CN111362401A - A Sewage Treatment Method Using Micron Fe3O4 Enhanced Anaerobic Dynamic Membrane Bioreactor - Google Patents
A Sewage Treatment Method Using Micron Fe3O4 Enhanced Anaerobic Dynamic Membrane Bioreactor Download PDFInfo
- Publication number
- CN111362401A CN111362401A CN202010191439.2A CN202010191439A CN111362401A CN 111362401 A CN111362401 A CN 111362401A CN 202010191439 A CN202010191439 A CN 202010191439A CN 111362401 A CN111362401 A CN 111362401A
- Authority
- CN
- China
- Prior art keywords
- anaerobic
- micron
- dynamic membrane
- sewage treatment
- treatment method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 127
- 239000010865 sewage Substances 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims abstract description 30
- SZVJSHCCFOBDDC-UHFFFAOYSA-N ferrosoferric oxide Chemical compound O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 title description 4
- 239000010802 sludge Substances 0.000 claims abstract description 67
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 28
- 239000002245 particle Substances 0.000 claims abstract description 18
- 230000004907 flux Effects 0.000 claims abstract description 12
- 238000003756 stirring Methods 0.000 claims abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 39
- 238000006243 chemical reaction Methods 0.000 claims description 19
- 230000002572 peristaltic effect Effects 0.000 claims description 14
- 239000007788 liquid Substances 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- 239000004745 nonwoven fabric Substances 0.000 claims description 5
- 229920000728 polyester Polymers 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims description 4
- 238000005485 electric heating Methods 0.000 claims description 4
- 230000005484 gravity Effects 0.000 claims description 4
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 3
- 229920005372 Plexiglas® Polymers 0.000 claims description 3
- 239000004677 Nylon Substances 0.000 claims description 2
- 229920001778 nylon Polymers 0.000 claims description 2
- 229910001220 stainless steel Inorganic materials 0.000 claims description 2
- 239000010935 stainless steel Substances 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 8
- 238000001914 filtration Methods 0.000 description 15
- 230000008569 process Effects 0.000 description 9
- 238000001471 micro-filtration Methods 0.000 description 8
- 244000005700 microbiome Species 0.000 description 8
- 238000000108 ultra-filtration Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 7
- 238000009285 membrane fouling Methods 0.000 description 7
- 239000011148 porous material Substances 0.000 description 7
- 239000003344 environmental pollutant Substances 0.000 description 5
- 231100000719 pollutant Toxicity 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000005189 flocculation Methods 0.000 description 4
- 230000016615 flocculation Effects 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000035755 proliferation Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 238000004065 wastewater treatment Methods 0.000 description 3
- 238000013019 agitation Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000006065 biodegradation reaction Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 239000002207 metabolite Substances 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000010841 municipal wastewater Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005374 membrane filtration Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000036619 pore blockages Effects 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/28—Anaerobic digestion processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/28—Anaerobic digestion processes
- C02F3/2853—Anaerobic digestion processes using anaerobic membrane bioreactors
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/28—Anaerobic digestion processes
- C02F3/2866—Particular arrangements for anaerobic reactors
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Microbiology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Activated Sludge Processes (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
本发明涉及厌氧动态膜生物反应器技术领域,尤其涉及一种利用微米Fe3O4强化厌氧动态膜生物反应器的污水处理法,包括:1)先在不包括膜组件的密闭厌氧动态膜生物反应器内投加微米Fe3O4和接种污泥,且接种污泥的粒径大于微米Fe3O4;然后搅拌使微米Fe3O4与厌氧活性污泥充分混匀,即形成磁性厌氧污泥。2)向形成磁性厌氧污泥的反应器中放置膜组件,然后向反应器中通入污水并不断搅拌,待磁性厌氧动态膜形成,进入下一阶段。3)待膜组件通量下降至设定值时,将膜组件取出冲洗,用于下一周期的循环。本发明通过微米Fe3O4缩短了厌氧动态膜的形成时间,改善形成的厌氧动态膜,达到有效控制膜污染,提升处理效果的目的。
The invention relates to the technical field of anaerobic dynamic membrane bioreactors, in particular to a sewage treatment method using micron Fe 3 O 4 to strengthen anaerobic dynamic membrane bioreactors. Micron Fe 3 O 4 and inoculated sludge are added into the dynamic membrane bioreactor, and the particle size of the inoculated sludge is larger than that of micron Fe 3 O 4 ; That is, magnetic anaerobic sludge is formed. 2) Place a membrane module in the reactor where the magnetic anaerobic sludge is formed, then feed sewage into the reactor and keep stirring, until the magnetic anaerobic dynamic membrane is formed, and enter the next stage. 3) When the flux of the membrane module drops to the set value, take out the membrane module and rinse it for the next cycle. The invention shortens the formation time of the anaerobic dynamic film by using the micron Fe 3 O 4 , improves the formed anaerobic dynamic film, and achieves the purpose of effectively controlling the film pollution and improving the treatment effect.
Description
技术领域technical field
本发明涉及厌氧动态膜生物反应器技术领域,尤其涉及一种利用微米Fe3O4强化厌氧动态膜生物反应器的污水处理法。The invention relates to the technical field of anaerobic dynamic membrane bioreactors, in particular to a sewage treatment method using micron Fe 3 O 4 to strengthen the anaerobic dynamic membrane bioreactor.
背景技术Background technique
本发明背景技术中公开的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。The information disclosed in this Background of the Invention is only for enhancement of understanding of the general background of the invention and should not necessarily be taken as an acknowledgement or any form of suggestion that this information forms the prior art already known to a person of ordinary skill in the art.
厌氧污水处理工艺由于具有基建运行费用低、污泥产量低、可回收利用沼气能源、无需曝气且能耗低等优点,受到水环境领域的广泛关注。然而,自厌氧技术发展以来,污泥流失问题一直是一个重大问题。厌氧膜生物反应器(Anaerobic membrane bioreactor,AnMBR)是一种将膜分离应用于传统厌氧生物处理工艺的技术。这一技术在厌氧技术优点的基础上,利用膜(微滤/超滤膜)的截留作用能够实现完全的生物量保留,解决传统厌氧工艺的污泥流失问题,具有出水水质好、抗冲击能力强、占地面积小等优点。但成本高昂的膜组件极大地增加了AnMBR的投资和运营成本。The anaerobic sewage treatment process has received extensive attention in the field of water environment due to its advantages of low capital construction and operation cost, low sludge production, recyclable biogas energy, no need for aeration, and low energy consumption. However, the sludge loss problem has been a major problem since the development of anaerobic technology. Anaerobic membrane bioreactor (AnMBR) is a technology that applies membrane separation to traditional anaerobic biological treatment processes. Based on the advantages of anaerobic technology, this technology can achieve complete biomass retention by using the interception effect of membrane (microfiltration/ultrafiltration membrane), and solve the problem of sludge loss in traditional anaerobic processes. It has the advantages of strong impact ability and small footprint. But the high-cost membrane modules greatly increase the investment and operating costs of AnMBR.
厌氧动态膜生物反应器(Anaerobic dynamic membrane bioreactor,AnDMBR)是一种将动态膜与厌氧处理相结合并应用于活性污泥法的新兴技术。具体而言,通过采用价格低廉的大孔径过滤材料替代传统微滤/超滤膜,利用过滤过程初期滤材上原位形成或重新形成的厌氧动态膜(污泥层)作为分离介质,实现与AnMBR中的MF/UF膜类似固液分离效果的技术。AnDMBR中的粗孔过滤材料极大节省了投资成本;形成的厌氧动态膜具有较小的过滤阻力,并且清洗方式简易,显著的减少了污水处理工艺的运行维护费用。采用成本更低的大孔径过滤材料替代成本高昂的微滤/超滤膜的AnDMBR更为适合污水处理。Anaerobic dynamic membrane bioreactor (AnDMBR) is an emerging technology that combines dynamic membrane with anaerobic treatment and is applied to activated sludge process. Specifically, by replacing traditional microfiltration/ultrafiltration membranes with inexpensive large-pore filter materials, and using the anaerobic dynamic membrane (sludge layer) formed or re-formed on the filter material in the initial stage of the filtration process as the separation medium, the A technology similar to the solid-liquid separation effect of the MF/UF membrane in AnMBR. The coarse-pored filter material in AnDMBR greatly saves investment costs; the formed anaerobic dynamic membrane has small filtration resistance and simple cleaning method, which significantly reduces the operation and maintenance costs of the sewage treatment process. AnDMBR, which replaces expensive microfiltration/ultrafiltration membranes with lower-cost large-pore filter materials, is more suitable for wastewater treatment.
然而,本发明人研究发现:AnDMBR仍然存在以下几方面的不足:以厌氧动态膜的形成为标志分为两个阶段:第一阶段为厌氧动态膜形成阶段,反应器内厌氧活性污泥颗粒沉积在大孔径过滤材料上形成污泥层,即厌氧动态膜,但在厌氧动态膜形成阶段微粒和胶体的保留率较低使得AnDMBR初期截留效果差,出水效率低,有文献报道污泥絮体累积速率约为0-50g/(m2·h),导致动态膜形成时间较长,一般在30分钟至几小时不等。厌氧动态膜形成后进入第二阶段,厌氧动态膜在持续稳定运行一段时间后,最终由于厌氧活性污泥颗粒及胞外聚合物(EPS)在膜组件上的吸附/沉积,导致厌氧动态膜厚度增加,孔径变小,过滤阻力增加,膜孔堵塞而引起膜污染。另外,由于厌氧微生物世代周期长,增殖速度慢,AnDMBR处理污水的效率较低。However, the inventors found that: AnDMBR still has the following deficiencies: the formation of anaerobic dynamic membrane is divided into two stages: the first stage is the formation stage of anaerobic dynamic membrane, and the anaerobic active pollutants in the reactor are divided into two stages. The sludge particles are deposited on the large-pore filter material to form a sludge layer, that is, an anaerobic dynamic membrane. However, the retention rate of particles and colloids in the formation stage of the anaerobic dynamic membrane is low, which makes AnDMBR poor in the initial interception effect and low effluent efficiency. It has been reported in the literature. The accumulation rate of sludge flocs is about 0-50 g/(m 2 ·h), resulting in a long dynamic membrane formation time, generally ranging from 30 minutes to several hours. After the anaerobic dynamic membrane is formed, it enters the second stage. After the anaerobic dynamic membrane continues to operate stably for a period of time, finally due to the adsorption/deposition of anaerobic activated sludge particles and extracellular polymers (EPS) on the membrane module, anaerobic dynamic membrane The thickness of the oxygen dynamic membrane increases, the pore size becomes smaller, the filtration resistance increases, and the membrane pores are blocked, causing membrane fouling. In addition, due to the long generation period of anaerobic microorganisms and the slow proliferation rate, the efficiency of AnDMBR in treating sewage is low.
发明内容SUMMARY OF THE INVENTION
针对上述的问题,本发明提出一种利用微米Fe3O4强化厌氧动态膜生物反应器的污水处理法。本发明通过微米Fe3O4缩短了厌氧动态膜的形成时间,改善形成的厌氧动态膜,最终达到能够有效控制膜污染,提升处理效果的目的。为实现上述目的,本发明采用的技术手段为:In view of the above problems, the present invention proposes a sewage treatment method using micron Fe 3 O 4 to strengthen the anaerobic dynamic membrane bioreactor. The invention shortens the formation time of the anaerobic dynamic film by using the micron Fe 3 O 4 , improves the formed anaerobic dynamic film, and finally achieves the purpose of effectively controlling the film pollution and improving the treatment effect. For achieving the above object, the technical means adopted in the present invention are:
一种利用微米Fe3O4强化厌氧动态膜生物反应器的污水处理法,包括如下步骤:A sewage treatment method utilizing micron Fe 3 O 4 to strengthen anaerobic dynamic membrane bioreactor, comprising the following steps:
(1)磁性厌氧污泥形成阶段:先在不包括膜组件的密闭厌氧动态膜生物反应器内投加微米Fe3O4和厌氧活性污泥,且厌氧活性污泥的粒径大于微米Fe3O4;然后搅拌使微米Fe3O4与厌氧活性污泥充分混匀,即形成磁性厌氧污泥。(1) Magnetic anaerobic sludge formation stage: firstly add micron Fe 3 O 4 and anaerobic activated sludge into the closed anaerobic dynamic membrane bioreactor excluding membrane modules, and the particle size of anaerobic activated sludge larger than micron Fe 3 O 4 ; and then stirring to fully mix micron Fe 3 O 4 with anaerobic activated sludge, that is, to form magnetic anaerobic sludge.
(2)磁性厌氧动态膜形成阶段(挂膜阶段):向形成磁性厌氧污泥的反应器中放置膜组件,然后向反应器中通入污水并不断搅拌,待磁性厌氧动态膜形成,进入下一阶段。(2) Magnetic anaerobic dynamic membrane formation stage (film hanging stage): place a membrane module in the reactor where magnetic anaerobic sludge is formed, and then feed sewage into the reactor and stir continuously until the magnetic anaerobic dynamic membrane is formed , enter the next stage.
(3)磁性厌氧动态膜的稳定运行阶段:待膜组件通量下降至设定值时,一个运行周期结束,将膜组件取出冲洗,用于下一周期的循环。(3) The stable operation stage of the magnetic anaerobic dynamic membrane: when the flux of the membrane module drops to the set value, one operation cycle ends, and the membrane module is taken out and washed for the next cycle.
进一步地,所述厌氧动态膜生物反应器包括:生物反应器、膜组件,所述生物反应器是由内层壳体和外层壳体组成的双层结构,内层壳体和外层壳体之间形成水浴区,且水浴区通过抽吸泵与恒温介质供应装置形成循环连接。由内层壳体形成的反应区连接有用于进水的蠕动泵,且反应区设置搅拌器,以控制反应器内厌氧污泥混合液的搅拌速率。所述膜组件是由支撑结构及其表面包覆的过滤介质组成。出水管与膜组件连接,且出水管上安装流量计以确定出水通量。Further, the anaerobic dynamic membrane bioreactor includes: a bioreactor and a membrane module, the bioreactor is a double-layer structure composed of an inner shell and an outer shell, the inner shell and the outer shell A water bath area is formed between the shells, and the water bath area forms a circulating connection with the constant temperature medium supply device through a suction pump. The reaction zone formed by the inner shell is connected with a peristaltic pump for water inflow, and a stirrer is arranged in the reaction zone to control the stirring rate of the anaerobic sludge mixed solution in the reactor. The membrane module is composed of a support structure and a filter medium coated on its surface. The outlet pipe is connected with the membrane module, and a flow meter is installed on the outlet pipe to determine the effluent flux.
可选地,所述过滤介质包括无纺布、涤纶网、尼龙网、不锈钢网等中的任意一种,优选为聚酯无纺布。所述支撑结构为圆柱形,其材质可选为PVC。Optionally, the filter medium includes any one of non-woven fabric, polyester mesh, nylon mesh, stainless steel mesh, etc., preferably polyester non-woven fabric. The support structure is cylindrical, and its material can be selected from PVC.
可选地,所述恒温介质供应装置为由电加热棒加热的恒温水浴箱,通过抽吸泵向水浴区循环加入热水,以控制反应器内的温度恒定。可选地,维持在20-30℃之间。Optionally, the constant temperature medium supply device is a constant temperature water bath box heated by an electric heating rod, and hot water is circulated into the water bath area through a suction pump to control the temperature in the reactor to be constant. Optionally, maintain between 20-30°C.
可选地,所述生物反应器由有机玻璃制成,形成透明的壳体便于观察反应器内的微米Fe3O4与厌氧活性污泥的混合情况,污水的处理情况等。Optionally, the bioreactor is made of plexiglass, and a transparent shell is formed to facilitate the observation of the mixing of micron Fe 3 O 4 and anaerobic activated sludge in the reactor, the treatment of sewage, and the like.
进一步地,还包括液位控制器,且液位控制器的检测端位于反应区中,且液位控制器与蠕动泵连接,以便于根据反应器内液位的变化控制进水。Further, a liquid level controller is also included, and the detection end of the liquid level controller is located in the reaction zone, and the liquid level controller is connected with the peristaltic pump, so as to control the influent water according to the change of the liquid level in the reactor.
进一步地,步骤(1)中,所述微米Fe3O4的浓度为0.2-0.8g/L。优选为0.8g/L,以COD和浊度为检测指标,在该浓度下对污水的处理效果更佳。Further, in step (1), the concentration of the micron Fe 3 O 4 is 0.2-0.8 g/L. It is preferably 0.8g/L, with COD and turbidity as detection indicators, the treatment effect of sewage is better at this concentration.
进一步地,步骤(1)中,所述微米Fe3O4的平均粒径为2.70±0.01μm,且粒径在微米尺度的Fe3O4占总含量的比例在98%以上,微米Fe3O4比纳米Fe3O4更稳定。Further, in step (1), the average particle size of the micron Fe 3 O 4 is 2.70±0.01 μm, and the Fe 3 O 4 with a particle size in the micro scale accounts for more than 98% of the total content, and the micro Fe 3 O 4 is more stable than nano Fe 3 O 4 .
进一步地,步骤(2)中,以出水浊度小于2NTU作为磁性厌氧动态膜形成的标志。Further, in step (2), the turbidity of the effluent is less than 2NTU as a sign of the formation of the magnetic anaerobic dynamic film.
进一步地,步骤(2)中,采用恒压重力自流出水,水头差设置为2.5-6.5cm,以增加动态膜两侧的压力差,缩短挂膜时间。Further, in step (2), constant pressure gravity self-flowing water is adopted, and the head difference is set to 2.5-6.5 cm, so as to increase the pressure difference on both sides of the dynamic membrane and shorten the film hanging time.
进一步地,步骤(3)中,水头差调节为2.5-3.0cm,以延长稳定运行周期。Further, in step (3), the head difference is adjusted to 2.5-3.0 cm to prolong the stable operation period.
微米Fe3O4在本发明的污水处理中的作用主要有三个方面:(1)微米Fe3O4和粒径更大的接种污泥能够形成结构疏松、颗粒均匀的磁性厌氧动态膜,使得膜具有更好的过滤性能,而且过滤阻力低,从而显著地增强了磁性厌氧动态膜的稳定运行时间。(2)加入微米Fe3O4可以减少活性污泥混合液中胞外聚合物(EPS)的含量,降低膜的过滤阻力,从而减缓厌氧动态膜的膜污染。(3)在厌氧动态膜形成阶段,由于微米Fe3O4的絮凝作用,可以增大厌氧活性污泥絮体的粒径,改善聚集性,缩短厌氧动态膜的形成时间。(4)由于微米Fe3O4存在能够促进厌氧微生物新陈代谢,在一定程度上也提升了厌氧动态膜上污泥层的生物降解功能。The role of micron Fe 3 O 4 in the sewage treatment of the present invention mainly has three aspects: (1) the micron Fe 3 O 4 and the inoculated sludge with larger particle size can form a magnetic anaerobic dynamic membrane with loose structure and uniform particles, The membrane has better filtration performance and low filtration resistance, thereby significantly enhancing the stable running time of the magnetic anaerobic dynamic membrane. (2) Adding micron Fe 3 O 4 can reduce the content of extracellular polymer (EPS) in the activated sludge mixture, reduce the filtration resistance of the membrane, and thus slow down the membrane fouling of the anaerobic dynamic membrane. (3) In the formation stage of anaerobic dynamic membrane, due to the flocculation of micron Fe 3 O 4 , the particle size of anaerobic activated sludge flocs can be increased, the aggregation property can be improved, and the formation time of anaerobic dynamic membrane can be shortened. (4) Since the existence of micron Fe 3 O 4 can promote the metabolism of anaerobic microorganisms, it also improves the biodegradation function of the sludge layer on the anaerobic dynamic membrane to a certain extent.
与现有技术相比,本发明至少具有以下几方面的有益效果:Compared with the prior art, the present invention has at least the following beneficial effects:
(1)微米Fe3O4的絮凝作用可以提高厌氧活性污泥的絮凝能力,增加污泥絮体粒径,磁性厌氧动态膜的形成时间缩短了10min。(1) The flocculation of micron Fe 3 O 4 can improve the flocculation ability of anaerobic activated sludge, increase the size of sludge flocs, and shorten the formation time of magnetic anaerobic dynamic membrane by 10min.
(2)加入微米Fe3O4减缓厌氧动态膜层的膜污染,有效抑制厌氧活性污泥混合液中的微生物分泌更少的EPS,使厌氧动态膜的过滤阻力降低,通量提高,形成的磁性厌氧动态膜过滤阻力增长率下降了一个数量级。(2) Adding micron Fe 3 O 4 slows down the membrane fouling of the anaerobic dynamic membrane layer, effectively inhibits the microorganisms in the anaerobic activated sludge mixture from secreting less EPS, reduces the filtration resistance of the anaerobic dynamic membrane and increases the flux , the formation of the magnetic anaerobic dynamic membrane filtration resistance growth rate decreased by an order of magnitude.
(3)加入微米Fe3O4能够促进厌氧微生物新陈代谢,起到提高污染物去除效率的作用,Fe3O4强化后的厌氧动态膜生物反应器平均COD去除率提高了15%。(3) The addition of micron Fe 3 O 4 can promote the metabolism of anaerobic microorganisms and improve the removal efficiency of pollutants. The average COD removal rate of the anaerobic dynamic membrane bioreactor enhanced by Fe 3 O 4 is increased by 15%.
(4)加入微米Fe3O4能够强化厌氧动态膜的生物降解功能,磁性厌氧动态膜的平均COD去除率由之前的9%显著提高到了22%。(4) The addition of micron Fe 3 O 4 can strengthen the biodegradation function of the anaerobic dynamic membrane, and the average COD removal rate of the magnetic anaerobic dynamic membrane is significantly increased from the previous 9% to 22%.
(5)相对于现有的在AnMBR中采用Fe3O4纳米颗粒对超滤微滤膜进行改性的技术(如,公开号为CN 108479429A的专利文献),本发明采用Fe3O4来加速AnDMBR中厌氧动态膜的形成的是一种完全不同的技术。因为AnMBR与AnDMBR有极大的不同之处,AnMBR的超滤微滤膜在过滤过程中会“被动”的沉积附着一些污泥层,但该污泥层形成过程是不希望发生的,它会堵塞微滤超滤膜造成膜污染问题,因此采用Fe3O4作为吸附剂使用来减缓膜污染。但由于AnDMBR在厌氧动态膜的形成阶段(AnMBR无该过程),厌氧活性污泥团聚在一起并附着在粗孔过滤材料上形成污泥层,它可以起到类似微滤超滤膜的过滤作用,并且在传质过程中水中的污染物与污泥层中的微生物接触充分,实际参与污染物降解的有效微生物量远大于微滤超滤膜,该污泥层形成过程反而是希望发生的,而本发明则利用微米Fe3O4的絮凝作用缩短厌氧动态膜的形成时间,加速污泥层的形成。(5) Compared with the existing technology of using Fe 3 O 4 nanoparticles to modify the ultrafiltration microfiltration membrane in AnMBR (for example, the patent document with the publication number of CN 108479429A), the present invention adopts Fe 3 O 4 to Accelerating the formation of anaerobic dynamic membranes in AnDMBR is a completely different technique. Because AnMBR is very different from AnDMBR, the ultrafiltration microfiltration membrane of AnMBR will "passively" deposit and attach some sludge layers during the filtration process, but the formation process of the sludge layer is not expected, it will Blocking of microfiltration and ultrafiltration membranes causes membrane fouling problems, so Fe 3 O 4 is used as an adsorbent to slow down membrane fouling. However, since AnDMBR is in the formation stage of anaerobic dynamic membrane (AnMBR does not have this process), anaerobic activated sludge agglomerates and adheres to the coarse pore filter material to form a sludge layer, which can play a role similar to microfiltration and ultrafiltration membrane. filtration, and during the mass transfer process, the pollutants in the water are in full contact with the microorganisms in the sludge layer, and the effective amount of microorganisms actually participating in the degradation of pollutants is much larger than that of the microfiltration ultrafiltration membrane, and the formation process of the sludge layer is expected to occur. However, the present invention utilizes the flocculation effect of micron Fe 3 O 4 to shorten the formation time of the anaerobic dynamic membrane and accelerate the formation of the sludge layer.
附图说明Description of drawings
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。The accompanying drawings forming a part of the present invention are used to provide further understanding of the present invention, and the exemplary embodiments of the present invention and their descriptions are used to explain the present invention, and do not constitute an improper limitation of the present invention.
图1为本发明实施例中厌氧动态膜生物反应器的结构示意图。FIG. 1 is a schematic structural diagram of an anaerobic dynamic membrane bioreactor in an embodiment of the present invention.
上述附图中标记分别代表:1-生物反应器、2-膜组件、3-内层壳体、4-外层壳体、5-水浴区、6-抽吸泵、7-恒温介质供应装置、8-反应区、9-蠕动泵、10-搅拌器、11-出水管、12-流量计、13-电加热棒、14-进水管、15-液位控制器、16-微米Fe3O4、h-水头差。The marks in the above drawings represent respectively: 1-bioreactor, 2-membrane module, 3-inner shell, 4-outer shell, 5-water bath area, 6-suction pump, 7- constant temperature medium supply device , 8-reaction zone, 9-peristaltic pump, 10-stirrer, 11-outlet pipe, 12-flow meter, 13-electric heating rod, 14-water inlet pipe, 15-liquid level controller, 16-micron Fe 3 O 4. h-head difference.
具体实施方式Detailed ways
应该指出,以下详细说明都是例示性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。It should be noted that the following detailed description is exemplary and intended to provide further explanation of the invention. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。It should be noted that the terminology used herein is for the purpose of describing specific embodiments only, and is not intended to limit the exemplary embodiments according to the present invention. As used herein, unless the context clearly dictates otherwise, the singular is intended to include the plural as well, furthermore, it is to be understood that when the terms "comprising" and/or "including" are used in this specification, it indicates that There are features, steps, operations, devices, components and/or combinations thereof.
为了方便叙述,本发明中如果出现“上”、“下”、“左”“右”字样,仅表示与附图本身的上、下、左、右方向一致,并不对结构起限定作用,仅仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的设备或元件需要具有特定的方位,以特定的方位构造和操作,因此不能理解为对本发明的限制。For the convenience of description, if the words "up", "down", "left" and "right" appear in the present invention, it only means that the directions of up, down, left and right are consistent with the drawings themselves, and do not limit the structure. It is for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the referred device or element needs to have a specific orientation, is constructed and operated in a specific orientation, and therefore should not be construed as a limitation of the present invention.
术语解释部分:本发明中的术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或为一体;可以是机械连接,也可以是电连接,可以是直接连接,也可以是通过中间媒介间接相连,可以是两个元件内部连接,或者两个元件的相互作用关系,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明的具体含义。Terminology explanation part: the terms "installation", "connection", "connection", "fixation" and other terms in the present invention should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integrated; It can be a mechanical connection, it can also be an electrical connection, it can be a direct connection, it can also be indirectly connected through an intermediate medium, it can be an internal connection between two elements, or an interaction relationship between two elements, for those of ordinary skill in the art. , the specific meanings of the above terms in the present invention can be understood according to specific situations.
正如前文所述,现有的一些AnDMBR仍然存在厌氧动态膜形成时间长,稳定运行时间短,运行后期厌氧动态膜厚度增加,孔径变小,过滤阻力增加,膜孔堵塞而引起膜污染等不足。因此,本发明提出了一种利用微米Fe3O4强化厌氧动态膜生物反应器的污水处理法;现结合说明书附图和具体实施方式对本发明进一步说明。As mentioned above, some of the existing AnDMBR still have long anaerobic dynamic membrane formation time, short stable operation time, increased anaerobic dynamic membrane thickness in the later stage of operation, smaller pore size, increased filtration resistance, and membrane fouling caused by membrane pore blockage, etc. insufficient. Therefore, the present invention proposes a sewage treatment method using micron Fe 3 O 4 to strengthen the anaerobic dynamic membrane bioreactor; the present invention will now be further described with reference to the accompanying drawings and specific embodiments.
第一实施例first embodiment
一种厌氧动态膜生物反应器,如图1所示,包括:生物反应器1、膜组件2。所述生物反应器是由有机玻璃材质的内层壳体3和外层壳体4组成的双层结构,内层壳体和外层壳体之间形成水浴区5,且水浴区5通过抽吸泵6与恒温介质供应装置7形成循环连接,恒温介质供应装置7为由电加热棒13加热的恒温水浴箱,通过抽吸泵6向水浴区5循环加入热水,以控制反应器内的温度恒定在25±2℃。An anaerobic dynamic membrane bioreactor, as shown in FIG. 1 , includes: a bioreactor 1 and a
由内层壳体形成的密闭反应区8通过进水管14连接有用于进水的蠕动泵9,且反应区8设置搅拌器10,搅拌器10的转动轴穿过筒状膜组件直达反应器底部,通过搅拌器10可以控制反应器内厌氧污泥混合液的搅拌速率,反应区8的有效容积3.8L。The
所述膜组件2是由PVC材质的圆柱形支撑结构及其表面包覆的聚酯无纺布组成,其规格为200g/m2,有效过滤面积为0.11m2。膜组件的上部设有出水口,其和出水管11连接,出水管上安装流量计12,通过流量计测定出水流量变化,确定出水通量的变化。液位控制器15的检测端位于反应区8中,且液位控制器15与蠕动泵9连接,以便于根据反应器内液位的变化控制进水。The
第二实施例Second Embodiment
一种利用微米Fe3O4强化厌氧动态膜生物反应器的污水处理法,首先进行预试验确定微米Fe3O4的最佳投加量,包括如下步骤:A sewage treatment method utilizing micron Fe 3 O 4 to strengthen anaerobic dynamic membrane bioreactor, firstly, pre-experiment is carried out to determine the optimum dosage of micron Fe 3 O 4 , including the following steps:
采用4个相同的厌氧瓶,在每个厌氧瓶中加入活性污泥混合液800mL(接种污泥是从青岛市政废水处理厂获得的厌氧活性污泥,污泥MLSS为4g/L)。然后向每个厌氧瓶中加入不同质量的微米Fe3O4,使4个厌氧瓶中Fe3O4浓度分别为0.2g/L、0.4g/L、0.6g/L和0.8g/L,将厌氧瓶放在震荡培养箱中进行混匀,震荡时间20min,震荡频率为120rpm,静置沉淀30min,测定上清液的COD和浊度,确定微米Fe3O4的最佳投加量为0.8g/L。Four identical anaerobic bottles were used, and 800 mL of activated sludge mixture was added to each anaerobic bottle (the seeded sludge was anaerobic activated sludge obtained from Qingdao Municipal Wastewater Treatment Plant, and the sludge MLSS was 4g/L) . Then, different mass of micron Fe 3 O 4 was added to each anaerobic flask, so that the Fe 3 O 4 concentrations in the 4 anaerobic flasks were 0.2g/L, 0.4g/L, 0.6g/L and 0.8g/L respectively. L, put the anaerobic bottle in the shaking incubator for mixing, shaking time is 20min, shaking frequency is 120rpm, let it settle for 30min, measure the COD and turbidity of the supernatant, and determine the optimal dosage of micron Fe 3 O 4 The dosage is 0.8g/L.
第三实施例Third Embodiment
一种利用微米Fe3O4强化厌氧动态膜生物反应器的污水处理法,采用第一实施例所述的厌氧动态膜生物反应器作为处理场所,且整个处理期间且通过水浴区将反应器的反应温度维持在25±2℃之间,具体地,包括如下步骤:A sewage treatment method using micron Fe 3 O 4 to strengthen the anaerobic dynamic membrane bioreactor, using the anaerobic dynamic membrane bioreactor described in the first embodiment as the treatment site, and during the entire treatment period and through the water bath zone, the reaction The reaction temperature of the vessel is maintained between 25±2°C, specifically, including the following steps:
(1)磁性厌氧污泥形成阶段:先在所述反应器的反应区内添加接种污泥(从青岛市政废水处理厂获得的厌氧活性污泥,污泥MLSS为4g/L);然后向反应区中投加微米Fe3O4 16(平均粒径为2.70±0.01μm,且粒径在微米尺度的Fe3O4占总含量大于98%),所述微米Fe3O4投加浓度为0.8g/L。调整搅拌器以150rpm速率使微米Fe3O4与厌氧活性污泥充分混匀,最终形成磁性厌氧污泥。(1) Magnetic anaerobic sludge formation stage: first add inoculated sludge (anaerobic activated sludge obtained from Qingdao Municipal Wastewater Treatment Plant, sludge MLSS is 4g/L) in the reaction zone of the reactor; then Add micron Fe 3 O 4 16 into the reaction zone (the average particle size is 2.70±0.01 μm, and the Fe 3 O 4 with particle size in the micron scale accounts for more than 98% of the total content), and the micron Fe 3 O 4 is added The concentration is 0.8g/L. Adjust the stirrer at a speed of 150rpm to fully mix the micron Fe3O4 with the anaerobic activated sludge, and finally form magnetic anaerobic sludge.
(2)磁性厌氧动态膜形成阶段(挂膜阶段):向形成磁性厌氧污泥的反应器中放置膜组件2,启动所述蠕动泵,将模拟合成污水通过进水蠕动泵通入反应器中,进水C:N:P=100:5:1,进水COD控制在约300mg/L,pH为6.8-7.2;进水蠕动泵开至最大(150rpm),调节搅拌器以120rpm速率使磁性厌氧污泥处于悬浮搅动状态,采用恒压重力自流出水,水头差设置为6.0cm,以增加动态膜两侧的压力差,缩短挂膜时间,把出水浊度小于2NTU作为磁性厌氧动态膜形成的标志。此阶段中,除取样之外,为保证世代周期长的厌氧微生物增殖生长,整个阶段没有污泥的排放,污泥龄接近于无限长。(2) Magnetic anaerobic dynamic membrane formation stage (film hanging stage):
(3)磁性厌氧动态膜的稳定运行阶段:磁性厌氧动态膜形成后,进入稳定运行阶段,进水蠕动泵调至20rpm,水头差h调节为2.5cm,以延长稳定运行周期,通过液位控制器控制进水,搅拌器以60rpm速率使磁性厌氧污泥处于悬浮搅动状态,出水通量、浊度相对稳定,污水pH保持在6.8-7.2,当通量下降至10L/m2·h以下时,一个运行周期结束。(3) The stable operation stage of the magnetic anaerobic dynamic membrane: After the magnetic anaerobic dynamic membrane is formed, it enters the stable operation stage. The influent peristaltic pump is adjusted to 20rpm, and the head difference h is adjusted to 2.5cm to prolong the stable operation period. The position controller controls the influent water, and the agitator keeps the magnetic anaerobic sludge in a suspended and agitated state at a rate of 60 rpm. The effluent flux and turbidity are relatively stable, and the pH of the sewage is maintained at 6.8-7.2. When the flux drops to 10L/m 2 · When h is below, one operation cycle ends.
第四实施例Fourth Embodiment
为第三实施例的对比,用厌氧动态膜生物反应器作为处理场所,且整个处理期间且通过水浴区将反应器的反应温度维持在25±2℃之间,区别在于没有在反应器中加入微米Fe3O4。具体地,包括如下步骤:For the comparison of the third embodiment, the anaerobic dynamic membrane bioreactor was used as the treatment site, and the reaction temperature of the reactor was maintained between 25±2°C throughout the treatment period and through the water bath zone, the difference was that there was no reaction in the reactor. Add micron Fe 3 O 4 . Specifically, it includes the following steps:
(1)厌氧动态膜形成阶段(挂膜阶段):反应器内添加接种污泥,启动进水蠕动泵,然后将模拟合成污水(C:N:P=100:5:1,COD控制在约300mg/L,pH为6.8-7.2)通过进水蠕动泵通入反应器中,进水蠕动泵开至150rpm,调节磁力搅拌器以120rpm速率使厌氧活性污泥处于悬浮搅动状态,采用恒压重力自流出水,水头差设置为6.0cm,以增加动态膜两侧的压力差,缩短挂膜时间,出水浊度小于2NTU时厌氧动态膜在膜组件上挂膜完成。(1) Anaerobic dynamic membrane formation stage (film hanging stage): Inoculated sludge is added to the reactor, the influent peristaltic pump is started, and then the simulated synthetic sewage (C:N:P=100:5:1, COD is controlled at About 300mg/L, pH is 6.8-7.2) pass into the reactor through the influent peristaltic pump, open the influent peristaltic pump to 150rpm, adjust the magnetic stirrer to make the anaerobic activated sludge in a state of suspension agitation at a rate of 120rpm, and use a constant The pressure gravity is self-effluent, and the head difference is set to 6.0cm to increase the pressure difference on both sides of the dynamic membrane and shorten the film hanging time. When the turbidity of the effluent is less than 2NTU, the anaerobic dynamic membrane is hung on the membrane module.
(2)厌氧动态膜稳定运行阶段:厌氧动态膜形成后,进入稳定运行阶段,进水蠕动泵调至20rpm,水头差调节为2.5cm,以延长稳定运行周期,通过液位控制器控制进水,搅拌器以60rpm速率使厌氧污泥处于悬浮搅动状态,出水通量、浊度相对稳定,当通量下降至10L/m2·h以下时,一个运行周期结束。除取样之外,为保证世代周期长的厌氧微生物增殖生长,整个阶段没有污泥的排放,污泥龄接近于无限长。(2) Stable operation stage of anaerobic dynamic membrane: After the anaerobic dynamic membrane is formed, it enters the stable operation stage, the influent peristaltic pump is adjusted to 20rpm, and the head difference is adjusted to 2.5cm to prolong the stable operation period, which is controlled by the liquid level controller. Into the water, the agitator keeps the anaerobic sludge in a suspended and agitated state at a rate of 60rpm, and the effluent flux and turbidity are relatively stable. When the flux drops below 10L/m 2 ·h, one operation cycle ends. In addition to sampling, in order to ensure the proliferation and growth of anaerobic microorganisms with a long generation cycle, there is no sludge discharge in the whole stage, and the sludge age is close to infinity.
效果测试effect test
对于第四实施例:在挂膜阶段,厌氧动态膜的形成时间为20min。在稳定运行期间的10d内厌氧动态膜的过滤阻力增长率2.16×108m-1h-1。厌氧动态膜的稳定运行时间为10d,通量维持在10-20L/m2·h左右。厌氧活性污泥平均粒径为50.7μm,厌氧动态膜层平均粒径为63.1μm。处理后的出水性能指标为:COD出水浓度为60.6±3.8mg/L,平均COD去除效率为79.8%,上清液COD浓度为87.6±4.2mg/L,厌氧动态膜平均COD去除效率为9%。另外,厌氧活性污泥混合液的可溶性微生物代谢产物(SMP)含量为45.5mg/g MLSS,胞外聚合物(EPS)含量为61.6mg/g MLSS。For the fourth embodiment: in the film hanging stage, the formation time of the anaerobic dynamic film is 20min. The filtration resistance growth rate of the anaerobic dynamic membrane was 2.16×108m -1 h -1 within 10d during the stable operation. The stable running time of the anaerobic dynamic membrane is 10d, and the flux is maintained at about 10-20L/m 2 ·h. The average particle size of the anaerobic activated sludge was 50.7 μm, and the average particle size of the anaerobic dynamic membrane layer was 63.1 μm. The effluent performance indicators after treatment are: the COD effluent concentration is 60.6±3.8mg/L, the average COD removal efficiency is 79.8%, the supernatant COD concentration is 87.6±4.2mg/L, and the average COD removal efficiency of the anaerobic dynamic membrane is 9 %. In addition, the soluble microbial metabolite (SMP) content of the anaerobic activated sludge mixture was 45.5 mg/g MLSS, and the extracellular polymer (EPS) content was 61.6 mg/g MLSS.
对于第三实施例:在挂膜阶段,磁性厌氧动态膜的形成时间为10min,较未添加微米Fe3O4缩短了10min。在稳定运行期间的10d内磁性厌氧动态膜的过滤阻力增长率7.6×107m-1h-1,即过滤阻力增长率较之前降低了一个数量级,说明过滤阻力增长显著变慢。厌氧动态膜的稳定运行时间为15d,通量维持在20-35L/m2·h左右。磁性厌氧活性污泥平均粒径为60.6μm,磁性厌氧动态膜层平均粒径为68.5μm。处理后出水性能指标为:COD出水浓度为13.8±2.7mg/L,平均COD去除效率为95.4%,上清液COD浓度为79.8±2.4mg/L,厌氧动态膜平均COD去除效率为22%。可以看出:微米Fe3O4的加入提高了AnDMBR对污水的处理性能,增加了磁性厌氧动态膜对污染物的处理能力。另外,厌氧活性污泥混合液的可溶性微生物代谢产物(SMP)含量为38.5mg/g MLSS,胞外聚合物(EPS)含量为53.3mg/g MLSS,微米Fe3O4的加入使SMP和EPS的含量下降,减缓厌氧动态膜的膜污染。For the third embodiment: in the film hanging stage, the formation time of the magnetic anaerobic dynamic film is 10 minutes, which is 10 minutes shorter than that without adding micron Fe 3 O 4 . The filtration resistance growth rate of the magnetic anaerobic dynamic membrane was 7.6×10 7 m -1 h -1 within 10 days of stable operation, that is, the filtration resistance growth rate decreased by an order of magnitude compared with the previous one, indicating that the filtration resistance growth was significantly slower. The stable running time of the anaerobic dynamic membrane is 15d, and the flux is maintained at about 20-35L/m 2 ·h. The average particle size of the magnetic anaerobic activated sludge was 60.6 μm, and the average particle size of the magnetic anaerobic dynamic membrane layer was 68.5 μm. The performance indicators of effluent after treatment are: COD effluent concentration is 13.8±2.7mg/L, average COD removal efficiency is 95.4%, supernatant COD concentration is 79.8±2.4mg/L, anaerobic dynamic membrane average COD removal efficiency is 22% . It can be seen that the addition of micron Fe 3 O 4 improves the sewage treatment performance of AnDMBR and increases the pollutant treatment capacity of the magnetic anaerobic dynamic membrane. In addition, the soluble microbial metabolite (SMP) content of the anaerobic activated sludge mixture was 38.5 mg/g MLSS, and the extracellular polymer (EPS) content was 53.3 mg/g MLSS. The addition of micron Fe 3 O 4 made SMP and The content of EPS decreased, which slowed down the membrane fouling of the anaerobic dynamic membrane.
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010191439.2A CN111362401B (en) | 2020-03-18 | 2020-03-18 | A Sewage Treatment Method Using Micron Fe3O4 Enhanced Anaerobic Dynamic Membrane Bioreactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010191439.2A CN111362401B (en) | 2020-03-18 | 2020-03-18 | A Sewage Treatment Method Using Micron Fe3O4 Enhanced Anaerobic Dynamic Membrane Bioreactor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111362401A true CN111362401A (en) | 2020-07-03 |
CN111362401B CN111362401B (en) | 2021-06-22 |
Family
ID=71202674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010191439.2A Active CN111362401B (en) | 2020-03-18 | 2020-03-18 | A Sewage Treatment Method Using Micron Fe3O4 Enhanced Anaerobic Dynamic Membrane Bioreactor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111362401B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114262053A (en) * | 2022-01-17 | 2022-04-01 | 西安建筑科技大学 | A method for enhancing the efficiency of anaerobic dynamic membrane fermentation system |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102167441A (en) * | 2011-03-01 | 2011-08-31 | 山东大学 | Two-stage running mode of dynamic membrane bioreactor |
EP2683662A1 (en) * | 2011-03-11 | 2014-01-15 | Fundació Privada Institut Català de Nanotecnologia | Biogas production |
CN104445603A (en) * | 2013-09-16 | 2015-03-25 | 中国石油化工股份有限公司 | Method for rapidly starting up-flow reactor through denitrification |
JP2017118854A (en) * | 2015-12-28 | 2017-07-06 | 国立大学法人 宮崎大学 | Anaerobic polycyclic aromatic compound decomposing bacteria |
CN108314184A (en) * | 2018-03-19 | 2018-07-24 | 南京大学 | A method of promote anaerobic reactor to start |
CN108479429A (en) * | 2018-05-31 | 2018-09-04 | 中国科学院城市环境研究所 | It is a kind of to utilize nanometer Fe3O4The preparation method of modified PVDF microfiltration membranes and its utilization |
CN208104028U (en) * | 2018-02-28 | 2018-11-16 | 西安建筑科技大学 | A kind of device for rapidly starting of anaerobic ammonia oxidation process |
CN109574221A (en) * | 2018-12-27 | 2019-04-05 | 同济大学 | A kind of Anammox membrane biological reaction apparatus and its application based on Dynamic Membrane |
CN110436749A (en) * | 2019-06-22 | 2019-11-12 | 桂林理工大学 | The method of accelerating the settling speed of activated sludge by using magnetized micron ferroferric oxide |
CN110590078A (en) * | 2019-10-15 | 2019-12-20 | 青岛思普润水处理股份有限公司 | An iron-promoted magnetic loading anaerobic reaction system |
CN110606627A (en) * | 2019-10-15 | 2019-12-24 | 青岛思普润水处理股份有限公司 | An iron-promoted magnetic loading anaerobic/anoxic activated sludge process and biofilm process coupled treatment system |
-
2020
- 2020-03-18 CN CN202010191439.2A patent/CN111362401B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102167441A (en) * | 2011-03-01 | 2011-08-31 | 山东大学 | Two-stage running mode of dynamic membrane bioreactor |
EP2683662A1 (en) * | 2011-03-11 | 2014-01-15 | Fundació Privada Institut Català de Nanotecnologia | Biogas production |
CN104445603A (en) * | 2013-09-16 | 2015-03-25 | 中国石油化工股份有限公司 | Method for rapidly starting up-flow reactor through denitrification |
JP2017118854A (en) * | 2015-12-28 | 2017-07-06 | 国立大学法人 宮崎大学 | Anaerobic polycyclic aromatic compound decomposing bacteria |
CN208104028U (en) * | 2018-02-28 | 2018-11-16 | 西安建筑科技大学 | A kind of device for rapidly starting of anaerobic ammonia oxidation process |
CN108314184A (en) * | 2018-03-19 | 2018-07-24 | 南京大学 | A method of promote anaerobic reactor to start |
CN108479429A (en) * | 2018-05-31 | 2018-09-04 | 中国科学院城市环境研究所 | It is a kind of to utilize nanometer Fe3O4The preparation method of modified PVDF microfiltration membranes and its utilization |
CN109574221A (en) * | 2018-12-27 | 2019-04-05 | 同济大学 | A kind of Anammox membrane biological reaction apparatus and its application based on Dynamic Membrane |
CN110436749A (en) * | 2019-06-22 | 2019-11-12 | 桂林理工大学 | The method of accelerating the settling speed of activated sludge by using magnetized micron ferroferric oxide |
CN110590078A (en) * | 2019-10-15 | 2019-12-20 | 青岛思普润水处理股份有限公司 | An iron-promoted magnetic loading anaerobic reaction system |
CN110606627A (en) * | 2019-10-15 | 2019-12-24 | 青岛思普润水处理股份有限公司 | An iron-promoted magnetic loading anaerobic/anoxic activated sludge process and biofilm process coupled treatment system |
Non-Patent Citations (2)
Title |
---|
YISONG HUA 等: "Anaerobic dynamic membrane bioreactor (AnDMBR) for wastewater treatment:A review", 《BIORESOURCE TECHNOLOGY》 * |
钱旭等: "微米Fe3O4磁粉调理-压力电场污泥脱水工艺过程研究", 《环境科学》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114262053A (en) * | 2022-01-17 | 2022-04-01 | 西安建筑科技大学 | A method for enhancing the efficiency of anaerobic dynamic membrane fermentation system |
Also Published As
Publication number | Publication date |
---|---|
CN111362401B (en) | 2021-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103204607B (en) | Integrated sewage treatment device with high efficiency and low consumption and treatment method | |
CN111362402A (en) | Method and application of strengthening anaerobic dynamic membrane bioreactor by combining GAC and PAC | |
CN104649519B (en) | Sewage-treatment plant that Biology-iron technology combines with anaerobism MBR method and method | |
CN102553450B (en) | A Method for Preventing Separation MBR Flat Membrane Fouling | |
CN103496784B (en) | A kind of self-forming dynamic membrane bioreactor using aerobic particle mud | |
CN100417435C (en) | A bioreactor using polyvinyl alcohol nanosphere dynamic membrane as a filter medium | |
CN104445600A (en) | Membrane pollution in-situ control based membrane bioreactor and technology thereof | |
KR20210009111A (en) | Wastewater treatment facility with granule sludge acceleration reactor and recovery device and method using the same | |
CN106045034B (en) | A kind of two-stage dynamic membrane device and technique for sewage recycling processing and energy recovery | |
WO2023124203A1 (en) | Inverted a2/o-gdmbr integrated village and town sewage treatment apparatus with external electric field, and sewage treatment method thereof | |
CN102627350A (en) | Non-woven fabric dynamic membrane bioreactor for printing and dyeing waste water treatment | |
CN106006847A (en) | Dynamic membrane sewage direct filtering reactor based on different sewage qualities and operation method | |
CN114538625A (en) | Self-maintenance bacteria and algae symbiotic aerobic granular sludge and rapid culture method and culture system thereof | |
CN102633412A (en) | Dynamic membrane anaerobic-aerobic circular integration sewage treatment method | |
CN111362401A (en) | A Sewage Treatment Method Using Micron Fe3O4 Enhanced Anaerobic Dynamic Membrane Bioreactor | |
CN107555543B (en) | Activated carbon-dynamic membrane two-stage composite sewage direct filtration process | |
CN109701499B (en) | Nitrogen and phosphorus removal wastewater treatment method | |
CN104710075B (en) | A kind of pendulum model doughnut membrane biological reaction water cleaning systems and application | |
CN106927562A (en) | A kind of method that aerobic particle mud stickiness expansion is repaired | |
CN102874980B (en) | Method for processing wastewater by utilizing combination of granular sludge and dynamic film | |
CN203112666U (en) | Hybrid dynamic membrane bioreactor | |
CN102583713A (en) | Integrated bioaugmenting burned diatomite dynamic membrane gravity flow effluent-discharging drinking water purification process | |
CN105384242B (en) | A kind of utilization membrane bioreactor synchronously removes the startup method of the technique of carbon, nitrogen and suspension in low-carbon-source waste water | |
CN108217926A (en) | Integrated film bio-reaction system | |
CN101733046A (en) | Three-phase fluidized-bed reactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |