不需要进行计算;
如果Yfen∈(0,10],则病人对应的等级为低;
如果Yfen∈(10,100),则病人对应的等级为中;
如果Yfen≥100,则病人对应的等级为高。
S321:根据S31步骤的设定,确定由低,中,高三种级别建立的对比矩阵分别为:
其中i=1,2,3,4,5,6时,x1i=1,其他x1i=0。(i取值为1-17的整数)
其中i=7,8,9,10,11时,x2i=1,其他x2i=0。(i取值为1-17的整数)
其中i=12,13,14,15,16,17时,x3i=1,其他x3i=0。(i取值为1-17的整数)
S322:令:
其中:
当病人等级为低时,令
当病人等级为中时,令X1=X'zhong,令X01=Xa1·Y、X02=Xa2·Y,分别令X0=X01和 X0=X02带入X(1)=[X0X1]中进行灰色关联度计算,最终分别得到两个关联度系数r01和 r02;
当病人等级为高时,有X1=X'gao
令X01=Xa1·Y、X02=Xa2·Y和X03=Xa3·Y,分别令X0=X01、X0=X02和X0=X03;带入X(1)=[X0 X1]中进行灰色关联度计算,最终分别得到三个关联度系数r01、r02和r03;
S323:计算灰色关联度步骤,包括,
S3231:
对:
逐行进行归一化,公式如下:
通过上述公式逐一计算出归一化后每一个新xij组成新矩阵X(2),则:
S3232:对矩阵X(2)求差序列Δ、Δmax和Δmin
令:
Δ=[Δi1],i=1,…,17
Δij=|xi0-xi1|,i=1,…,17,j=0,1
则:
S3233采用以下公式求灰色关联度系数矩阵ξ
ξ=[ξi1],i=1,…,17
其中,β为关联系数;
S3234:
令比较序列X和目标序列Y的灰色关联度为r,采用以下公式计算r
S324计算状态系数R,包括,
令W=[w1 w2 w3]为权重矩阵,其中W1对应着患者低的权重系数、W2对应着患者中的权重系数、W3对应着患者高等级的权重系数,分别表示低、中、高等级分量在患者心理疾病中所占比重大小,这一系数由用户预先设定,并且w1 w2 w3满足w1+w2+w3=1。
状态系数R计算公式如下:
当病人等级为低时,
R=w1·r01
当病人等级为中时,
R=w1·r01+w2·r02
当病人等级为高时,
R=w1·r01+w2·r02+w3·r03。
本发明的有益效果是:通过对患者生理信息和活动视频以及语音监控,自动获取症状及危险状态评估数据并发送至服务器分级预警,当精神障碍患者处于设定危险等级的不稳定状态,危险状态系数较大时且接近高危人群时,计算机及时向高危人群的管理人员发出警报,管理人员快速做出应急措施,可以降低高危人群被精神障碍患者攻击的危险。
附图说明
图1为本发明流程图。
图2为本发明架构图。
具体实施方式
如图1所示本发明提供一种精神障碍患者攻击防范系统,包括计算机,可穿戴设备,第一蓝牙信标,第二蓝牙信标,管理员移动终端:
所述计算机分别与可穿戴设备连接,第一蓝牙信标,第二蓝牙信标,管理员移动终端;
第一蓝牙信标由精神障碍患者随身佩戴,第二蓝牙信标设置于高危人群活动场所;
所述计算机计算精神障碍患者最终危险状态系数;
所述计算机判断当患者最终危险状态系数大于预设值且第一蓝牙信标与第二蓝牙信标之间的物理距离小于预设值时则向管理员移动终端发出警报。
蓝牙信标可以是苹果ibeacon蓝牙信标,高危人群可以是幼儿园人群,第二蓝牙信标设置于幼儿园内,管理员移动终端可以是智能手机。
当精神障碍患者处于不稳定状态,危险状态系数较大时且接近幼儿园时,计算机及时向幼儿园的管理人员发出警报,管理人员快速做出应急措施,可以降低高危人群被精神障碍患者攻击的危险。
进一步的,所述计算机执行以下步骤:
S1:通过患者佩戴的可穿戴设备和患者行动范围的安防监控设备获取患者的心跳数据,体感姿势数据,语音数据,监控视频数据;
S2:依据所述心跳数据,所述语音数据,体感姿势数据,监控视频数据分析患者行为,自动生成患者行为数据,并有患者行为数据获取患者危险等级数据;
S3:依据用户危险等级数据获取患者最终危险状态系数。
在本发明实施过程中,按下表将危险等级分为低危,中危,高危三个级别。
上述行为与症状表现通过计算机自动分析患者心跳数据,所述语音数据,体感姿势数据,监控视频数据自动得出。
在本发明实施过程中,可穿戴设备可以是具有通信功能且具有心跳传感器、体感姿势传感器的智能手表,智能手表检测用户的心跳数据、体感姿势数据并智能分析睡眠状况(深睡时间、浅睡时间、起床次数)发送至计算机。智能手表带有麦克风,麦克风可获取患者的语音数据,并将语音数据发送至计算机。在本发明一实施例中采用苹果智能手表,在本发明另一实施例中,智能手表采用集成了麦克风的华为watchGT2。
患者的视频数据可以由患者所处环境中的监控设备获取,在本发明一实施例中,计算机与安防监控设备连接,由患者居住小区的安防监控设备获取患者的视频数据。
体感数据可以通过智能手表内集成的加速度计和陀螺仪获取。
上述计算机通过视频数据和语音数据分析患者行为的技术方案均为公知技术。
下面对依据用户危险等级数据获取患者最终危险状态系数的过程进行具体说明。
第一步:确定分级
Step1:确定等级分值
等级 | 每项分值 |
低 | 1 |
中 | 10 |
高 | 100 |
Step2:对目标列归类
Y对应17X1的矩阵,对应第1~17特征,如果有相应的特征,则标记为1,否则标记0,则有
令最终的评分为Yfen,则有
如果Yfen=0,则病人正常,不需要进行计算;
如果Yfen∈(0,10],则病人对应的等级为低;
如果Yfen∈(10,100),则病人对应的等级为中;
如果Yfen≥100,则病人对应的等级为高。
第二步:确定不同等级内的严重程度评分
Step1:确定对比矩阵
根据以上设定,则有由低,中,高三种建立的对比矩阵分别为:
其中i=1,2,3,4,5,6时,x1i=1,其他x1i=0。(i取值为1-17的整数)
其中i=7,8,9,10,11时,x2i=1,其他x2i=0。(i取值为1-17的整数)
其中i=12,13,14,15,16,17时,x3i=1,其他x3i=0。(i取值为1-17的整数)
Step2确定输入矩阵
令:
其中:
当病人等级为低时,令
当病人等级为中时,令X1=X'zhong
并且因为Y=Xa1·Y+Xa2·Y
令X01=Xa1·Y、X02=Xa2·Y,分别令X0=X01和X0=X02带入X(1)=[X0X1]中进行灰色关联度计算,最终分别得到两个关联度系数r01和r02。
当病人等级为高时,有X1=X'gao
并且因为Y=Xa1·Y+Xa2·Y+Xa3·Y
令X01=Xa1·Y、X02=Xa2·Y和X03=Xa3·Y,分别令X0=X01、X0=X02和X0=X03;带入X(1)=[X0 X1]中进行灰色关联度计算,最终分别得到三个关联度系数r01、r02和r03。
从上式中得到,当病人等级为中时,r03=0;当病人等级为低时,r03=r02=0。
那么对于一个精神病人,一定存在三个系数r01 r02 r03和病人的特征矩阵Rbingren,使 Rbingren=[r01 r02 r03]。
Step3:计算灰色关联度
Step3.1归一化
对:
逐行进行归一化,公式如下:
通过上述公式逐一计算出归一化后每一个新xij组成新矩阵X(2),则:
Step3.2对矩阵X(2)求差序列Δ、Δmax和Δmin
令:
Δ=[Δi1],i=1,…,17
Δij=|xi0-xi1|,i=1,…,17,j=0,1
则:
Step3.3求灰色关联度系数矩阵ξ
ξ=[ξi1],i=1,…,17
其中β为关联系数,没有特殊要求的情况下,一般取0.5即可。
Step3.4:计算灰色关联度r
令比较序列X和目标序列Y的灰色关联度为r,则有:
Step4计算状态系数R
Step3.4中得到的灰色关联度r反映了病人的特征与最严重的当前等级的关联度,为了获得一个可以较为完整的反映病人状态的特征量,则需要对灰色关联度r进行进一步的处理。
令W=[w1 w2 w3]为权重矩阵,其中w1 w2 w3分别对应着病人低、中、高等级的权重系数,分别表示低、中、高等级分量在病人心理疾病中所占比重大小,这一系数一般由专家评判给出。并且w1 w2 w3满足w1+w2+w3=1。
由step2中得知,一个病人的特征矩阵Rbingren=[r01 r02 r03],其中r01 r02 r03分别对应着在step2中得到的三个个关联度系数r01、r02和r03
则有R计算公式如下:
X′di表示矩阵Xdi的转置,X′zhong表示矩阵Xzhong的转置,X′gao表示矩阵Xgao的转置,W′表示矩阵W的转置。
最终系数R即为不同等级下的严重程度分值,并且R是介于0和1之间的数值,当R越大,说明病人在当前等级下越严重。
并且有:
当病人等级为低时,
R=w1·r01
当病人等级为中时,
R=w1·r01+w2·r02
当病人等级为高时,
R=w1·r01+w2·r02+w3·r03。
本发明通过预先设置的三个权重系数并计算三个关联度系数r01、r02和r03实现了更加精准的精神障碍患者精神状态数值量化。
本发明的有益效果是:通过对患者生理信息和活动视频以及语音监控,自动获取症状及危险状态评估数据并发送至服务器分级预警,当精神障碍患者处于设定危险等级的不稳定状态,危险状态系数较大时且接近高危人群时,计算机及时向高危人群的管理人员发出警报,管理人员快速做出应急措施,可以降低高危人群被精神障碍患者攻击的危险。
Claims (1)
1.一种精神障碍患者攻击防范系统,其特征在于,包括计算机,可穿戴设备,第一蓝牙信标,第二蓝牙信标,管理员移动终端:
所述计算机分别与可穿戴设备,第一蓝牙信标,第二蓝牙信标,管理员移动终端连接;
第一蓝牙信标由精神障碍患者随身佩戴,第二蓝牙信标设置于高危人群活动场所;
所述计算机计算精神障碍患者最终危险状态系数;
所述计算机判断当患者最终危险状态系数大于预设值且第一蓝牙信标与第二蓝牙信标之间的物理距离小于预设值时则向管理员移动终端发出警报;
所述计算机执行以下步骤:
S1:通过患者佩戴的可穿戴设备和患者行动范围的安防监控设备获取患者的心跳数据,体感姿势数据,语音数据,监控视频数据;
S2:依据所述心跳数据,所述语音数据,体感姿势数据,监控视频数据分析患者行为,自动生成患者行为数据,并有患者行为数据获取患者危险等级数据;
S3:依据用户危险等级数据获取患者最终危险状态系数;
所述危险等级包括低危,中危,高危三个级别;
按下表将危险等级分为低危,中危,高危三个级别;
所述步骤S3包括以下步骤:
S31:依据以下规则确定等级分值:
等级低每项分值为1,
等级中每项分值为10,
等级高每项分值为100,
对目标列归类,
Y对应17X1的矩阵,对应第1~17特征,如果有相应的特征,则标记为1,否则标记0,则有
令最终的评分为Yfen,则有
如果Yfen=0,则病人正常,不需要进行计算;
如果Yfen∈(0,10],则病人对应的等级为低;
如果Yfen∈(10,100),则病人对应的等级为中;
如果Yfen≥100,则病人对应的等级为高;
S321:根据S31步骤的设定,确定由低,中,高三种级别建立的对比矩阵分别为:
S322:令:
其中:
当病人等级为低时,令
当病人等级为中时,令X1=X'zhong,令X01=Xa1·Y、X02=Xa2·Y,分别令X0=X01和X0=X02带入X(1)=[X0 X1]中进行灰色关联度计算,最终分别得到两个关联度系数r01和r02;
当病人等级为高时,有X1=X'gao
令X01=Xa1·Y、X02=Xa2·Y和X03=Xa3·Y,分别令X0=X01、X0=X02和X0=X03;带入X(1)=[X0 X1]中进行灰色关联度计算,最终分别得到三个关联度系数r01、r02和r03;
S323:计算灰色关联度步骤,包括,
S3231:
对:
逐行进行归一化,公式如下:
通过上述公式逐一计算出归一化后每一个新xij组成新矩阵X(2),则:
S3232:对矩阵X(2)求差序列Δ、Δmax和Δmin
令:
Δ=[Δi1],i=1,…,17
Δij=|xi0-xi1|,i=1,…,17;j=0,1
则:
S3233采用以下公式求灰色关联度系数矩阵ξ
ξ=[ξi1],i=1,…,17
其中,β为关联系数;
S3234:
令比较序列X和目标序列Y的灰色关联度为r,采用以下公式计算r
S324计算状态系数R,包括,
令W=[w1 w2 w3]为权重矩阵,其中W1对应着患者低的权重系数、W2对应着患者中的权重系数、W3对应着患者高等级的权重系数,分别表示低、中、高等级分量在患者心理疾病中所占比重大小,这一系数由用户预先设定,并且w1 w2 w3满足w1+w2+w3=1;
状态系数R计算公式如下:
当病人等级为低时,
R=w1·r01
当病人等级为中时,
R=w1·r01+w2·r02
当病人等级为高时,
R=w1·r01+w2·r02+w3·r03。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010275106.8A CN111369763B (zh) | 2020-04-09 | 2020-04-09 | 一种精神障碍患者攻击防范系统 |
NL2027940A NL2027940B1 (en) | 2020-04-09 | 2021-04-08 | Guarding system against attack from mentally disturbed patients |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010275106.8A CN111369763B (zh) | 2020-04-09 | 2020-04-09 | 一种精神障碍患者攻击防范系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111369763A CN111369763A (zh) | 2020-07-03 |
CN111369763B true CN111369763B (zh) | 2022-04-29 |
Family
ID=71209350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010275106.8A Active CN111369763B (zh) | 2020-04-09 | 2020-04-09 | 一种精神障碍患者攻击防范系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111369763B (zh) |
NL (1) | NL2027940B1 (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE0203483D0 (sv) * | 2002-11-21 | 2002-11-21 | Wespot Ab | Method and device for fall detection |
CN105741483A (zh) * | 2014-12-09 | 2016-07-06 | 公安部第一研究所 | 一种用于监所民警的安全警戒装置 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8112153B2 (en) * | 2004-12-17 | 2012-02-07 | Medtronic, Inc. | System and method for monitoring or treating nervous system disorders |
CN204050311U (zh) * | 2014-08-29 | 2014-12-31 | 徐扬 | 一种酒精所致精神障碍专用腕带 |
CN104796485B (zh) * | 2015-04-30 | 2019-09-10 | 深圳市全球锁安防系统工程有限公司 | 一种老龄人云安康服务平台及大数据处理方法 |
CN205866740U (zh) * | 2016-05-09 | 2017-01-11 | 鲍崇智 | 一种同步获取多维心跳信息的采集装置 |
CN206639349U (zh) * | 2016-11-28 | 2017-11-14 | 郭娴 | 一种精神病患者电子围栏终端管控手环 |
CN107088051A (zh) * | 2017-04-12 | 2017-08-25 | 潘晓东 | 一种用于脑健康认知障碍诊断及风险评估方法及系统 |
CN108834068B (zh) * | 2018-07-17 | 2020-04-24 | 广东小天才科技有限公司 | 一种基于可穿戴设备的定位方法及可穿戴设备 |
CN109481310A (zh) * | 2018-09-21 | 2019-03-19 | 广东医睦科技有限公司 | 医护信息的处理方法、装置、设备以及存储介质 |
CN109887611A (zh) * | 2019-02-13 | 2019-06-14 | 北京大学第三医院(北京大学第三临床医学院) | 一种医疗管理系统及移动终端 |
CN110276929A (zh) * | 2019-06-21 | 2019-09-24 | 西南政法大学 | 一种基于移动智能终端的智能远程精神障碍者危险性预警系统 |
CN110189500A (zh) * | 2019-06-21 | 2019-08-30 | 西南政法大学 | 一种基于蓝牙定位的智能远程精神障碍者危险性预警系统 |
CN110289100A (zh) * | 2019-06-21 | 2019-09-27 | 西南政法大学 | 一种远程智能精神障碍者危险性评估系统 |
CN110200643A (zh) * | 2019-06-21 | 2019-09-06 | 西南政法大学 | 一种远程智能精神障碍者危险性预警系统 |
-
2020
- 2020-04-09 CN CN202010275106.8A patent/CN111369763B/zh active Active
-
2021
- 2021-04-08 NL NL2027940A patent/NL2027940B1/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE0203483D0 (sv) * | 2002-11-21 | 2002-11-21 | Wespot Ab | Method and device for fall detection |
CN105741483A (zh) * | 2014-12-09 | 2016-07-06 | 公安部第一研究所 | 一种用于监所民警的安全警戒装置 |
Non-Patent Citations (1)
Title |
---|
无线可穿戴传感器网络技术实现监所医疗智能化的探索;刘黎明;《物联网技术》;20191031;58-63 * |
Also Published As
Publication number | Publication date |
---|---|
NL2027940A (en) | 2021-10-25 |
NL2027940B1 (en) | 2022-07-22 |
CN111369763A (zh) | 2020-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109009017B (zh) | 一种智能健康监测系统及其数据处理方法 | |
CN110364259A (zh) | 一种高原疾病预测方法、系统、介质及电子设备 | |
CN117133464B (zh) | 一种老年人健康智能监测系统及监测方法 | |
CN114343585B (zh) | 认知和行为障碍的预警方法、装置、设备及存储介质 | |
Pourhomayoun et al. | Multiple model analytics for adverse event prediction in remote health monitoring systems | |
WO2022041786A1 (zh) | 一种配电不安全行为的预测方法、装置和服务器 | |
CN117423455A (zh) | 一种基于数据分析的用户健康管理系统及方法 | |
CN111466928B (zh) | 一种基于危险性级别判断的精神障碍患者随身预警系统 | |
CN111369763B (zh) | 一种精神障碍患者攻击防范系统 | |
CN118542660A (zh) | 一种基于压力传感技术的智能座椅监测系统及方法 | |
CN105787232B (zh) | 一种数据处理方法、装置、健康系统平台及终端 | |
CN111481215B (zh) | 一种基于危险性级别判断的精神障碍患者远程预警系统 | |
CN116564521A (zh) | 一种慢性病风险评估模型建立方法、介质及系统 | |
CN111481214B (zh) | 一种精神障碍患者危险级别判断方法 | |
CN111481182B (zh) | 一种精神障碍患者危险级别判断系统 | |
CN111466929B (zh) | 一种基于危险性级别判断的暴力精神障碍患者防范系统 | |
CN117786505B (zh) | 基于大数据的运动性疲劳预警方法和系统 | |
CN109712715A (zh) | 一种生理数据的评分处理方法及装置 | |
Wang | Computer Internet of Things‐Based Intelligent Medical System to Be Applied in Home Care of Senile Dementia Patients | |
CN114595723A (zh) | 体征信号的质量评估方法、装置、电子设备和存储介质 | |
CN114847949A (zh) | 一种基于脑电特征及放松度指标的认知疲劳康复方法 | |
CN116741334B (zh) | 一种基于神经网络预测模型的用药监测方法 | |
Li et al. | Self-reported well-being score modelling and prediction: Proof-of-concept of an approach based on linear dynamic systems | |
CN115919278B (zh) | 风险等级确定方法、装置、电子设备及存储介质 | |
CN117064380B (zh) | 下肢表面肌电检测的防摔倒预警系统、方法和相关产品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |