[go: up one dir, main page]

CN111365685B - Light emitting device with high red light brightness and high reliability - Google Patents

Light emitting device with high red light brightness and high reliability Download PDF

Info

Publication number
CN111365685B
CN111365685B CN201811596755.7A CN201811596755A CN111365685B CN 111365685 B CN111365685 B CN 111365685B CN 201811596755 A CN201811596755 A CN 201811596755A CN 111365685 B CN111365685 B CN 111365685B
Authority
CN
China
Prior art keywords
light
layer
emitting
phosphor
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811596755.7A
Other languages
Chinese (zh)
Other versions
CN111365685A (en
Inventor
田梓峰
张世忠
李屹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Appotronics Corp Ltd
Original Assignee
Appotronics Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Appotronics Corp Ltd filed Critical Appotronics Corp Ltd
Priority to CN201811596755.7A priority Critical patent/CN111365685B/en
Priority to CN202210269680.1A priority patent/CN114623418B/en
Priority to PCT/CN2019/127283 priority patent/WO2020135303A1/en
Publication of CN111365685A publication Critical patent/CN111365685A/en
Application granted granted Critical
Publication of CN111365685B publication Critical patent/CN111365685B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/71Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks using a combination of separate elements interconnected by heat-conducting means, e.g. with heat pipes or thermally conductive bars between separate heat-sink elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/24Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/28Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of semiconductor or other solid state devices
    • H01L25/03Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10H20/00

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

本发明提供了一种发光装置,包括从下到上依次层叠设置的导热基板、反射层和发光层,其特征在于:所述反射层为金反射层,所述发光层包括Y3Al5O12:Ce3+荧光粉、(Y,Gd)3Al5O12:Ce3+荧光粉、α‑SiAlON:Eu2+荧光粉和(Sr,Ca)AlSiN3:Eu2+荧光粉中的任意一种或多种,所述Y3Al5O12:Ce3+荧光粉中的Ce3+的掺杂浓度为1.2mol%以上,所述(Y,Gd)3Al5O12:Ce3+荧光粉中的Ce3+的掺杂浓度为0.5mol%以上并且Gd3+的掺杂浓度为10mol%以上。

Figure 201811596755

The present invention provides a light-emitting device, comprising a thermally conductive substrate, a reflective layer and a light-emitting layer that are sequentially stacked from bottom to top, characterized in that the reflective layer is a gold reflective layer, and the light-emitting layer includes Y 3 Al 5 O 12 : Ce 3+ phosphor, (Y,Gd) 3 Al 5 O 12 :Ce 3+ phosphor, α‑SiAlON:Eu 2+ phosphor and (Sr,Ca)AlSiN 3 :Eu 2+ phosphor Any one or more, the doping concentration of Ce 3+ in the Y 3 Al 5 O 12 :Ce 3+ phosphor is 1.2 mol% or more, and the (Y,Gd) 3 Al 5 O 12 :Ce The doping concentration of Ce 3+ in the 3+ phosphor is 0.5 mol % or more and the doping concentration of Gd 3+ is 10 mol % or more.

Figure 201811596755

Description

一种具有高的红光亮度和高的可靠性的发光装置A light-emitting device with high red light brightness and high reliability

技术领域technical field

本发明涉及一种具有高的红光亮度和高的可靠性的发光装置。The present invention relates to a light-emitting device with high red light brightness and high reliability.

背景技术Background technique

目前,通过激光照射荧光粉来发出相应颜色的光是激光光源领域的常规技术。我们都知道,在激光光源应用于白光照明时,提高激光光源的红光占比可以提高照明的显色指数;在激光光源应用于植物照明时,提高激光光源的红光占比可以有利于光合作用与光周期效应,原因是红光不仅有利于植物碳水化合物的合成,还能加速长日植物的发育;以及在激光显示应用中,提高激光光源的红光占比可以较好地实现色彩还原,解决画面红色偏紫、偏黄的问题。现有技术中提高红光占比的其中一种方法是增加红光光源,例如红光LED或红色激光,但是这种方法所存在的问题也很显著,例如系统体积增加,而且温度对红色激光器的输出功率的限制也很明显,所以增加红光光源的方法具有局限性。现有技术中提高红光占比的另一种方法是采用红色荧光粉,但是红色荧光粉在受到激光照射时由于自身吸收了大量的短波长的光,所以其产生的热量更大,温度效应更为明显,因此通常设计一个具有反射作用的散热组件,例如常用的镜面铝反射层或银反射层,兼具反射和散热效果。然而,铝的反射率较低,产生的热量较高,因此散热效果不够好。另一方面,银反射层的反射率虽然比较高,但是其容易发生氧化和硫化,因而可靠性较低。此外,还存在一种采用长波长黄光结合滤光片来产生红光的方法,其中采用热稳定性好且光饱和性能较好的YAG:Ce3+体系的长波长黄光,由于黄光光源的热效应比红光光源的热效应小,所以这种方法产生的红光亮度和效率比较好,但是由于采用了滤光片,导致提升了成本的同时,结构也不紧凑。由此可见,现有技术中的产生红光的激光荧光光源要么是成本高并且结构不紧凑,要么就是其红光效率和亮度较低,制约了其激光显示产品的亮度和色域的提升。At present, it is a conventional technology in the field of laser light sources to emit light of corresponding colors by irradiating phosphors with laser light. We all know that when the laser light source is applied to white light illumination, increasing the proportion of red light of the laser light source can improve the color rendering index of the illumination; when the laser light source is applied to plant lighting, increasing the proportion of red light of the laser light source can be beneficial to photosynthesis The reason is that red light is not only conducive to the synthesis of plant carbohydrates, but also accelerates the development of long-day plants; and in the application of laser display, increasing the proportion of red light in the laser light source can better achieve color reproduction , to solve the problem that the red color of the screen is purple and yellow. One of the methods to increase the proportion of red light in the prior art is to increase the red light source, such as red LED or red laser, but the problems of this method are also very significant, such as the increase of system volume, and the effect of temperature on the red laser. The limit of output power is also obvious, so the method of increasing the red light source has limitations. Another method to increase the proportion of red light in the prior art is to use red phosphors. However, when red phosphors are irradiated by laser light, they absorb a large amount of short-wavelength light, so the heat generated is greater and the temperature effect is increased. It is more obvious, so a reflective heat dissipation component is usually designed, such as the commonly used specular aluminum reflection layer or silver reflection layer, which has both reflection and heat dissipation effects. However, aluminum has a lower reflectivity and generates higher heat, so the heat dissipation is not good enough. On the other hand, although the reflectivity of the silver reflective layer is relatively high, oxidation and vulcanization are likely to occur, so the reliability is low. In addition, there is also a method of using long-wavelength yellow light combined with a filter to generate red light, wherein the long-wavelength yellow light of the YAG:Ce 3+ system with good thermal stability and good light saturation performance is used, because the yellow light The thermal effect of the light source is smaller than that of the red light source, so the brightness and efficiency of the red light produced by this method are better, but due to the use of filters, the cost is increased, and the structure is not compact. It can be seen that the laser fluorescent light source for generating red light in the prior art is either high in cost and not compact in structure, or its red light efficiency and brightness are low, which restricts the improvement of the brightness and color gamut of its laser display products.

因此,有待于提供一种具有高的红光亮度和高的可靠性的发光装置,使得可以显著提升其激光显示产品的激光显示的亮度和色域。Therefore, there is a need to provide a light-emitting device with high red brightness and high reliability, so that the brightness and color gamut of the laser display of its laser display products can be significantly improved.

发明内容SUMMARY OF THE INVENTION

有鉴于此,本发明旨在提供一种红光发光效率高、结构紧凑、成本较低并且散热性能优良的发光装置。In view of this, the present invention aims to provide a light-emitting device with high red light luminous efficiency, compact structure, low cost and excellent heat dissipation performance.

根据本发明的一方面,提供了一种发光装置,包括从下到上依次层叠设置的导热基板、反射层和发光层,其中,所述反射层为金反射层,所述发光层包括Y3Al5O12:Ce3+荧光粉、(Y,Gd)3Al5O12:Ce3+荧光粉、α-SiAlON:Eu2+荧光粉和(Sr,Ca)AlSiN3:Eu2+荧光粉中的任意一种或多种,所述Y3Al5O12:Ce3+荧光粉中的Ce3+的掺杂浓度为1.2mol%以上,所述(Y,Gd)3Al5O12:Ce3+荧光粉中的Ce3+的掺杂浓度为0.5mol%以上并且Gd3+的掺杂浓度为10mol%以上。According to an aspect of the present invention, a light-emitting device is provided, comprising a thermally conductive substrate, a reflective layer and a light-emitting layer sequentially stacked from bottom to top, wherein the reflective layer is a gold reflective layer, and the light-emitting layer includes Y 3 Al 5 O 12 :Ce 3+ phosphor, (Y,Gd) 3 Al 5 O 12 :Ce 3+ phosphor, α-SiAlON:Eu 2+ phosphor and (Sr,Ca)AlSiN 3 :Eu 2+ phosphor Any one or more of the powders, the doping concentration of Ce 3+ in the Y 3 Al 5 O 12 :Ce 3+ phosphor is 1.2 mol% or more, and the (Y,Gd) 3 Al 5 O 12 : The doping concentration of Ce 3+ in the Ce 3+ phosphor is 0.5 mol % or more and the doping concentration of Gd 3+ is 10 mol % or more.

进一步地,所述发光装置还包括过渡层,所述过渡层设置在所述发光层和所述反射层之间,并且所述过渡层由镍或者镍铬合金制成。Further, the light-emitting device further includes a transition layer, the transition layer is disposed between the light-emitting layer and the reflection layer, and the transition layer is made of nickel or a nickel-chromium alloy.

进一步地,所述过渡层的厚度为小于2nm。Further, the thickness of the transition layer is less than 2 nm.

进一步地,所述发光装置还包括焊接层,所述焊接层设置在所述反射层与所述导热基板之间,所述焊接层用于将所述反射层与所述导热基板牢固接合。Further, the light-emitting device further includes a soldering layer, the soldering layer is disposed between the reflective layer and the thermally conductive substrate, and the soldering layer is used for firmly bonding the reflective layer and the thermally conductive substrate.

进一步地,所述焊接层为选自金锡、银锡、铋锡的合金焊料层。Further, the solder layer is an alloy solder layer selected from gold-tin, silver-tin, and bismuth-tin.

进一步地,所述导热基板选自铜基板、表面镀镍金的铜基板或者表面镀镍金的碳化硅、氮化铝基板。Further, the thermally conductive substrate is selected from a copper substrate, a nickel-gold-plated copper substrate, or a nickel-gold-plated silicon carbide or aluminum nitride substrate.

进一步地,所述金反射层的厚度为80-200nm。Further, the thickness of the gold reflective layer is 80-200 nm.

进一步地,所述发光层为荧光陶瓷或荧光玻璃。Further, the light-emitting layer is fluorescent ceramic or fluorescent glass.

进一步地,所述荧光陶瓷为以下陶瓷中的任一种:Y3Al5O12:Ce3+荧光粉或(Y,Gd)3Al5O12:Ce3+荧光粉的纯相陶瓷;Al2O3、Y2O3、Mg2AlO4分别与Y3Al5O12:Ce3+荧光粉或(Y,Gd)3Al5O12:Ce3+荧光粉形成的复相陶瓷;α-SiAlON:Eu2+荧光粉或(Sr,Ca)AlSiN3:Eu2+荧光粉的纯相陶瓷;以及α-SiAlON:Eu2+荧光粉或(Sr,Ca)AlSiN3:Eu2+荧光粉与氟化物形成的复相陶瓷。Further, the fluorescent ceramic is any one of the following ceramics: pure-phase ceramics of Y 3 Al 5 O 12 :Ce 3+ phosphor or (Y,Gd) 3 Al 5 O 12 :Ce 3+ phosphor; Al 2 O 3 , Y 2 O 3 , Mg 2 AlO 4 and Y 3 Al 5 O 12 :Ce 3+ phosphor or (Y,Gd) 3 Al 5 O 12 :Ce 3+ phosphor respectively. ; pure phase ceramics of α-SiAlON:Eu 2+ phosphor or (Sr,Ca)AlSiN 3 :Eu 2+ phosphor; and α-SiAlON:Eu 2+ phosphor or (Sr,Ca)AlSiN 3 :Eu 2 + Multiphase ceramics formed by phosphor and fluoride.

进一步地,所述发光装置还包括至少一个第二发光层和至少一个第二反射层,所述第二发光层与所述发光层共平面设置,所述第二反射层与所述反射层共平面设置,且所述第二反射层设置在所述第二发光层下方,用于反射所述第二发光层发出的光。Further, the light-emitting device further includes at least one second light-emitting layer and at least one second reflection layer, the second light-emitting layer and the light-emitting layer are arranged coplanarly, and the second reflection layer and the reflection layer are coplanar. and the second reflective layer is arranged below the second light-emitting layer for reflecting the light emitted by the second light-emitting layer.

进一步地,所述第二发光层包括散射粒子、黄光荧光粉、绿光荧光粉中的至少一种。Further, the second light-emitting layer includes at least one of scattering particles, yellow phosphors, and green phosphors.

进一步地,所述第二反射层为银反射层或无机漫反射层。Further, the second reflection layer is a silver reflection layer or an inorganic diffuse reflection layer.

进一步地,在所述第二反射层的下方设置有由金、铂或者其合金制成的保护层,以保护所述第二反射层免受硫化和氧化。Further, a protective layer made of gold, platinum or alloys thereof is provided under the second reflective layer to protect the second reflective layer from sulfidation and oxidation.

有益效果beneficial effect

本发明提供了一种发光装置,所述发光装置包括从下到上依次层叠设置的导热基板、反射层和发光层,其中,所述反射层为金反射层,所述发光层包括Y3Al5O12:Ce3+荧光粉、(Y,Gd)3Al5O12:Ce3+荧光粉、α-SiAlON:Eu2+荧光粉和(Sr,Ca)AlSiN3:Eu2+荧光粉中的任意一种或多种,所述Y3Al5O12:Ce3+荧光粉中的Ce3+的掺杂浓度为1.2mol%以上,所述(Y,Gd)3Al5O12:Ce3+荧光粉中的Ce3+的掺杂浓度为0.5mol%以上并且Gd3+的掺杂浓度为10mol%以上。与现有技术中使用银作为反射层相比,由于金不像银那样易于氧化和硫化,因此本发明中使用金作为反射层的发光装置的可靠性较高。另外,本发明的金反射层仅对波长为555nm以上的光的反射率大于80%,对波长为650nm以上的光的反射率大于95%,即金反射层12对波长为650nm以下的光具有一定的吸收,尤其是对波长为555nm以下的光吸收较为严重。也就是说,本发明的金反射层具有选择性地反射红光以及吸收绿光、蓝光和紫光的功能,在不使用滤色片的情况下也能仅反射红光,简化了结构并节省了成本。此外,本发明的发光装置的发光层中具有特定的掺杂浓度的荧光粉使得受激发光的波长向红光波长靠近,提高了红光占比的同时减少了金反射层吸收绿光等而导致的热效应。因此本发明的发光装置具有高的红光亮度和高的可靠性,并且在降低了成本的同时,也可以实现更为紧凑的光学结构。The present invention provides a light-emitting device, the light-emitting device includes a thermally conductive substrate, a reflective layer and a light-emitting layer sequentially stacked from bottom to top, wherein the reflective layer is a gold reflective layer, and the light-emitting layer includes Y 3 Al 5 O 12 :Ce 3+ phosphor, (Y,Gd) 3 Al 5 O 12 :Ce 3+ phosphor, α-SiAlON:Eu 2+ phosphor and (Sr,Ca)AlSiN 3 :Eu 2+ phosphor Any one or more of the above, the doping concentration of Ce 3+ in the Y 3 Al 5 O 12 :Ce 3+ phosphor is 1.2 mol% or more, and the (Y,Gd) 3 Al 5 O 12 : The doping concentration of Ce 3+ in the Ce 3+ phosphor is 0.5 mol % or more and the doping concentration of Gd 3+ is 10 mol % or more. Compared with using silver as a reflective layer in the prior art, since gold is not as easily oxidized and sulfurized as silver, the light-emitting device using gold as a reflective layer in the present invention has higher reliability. In addition, the gold reflective layer of the present invention only has a reflectivity of more than 80% for light with a wavelength of 555 nm or more, and a reflectivity of more than 95% for light with a wavelength of 650 nm or more, that is, the gold reflective layer 12 has a certain wavelength for light with a wavelength of 650 nm or less. The absorption, especially the absorption of light with a wavelength below 555nm, is more serious. That is to say, the gold reflective layer of the present invention has the functions of selectively reflecting red light and absorbing green light, blue light and violet light, and can only reflect red light without using a color filter, which simplifies the structure and saves cost. In addition, the phosphor powder with a specific doping concentration in the light-emitting layer of the light-emitting device of the present invention makes the wavelength of the excited light close to the wavelength of the red light, which increases the proportion of red light and reduces the absorption of green light by the gold reflective layer. resulting thermal effects. Therefore, the light-emitting device of the present invention has high red light brightness and high reliability, and can realize a more compact optical structure while reducing the cost.

附图说明Description of drawings

附图表示本文所述的非限制性示例性实施例。本领域技术人员将要理解的是,附图不一定按比例绘制,而是用于重点说明本发明的原理。在附图中:The accompanying drawings represent non-limiting exemplary embodiments described herein. Those skilled in the art will appreciate that the appended drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. In the attached image:

图1是根据本发明的发光装置的示意图。FIG. 1 is a schematic diagram of a light emitting device according to the present invention.

图2是示出了几种金属材料在不同波长范围的光下的反射率的曲线图。FIG. 2 is a graph showing the reflectivity of several metallic materials under different wavelength ranges of light.

图3是根据本发明实施例1的发光装置的结构示意图。FIG. 3 is a schematic structural diagram of a light-emitting device according to Embodiment 1 of the present invention.

图4是根据本发明实施例2的转动式色轮结构的示意图和截面示意图。FIG. 4 is a schematic diagram and a cross-sectional diagram of a rotary color wheel structure according to Embodiment 2 of the present invention.

附图标记列表:List of reference numbers:

10,45:激发光10,45: Excitation light

11,41:发光层11,41: Light-emitting layer

14,44,55:导热基板14, 44, 55: Thermally Conductive Substrates

15,46:受激发光15,46: Stimulated light

12,42:反射层12,42: Reflective layer

13,43,54:焊接层13, 43, 54: Solder layer

51a:红光发光层51a: red light emitting layer

51b:绿光发光层51b: Green light emitting layer

51c:蓝光发光层51c: blue light emitting layer

51d:黄光发光层51d: Yellow light emitting layer

52a:红光反射层52a: Red light reflection layer

52b:绿光反射层52b: Green reflective layer

52c:蓝光反射层52c: Blue reflective layer

52d:黄光反射层52d: yellow light reflection layer

53b,53c,53d:保护层53b, 53c, 53d: protective layer

具体实施方式Detailed ways

以下,参照附图更全面地说明本发明的一个或多个示例性实施例,在附图中,本领域技术人员能够容易地确定本发明的一个或多个示例性实施例。如本领域技术人员应认识到的,只要不脱离本发明的精神或范围,可以以各种不同的方式对所述示例性实施例进行修改,本发明的精神或范围不限于本文所述的示例性实施例。Hereinafter, one or more exemplary embodiments of the present invention are described more fully with reference to the accompanying drawings, in which those skilled in the art can easily ascertain the one or more exemplary embodiments of the present invention. As those skilled in the art would realize, the exemplary embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention, which is not limited to the examples described herein Sexual Example.

现在参照附图对本发明进行详细说明。The present invention will now be described in detail with reference to the accompanying drawings.

如图1所示,本发明提供了一种发光装置,该发光装置包括从下到上依次层叠设置的导热基板14、反射层12和发光层11。导热基板14具有高的导热性,优选为铜基板或者表面镀镍金的铜基板,也可以是镀镍金的碳化硅(SiC)或氮化铝(AlN)基板。As shown in FIG. 1 , the present invention provides a light-emitting device, which includes a thermally conductive substrate 14 , a reflective layer 12 and a light-emitting layer 11 that are sequentially stacked from bottom to top. The thermally conductive substrate 14 has high thermal conductivity, and is preferably a copper substrate or a copper substrate plated with nickel and gold, and may also be a silicon carbide (SiC) or aluminum nitride (AlN) substrate plated with nickel and gold.

发光层11可以是发光峰值波长大于555nm的Y3Al5O12:Ce3+荧光粉或(Y,Gd)3Al5O12:Ce3+荧光粉的纯相陶瓷,或者是Al2O3、Y2O3、Mg2AlO4分别与发光峰值波长大于555nm的Y3Al5O12:Ce3+荧光粉或(Y,Gd)3Al5O12:Ce3+荧光粉形成的复相陶瓷,也可以是α-SiAlON:Eu2+荧光粉的纯相陶瓷或(Sr,Ca)AlSiN3:Eu2+荧光粉的纯相陶瓷或其与氟化钙、氟化镁等氟化物形成的复相陶瓷,还可以是上述这些荧光粉与玻璃粉混合烧结所形成的荧光玻璃。进一步地,Y3Al5O12:Ce3+中Ce3+的掺杂浓度为1.2mol%以上,(Y,Gd)3Al5O12:Ce3+中Ce3+的掺杂浓度为0.5mol%以上并且Gd3+的掺杂浓度为10mol%以上。Ce3+在Y3Al5O12中的掺杂浓度越高,Y3Al5O12的发光波长越长,Ce3+的掺杂浓度为1.2mol%时,Y3Al5O12的发光峰值波长为555nm,而Gd3+在(Y,Gd)3Al5O12中的掺杂浓度越高,(Y,Gd)3Al5O12的发光波长也越长,Ce3+的掺杂浓度为0.5mol%并且Gd3+的掺杂浓度为10mol%时,(Y,Gd)3Al5O12的发光峰值波长为555nm。发光层11受到激发光光源的蓝色激光(激发光)10的激发之后可以产生黄色或红色荧光,优选发光层11的厚度大于0.15mm,以保证由上述荧光粉制成的本发明的发光层11对来自激光光源的蓝色激光10的吸收率能够达到95%以上。The light-emitting layer 11 can be a pure-phase ceramic of Y 3 Al 5 O 12 :Ce 3+ phosphor with a light emission peak wavelength greater than 555nm or (Y,Gd) 3 Al 5 O 12 :Ce 3+ phosphor, or Al 2 O 3. Y 2 O 3 , Mg 2 AlO 4 and Y 3 Al 5 O 12 :Ce 3+ phosphors or (Y,Gd) 3 Al 5 O 12 :Ce 3+ phosphors with emission peak wavelengths greater than 555nm, respectively. Complex phase ceramics, it can also be pure phase ceramics of α-SiAlON:Eu 2+ phosphors or pure phase ceramics of (Sr,Ca)AlSiN 3 :Eu 2+ phosphors or its combination with calcium fluoride, magnesium fluoride and other fluorines The composite ceramics formed by the above-mentioned phosphors and glass powders can also be mixed and sintered fluorescent glass. Further, the doping concentration of Ce 3+ in Y 3 Al 5 O 12 :Ce 3+ is 1.2 mol% or more, and the doping concentration of Ce 3+ in (Y,Gd) 3 Al 5 O 12 :Ce 3+ is 0.5 mol% or more and the doping concentration of Gd 3+ is 10 mol% or more. The higher the doping concentration of Ce 3+ in Y 3 Al 5 O 12 is, the longer the emission wavelength of Y 3 Al 5 O 12 is. When the doping concentration of Ce 3+ is 1.2mol % , the The luminescence peak wavelength is 555nm, and the higher the doping concentration of Gd 3+ in (Y, Gd) 3 Al 5 O 12 , the longer the luminescence wavelength of (Y, Gd) 3 Al 5 O 12 , and the higher the doping concentration of Ce 3+ . When the doping concentration was 0.5 mol % and the doping concentration of Gd 3+ was 10 mol %, the emission peak wavelength of (Y,Gd) 3 Al 5 O 12 was 555 nm. The light-emitting layer 11 can generate yellow or red fluorescence after being excited by the blue laser (excitation light) 10 of the excitation light source. The absorption rate of 11 to the blue laser light 10 from the laser light source can reach 95% or more.

反射层12用于对在发光层11中产生的黄色或红色荧光进行反射。反射层12为金(Au)反射层,其厚度为80-200nm,厚度太薄,不能对红色荧光进行充分反射,导致红光反射率下降,厚度太厚会产生应力,导致反射层与发光层之间的附着力下降,从而也会导致反射率下降。需要说明的是,金反射层12仅对波长为555nm以上的光的反射率大于80%,对波长为650nm以上的光的反射率大于95%,即金反射层12对波长为650nm以下的光具有一定的吸收,尤其是对波长为555nm以下的光吸收较为严重。也就是说,金反射层12对绿光、蓝光和紫光的吸收是比较严重的。当在发光层11中产生的受激发光是红光时,金反射层12能够将绝大部分的红光进行反射,对红光的反射率较高,产生的热量较低,同时与现有技术中使用银作为反射层相比,由于金不像银那样易于氧化和硫化,因此可靠性较高。当在发光层11中产生的受激发光是黄光时,由于发光层11产生的黄光是宽谱光,而非单一波长的单色光,可视为绿光和红光的混合光,而又由于金反射层12对绿光部分具有强吸收并对红光部分具有强反射,所以本发明的金反射层12既能够起到对红光部分进行反射的反射层的作用,也能够起到对绿光部分进行吸收使得仅反射红光部分的滤光片的作用。另外,为了提高红光占比以及为了减小由于金反射层12吸收大量绿光而导致的热效应,本发明的发光层11含有如上所述具有特定掺杂浓度的黄色荧光粉,使得受激发光的波长向红光波长靠近,减少绿光的成份,从而提高红光部分的比例,减少金反射层12由于吸收绿光而产生的热量,增强对红光部分的出射,既起到降低荧光粉的热效应的作用,又可以获得较高纯度的红光,而且不必使用滤光片,降低了系统的体积和成本,实现了更为紧凑的光学结构。也就是说,在本发明中,可以通过使用具有一定掺杂浓度的黄色荧光粉来构成本发明的发光层11并且通过使用金反射层作为本发明的反射层12,可以实现低热效应、高红光占比以及结构紧凑的发光装置。The reflection layer 12 is used to reflect yellow or red fluorescence generated in the light emitting layer 11 . The reflective layer 12 is a gold (Au) reflective layer with a thickness of 80-200 nm. The thickness is too thin to fully reflect the red fluorescence, resulting in a decrease in the reflectivity of red light. If the thickness is too thick, stress will be generated, resulting in the reflective layer and the light-emitting layer. The adhesion between them decreases, which also leads to a decrease in reflectivity. It should be noted that the gold reflective layer 12 only has a reflectivity of more than 80% for light with a wavelength of 555 nm or more, and a reflectivity of more than 95% for light with a wavelength of 650 nm or more, that is, the gold reflective layer 12 has a wavelength of less than 650 nm. Certain absorption, especially the absorption of light with a wavelength below 555nm is more serious. That is to say, the absorption of green light, blue light and violet light by the gold reflective layer 12 is relatively serious. When the excited light generated in the light-emitting layer 11 is red light, the gold reflective layer 12 can reflect most of the red light, has a high reflectivity to the red light, and generates low heat. Compared to the technology that uses silver as a reflective layer, gold is not as prone to oxidation and vulcanization as silver, so it is more reliable. When the excited light generated in the light-emitting layer 11 is yellow light, since the yellow light generated by the light-emitting layer 11 is a broad-spectrum light, rather than monochromatic light with a single wavelength, it can be regarded as a mixed light of green light and red light. Since the gold reflective layer 12 has strong absorption for the green light part and strong reflection for the red light part, the gold reflective layer 12 of the present invention can not only play the role of a reflective layer that reflects the red light part, but also can play a role of reflecting the red light part. The green part is absorbed so that only the red part is reflected as a filter. In addition, in order to increase the proportion of red light and to reduce the thermal effect caused by the gold reflective layer 12 absorbing a large amount of green light, the light-emitting layer 11 of the present invention contains the yellow phosphor with a specific doping concentration as described above, so that the excited light The wavelength of the gold is closer to the wavelength of red light, reducing the component of green light, thereby increasing the proportion of red light, reducing the heat generated by the gold reflective layer 12 due to absorbing green light, and enhancing the output of red light, which not only reduces the amount of phosphor powder Due to the thermal effect, high-purity red light can be obtained, and no filter is required, which reduces the volume and cost of the system and realizes a more compact optical structure. That is to say, in the present invention, the light-emitting layer 11 of the present invention can be constituted by using a yellow phosphor having a certain doping concentration, and by using a gold reflective layer as the reflective layer 12 of the present invention, a low thermal effect and high red light occupancy can be achieved. ratio and compact light-emitting device.

另外,如图1所示,在本发明的发光装置中还可以包括焊接层13,其中该焊接层13设置在导热基板14与反射层12之间。焊接层13用于将反射层12牢固焊接到导热基板14上,以增加反射层12与导热基板14之间的附着力而使得二者牢固接合。焊接层13可以为金锡、银锡、铋锡等合金焊料层。In addition, as shown in FIG. 1 , the light-emitting device of the present invention may further include a soldering layer 13 , wherein the soldering layer 13 is disposed between the thermally conductive substrate 14 and the reflective layer 12 . The soldering layer 13 is used to firmly solder the reflective layer 12 to the thermally conductive substrate 14 , so as to increase the adhesion between the reflective layer 12 and the thermally conductive substrate 14 so that the two are firmly joined. The solder layer 13 may be an alloy solder layer such as gold-tin, silver-tin, bismuth-tin, and the like.

此外,在发光层11与反射层12之间可以设置过渡层,以增加发光层11与反射层12之间的附着力。该过渡层可以为镍层或者镍铬合金层,过渡层的厚度为2nm以下。当过渡层的厚度为2nm以下时,发光层11中产生的受激发光可以穿透过渡层并到达金反射层12,从而被金反射层12反射。为了防止发光层11中产生的受激发光进一步穿透金反射层12,将金反射层12的厚度设定为80-200nm以确保对发光层11中产生的受激发光进行充分反射。In addition, a transition layer may be provided between the light-emitting layer 11 and the reflection layer 12 to increase the adhesion between the light-emitting layer 11 and the reflection layer 12 . The transition layer can be a nickel layer or a nickel-chromium alloy layer, and the thickness of the transition layer is 2 nm or less. When the thickness of the transition layer is less than 2 nm, the excited light generated in the light-emitting layer 11 can penetrate the transition layer and reach the gold reflective layer 12 , so as to be reflected by the gold reflective layer 12 . In order to prevent the excited light generated in the light emitting layer 11 from further penetrating the gold reflective layer 12 , the thickness of the gold reflective layer 12 is set to 80-200 nm to ensure sufficient reflection of the excited light generated in the light emitting layer 11 .

本发明选用可以被蓝光激发的发光峰值波长大于555nm的Y3Al5O12:Ce3+荧光粉、(Y,Gd)3Al5O12:Ce3+荧光粉、α-SiAlON:Eu2+荧光粉和(Sr,Ca)AlSiN3:Eu2+荧光粉中的任意一种或多种作为发光层11的波长转换材料,并且采用金属金(Au)作为反射层12的材料,上述荧光粉和金分别构成本发明的发光装置的发光层11及反射层12,而后将其接合在导热基板14上,从而构成本发明的发光装置。与铝相比,金对发光层11中产生的受激发红光的反射率较高,与银相比,金具有更好的化学稳定性和热稳定性,并且金可以直接焊接到高导热的铜散热器上,以及更为重要地,金对发光波长大于555nm的荧光的反射率在80%以上,与现有技术中将铝及银作为反射金属相比,本发明中将金作为反射金属可以同时实现发光装置的高光效及高可靠性。The present invention selects Y 3 Al 5 O 12 :Ce 3+ phosphor powder, (Y,Gd) 3 Al 5 O 12 :Ce 3+ phosphor powder, α-SiAlON:Eu 2 , which can be excited by blue light and whose luminescence peak wavelength is greater than 555nm + phosphor and (Sr,Ca)AlSiN 3 :Eu 2+ phosphors are used as the wavelength conversion material of the light-emitting layer 11 , and metal gold (Au) is used as the material of the reflective layer 12 . The powder and gold constitute the light-emitting layer 11 and the reflective layer 12 of the light-emitting device of the present invention, respectively, and are then bonded to the thermally conductive substrate 14 to constitute the light-emitting device of the present invention. Compared with aluminum, gold has a higher reflectivity for the excited red light generated in the light-emitting layer 11, gold has better chemical and thermal stability than silver, and gold can be directly soldered to high thermal conductivity. On the copper radiator, and more importantly, the reflectance of gold to the fluorescence with emission wavelength greater than 555nm is more than 80%. Compared with aluminum and silver in the prior art, gold is used as the reflective metal in the present invention. High light efficiency and high reliability of the light-emitting device can be simultaneously achieved.

另一方面,参见图2的反射率曲线,由表面没有镀层的金的反射率曲线可知,金层对于波长短于555nm的光的吸收作用相当于一个滤光片的作用。也就是说,金层将波长大于555nm的光大部分反射回去,而将波长短于555nm的光大部分吸收。在本发明中通过如上所述的特定掺杂浓度的荧光粉制成的发光层11可以使得发光层11中产生的受激发光红移,使得受激发光中绿光含量减少,于是金反射层12吸收的绿光减少,由此产生的热量也减少,降低了荧光粉的热效应。因此,通过上述这种荧光材料和金反射层相配合的方式能够在不需要滤光片的情况下,实现高亮度红光,降低了成本的同时,也可以实现更为紧凑的光学结构。On the other hand, referring to the reflectivity curve in Fig. 2, it can be seen from the reflectivity curve of gold without a coating on the surface that the gold layer's absorption effect on light with a wavelength shorter than 555 nm is equivalent to that of a filter. That is, the gold layer reflects most of the light with wavelengths greater than 555 nm back and absorbs most of the light with wavelengths shorter than 555 nm. In the present invention, the light-emitting layer 11 made of the phosphor powder with the above-mentioned specific doping concentration can make the excited light generated in the light-emitting layer 11 red-shift, so that the green light content in the excited light is reduced, so the gold reflective layer The green light absorbed by 12 is reduced, and the resulting heat is also reduced, reducing the thermal effect of the phosphor. Therefore, through the combination of the above-mentioned fluorescent material and the gold reflective layer, high-brightness red light can be realized without the need for a filter, and a more compact optical structure can also be realized while reducing the cost.

在上述说明中,仅描述了本发明的发光装置具有红光发光结构,能够发出红光,但是本发明不限于此,除了上述结构之外,本发明的发光装置还可以包括至少一个其他颜色的发光结构,还能够发出至少一种其他颜色的光。例如,本发明的发光装置还可以包括一个第二发光层和一个第二反射层,该第二发光层与上述发光层11共平面设置,该第二反射层与上述反射层12共平面设置,且第二反射层设置在第二发光层下方,第二反射层用于反射第二发光层发出的光。该第二发光层可以是只包含散射粒子的散射层,此时当蓝色激光10照射在第二发光层上时会发生漫反射,从而发出蓝光。可选择地,第二发光层可以包含黄色荧光粉或绿色荧光粉,此时当蓝色激光10照射在第二发光层上时,第二发光层会吸收激发光并发出黄色光或绿色光。当然,第二发光层也可以同时包含散射粒子、黄色荧光粉和绿色荧光粉中的任意两种或者同时包含这三种,此时优选分区域设置散射粒子、黄色荧光粉和绿色荧光粉。也就是说,第二发光层形成有分别富集散射粒子、黄光荧光粉和绿光荧光粉的三个区域,当蓝色激光10分别照射在上述三个区域时,将分别发出蓝光、黄光和绿光。In the above description, it is only described that the light-emitting device of the present invention has a red light emitting structure and can emit red light, but the present invention is not limited to this. The light-emitting structure can also emit light of at least one other color. For example, the light-emitting device of the present invention may further comprise a second light-emitting layer and a second reflective layer, the second light-emitting layer and the above-mentioned light-emitting layer 11 are arranged coplanarly, the second reflective layer and the above-mentioned reflective layer 12 are arranged coplanarly, And the second reflection layer is arranged under the second light-emitting layer, and the second reflection layer is used for reflecting the light emitted by the second light-emitting layer. The second light-emitting layer may be a scattering layer that only contains scattering particles. In this case, when the blue laser 10 is irradiated on the second light-emitting layer, diffuse reflection will occur, thereby emitting blue light. Optionally, the second light-emitting layer may contain yellow phosphors or green phosphors, and when the blue laser 10 is irradiated on the second light-emitting layer, the second light-emitting layer will absorb the excitation light and emit yellow or green light. Of course, the second light-emitting layer may also contain any two or three of scattering particles, yellow phosphors, and green phosphors at the same time. That is to say, the second light-emitting layer is formed with three regions that are enriched with scattering particles, yellow phosphors and green phosphors, respectively. When the blue laser 10 is irradiated on the above three regions, it will emit blue light and yellow light respectively. light and green light.

下面参照本发明的具体实施例进行说明。The following description will be made with reference to specific embodiments of the present invention.

实施例1(具有固定式红光发光模块的发光装置)Example 1 (Light-emitting device with fixed red light-emitting module)

根据本发明实施例1的具有固定式红光发光模块的发光装置的结构的示意图如图3所示,该发光装置的固定式红光发光模块由发光层41、反射层42、焊接层43和导热基板44构成。焊接层43设置在导热基板44上。反射层42设置在焊接层43上。发光层41设置在反射层42上。在本实施例中,发光层41具体由作为发光部分的发光陶瓷构成,其中发光陶瓷优选为Ce3+掺杂浓度为1.2mol%的Y3Al5O12纯相陶瓷或Al2O3-Y3Al5O12复相陶瓷,或者Ce3+掺杂浓度大于0.5mol%并且Gd3+掺杂浓度大于10mol%的(Y,Gd)3Al5O12纯相陶瓷或Al2O3-(Y,Gd)3Al5O12复相陶瓷,又或者发光陶瓷选择为α-SiAlON:Eu2+陶瓷或(Sr,Ca)AlSiN3:Eu2+陶瓷。该发光陶瓷受到激光光源的蓝色激光(激发光)45的激发之后,发射主波长大于555nm的荧光。该发光装置的反射层42主要用于对由上述发光陶瓷制成的发光层41中产生的红光(受激发光)46起反射作用,该反射层42由反射金属金(Au)构成。A schematic diagram of the structure of a light-emitting device with a fixed red light-emitting module according to Embodiment 1 of the present invention is shown in FIG. 3 . The thermally conductive substrate 44 is constituted. The solder layer 43 is provided on the thermally conductive substrate 44 . The reflective layer 42 is provided on the solder layer 43 . The light-emitting layer 41 is provided on the reflective layer 42 . In this embodiment, the light-emitting layer 41 is specifically composed of a light-emitting ceramic as a light-emitting part, wherein the light-emitting ceramic is preferably Y 3 Al 5 O 12 pure-phase ceramic or Al 2 O 3 - with a Ce 3+ doping concentration of 1.2 mol% Y 3 Al 5 O 12 composite ceramics, or (Y, Gd) 3 Al 5 O 12 pure phase ceramics or Al 2 O 3 with a Ce 3+ doping concentration greater than 0.5 mol% and a Gd 3+ doping concentration greater than 10 mol % -(Y, Gd) 3 Al 5 O 12 multiphase ceramics, or luminescent ceramics are selected as α-SiAlON:Eu 2+ ceramics or (Sr,Ca)AlSiN 3 :Eu 2+ ceramics. After the luminescent ceramic is excited by the blue laser (excitation light) 45 of the laser light source, it emits fluorescence with a dominant wavelength greater than 555 nm. The reflective layer 42 of the light-emitting device is mainly used to reflect the red light (excited light) 46 generated in the light-emitting layer 41 made of the above-mentioned luminescent ceramics, and the reflective layer 42 is composed of reflective metal gold (Au).

如上所述,与银反射层相比,由金构成的反射层42具有以下优点:一方面,由于金为惰性金属,热稳定性及化学稳定性更强,所以由金构成的反射层42的使用可靠性增加;另一方面,金对波长大于555nm的光的反射率超过80%,而对波长低于500nm的光的反射率只有50%左右,这种选择性反射的特性使得其反射光中波长大于555nm的光的相对强度更高,也就是说,发光装置中红光的亮度更高。焊接层43主要是用于将发光层41和反射层42与导热基板44焊合,使得易于发光装置的热量的传递,焊接层43的焊料优选为金锡、银锡、铋锡合金。导热基板44主要是用于将发光模块中的热量传递出去,其优选为铜基板或者表面镀镍金的铜基板,也可以是镀镍金的碳化硅或氮化铝基板。As described above, compared with the silver reflective layer, the reflective layer 42 composed of gold has the following advantages: on the one hand, since gold is an inert metal, the thermal stability and chemical stability are stronger, so the reflective layer 42 composed of gold has the following advantages. The reliability of use is increased; on the other hand, the reflectivity of gold for light with wavelengths greater than 555nm exceeds 80%, while the reflectivity for light with wavelengths below 500nm is only about 50%. This selective reflection feature makes it reflect light. The relative intensity of light with intermediate wavelengths greater than 555 nm is higher, that is, the brightness of red light in the light-emitting device is higher. The soldering layer 43 is mainly used to weld the light-emitting layer 41 and the reflective layer 42 to the thermally conductive substrate 44 to facilitate the heat transfer of the light-emitting device. The thermally conductive substrate 44 is mainly used to transfer the heat in the light emitting module, and it is preferably a copper substrate or a copper substrate plated with nickel and gold on the surface, and can also be a silicon carbide or aluminum nitride substrate plated with nickel and gold.

根据本发明实施例1的发光装置为红光发光效率高、结构紧凑并且散热性能优良的发光装置。The light-emitting device according to Embodiment 1 of the present invention is a light-emitting device with high red light luminous efficiency, compact structure and excellent heat dissipation performance.

本发明的实施例2(转动式荧光色轮)Embodiment 2 of the present invention (rotating fluorescent color wheel)

在根据本发明的实施例2中,提供了一种转动式荧光色轮,其结构示意图如图4所示,该转动式荧光色轮包括环形的导热基板55、焊接层54、反射层(包括共平面设置的红光反射层52a、绿光反射层52b、蓝光反射层52c和黄光反射层52d)和发光层(包括共平面设置的红光发光层51a、绿光发光层51b、蓝光发光层51c和黄光发光层51d)。焊接层54设置于导热基板55上。红光反射层52a、绿光反射层52b、蓝光反射层52c和黄光反射层52d分别设置在焊接层54的不同部分上。红光发光层51a设置于红光反射层52a上。绿光发光层51b、蓝光发光层51c和黄光发光层51d分别设置在绿光反射层52b、蓝光反射层52c和黄光反射层52d上。红光发光层51a与红光反射层52a构成红光发光模块;绿光发光层51b与绿光反射层52b构成绿光发光模块;蓝光发光层51c与蓝光反射层52c构成蓝色发光模块;黄光发光层51d与黄光反射层52d构成黄光发光模块。In Embodiment 2 according to the present invention, a rotary fluorescent color wheel is provided, the schematic diagram of which is shown in FIG. 4 , the rotary fluorescent color wheel includes a ring-shaped thermally conductive substrate 55, a welding layer 54, a reflective layer (including The red reflective layer 52a, the green reflective layer 52b, the blue reflective layer 52c and the yellow reflective layer 52d arranged coplanarly) and the light emitting layer (including the red light emitting layer 51a, the green light emitting layer 51b, the blue light emitting layer layer 51c and yellow light emitting layer 51d). The soldering layer 54 is disposed on the thermally conductive substrate 55 . The red light reflecting layer 52a, the green light reflecting layer 52b, the blue light reflecting layer 52c and the yellow light reflecting layer 52d are respectively disposed on different parts of the soldering layer 54. The red light emitting layer 51a is disposed on the red light reflection layer 52a. The green light emitting layer 51b, the blue light emitting layer 51c and the yellow light emitting layer 51d are respectively disposed on the green light reflecting layer 52b, the blue light reflecting layer 52c and the yellow light reflecting layer 52d. The red light emitting layer 51a and the red reflective layer 52a form a red light emitting module; the green light emitting layer 51b and the green reflective layer 52b form a green light emitting module; the blue light emitting layer 51c and the blue reflective layer 52c form a blue light emitting module; The light emitting layer 51d and the yellow light reflecting layer 52d constitute a yellow light emitting module.

在本实施例中,转动式荧光色轮的发光部分是由红光发光模块、绿光发光模块、蓝光发光模块和黄光发光模块四个发光模块构成的。四个发光模块单独制作后通过焊接层54粘接到导热基板55上以形成荧光色轮,该导热基板55可以为铝。发光模块均选用可被激发光激发、产生相应颜色荧光的荧光材料,例如,可以选用玻璃封装的红色荧光粉、绿色荧光粉、蓝色荧光粉以及黄色荧光粉或者由这些荧光粉烧结而成的荧光陶瓷。需要具体说明的是,当激发光全部为蓝光(例如:蓝激光)时,蓝光发光层51c可主要由散射粒子构成,蓝光照射在蓝光发光层51c上后被散射粒子和蓝光反射层52c所反射。此种情况下,绿色荧光粉以及黄色荧光粉为常用荧光粉,而红色荧光粉优选为Ce3+掺杂浓度为1.2mol%的Y3Al5O12或者Ce3+掺杂浓度大于0.5mol%并且Gd3+离子掺杂浓度大于10mol%的(Y,Gd)3Al5O12,又或者是α-SiAlON:Eu2+或(Sr,Ca)AlSiN3:Eu2+In this embodiment, the light-emitting part of the rotary fluorescent color wheel is composed of four light-emitting modules: red light-emitting module, green light-emitting module, blue light-emitting module and yellow light-emitting module. After the four light-emitting modules are individually fabricated, they are bonded to a thermally conductive substrate 55 through a soldering layer 54 to form a fluorescent color wheel, and the thermally conductive substrate 55 may be aluminum. The light-emitting modules are all selected from fluorescent materials that can be excited by excitation light and generate fluorescence of corresponding colors. For example, glass-encapsulated red, green, blue, and yellow phosphors, or sintered glass-encapsulated phosphors can be used. Fluorescent ceramics. It should be noted that when the excitation light is all blue light (eg, blue laser), the blue light emitting layer 51c may be mainly composed of scattering particles, and the blue light is irradiated on the blue light emitting layer 51c and reflected by the scattering particles and the blue light reflecting layer 52c . In this case, the green phosphors and the yellow phosphors are commonly used phosphors, and the red phosphors are preferably Y 3 Al 5 O 12 with a Ce 3+ doping concentration of 1.2 mol% or a Ce 3+ doping concentration greater than 0.5 mol % (Y, Gd) 3 Al 5 O 12 with a Gd 3+ ion doping concentration greater than 10 mol%, or α-SiAlON:Eu 2+ or (Sr,Ca)AlSiN 3 :Eu 2+ .

该转动式荧光色轮的反射层由不同的材料制成,其中红光反射层52a由金属金(Au)制成,而绿光反射层52b、蓝光反射层52c和黄光反射层52d由于其反射光的热效应较小而由金属银(Ag)制成。此外,由于银性质不稳定,在空气中易被硫化和氧化,因而需要在其外层包裹一层保护材料作为银层的保护层53b、53c以及53d,该保护材料可以选用金属金、铂或者其合金,主要起隔绝空气及水蒸气作用,防止银反射层被硫化和氧化。具体地,保护层53b、53c以及53d设置在绿光反射层52b、蓝光反射层52c和黄光反射层52d与空气的交界处,例如荧光色轮的外沿。焊接层54主要用于将发光层、反射层及保护层与导热基板55焊合起来,使得易于发光模块导热散热,该焊接层优选由金锡、银锡或者铋锡合金构成。导热基板55为色轮的散热部分,主要是用于将发光层中的热量传导出去,因而需要其具有较好的散热性能,例如,可以为碳化硅或氮化铝等陶瓷导热基板,进一步地,为了提高粘接和散热效果,可以在碳化硅基板和氮化铝基板表面镀镍金。The reflection layers of the rotating fluorescent color wheel are made of different materials, wherein the red light reflection layer 52a is made of metal gold (Au), and the green light reflection layer 52b, the blue light reflection layer 52c and the yellow light reflection layer 52d are made of The reflected light has less thermal effect and is made of metallic silver (Ag). In addition, due to the unstable nature of silver, it is easy to be vulcanized and oxidized in the air, so it is necessary to wrap a layer of protective material on the outer layer as the protective layers 53b, 53c and 53d of the silver layer. The protective material can be metal gold, platinum or Its alloy mainly functions to isolate air and water vapor, and prevent the silver reflective layer from being vulcanized and oxidized. Specifically, the protective layers 53b, 53c and 53d are disposed at the junctions of the green light reflective layer 52b, the blue light reflective layer 52c and the yellow light reflective layer 52d and the air, such as the outer edge of the fluorescent color wheel. The soldering layer 54 is mainly used to weld the light-emitting layer, the reflective layer and the protective layer to the heat-conducting substrate 55 to facilitate heat conduction and heat dissipation of the light-emitting module. The soldering layer is preferably composed of gold-tin, silver-tin or bismuth-tin alloy. The heat-conducting substrate 55 is the heat-dissipating part of the color wheel, which is mainly used to conduct the heat in the light-emitting layer, so it needs to have good heat-dissipating performance. For example, it can be a ceramic heat-conducting substrate such as silicon carbide or aluminum nitride. , In order to improve the bonding and heat dissipation effect, nickel and gold can be plated on the surface of the silicon carbide substrate and the aluminum nitride substrate.

特别地,当绿光发光层51b采用发光波长为510nm的Lu3Al5O12:Ce3+绿色荧光粉,黄光发光层51d采用发光波长为540~555nm Y3Al5O12:Ce3+黄色荧光粉,红光发光层51a采用发光波长长于555nm的Y3Al5O12:Ce3+、(Y,Gd)3Al5O12:Ce3+或者α-SiAlON:Eu2+、(Sr,Ca)AlSiN3:Eu2+荧光粉时,能够实现无修饰片的高效紧凑的荧光色轮结构。In particular, when the green light emitting layer 51b adopts Lu 3 Al 5 O 12 :Ce 3+ green phosphor with an emission wavelength of 510 nm, and the yellow light emitting layer 51d adopts Y 3 Al 5 O 12 :Ce 3 with an emission wavelength of 540-555 nm + Yellow phosphor powder, the red light emitting layer 51a adopts Y 3 Al 5 O 12 :Ce 3+ , (Y,Gd) 3 Al 5 O 12 :Ce 3+ or α-SiAlON:Eu 2+ , (Sr,Ca)AlSiN 3 :Eu 2+ phosphor can realize an efficient and compact fluorescent color wheel structure without modification.

由于荧光色轮在使用时需要长时间转动,因此对发光层和金属反射层之间的附着力有着较高的要求,此时优选在发光层与金属反射层之间设置可提高两者附着力的过渡层,如镍层或者镍铬合金层,该过渡层厚度小于2nm。Since the fluorescent color wheel needs to be rotated for a long time, there is a high requirement for the adhesion between the light-emitting layer and the metal reflection layer. In this case, it is preferable to set it between the light-emitting layer and the metal reflection layer to improve the adhesion The transition layer, such as a nickel layer or a nickel-chromium alloy layer, the thickness of the transition layer is less than 2nm.

使用根据本发明实施例2的转动式荧光色轮能够得到红光发光效率高、高效紧凑的发光装置。By using the rotary fluorescent color wheel according to the second embodiment of the present invention, a light-emitting device with high red light luminous efficiency, high efficiency and compactness can be obtained.

本发明所列举的各原料,以及本发明各原料的上下限、工艺参数的上下限、区间取值都能实现本发明,在此不一一列举实施例;凡是依据本发明的技术实质对以上实施例所作的任何简单修改或等同变化,均仍属于本发明的技术方案的范围之内。The raw materials listed in the present invention, as well as the upper and lower limits of the raw materials, the upper and lower limits of the process parameters, and the interval values of the present invention can realize the present invention, and the embodiments are not listed here one by one; Any simple modifications or equivalent changes made in the embodiments still fall within the scope of the technical solutions of the present invention.

Claims (13)

1.一种发光装置,包括从下到上依次层叠设置的导热基板、反射层和发光层,其特征在于:所述反射层为金反射层,所述发光层包括Y3Al5O12:Ce3+荧光粉、(Y,Gd)3Al5O12:Ce3+荧光粉、α-SiAlON:Eu2+荧光粉和(Sr,Ca)AlSiN3:Eu2+荧光粉中的任意一种或多种,所述Y3Al5O12:Ce3+荧光粉中的Ce3+的掺杂浓度为1.2mol%以上,所述(Y,Gd)3Al5O12:Ce3+荧光粉中的Ce3+的掺杂浓度为0.5mol%以上并且Gd3+的掺杂浓度为10mol%以上。1. A light-emitting device, comprising a thermally conductive substrate, a reflective layer and a light-emitting layer that are stacked in sequence from bottom to top, characterized in that: the reflective layer is a gold reflective layer, and the light-emitting layer comprises Y 3 Al 5 O 12 : Any one of Ce 3+ phosphor, (Y,Gd) 3 Al 5 O 12 :Ce 3+ phosphor, α-SiAlON:Eu 2+ phosphor and (Sr,Ca)AlSiN 3 :Eu 2+ phosphor One or more, the doping concentration of Ce 3+ in the Y 3 Al 5 O 12 :Ce 3+ phosphor is 1.2 mol% or more, and the (Y,Gd) 3 Al 5 O 12 :Ce 3+ The doping concentration of Ce 3+ in the phosphor is 0.5 mol % or more and the doping concentration of Gd 3+ is 10 mol % or more. 2.如权利要求1所述的发光装置,其特征在于,还包括过渡层,所述过渡层设置在所述发光层和所述反射层之间,并且所述过渡层由镍或者镍铬合金制成。2 . The light-emitting device according to claim 1 , further comprising a transition layer, the transition layer is disposed between the light-emitting layer and the reflection layer, and the transition layer is made of nickel or nickel-chromium alloy. 3 . production. 3.如权利要求2所述的发光装置,其特征在于所述过渡层的厚度为小于2nm。3. The light-emitting device of claim 2, wherein the thickness of the transition layer is less than 2 nm. 4.如权利要求1所述的发光装置,其特征在于,还包括焊接层,所述焊接层设置在所述反射层与所述导热基板之间,所述焊接层用于将所述反射层与所述导热基板牢固接合。4 . The light-emitting device according to claim 1 , further comprising a soldering layer, the soldering layer is provided between the reflective layer and the thermally conductive substrate, and the soldering layer is used to attach the reflective layer to the reflective layer. 5 . firmly bonded to the thermally conductive substrate. 5.如权利要求4所述的发光装置,其特征在于,所述焊接层为选自金锡、银锡、铋锡的合金焊料层。5 . The light-emitting device of claim 4 , wherein the solder layer is an alloy solder layer selected from the group consisting of gold-tin, silver-tin, and bismuth-tin. 6 . 6.如权利要求5所述的发光装置,其特征在于,所述导热基板选自铜基板、表面镀镍金的铜基板或者表面镀镍金的碳化硅、氮化铝基板。6 . The light-emitting device according to claim 5 , wherein the thermally conductive substrate is selected from a copper substrate, a copper substrate plated with nickel and gold, or a silicon carbide or aluminum nitride substrate plated with nickel and gold. 7 . 7.如权利要求1所述的发光装置,其特征在于,所述金反射层的厚度为80-200nm。7 . The light-emitting device of claim 1 , wherein the thickness of the gold reflective layer is 80-200 nm. 8 . 8.如权利要求1所述的发光装置,其特征在于,所述发光层为荧光陶瓷或荧光玻璃。8. The light-emitting device of claim 1, wherein the light-emitting layer is fluorescent ceramic or fluorescent glass. 9.如权利要求7所述的发光装置,其特征在于,所述荧光陶瓷为以下陶瓷中的任一种:Y3Al5O12:Ce3+荧光粉或(Y,Gd)3Al5O12:Ce3+荧光粉的纯相陶瓷;Al2O3、Y2O3、Mg2AlO4分别与Y3Al5O12:Ce3+荧光粉或(Y,Gd)3Al5O12:Ce3+荧光粉形成的复相陶瓷;α-SiAlON:Eu2+荧光粉或(Sr,Ca)AlSiN3:Eu2+荧光粉的纯相陶瓷;以及α-SiAlON:Eu2+荧光粉或(Sr,Ca)AlSiN3:Eu2+荧光粉与氟化物形成的复相陶瓷。9. The light-emitting device according to claim 7, wherein the fluorescent ceramic is any one of the following ceramics: Y 3 Al 5 O 12 : Ce 3+ phosphor or (Y, Gd) 3 Al 5 Pure phase ceramics of O 12 : Ce 3+ phosphor; Al 2 O 3 , Y 2 O 3 , Mg 2 AlO 4 and Y 3 Al 5 O 12 : Ce 3+ phosphor or (Y, Gd) 3 Al 5 respectively O 12 : multiphase ceramics formed by Ce 3+ phosphors; α-SiAlON:Eu 2+ phosphors or pure phase ceramics of (Sr,Ca)AlSiN 3 :Eu 2+ phosphors; and α-SiAlON:Eu 2+ Phosphor powder or (Sr,Ca)AlSiN 3 :Eu 2+ phosphor powder and fluoride form composite ceramics. 10.如权利要求1~9中任一项所述的发光装置,其特征在于,还包括至少一个第二发光层和至少一个第二反射层,所述第二发光层与所述发光层共平面设置,所述第二反射层与所述反射层共平面设置,且所述第二反射层设置在所述第二发光层下方,用于反射所述第二发光层发出的光。10. The light-emitting device according to any one of claims 1 to 9, further comprising at least one second light-emitting layer and at least one second reflective layer, the second light-emitting layer and the light-emitting layer sharing the same Planar arrangement, the second reflective layer and the reflective layer are arranged coplanarly, and the second reflective layer is arranged under the second light-emitting layer for reflecting the light emitted by the second light-emitting layer. 11.如权利要求10所述的发光装置,其特征在于,所述第二发光层包括散射粒子、黄光荧光粉、绿光荧光粉中的至少一种。11. The light-emitting device of claim 10, wherein the second light-emitting layer comprises at least one of scattering particles, yellow phosphors, and green phosphors. 12.如权利要求11所述的发光装置,其特征在于,所述第二反射层为银反射层或无机漫反射层。12. The light-emitting device of claim 11, wherein the second reflection layer is a silver reflection layer or an inorganic diffuse reflection layer. 13.如权利要求12所述的发光装置,其特征在于,在所述第二反射层的下方设置有由金、铂或者其合金制成的保护层,以保护所述第二反射层免受硫化和氧化。13. The light-emitting device of claim 12, wherein a protective layer made of gold, platinum or alloys thereof is provided under the second reflective layer to protect the second reflective layer from Vulcanization and oxidation.
CN201811596755.7A 2018-12-26 2018-12-26 Light emitting device with high red light brightness and high reliability Active CN111365685B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201811596755.7A CN111365685B (en) 2018-12-26 2018-12-26 Light emitting device with high red light brightness and high reliability
CN202210269680.1A CN114623418B (en) 2018-12-26 2018-12-26 A light-emitting device with high red light brightness and high reliability
PCT/CN2019/127283 WO2020135303A1 (en) 2018-12-26 2019-12-23 Light-emitting device with high red light brightness and high reliability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811596755.7A CN111365685B (en) 2018-12-26 2018-12-26 Light emitting device with high red light brightness and high reliability

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202210269680.1A Division CN114623418B (en) 2018-12-26 2018-12-26 A light-emitting device with high red light brightness and high reliability

Publications (2)

Publication Number Publication Date
CN111365685A CN111365685A (en) 2020-07-03
CN111365685B true CN111365685B (en) 2022-04-19

Family

ID=71127677

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202210269680.1A Active CN114623418B (en) 2018-12-26 2018-12-26 A light-emitting device with high red light brightness and high reliability
CN201811596755.7A Active CN111365685B (en) 2018-12-26 2018-12-26 Light emitting device with high red light brightness and high reliability

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202210269680.1A Active CN114623418B (en) 2018-12-26 2018-12-26 A light-emitting device with high red light brightness and high reliability

Country Status (2)

Country Link
CN (2) CN114623418B (en)
WO (1) WO2020135303A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114276024B (en) * 2021-12-13 2022-08-23 厦门大学 A kind of high color rendering composite fluorescent glass and preparation method thereof

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2609527A1 (en) * 1987-01-12 1988-07-15 Rochefort Hugues De Halogen lamp (class II)
GB2344456B (en) * 1998-12-02 2000-12-27 Arima Optoelectronics Corp Semiconductor devices
JP5283293B2 (en) * 2001-02-21 2013-09-04 ソニー株式会社 Semiconductor light emitting device
JP4874510B2 (en) * 2003-05-14 2012-02-15 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
US7361938B2 (en) * 2004-06-03 2008-04-22 Philips Lumileds Lighting Company Llc Luminescent ceramic for a light emitting device
CN100428512C (en) * 2005-01-31 2008-10-22 东芝照明技术株式会社 LED device
DE102005020908A1 (en) * 2005-02-28 2006-08-31 Osram Opto Semiconductors Gmbh Lighting device for back lighting of liquid crystal display, has optical unit with radiation emission surface which has convex curved partial region that partially surrounds concave curved partial region in distance to optical axis
JP4905009B2 (en) * 2006-09-12 2012-03-28 豊田合成株式会社 Method for manufacturing light emitting device
JP4983347B2 (en) * 2007-04-03 2012-07-25 ソニー株式会社 Light emitting device and light source device
TWI390768B (en) * 2008-05-26 2013-03-21 Warm white light emitting diodes and their fluorescent powder
JP5584645B2 (en) * 2011-03-31 2014-09-03 株式会社沖データ Semiconductor light emitting device and head mounted display device
CN102517017B (en) * 2011-12-09 2013-12-04 苏州晶能科技有限公司 Phosphor and its preparation method and white LED plane light source containing phosphor
CN102522476B (en) * 2011-12-23 2014-03-12 泉州万明光电有限公司 Packaging structure of efficient light emitting diode light source
CN103045259B (en) * 2012-12-20 2014-10-15 华东师范大学 Oxynitride fluorescent powder, preparation method thereof and LED light source including same
CN104566230B (en) * 2013-10-15 2017-07-11 深圳市光峰光电技术有限公司 Wavelength converter and its light-source system, optical projection system
CN203607398U (en) * 2013-10-25 2014-05-21 广东德力光电有限公司 A highly color rendering white light LED structure
CN104595852B (en) * 2013-10-30 2016-08-24 深圳市绎立锐光科技开发有限公司 A kind of Wavelength converter, diffusing reflection layer, light-source system and optical projection system
KR101504168B1 (en) * 2013-11-15 2015-03-20 주식회사 루멘스 Light emitting device package, backlight unit and lighting device
CN203907471U (en) * 2014-01-21 2014-10-29 深圳市动盈化工有限公司 LED (Light Emitting Diode) lamp cover capable of increasing color rendering index of LED lamp
CN105805699B (en) * 2014-12-30 2019-01-08 深圳市光峰光电技术有限公司 The preparation method of Wavelength converter
CN104913224A (en) * 2015-07-07 2015-09-16 宏齐光电子(深圳)有限公司 LED light source and LED lamp
CN205424548U (en) * 2016-01-08 2016-08-03 深圳慧盈生态科技有限公司 Vegetation LED lamp strip and assembled lamp strip
JP2018049981A (en) * 2016-09-23 2018-03-29 スタンレー電気株式会社 Semiconductor light emitting device and manufacturing method thereof
EP3555690A1 (en) * 2016-12-16 2019-10-23 Lumileds Holding B.V. Light conversion device with angular and wavelength selective coating
CN108930919B (en) * 2017-05-19 2022-08-12 深圳光峰科技股份有限公司 A wavelength conversion device, preparation method thereof, and light source
CN207164363U (en) * 2017-07-25 2018-03-30 深圳市光峰光电技术有限公司 The light-source system of colour wheel and the application colour wheel, optical projection system

Also Published As

Publication number Publication date
CN111365685A (en) 2020-07-03
CN114623418A (en) 2022-06-14
WO2020135303A1 (en) 2020-07-02
CN114623418B (en) 2023-12-01

Similar Documents

Publication Publication Date Title
CN106206904B (en) A wavelength conversion device, a fluorescent color wheel and a light-emitting device
JP5530165B2 (en) Light source device and lighting device
JP5009788B2 (en) Luminescent ceramics for light emitting devices
CN100405620C (en) Saturable Phosphor Solid State Emitters
CN100502065C (en) High-efficiency fluorescent conversion LED light source and backlight module
TWI696685B (en) Optical wavelength conversion device and optical composite device
CN205447345U (en) Wavelength converters and light source system
CN105738994B (en) Wavelength conversion device and related lighting device, fluorescent color wheel and projection device
TW200408145A (en) White color light emitting device
JP2012243624A (en) Light source device and lighting device
JP2012129135A (en) Light source device, illumination device, and phosphor layer manufacturing method
TW200952222A (en) Semiconductor light-emitting device as well as light source device and lighting system including the same
CN106195925A (en) A kind of Wavelength converter, light-emitting device and projection arrangement
TW201212293A (en) Light emitting device
JP2012104267A (en) Light source device and lighting system
JP2011176276A (en) White light-emitting device, lighting device, and lighting method
KR102044140B1 (en) Wavelength converting member and light emitting device
CN106287580A (en) Wavelength converter and preparation method thereof, related lighting fixtures and optical projection system
CN204829755U (en) Wavelength conversion equipment , relevant illuminator and projecting system
CN110017435A (en) Wavelength converter
WO2019136831A1 (en) Wavelength conversion apparatus and light source therefor
TWI385826B (en) A led device comprising a transparent material lamination having graded refractive index, or a led device having heat dissipation property, and applications of the same
CN111365685B (en) Light emitting device with high red light brightness and high reliability
JP5781367B2 (en) Light source device and lighting device
CN101593798B (en) Light-emitting diode with graded refractive index transparent substrate or high heat dissipation and its application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant