CN111359539A - Gas-liquid reaction method and gas-liquid reaction device capable of entering reaction preparation state in advance - Google Patents
Gas-liquid reaction method and gas-liquid reaction device capable of entering reaction preparation state in advance Download PDFInfo
- Publication number
- CN111359539A CN111359539A CN202010096185.6A CN202010096185A CN111359539A CN 111359539 A CN111359539 A CN 111359539A CN 202010096185 A CN202010096185 A CN 202010096185A CN 111359539 A CN111359539 A CN 111359539A
- Authority
- CN
- China
- Prior art keywords
- gas
- liquid
- reactor
- phase
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 194
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 149
- 238000000034 method Methods 0.000 title claims abstract description 106
- 238000002360 preparation method Methods 0.000 title claims abstract description 18
- 239000000463 material Substances 0.000 claims abstract description 129
- 239000012071 phase Substances 0.000 claims description 151
- 239000007791 liquid phase Substances 0.000 claims description 90
- 238000009826 distribution Methods 0.000 claims description 60
- 229920006395 saturated elastomer Polymers 0.000 claims description 33
- 238000004090 dissolution Methods 0.000 claims description 21
- 239000007795 chemical reaction product Substances 0.000 claims description 12
- 238000002156 mixing Methods 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 10
- 238000005273 aeration Methods 0.000 claims description 5
- 238000010574 gas phase reaction Methods 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 4
- 238000010008 shearing Methods 0.000 claims description 3
- 238000010079 rubber tapping Methods 0.000 claims 10
- 238000007599 discharging Methods 0.000 claims 4
- 230000009286 beneficial effect Effects 0.000 abstract description 10
- 239000007789 gas Substances 0.000 description 150
- 230000005587 bubbling Effects 0.000 description 14
- 239000001257 hydrogen Substances 0.000 description 14
- 229910052739 hydrogen Inorganic materials 0.000 description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 12
- RWGFKTVRMDUZSP-UHFFFAOYSA-N isopropyl-benzene Natural products CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 11
- 238000007254 oxidation reaction Methods 0.000 description 9
- 238000012546 transfer Methods 0.000 description 9
- 230000003647 oxidation Effects 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 208000012839 conversion disease Diseases 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000012530 fluid Substances 0.000 description 6
- 238000005984 hydrogenation reaction Methods 0.000 description 6
- IVSZLXZYQVIEFR-UHFFFAOYSA-N m-xylene Chemical group CC1=CC=CC(C)=C1 IVSZLXZYQVIEFR-UHFFFAOYSA-N 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- MRIZMKJLUDDMHF-UHFFFAOYSA-N cumene;hydrogen peroxide Chemical compound OO.CC(C)C1=CC=CC=C1 MRIZMKJLUDDMHF-UHFFFAOYSA-N 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 229920005372 Plexiglas® Polymers 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- VTVVPPOHYJJIJR-UHFFFAOYSA-N carbon dioxide;hydrate Chemical compound O.O=C=O VTVVPPOHYJJIJR-UHFFFAOYSA-N 0.000 description 1
- 235000014171 carbonated beverage Nutrition 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- UHZZMRAGKVHANO-UHFFFAOYSA-M chlormequat chloride Chemical group [Cl-].C[N+](C)(C)CCCl UHZZMRAGKVHANO-UHFFFAOYSA-M 0.000 description 1
- 239000010724 circulating oil Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J4/00—Feed or outlet devices; Feed or outlet control devices
- B01J4/001—Feed or outlet devices as such, e.g. feeding tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0006—Controlling or regulating processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/24—Stationary reactors without moving elements inside
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J4/00—Feed or outlet devices; Feed or outlet control devices
- B01J4/001—Feed or outlet devices as such, e.g. feeding tubes
- B01J4/002—Nozzle-type elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J4/00—Feed or outlet devices; Feed or outlet control devices
- B01J4/008—Feed or outlet control devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2204/00—Aspects relating to feed or outlet devices; Regulating devices for feed or outlet devices
- B01J2204/002—Aspects relating to feed or outlet devices; Regulating devices for feed or outlet devices the feeding side being of particular interest
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
本发明公开一种提前进入反应准备状态的气液反应方法,气相进料分支为部分气相进料和主流程气相进料;液相进料与所述部分气相进料在进入反应器之前先通过4个步骤完成预混合,得到预混物料;反应器的下部设置主流程气相进料口和预混物料进料口,预混物料进料口上方的反应器为反应主控单元;预混物料经预混物料进料口进入反应器内,主流程气相进料经主流程气相进料口进入反应器内,并向上与预混物料进入反应主控单元内进行反应。还提供了一种气液反应装置。上述气液反应方法和装置,能够使预混物料在进入反应器之前提前进入反应准备状态,有利于提高转化率和选择性至接近反应平衡转化率和选择性。
The invention discloses a gas-liquid reaction method for entering a reaction preparation state in advance. The gas-phase feed is branched into partial gas-phase feed and main process gas-phase feed; The premixing is completed in 4 steps to obtain the premixed material; the lower part of the reactor is provided with the main process gas phase inlet and the premixed material inlet, and the reactor above the premixed material inlet is the main reaction control unit; the premixed material It enters the reactor through the premixed material feed port, and the main process gas phase feed enters the reactor through the main process gas phase feed port, and enters the reaction main control unit with the premixed material upward for reaction. Also provided is a gas-liquid reaction device. The above-mentioned gas-liquid reaction method and device can make the premixed material enter the reaction preparation state in advance before entering the reactor, which is beneficial to improve the conversion rate and selectivity to approach the reaction equilibrium conversion rate and selectivity.
Description
技术领域technical field
本发明属于气液反应技术领域。具体涉及一种提前进入反应准备状态的气液反应方法和气液反应装置。The invention belongs to the technical field of gas-liquid reaction. Specifically, it relates to a gas-liquid reaction method and a gas-liquid reaction device for entering a reaction preparation state in advance.
背景技术Background technique
在氧化、加氢等中等速度和较慢气液反应过程中,气体首先和液体接触,在气液界面气体分子传递至液膜,并进一步扩散至液体本相,完成溶解过程。溶解在液体中的气体分子在催化活性位点和液体分子进行反应,完成反应转化过程;当没有催化活性位点时,气体溶解同时可以与液体发生反应。因此,在气液反应中,气体溶解在液体的速度和深度是影响反应链的反应速度和深度的重要环节。In the process of medium-speed and slow gas-liquid reactions such as oxidation and hydrogenation, the gas first contacts the liquid, and the gas molecules are transferred to the liquid film at the gas-liquid interface, and further diffuse into the liquid phase to complete the dissolution process. The gas molecules dissolved in the liquid react with the liquid molecules at the catalytically active site to complete the reaction conversion process; when there is no catalytically active site, the gas can be dissolved and react with the liquid at the same time. Therefore, in the gas-liquid reaction, the speed and depth of the gas dissolved in the liquid are important links that affect the reaction speed and depth of the reaction chain.
如在液相加氢工艺中,氢气和原料油先预混合,使氢气溶解在原料油中,再进入反应器进行反应,反应中所需氢气大部分来自溶解的氢。原料油和氢气相似相溶性较低,所以氢气溶解在原料油中的过程是一个比较缓慢过程,需要较长的预混合停留时间。现有工艺方法中,为了满足加氢过程中所需要的氢气量,需要使用大量的循环油或额外加入溶剂来溶解氢气,致使加氢效率降低,生产成本高。For example, in the liquid-phase hydrogenation process, hydrogen and feedstock oil are premixed to dissolve the hydrogen in the feedstock oil, and then enter the reactor for reaction. Most of the hydrogen required in the reaction comes from the dissolved hydrogen. The similar compatibility between raw oil and hydrogen is low, so the process of dissolving hydrogen in raw oil is a relatively slow process and requires a long pre-mixing residence time. In the prior art method, in order to meet the amount of hydrogen required in the hydrogenation process, a large amount of circulating oil or additional solvent needs to be used to dissolve the hydrogen, resulting in reduced hydrogenation efficiency and high production cost.
如采用氧化反应合成间苯二甲酸过程中,间二甲苯液体原料在反应器内与氧气混合接触,并采用搅拌、射流等混合手段进行反应。但是氧气在间二甲苯中的溶解速率和溶解浓度非常低,且流经进料管道直接进入反应器的间二甲苯液体原料通常需要与鼓泡氧气进行较长时间的预接触,导致反应器底部的反应效率低下,反应器体积庞大,生产成本高。For example, in the process of synthesizing isophthalic acid by oxidation reaction, the liquid raw material of m-xylene is mixed and contacted with oxygen in the reactor, and the reaction is carried out by mixing means such as stirring and jet flow. However, the dissolution rate and dissolved concentration of oxygen in m-xylene are very low, and the m-xylene liquid feedstock flowing directly into the reactor through the feed pipe usually needs to be pre-contacted with bubbling oxygen for a long time, resulting in the bottom of the reactor. The reaction efficiency is low, the reactor is bulky, and the production cost is high.
专利CN 101993721A公开了一种液相循环加氢处理方法和反应系统,利用加氢处理的液相产物的一部分循环与新鲜原料油混合为液相物料,将氢气混入液相物料,从而提高氢气混入量和饱和溶解氢气量。但在其加氢反应器内仍有大量氢气富余,需投入较高循环氢压缩机以循环富余氢气,导致生产成本增加。Patent CN 101993721A discloses a liquid-phase circulating hydrotreating method and a reaction system, which utilizes a part of the liquid-phase product of the hydroprocessing to be mixed with fresh raw material oil to form a liquid-phase material, and hydrogen is mixed into the liquid-phase material, thereby improving the mixing of hydrogen into the liquid-phase material. and saturated dissolved hydrogen. However, there is still a large amount of hydrogen surplus in the hydrogenation reactor, and a higher circulating hydrogen compressor is required to circulate the surplus hydrogen, which leads to an increase in production costs.
目前气液反应器的进料处附件存在液体中溶解气体不足的问题,使得该处的气液混合物没有进入反应准备状态,导致反应效率低的问题。因此,亟待需要研发一种新型的气液反应方法和装置,以解决现有技术中的上述技术缺陷。At present, there is a problem of insufficient dissolved gas in the liquid at the feed site of the gas-liquid reactor, so that the gas-liquid mixture there does not enter the reaction preparation state, resulting in the problem of low reaction efficiency. Therefore, there is an urgent need to develop a new gas-liquid reaction method and device to solve the above-mentioned technical defects in the prior art.
发明内容SUMMARY OF THE INVENTION
本发明的第一个目的是提供一种提前进入反应准备状态的气液反应方法,以解决现有技术中的反应器的含气率较低,反应转化率和选择性较低,生产成本高的技术缺陷。The first object of the present invention is to provide a gas-liquid reaction method that enters the reaction preparation state in advance, so as to solve the problem that the reactor in the prior art has low gas content, low reaction conversion rate and selectivity, and high production cost technical defects.
为了实现上述目的,本发明采用如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
提前进入反应准备状态的气液反应方法,气相进料分支为部分气相进料和主流程气相进料,反应器的下部设置有主流程气相进料口,在所述主流程气相进料口的上方设置有预混物料进料口,所述预混物料进料口上方的所述反应器为反应主控单元;包括如下步骤:The gas-liquid reaction method that enters the reaction preparation state in advance, the gas-phase feed is branched into partial gas-phase feed and main-flow gas-phase feed, the lower part of the reactor is provided with the main-flow gas-phase feed port, and the main-flow gas-phase feed port is provided in the lower part of the reactor. A premixed material feeding port is arranged above, and the reactor above the premixed material feeding port is the reaction main control unit; it includes the following steps:
(1)、使所述部分气相进料在所述液相进料内部先形成较大气泡,得到含有较大气泡的混合进料;(1), make described part gas-phase feed to first form larger bubbles inside described liquid-phase feed, obtain the mixed feed containing larger bubbles;
(2)、使所述含有较大气泡的混合进料形成一个相对较强的液相湍动,以使所述含有较大气泡的混合进料内的较大气泡快速溶解至液相中,得到气体溶解量较多的混合进料;(2), make the described mixed feed containing larger bubbles form a relatively strong liquid phase turbulence, so that the larger bubbles in the described mixed feed containing larger bubbles are quickly dissolved into the liquid phase, A mixed feed with more dissolved gas is obtained;
(3)、使所述气体溶解量较多的混合进料内未被溶解的较大气泡在高剪切条件下形成微细气泡,得到含有微细气泡的混合进料;(3), make the larger bubbles that are not dissolved in the mixed feed with more gas dissolution amount to form micro-bubbles under high shear conditions, and obtain the mixed feed containing micro-bubbles;
(4)、使所述含有微细气泡的混合进料形成一个相对较弱的液相湍动,以使所述微细气泡进一步溶解至液相进料中,得到所述预混物料;(4), forming a relatively weak liquid phase turbulence in the mixed feed containing fine air bubbles, so that the fine air bubbles are further dissolved into the liquid phase feed to obtain the premixed material;
(5)、所述预混物料经所述预混物料进料口进入所述反应器内,所述主流程气相进料经所述主流程气相进料口进入所述反应器内,并向上与所述预混物料进入所述反应主控单元内进行反应;(5), the premixed material enters the reactor through the premixed material feed port, and the main process gas phase feed enters the reactor through the main process gas phase feed port, and upwards Entering the reaction main control unit with the premixed material to react;
所述相对较强的液相湍动条件下,液体的雷诺数为2000~200000;Under the relatively strong liquid phase turbulence condition, the Reynolds number of the liquid is 2000-200000;
所述相对较弱的液相湍动条件下,液体的雷诺数为0.1~2000;Under the relatively weak liquid phase turbulence condition, the Reynolds number of the liquid is 0.1 to 2000;
所述微细气泡的颗粒雷诺数小于1;The particle Reynolds number of the fine bubbles is less than 1;
单位时间内,所述部分气相进料的量为使所述液相进料达到气相饱和溶解浓度所需的气相量的1.01~2倍。In a unit time, the amount of the part of the gas phase feed is 1.01-2 times the gas phase amount required to make the liquid phase feed reach the gas-phase saturated dissolved concentration.
上述条件下,所述预混物料中的气相浓度均能够达到饱和溶解浓度。Under the above conditions, the gas phase concentration in the premixed material can all reach the saturated dissolved concentration.
需要说明的是,所述饱和溶解浓度不限定为特定的温度和压力条件下的化学计量学上的精确饱和溶解浓度。在特定的温度和压力条件下,流动的状态下的饱和溶解浓度会发生一定的偏移。通常,偏移范围为±15%。例如文献“湍流状态下二氧化碳-水相平衡体系压力的偏移,北京化工大学学报(自然科学版),2013,40(3):5-11中指出,偏移范围为±15%。It should be noted that the saturated dissolved concentration is not limited to the stoichiometrically accurate saturated dissolved concentration under specific temperature and pressure conditions. Under certain temperature and pressure conditions, there will be a certain deviation in the saturated dissolved concentration in the flowing state. Typically, the offset range is ±15%. For example, the literature "Offset of the pressure of carbon dioxide-water phase equilibrium system under turbulent state," Journal of Beijing University of Chemical Technology (Natural Science Edition), 2013, 40(3): 5-11 pointed out that the offset range is ±15%.
需要说明的是,本领域技术人员公知,气体在液体中溶解缓慢、深度不足。气液传质的极限是静止时候的气液相平衡。但在实际的生产过程中,流动的气液两相难以达到气液相平衡,这种现象的原因之一是气液两相需要一个很长的接触时间才能达到溶解平衡,而工业生产中流动的物料无法满足如此长时间的溶解,因此也达不到溶剂平衡。在工程研究中,研究者们意识到流动的气液两相几乎无法达到相平衡(参见界面不平衡理论:马友光,冯惠生,徐世昌,et al.吸收过程的界面传质机理[J].中国化学工程学报(英文版),2003,11(2):13-16.马友光,余国琮.气液界面传质机理[J].化工学报,2005,56(4):574-578.),不能达到相平衡但是处于一个相对稳定的状态称为热力学亚稳定平衡状态。It should be noted that it is well known to those skilled in the art that gas dissolves slowly in liquid and has insufficient depth. The limit of gas-liquid mass transfer is the gas-liquid phase equilibrium at rest. However, in the actual production process, it is difficult for the flowing gas-liquid two phases to reach the gas-liquid equilibrium. One of the reasons for this phenomenon is that the gas-liquid two phases need a long contact time to reach the dissolution equilibrium. The material cannot meet the dissolution for such a long time, so the solvent balance cannot be reached. In engineering research, researchers realized that the flowing gas-liquid two-phase can hardly reach phase equilibrium (see interface imbalance theory: Ma Youguang, Feng Huisheng, Xu Shichang, et al. Interfacial mass transfer mechanism of absorption process [J]. China Chemistry Chinese Journal of Engineering (English version), 2003, 11(2): 13-16. Ma Youguang, Yu Guocong. Mechanism of mass transfer at the gas-liquid interface [J]. Chinese Journal of Chemical Engineering, 2005, 56(4): 574-578.), can not reach Phases in equilibrium but in a relatively stable state are called thermodynamically metastable equilibrium states.
基于动态气液传质理论,液体流动会对气液传质的速度和平衡浓度产生影响。最普遍的做法是增加传质界面积和减小传质阻力,加快气体的溶解。比如增大液相湍动,以提高溶解吸收的传质速度,强化气体的吸收,如搅拌、振动、射流、超重力等方法,但是过于强烈的液相湍动不利于溶解吸收传质,例如碳酸饮料会导致气体解吸和溢出,一些易挥发的液体通常要求小心轻放以避免组分气化。因此,如何实现动态条件下气液两相在较短的接触时间条件下达到热力学亚稳定平衡状态,以提高后续反应的反应效率,提高转化率和选择性,降低生产成本,是本领域技术人员急需解决的问题。Based on the dynamic gas-liquid mass transfer theory, the liquid flow will affect the gas-liquid mass transfer rate and equilibrium concentration. The most common practice is to increase the mass transfer interface area and reduce the mass transfer resistance to accelerate the dissolution of the gas. For example, increasing the liquid phase turbulence to increase the mass transfer rate of dissolution absorption and strengthening the gas absorption, such as stirring, vibration, jet flow, supergravity and other methods, but too strong liquid phase turbulence is not conducive to dissolution absorption mass transfer, such as Carbonated beverages can cause gas desorption and spillage, and some volatile liquids usually require careful handling to avoid vaporization of the components. Therefore, how to achieve a thermodynamically metastable equilibrium state of gas-liquid two-phase under dynamic conditions under short contact time conditions, so as to improve the reaction efficiency of subsequent reactions, improve conversion rate and selectivity, and reduce production costs, is a matter for those skilled in the art. Urgent problems.
而通过本发明的上述方法,通过高速流道溶解和低速流道溶解两个步骤,强化气体的溶解吸收,预混物料在进入所述反应器前即预先达到气体的饱和溶解浓度(即达到热力学亚稳定平衡状态),即提前进入反应准备状态。由于预混物料在反应器下部已经开始反应或者做好了反应的准备,有利于反应物的直接快速反应。具备反应准备状态的预混物料进入所述反应主控单元后进一步进行反应,显著提高了反应转化率,选择性,并有利于减少反应器体积。因此,上述方法正好有效地解决了上述技术问题。And by the above-mentioned method of the present invention, through the two steps of high-speed flow channel dissolution and low-speed flow channel dissolution, the dissolution and absorption of the gas is strengthened, and the premixed material reaches the saturated dissolved concentration of the gas in advance before entering the reactor (that is, the thermodynamic Metastable equilibrium state), that is, it enters the reaction preparation state in advance. Since the premixed material has already started to react or is ready to react in the lower part of the reactor, it is favorable for the direct and rapid reaction of the reactants. The premixed material in the reaction ready state enters the main reaction control unit for further reaction, which significantly improves the conversion rate and selectivity of the reaction, and is beneficial to reduce the volume of the reactor. Therefore, the above-mentioned method just effectively solves the above-mentioned technical problem.
根据本发明的一个优选技术方案,所述主流程气相进料与所述预混物料一起以平推流的方式向上进入所述反应主控单元内进行反应。According to a preferred technical solution of the present invention, the main process gas-phase feed and the premixed material enter upward into the reaction main control unit in the manner of plug flow for reaction.
如此设置,有利于气液相反应的反应效率,反应转化率和选择性。例如:对于放热反应,返混将导致反应物料的温度升高,选择性降低。采用平推流的方式可尽量减少返混。Such setting is beneficial to the reaction efficiency, reaction conversion rate and selectivity of the gas-liquid phase reaction. For example, for an exothermic reaction, backmixing will result in an increase in the temperature of the reaction mass and a decrease in selectivity. Backmixing can be minimized by using plug flow.
为了实现上述平推流的方式,可以采用现有技术中的多种结构来实现。本发明中,通过特别设置的结构来有效实现平推流。In order to realize the above-mentioned way of the parallel flow, various structures in the prior art can be adopted to realize the implementation. In the present invention, the plug flow is effectively realized through a specially arranged structure.
优选地,所述反应器还包括与所述主流气相进料口相连的气体分布器,和一个与所述预混物料进料口相连接的液速分配单元;其中:Preferably, the reactor further comprises a gas distributor connected with the main stream gas phase feed port, and a liquid velocity distribution unit connected with the premix material feed port; wherein:
所述液速分配单元包括单元本体,所述单元本体上设置有单元进口和若干个液速分配出口,所述单元进口与所述预混物料进料口连接,所述液速分配出口上设置有出料管,所述液速分配出口和出料管分别沿所述反应器的横截面分布;越靠近所述反应器的边壁的出料管的横截面积越大,越靠近所述反应器的中心的出料管的横截面积越小;且越靠近所述反应器的边壁的所述出料管的长度越短,越靠近所述反应器的中心的所述出料管的长度越长;以使所述反应器中部的液体的流速相对较小,液体量相对较少;靠近所述反应器边壁的液体的流速相对较大,液体量相对较多;The liquid velocity distribution unit includes a unit body, the unit body is provided with a unit inlet and several liquid velocity distribution outlets, the unit inlet is connected with the premix material inlet, and the liquid velocity distribution outlet is provided There is a discharge pipe, the liquid velocity distribution outlet and the discharge pipe are respectively distributed along the cross section of the reactor; the closer the cross-sectional area of the discharge pipe to the side wall of the reactor, the greater the The cross-sectional area of the outlet pipe in the center of the reactor is smaller; and the length of the outlet pipe closer to the side wall of the reactor is shorter, and the outlet pipe closer to the center of the reactor is shorter. The longer the length; so that the flow rate of the liquid in the middle of the reactor is relatively small, and the amount of liquid is relatively small; the flow rate of the liquid close to the side wall of the reactor is relatively large, and the amount of liquid is relatively large;
所述预混物料与主流程气相进料在所述液速分配单元上方实现上行式平推流动,并向上进入所述反应主控单元。The premixed material and the gas-phase feed in the main process realize an upward parallel flow above the liquid velocity distribution unit, and enter the reaction main control unit upward.
需要说明的是,本发明中,注入所述反应器底部的主流程气相进料经过所述气体分布器后,在所述反应器内部形成气泡升流流态,属于常规鼓泡反应器的流态特征,呈现边壁液速向下、中心液速向上的液体速度分布。这将导致一定程度的返混,从而降低反应转化率和选择性。It should be noted that, in the present invention, after the main process gas phase feed injected into the bottom of the reactor passes through the gas distributor, a bubble upflow flow state is formed inside the reactor, which belongs to the flow of a conventional bubbling reactor. state characteristics, showing the liquid velocity distribution in which the side wall liquid velocity is downward and the central liquid velocity is upward. This will result in some degree of backmixing, thereby reducing reaction conversion and selectivity.
通过本发明的上述方法,所述预混物料进入所述液速分配单元,所述液速分配单元使预混物料向上流动,并且呈现边壁分配流速高、中心分配流速低的液体初始分布。与所述液速分配单元下方的边壁液速向下、中心液速向上的液体速度分布进行叠加后,能够呈现液体整体平推向上的平推流动。十分有利于提高反应转化率和选择性。Through the above method of the present invention, the premixed material enters the liquid velocity distribution unit, which causes the premixed material to flow upward and present an initial distribution of liquid with high sidewall distribution flow rate and low center distribution flow rate. After being superimposed with the liquid velocity distribution of the downward liquid velocity of the side wall and the upward liquid velocity of the central liquid velocity under the liquid velocity distribution unit, the overall liquid velocity can be presented as a horizontal push upward flow. It is very beneficial to improve the conversion rate and selectivity of the reaction.
通过本发明的上述方法,来自所述液力预混器的预混物料进入所述反应器的液速分配单元,所述液速分配单元使预混物料向上流动,并且呈现边壁分配流速高、中心分配流速低的液体初始分布,与所述液速分配单元下方的边壁液速向下、中心液速向上的液体速度分布进行叠加后,从而呈现出液体整体平推向上的平推流流动。By the above method of the present invention, the premixed material from the hydraulic premixer enters the liquid velocity distribution unit of the reactor, the liquid velocity distribution unit causes the premixed material to flow upward and presents a high sidewall distribution flow rate , The initial distribution of the liquid with low flow velocity in the center distribution is superimposed with the liquid velocity distribution in the side wall below the liquid velocity distribution unit with the liquid velocity downward and the central liquid velocity upward, so as to present an overall flat push flow of the liquid upward. flow.
需要说明的是,所述反应主控单元通常是搅拌反应单元、固定床、流化床、填料单元等型式。或者是空的反应器,气液相在沿反应器向上的过程中反应。It should be noted that the main reaction control unit is usually a stirring reaction unit, a fixed bed, a fluidized bed, a packing unit and the like. Or an empty reactor, where the gas and liquid phases react on their way up the reactor.
需要说明的是,所述反应器内的主流程气相进料的表观气速影响到所述反应器内的平推流的保障。因此,在本发明的方法条件下,根据主流程气相进料的表观气速的不同,可通过调节所述出料管的最大横截面积与最小横截面积之比来尽量确保所述反应器内的流体呈平推流状态。It should be noted that the superficial gas velocity of the main process gas phase feed in the reactor affects the guarantee of the plug flow in the reactor. Therefore, under the conditions of the method of the present invention, according to the difference of the superficial gas velocity of the gas-phase feed in the main process, the reaction can be ensured as far as possible by adjusting the ratio of the maximum cross-sectional area to the minimum cross-sectional area of the discharge pipe The fluid in the device is in a state of plug flow.
进一步优选地,当所述主流程气相进料在所述反应器内的表观气速小于5mm/s时,所述出料管的最大横截面积与最小横截面积之比不大于1.5;Further preferably, when the superficial gas velocity of the main process gas-phase feed in the reactor is less than 5 mm/s, the ratio of the maximum cross-sectional area to the minimum cross-sectional area of the discharge pipe is not greater than 1.5;
当所述主流程气相进料在所述反应器内的表观气速在5mm/s~0.1m/s时,所述出料管的最大横截面积与最小横截面积之比为1.5~10;When the superficial gas velocity of the main process gas phase feed in the reactor is 5mm/s~0.1m/s, the ratio of the maximum cross-sectional area to the minimum cross-sectional area of the discharge pipe is 1.5~0.1m/s 10;
当所述主流程气相进料在所述反应器内的表观气速大于0.1m/s时,所述出料管的最大横截面积与最小横截面积之比不小于10。When the superficial gas velocity of the main process gas phase feed in the reactor is greater than 0.1 m/s, the ratio of the maximum cross-sectional area to the minimum cross-sectional area of the outlet pipe is not less than 10.
本发明的第二个目的是提供一种气液反应装置,包括液力预混器,及与所述液力预混器相连的反应器;气相进料分支为部分气相进料和主流程气相进料;单位时间内,所述部分气相进料的量为使所述液相进料达到气相饱和溶解浓度所需的气相量的1.01~2倍;其中:The second object of the present invention is to provide a gas-liquid reaction device, comprising a hydraulic premixer and a reactor connected to the hydraulic premixer; the gas-phase feed is branched into partial gas-phase feed and the main process gas-phase Feed; per unit time, the amount of the part of the gas phase feed is 1.01 to 2 times the amount of the gas phase required to make the liquid phase feed reach the gas phase saturated dissolved concentration; wherein:
所述液力预混器包括筒体,设置在所述筒体的一端的液相进料口、气相进料口,设置在所述筒体的另一端的预混物料出料口;液相进料与所述液相进料口相连接,所述部分气相进料与所述气相进料口相连接;所述筒体的内部从所述液相进料口和气相进料口到所述预混物料出料口的方向依次设置有较大气泡发生器、若干个高速流道,至少一个微细气泡发生器,和若干个低速流道;所述微细气泡发生器与高速流道的末端连接;The hydraulic premixer includes a cylinder body, a liquid-phase feed port and a gas-phase feed port arranged at one end of the cylinder body, and a premix material discharge port arranged at the other end of the cylinder body; The feed is connected with the liquid-phase feed port, and the part of the gas-phase feed is connected with the gas-phase feed port; the inside of the cylinder is from the liquid-phase feed port and the gas-phase feed port to the gas-phase feed port. A larger bubble generator, several high-speed flow channels, at least one micro-bubble generator, and several low-speed flow channels are sequentially arranged in the direction of the premixed material discharge port; the ends of the micro-bubble generator and the high-speed flow channel connect;
所述部分气相进料经过所述较大气泡发生器并以较大气泡分布在所述液相进料中,得到含有较大气泡的混合进料;然后流经所述高速流道,并经所述微细气泡发生器,得到含有微细气泡的混合进料;最后经所述低速流道后从所述预混物料出料口流出,得到预混物料;The part of the gas-phase feed passes through the larger bubble generator and is distributed in the liquid-phase feed with larger bubbles to obtain a mixed feed containing larger bubbles; then flows through the high-speed flow channel, and passes through the The micro-bubble generator obtains a mixed feed containing micro-bubbles; finally, it flows out from the premix material discharge port after passing through the low-speed flow channel to obtain a premix material;
所述反应器的下部设置有主流程气相进料口,在所述主流程气相进料口的上方设置有预混物料进料口,所述预混物料进料口上方的所述反应器为反应主控单元,所述反应主控单元上设置有气相反应产物出口和液相反应产物出口;所述预混物料从所述预混物料进料口进入所述反应器内,所述主流程气相进料经所述主流程气相进料口进入所述反应器内,并向上同所述预混物料一起进入所述反应主控单元内;The lower part of the reactor is provided with a main process gas phase feed port, a premix material feed port is provided above the main process gas phase feed port, and the reactor above the premix material feed port is: The reaction main control unit is provided with a gas-phase reaction product outlet and a liquid-phase reaction product outlet; the premixed material enters the reactor from the premixed material feed port, and the main process flow The gas-phase feed enters the reactor through the gas-phase feed port of the main process, and enters the reaction main control unit together with the premixed material upward;
所述高速流道中的液体雷诺数为2000~200000,以形成相对较强的液相湍动条件;所述低速流道中的液体雷诺数为0.1~2000,以形成相对较弱的液相湍动条件;所述高速流道中的气体的停留时间与所述低速流道中的气体的停留时间之比为0.01~1;所述微细气泡的颗粒雷诺数小于1。The liquid Reynolds number in the high-speed flow channel is 2000-200,000 to form relatively strong liquid phase turbulence conditions; the liquid Reynolds number in the low-speed flow channel is 0.1-2000 to form relatively weak liquid phase turbulence Conditions; the ratio of the residence time of the gas in the high-speed flow channel to the residence time of the gas in the low-speed flow channel is 0.01-1; the particle Reynolds number of the fine bubbles is less than 1.
需要说明的是,本领域技术人员很容易理解,所述高速流道和低速流道的设置使一个相对的概念,当流道的横截面积变小,则流速提高,当流道的横截面积变大,则流速降低。It should be noted that those skilled in the art can easily understand that the arrangement of the high-speed flow channel and the low-speed flow channel is a relative concept. When the cross-sectional area of the flow channel becomes smaller, the flow rate increases. The larger the area, the lower the flow rate.
本发明中,所述高速流道的总横截面积小于进口端的所述筒体的横截面积,以形成高速流动的液相物料。In the present invention, the total cross-sectional area of the high-speed flow channel is smaller than the cross-sectional area of the cylinder at the inlet end, so as to form a liquid-phase material flowing at a high speed.
所述低速流道的总横截面积大于所述高速流道的总横截面积,以形成相对于所述高速流道中的高速流体的速度较低的低速流动的液相物料。The total cross-sectional area of the low-speed flow channels is greater than the total cross-sectional area of the high-speed flow channels, so as to form a low-speed flowing liquid phase material with a lower speed relative to the high-speed fluid in the high-speed flow channels.
如此设置,通过特定结构设置的液力预混器,能够有效确保进入所述反应器的预混物料中气相达到饱和溶解度,即达到一个热力学亚稳定平衡状态,也即提前进入了反应准备状态。从而提高预混物料在所述反应主控单元内的初始反应效率,提到整体的反应转化率,选择性,显著减少反应器的体积。In this way, the hydraulic premixer with a specific structure can effectively ensure that the gas phase in the premixed material entering the reactor reaches saturated solubility, that is, a thermodynamic metastable equilibrium state is reached, that is, the reaction preparation state is entered in advance. Thereby, the initial reaction efficiency of the premixed material in the main reaction control unit is improved, the overall reaction conversion rate and selectivity are mentioned, and the volume of the reactor is significantly reduced.
需要说明的是,本发明中,所述微细气泡发生器的数量为所述液相进料的流量除以单个微细气泡发生器的处理量并向上取整。通常,至少设置一个微细气泡发生器。It should be noted that, in the present invention, the number of the micro-bubble generators is the flow rate of the liquid-phase feed divided by the processing capacity of a single micro-bubble generator and rounded up. Usually, at least one fine bubble generator is provided.
优选地,所述反应器的下部由下至上依次设置有气体分布器和液速分配单元,所述主流程气相进料从所述主流程气相进料口进入反应器内,并经所述气体分布器分布;所述预混物料从所述预混物料进料口进入所述反应器内,并经所述液速分配单元分布;Preferably, the lower part of the reactor is provided with a gas distributor and a liquid velocity distribution unit in sequence from bottom to top, the main process gas phase feed enters the reactor from the main process gas phase feed port, and passes through the gas Distributor distribution; the premixed material enters the reactor from the premixed material feed port, and is distributed through the liquid velocity distribution unit;
所述液速分配单元包括单元本体,所述单元本体上设置有单元进口和若干个液速分配出口,所述单元进口与所述预混物料进料口连接,所述液速分配出口上设置有出料管,所述液速分配出口和出料管分别沿所述反应器的横截面分布;越靠近所述反应器的边壁的出料管的横截面积越大,越靠近所述反应器的中心的出料管的横截面积越小;且越靠近所述反应器的边壁的所述出料管的长度越短,越靠近所述反应器的中心的所述出料管的长度越长;以使所述反应器中部的液体的流速相对较小,液体量相对较少;靠近所述反应器边壁的液体的流速相对较大,液体量相对较多;The liquid velocity distribution unit includes a unit body, the unit body is provided with a unit inlet and several liquid velocity distribution outlets, the unit inlet is connected with the premix material inlet, and the liquid velocity distribution outlet is provided There is a discharge pipe, the liquid velocity distribution outlet and the discharge pipe are respectively distributed along the cross section of the reactor; the closer the cross-sectional area of the discharge pipe to the side wall of the reactor, the greater the The cross-sectional area of the outlet pipe in the center of the reactor is smaller; and the length of the outlet pipe closer to the side wall of the reactor is shorter, and the outlet pipe closer to the center of the reactor is shorter. The longer the length; so that the flow rate of the liquid in the middle of the reactor is relatively small, and the amount of liquid is relatively small; the flow rate of the liquid close to the side wall of the reactor is relatively large, and the amount of liquid is relatively large;
所述预混物料与主流程气相进料在所述液速分配单元上方实现上行式平推流动,并向上进入所述反应主控单元。The premixed material and the gas-phase feed in the main process realize an upward parallel flow above the liquid velocity distribution unit, and enter the reaction main control unit upward.
如此设置,通过特定结构的液速分配单元,可有效确保反应器内的流体的平推流状态,从而进一步提高反应转化率和选择性。In this way, through the liquid velocity distribution unit with a specific structure, the plug flow state of the fluid in the reactor can be effectively ensured, thereby further improving the reaction conversion rate and selectivity.
优选地,所述出料管的最大横截面积不超过100平方厘米;所述出料管的最小横截面积不小于1平方毫米。Preferably, the maximum cross-sectional area of the discharge pipe is not more than 100 square centimeters; the minimum cross-sectional area of the discharge pipe is not less than 1 square millimeter.
本领域技术人员很容易理解,所述较大气泡产生方法是基于节流原理的曝气或鼓泡方法。所述微细气泡产生方法是基于液体剪切原理的涡流、射流、文丘里或叶轮方法。Those skilled in the art can easily understand that the method for generating larger air bubbles is an aeration or bubbling method based on the throttling principle. The micro-bubble generation method is a vortex, jet, venturi or impeller method based on the principle of liquid shearing.
优选地,所述较大气泡发生器为气体分布器或多孔介质鼓泡器;Preferably, the larger bubble generator is a gas distributor or a porous medium bubbler;
所述微细气泡发生器选自文丘里管、射流管、微孔曝气单元中的一种或多种。The micro-bubble generator is selected from one or more of a venturi tube, a jet tube, and a microporous aeration unit.
根据本发明的一个优选技术方案,所述微细气泡发生器包括圆柱形的外壳,所述外壳的一端具有混合物料进口,另一端具有混合物料出料口,所述混合物料进口和混合物料出料口之间依次设置有渐缩喷嘴,节流喷嘴和渐扩喷嘴;所述渐缩喷嘴的内部限定有渐缩腔,所述节流喷嘴的内部限定有节流腔,所述渐扩喷嘴的内部限定有渐扩腔和出口腔,所述渐缩喷嘴和所述节流喷嘴之间具有返混腔。According to a preferred technical solution of the present invention, the micro-bubble generator comprises a cylindrical shell, one end of the shell has a mixed material inlet, the other end has a mixed material discharge port, the mixed material inlet and the mixed material discharge A tapered nozzle, a throttling nozzle and a gradually expanding nozzle are sequentially arranged between the ports; the inside of the tapering nozzle defines a tapering cavity, the inside of the throttling nozzle defines a throttling cavity, and the inside of the gradually expanding nozzle defines a throttling cavity. A tapered cavity and an outlet cavity are defined inside, and a backmix cavity is provided between the tapered nozzle and the throttling nozzle.
优选地,所述高速流道在所述液力预混器内沿所述筒体的横截面呈圆周均布;所述微细气泡发生器在所述液力预混器内沿所述筒体的横截面呈圆周均布。上述设置使经过所述高速流道的混合物料中的未被溶解的较大气泡均匀地被分散为微细气泡,有利于确保后续过程中气体的进一步溶解,达到或超过饱和溶解浓度。Preferably, the high-speed flow channels are uniformly distributed along the circumference of the cylinder in the hydraulic premixer; the micro-bubble generator is arranged along the cylinder in the hydraulic premixer. The cross section is uniformly distributed around the circumference. The above arrangement enables the undissolved larger bubbles in the mixed material passing through the high-speed flow channel to be uniformly dispersed into fine bubbles, which is beneficial to ensure further dissolution of the gas in the subsequent process, reaching or exceeding the saturated dissolution concentration.
优选地,所述气液反应装置还包括高速流道组件和低速流道组件;所述高速流道组件包括所述高速流道,及高速流道限定部件,所述高速流道限定部件与所述筒体固定连接;所述低速流道组件包括所述低速流道,及低速流道限定部件,所述低速流道限定部件与所述筒体固定连接。Preferably, the gas-liquid reaction device further includes a high-speed flow channel assembly and a low-speed flow channel assembly; the high-speed flow channel assembly includes the high-speed flow channel, and a high-speed flow channel defining component, the high-speed flow channel defining component and the high-speed flow channel defining component. The cylindrical body is fixedly connected; the low-speed flow channel assembly includes the low-speed flow channel and a low-speed flow channel limiting component, and the low-speed flow channel limiting component is fixedly connected to the cylindrical body.
需要说明的是,进入液力预混器的部分气体物质的量应稍大于在预混器液体中饱和溶解所需的物质的量,并且微过量的气体应以微细气泡的形态保持在液相中。It should be noted that the amount of some gaseous substances entering the hydraulic premixer should be slightly larger than the amount of substances required to be saturated and dissolved in the premixer liquid, and the slight excess of gas should be kept in the liquid phase in the form of fine bubbles. middle.
优选地,单位时间内,所述部分气相进料的量为使所述液相进料达到气相饱和溶解浓度所需的气相量的1.01~1.3倍。Preferably, the amount of the part of the gas-phase feed per unit time is 1.01-1.3 times the gas-phase amount required to make the liquid-phase feed reach the gas-phase saturated dissolved concentration.
与现有技术相比,本发明具有如下有益技术效果:Compared with the prior art, the present invention has the following beneficial technical effects:
(1)、本发明的提前进入反应准备状态的气液反应方法,不仅能够有效实现反应器的连续进料,且气相或液相物料均无需循环,降低了循环成本;通过特定的方法,使部分气相进料预先与液相进料相互作用,利用液相进料的动能将部分气相进料和液相进料在进入反应器之前进行预先混合,以使液体中提前溶解饱和溶解浓度的气体,提前进入反应准备状态。当进入反应器内,达到所需压力和温度后可立即参与反应,以加快反应效率,从而可提高反应器含气率,提高反应的转化率和选择性至接近反应平衡转化率和选择性,并可减少反应器体积,十分适用于氧化、加氢、氯化、烷基化等中等速度和较慢气液反应。(1), the gas-liquid reaction method of entering the reaction preparation state in advance of the present invention can not only effectively realize the continuous feeding of the reactor, but also the gas phase or liquid phase materials do not need to be circulated, which reduces the circulation cost; Part of the gas-phase feed interacts with the liquid-phase feed in advance, and the kinetic energy of the liquid-phase feed is used to pre-mix part of the gas-phase feed and the liquid-phase feed before entering the reactor, so as to dissolve the gas in the liquid at a saturated concentration in advance , enter the reaction preparation state in advance. When entering the reactor, it can participate in the reaction immediately after reaching the required pressure and temperature, so as to speed up the reaction efficiency, thereby increasing the gas content of the reactor, improving the conversion rate and selectivity of the reaction to close to the reaction equilibrium conversion rate and selectivity, It can reduce the volume of the reactor, and is very suitable for medium-speed and slow gas-liquid reactions such as oxidation, hydrogenation, chlorination, and alkylation.
(2)、本发明的气液反应装置,包括液力预混器和反应器。通过含有较大气泡发生器,高速流道,微细气泡发生器和低速流道的液力预混器,使得溶解气体所需的停留时间大大缩短,而且气体的溶解浓度较高,有效实现了使预混物料中气相达到饱和溶解浓度,即提前进入反应准备阶段,有利于反应效率,从而可提高反应器含气率,提高反应的转化率和选择性至接近反应平衡转化率和选择性,并可减少反应器体积。(2) The gas-liquid reaction device of the present invention includes a hydraulic premixer and a reactor. Through the hydraulic premixer containing a large bubble generator, a high-speed flow channel, a micro-bubble generator and a low-speed flow channel, the residence time required for dissolving gas is greatly shortened, and the dissolved gas concentration is high, effectively realizing the The gas phase in the premixed material reaches the saturated dissolved concentration, that is, it enters the reaction preparation stage in advance, which is beneficial to the reaction efficiency, thereby increasing the gas content of the reactor, improving the conversion rate and selectivity of the reaction to close to the reaction equilibrium conversion rate and selectivity, and The reactor volume can be reduced.
附图说明Description of drawings
图1为实施例1的气液反应装置的流程图。FIG. 1 is a flow chart of the gas-liquid reaction apparatus of Example 1. FIG.
图2为液力预混器的结构示意图纵剖示意图。FIG. 2 is a schematic longitudinal section view of the structure of the hydraulic premixer.
图3为液力预混器的结构示意图纵剖示意图(高速流道组件为列管式结构)。FIG. 3 is a schematic diagram of the structure of a hydraulic premixer and a longitudinal cross-sectional diagram (the high-speed flow channel assembly is a tubular structure).
图4为微细气泡发生器的结构示意图纵剖示意图。FIG. 4 is a schematic longitudinal cross-sectional schematic diagram of the structure of the micro-bubble generator.
图5为实施例2的气液反应装置的流程图。FIG. 5 is a flow chart of the gas-liquid reaction device of Example 2. FIG.
图6为传统的鼓泡反应器装置的流程图。Figure 6 is a flow diagram of a conventional bubble reactor setup.
具体实施方式Detailed ways
以下结合具体实施例,对本发明作进一步说明。应理解,以下实施例仅用于说明本发明而非用于限定本发明的范围。The present invention will be further described below with reference to specific embodiments. It should be understood that the following examples are only used to illustrate the present invention and not to limit the scope of the present invention.
实施例1、一种气液反应装置Embodiment 1, a kind of gas-liquid reaction device
如图1至图4所示,本实施例提供一种气液反应装置,包括液力预混器10,及与所述液力预混器10相连的反应器20;气相进料分支V为部分气相进料V1和主流程气相进料V2;单位时间内,所述部分气相进料V1的量为使所述液相进料L达到气相饱和溶解浓度所需的气相量的1.01~2倍。其中:As shown in FIGS. 1 to 4 , this embodiment provides a gas-liquid reaction device, including a
所述液力预混器10包括筒体11,设置在所述筒体11的一端的液相进料口12、气相进料口13,设置在所述筒体11的另一端的预混物料出料口14;液相进料L与所述液相进料口12相连接,所述部分气相进料V1与所述气相进料口13相连接;所述筒体11的内部从所述液相进料口12和气相进料口13到所述预混物料出料口14的方向依次设置有较大气泡发生器15、若干个高速流道16,若干个微细气泡发生器17,和若干个低速流道18;所述微细气泡发生器17与高速流道16的末端连接,每一个所述高速流道16的末端分别连接一个所述微细气泡发生器17。The
所述部分气相进料V1经过所述较大气泡发生器15并以较大气泡分布在所述液相进料L中,得到含有较大气泡的混合进料;然后流经所述高速流道16,并经所述微细气泡发生器17,得到含有微细气泡的混合进料;最后经所述低速流道17后从所述预混物料出料口14流出,得到预混物料。The part of the gas phase feed V1 passes through the
所述反应器20的下部设置有主流程气相进料口21,在所述主流程气相进料口21的上方设置有预混物料进料口22,所述预混物料进料口22上方的所述反应器20为反应主控单元23,所述反应主控单元23上设置有气相反应产物出口24和液相反应产物出口27;所述预混物料从所述预混物料进料口22进入所述反应器20内,所述主流程气相进料V2经所述主流程气相进料口21进入所述反应器20内,并向上同所述预混物料一起进入所述反应主控单元23内。The lower part of the
所述高速流道16中的液体雷诺数为2000~200000,以形成相对较强的液相湍动条件;所述低速流道18中的液体雷诺数为0.1~2000,以形成相对较弱的液相湍动条件;所述高速流道16中的气体的停留时间与所述低速流道中的气体的停留时间之比为0.01~1。The liquid Reynolds number in the high-
需要说明的是,本实施例中,所述高速流道16中的气体的停留时间为1~3秒。It should be noted that, in this embodiment, the residence time of the gas in the high-
事实上,实际工况下的气液物性与日常的空气-水体系有很大不同,较大气泡和微细气泡也仅仅是相对大小的区别。优选地,本发明中,颗粒雷诺数小于1的气泡认为是微细气泡,即所述微细气泡的颗粒雷诺数小于1。较大气泡的颗粒雷诺数大于等于1。In fact, the gas-liquid physical properties under actual working conditions are very different from the daily air-water system, and the larger bubbles and fine bubbles are only the difference in relative size. Preferably, in the present invention, the particle Reynolds number The bubbles less than 1 are considered to be fine bubbles, that is, the particle Reynolds number of the fine bubbles is less than 1. The particle Reynolds number of larger bubbles is greater than or equal to 1.
需要说明的是,在本发明的条件下,由于所述高速流道中的气体大部分为较大气泡,所述低速流道中的气体几乎全部为微细气泡,因此,所述较大气泡的停留时间与所述高速流道中的气体停留时间相当,所述微细气泡的停留时间与所述低速流道中的气体停留时间相当。即所述高速流道中的较大气泡的停留时间与所述低速流道中的微细气泡的停留时间之比为0.01~1。It should be noted that, under the conditions of the present invention, since most of the gas in the high-speed flow channel is large bubbles, and almost all of the gas in the low-speed flow channel is fine bubbles, the residence time of the larger bubbles The residence time of the fine bubbles is equivalent to the residence time of the gas in the high-speed flow channel, and the residence time of the fine bubbles is equivalent to the residence time of the gas in the low-speed flow channel. That is, the ratio of the residence time of the larger bubbles in the high-speed flow channel to the residence time of the fine bubbles in the low-speed flow channel is 0.01-1.
需要说明的是,所述液力预混器10中的所述高速流道16之前的部分,包括液体进口段,所述液体进口段内设置所述较大气泡发生器。所述低速流道18之后的部分,包括液体出口段。所述液体进口段和液体出口段的长度可根据实际需要设置,只要所述高速流道和低速流道中的气体的停留时间满足上述范围即可。因此,本领域技术人员很容易理解,所述液力预混器10内的总的气体停留时间随液体进口段和液体出口段的长度不同及微细气泡发生器的长度不同而变化。It should be noted that the part before the high-
通常,相对于所述高速流道16和低速流道18的长度,所述液体进口段和液体出口段的长度很短。所述在满足使所述预混物料中气相的浓度均能够达到饱和溶解浓度的前提下,所述液体进口段和液体出口段通常尽量缩短,以减少成本。Typically, the lengths of the liquid inlet section and the liquid outlet section are short relative to the lengths of the high-
本实施例的气液反应装置,使用过程如下:The gas-liquid reaction device of the present embodiment is used as follows:
(1)、所述液相进料L全部经所述液相进料口12进入所述液力预混器10,所述部分气相进料V1经所述部分气相进料口13进入所述液力预混器10,并在所述液力预混器10内经所述较大气泡发生器15形成含有较大气泡的混合进料;(1) All the liquid phase feed L enters the
(2)、然后使所述含有较大气泡的混合进料经过若干个水平设置的高速流道16,以使所述含有较大气泡的混合进料内的较大气泡快速溶解至液相中,得到气体溶解量较多的混合进料;(2), then make the mixed feed containing larger bubbles pass through several horizontally arranged high-
(3)、然后使所述气体溶解量较多的混合进料流进所述微细气泡发生器17,在高剪切作用下形成含有微细气泡的混合进料;(3), then make the mixed feed with a larger amount of dissolved gas flow into the
(4)、然后使所述含有微细气泡的混合进料经过若干个水平设置的低速流道18,并在所述低速流道18中得到良好溶解,达到饱和溶解浓度,完成预先混合,得到预混物料。(4), then make the mixed feed containing fine bubbles pass through several low-
(5)、然后所述预混物料从所述液力预混器10的预混物料出料口14出来,然后经进料管道,并从所述进料管道末端相连的预混物料进料口22进入所述反应器20中,所述主流程气相进料V2经所述主流程气相进料口21进入所述反应器20的底部,并向上与所述预混物料进入反应主控单元23,经过催化反应后,得到的气、液相反应产物从所述气相反应产物出口24和液相反应产物出口27流出。(5), then the premixed material comes out from the premixed
经检测,所述预混物料中气相的浓度均能够达到饱和溶解浓度。After testing, the concentration of the gas phase in the premixed material can all reach the saturated dissolved concentration.
需要说明的是,本领域技术人员很容易理解,所述高速流道16和低速流道18的设置是一个相对的概念,当流道的横截面积变小,则流速提高,当流道的横截面积变大,则流速降低。It should be noted that those skilled in the art can easily understand that the arrangement of the high-
本发明中,所述高速流道16的总横截面积小于进口端的所述筒体的横截面积,以形成相对较强的液相湍动条件。所述低速流道18的总横截面积大于所述高速流道的总横截面积,以形成相对较弱的液相湍动条件,从而形成相对于所述高速流道中的高速流体的速度较低的低速流动的混合物料。In the present invention, the total cross-sectional area of the high-
如此设置,通过上述特定结构设置的液力预混器,能够有效确保进入所述反应器的预混物料中气相达到饱和溶解浓度,即达到一个热力学亚稳定平衡状态,也即提前进入了反应准备状态。In this way, the hydraulic premixer provided with the above-mentioned specific structure can effectively ensure that the gas phase in the premixed material entering the reactor reaches the saturated dissolved concentration, that is, a thermodynamic metastable equilibrium state is reached, that is, the reaction preparation is entered in advance. state.
当然,本领域技术人员也可设置其他结构的液力预混器,只要能够确保进入所述反应器的预混物料中气相达到饱和溶解浓度即可。Of course, those skilled in the art can also set up a hydraulic premixer of other structures, as long as it can ensure that the gas phase in the premixed material entering the reactor reaches a saturated dissolved concentration.
根据本发明的部分优选实例,所述装置还包括高速流道组件和低速流道组件;所述高速流道组件包括所述高速流道16,及高速流道限定部件161,所述高速流道限定部件161与所述筒体11固定连接;所述低速流道组件包括所述低速流道18,及低速流道限定部件181,所述低速流道限定部件与所述筒体11固定连接。According to some preferred embodiments of the present invention, the device further includes a high-speed flow channel assembly and a low-speed flow channel assembly; the high-speed flow channel assembly includes the high-
所述高速流道限定部件可以为现有技术中的多种形式。其一种具体形式可以为:包括安装在所述筒体内的圆柱形部件,所述圆柱形部件的外壁与所述筒体的内壁间隙配合固定,所述圆柱形部件的内部分布有若干个水平设置的通孔。由于所述圆柱形部件的进口端一侧的液相进料被迫沿横截面较小的通孔流向所述圆柱形部件的出口端一侧,因此,所述通孔内的液相进料流速明显加快,从而形成高速流道。The high-speed flow channel-defining member may be in various forms in the prior art. A specific form can be as follows: it includes a cylindrical part installed in the cylinder, the outer wall of the cylindrical part is fixed with clearance fit with the inner wall of the cylinder, and the interior of the cylindrical part is distributed with several levels. set vias. Since the liquid-phase feed on the side of the inlet end of the cylindrical member is forced to flow toward the side of the outlet end of the cylindrical member along the through-holes with smaller cross-sections, the liquid-phase feed in the through-holes The flow velocity is significantly increased, thereby forming a high-speed flow channel.
当然,本领域技术人员很容易理解,所述高速流道的形成还可以采用现有技术中的其他形式的部件,如图3所示,例如,包括有圆形的左挡板162和右挡板163,所述左挡板162和右挡板163外壁与所述筒体的内壁固定连接,所述左挡板162和右挡板163上对应地开设若干个开孔,所述开孔分别通过列管164连接,所述列管164的内部形成所述高速流道16。Of course, those skilled in the art can easily understand that other forms of components in the prior art can also be used to form the high-speed flow channel, as shown in FIG. 3 , for example, including a circular
所述低速流道限定部件181可以为现有技术中的多种形式。其一种具体形式可以为:包括沿所述筒体11的内壁环形分布的柱形结构,所述柱形结构的外壁与所述筒体11的内壁固定连接,所述柱形结构的内部具有文丘里管型的通道,所述通道的喉道的横截面积大于所述高速流道的总横截面积。由此所述文丘里管型的通道内的流体的流速小于所述高速流道内的流体的流速,因此形成所述低速流道。所述低速流道可以为一个,也可以为多个。The low-speed flow
当然,本领域技术人员很容易理解,所述低速流道的形成还可以采用现有技术中的其他形式的部件。Of course, those skilled in the art can easily understand that other forms of components in the prior art may also be used for the formation of the low-speed flow channel.
需要说明的是,当然,如图3所示,可以在所述高速流道16的末端设置微细气泡发生器安装板1712,所述微细气泡发生器安装板1712的外周与所述筒体的内壁之间固定连接,并密封,形成腔道。从所述高速流道16流出的混合物料进入所述高速流道的末端与所述微细气泡发生器安装板1712之间的腔道。所述微细气泡发生器安装板1712开设若干个开孔,所述开孔上对应安装所述微细气泡发生器17。所述微细气泡发生器17的数量为所述液相进料的流量除以单个微细气泡发生器的处理量并向上取整。通常,至少设置一个微细气泡发生器。It should be noted that, of course, as shown in FIG. 3 , a micro-bubble
本领域技术人员很容易理解,所述较大气泡产生方法是基于节流原理的曝气或鼓泡方法。所述微细气泡产生方法是基于液体剪切原理的涡流、射流、文丘里或叶轮方法。Those skilled in the art can easily understand that the method for generating larger air bubbles is an aeration or bubbling method based on the throttling principle. The micro-bubble generation method is a vortex, jet, venturi or impeller method based on the principle of liquid shearing.
优选地,所述较大气泡发生器为气体分布器或多孔介质鼓泡器。根据本发明的部分优选实例,所述较大气泡发生器15为一个具有若干个开孔的环管,所述环管上的开孔的直径Φ为1~5mm,环管的弯曲半径R约为所述液力预混器的内径D的1/4。Preferably, the larger bubble generator is a gas distributor or a porous media bubbler. According to some preferred embodiments of the present invention, the
所述微细气泡发生器选自文丘里管、射流管、微孔曝气单元中的一种或多种。The micro-bubble generator is selected from one or more of a venturi tube, a jet tube, and a microporous aeration unit.
如图4所示,本实施例1中的微细气泡发生器17,包括圆柱形的外壳171,所述外壳171的一端具有混合物料进口172,另一端具有混合物料出料口173,所述混合物料进口172和混合物料出料口173之间依次设置有渐缩喷嘴174,节流喷嘴175和渐扩喷嘴176;所述渐缩喷嘴174的内部限定有渐缩腔177,所述节流喷嘴175的内部限定有节流腔178,所述渐扩喷嘴176的内部限定有渐扩腔179和出口腔1710,所述渐缩喷嘴174和所述节流喷嘴175之间具有返混腔1711。As shown in FIG. 4 , the
由于微细气泡发生器具有渐缩-节流-渐扩的特殊结构,从所述高速流道流出的高流速混合物料从所述混合物料进口进入所述微细气泡发生器,然后通过所述渐缩喷嘴时,高度湍动的液相提供了气泡破碎的能量,并且在所述返混腔内进一步呈现气液循环搅动,气泡因此在所述返混腔内被破碎为无数个微细气泡,并在所述渐扩喷嘴的渐扩腔和出口腔内均匀分散于液相中,最后从所述混合物料出料口流出,形成含有微细气泡的混合物料。Since the micro-bubble generator has a special structure of taper-throttle-expansion, the high-flow mixed material flowing out of the high-speed flow channel enters the micro-bubble generator from the mixed material inlet, and then passes through the taper When the nozzle is used, the highly turbulent liquid phase provides the energy for bubble breakage, and further gas-liquid circulation agitation occurs in the backmixing chamber, so the bubbles are broken into countless fine bubbles in the backmixing chamber, and the The expanding cavity and the outlet cavity of the gradually expanding nozzle are uniformly dispersed in the liquid phase, and finally flow out from the discharge port of the mixed material to form a mixed material containing fine bubbles.
微细气泡发生器相关尺寸如表1所示。The relevant dimensions of the micro-bubble generator are shown in Table 1.
表1、微细气泡发生器相关尺寸Table 1. Relevant dimensions of the micro-bubble generator
优选地,所述返混腔1711对称位于所述渐缩喷嘴174的外壁与所述外壳171之间,以提供更好的返混效果,从而有利于微细气泡的形成。Preferably, the back-
根据本发明的部分优选实例,所述高速流道16在所述液力预混器10内沿所述筒体11的横截面呈圆周阵列分布。所述微细气泡发生器17在所述液力预混器10内沿所述筒体11的横截面呈圆周阵列分布。According to some preferred embodiments of the present invention, the high-
上述设置使经过所述高速流道16的混合物料中的未被溶解的较大气泡均匀地被分散为微细气泡,有利于确保后续过程中气体的进一步溶解,达到或超过饱和浓度。The above arrangement enables the undissolved larger bubbles in the mixed material passing through the high-
需要说明的是,进入所述液力预混器10的部分气体物质的量应大于在预混器液体中饱和溶解所需的物质的量,并且微过量的气体以微细气泡的形态保持在液相中。It should be noted that the amount of some gaseous substances entering the
进一步优选地,进入所述液力预混器10的部分气体物质的量应稍大于在预混器液体中饱和溶解所需的物质的量。单位时间内,所述部分气相进料的量为使所述液相进料达到气相饱和溶解浓度所需的气相量的1.01~1.3倍。Further preferably, the amount of part of the gaseous substances entering the
实施例2、一种气液反应装置Embodiment 2, a kind of gas-liquid reaction device
如图5所示,本实施例的基本结构与实施例1相同,区别在于:As shown in FIG. 5 , the basic structure of this embodiment is the same as that of Embodiment 1, and the differences are:
所述反应器20的下部由下至上依次设置有气体分布器25和液速分配单元26,所述主流程气相进料V2从所述主流程气相进料口21进入反应器20内,并经所述气体分布器分布25;所述预混物料从所述预混物料进料口22进入所述反应器20内,并经所述液速分配单元26分布。The lower part of the
所述液速分配单元26包括单元本体262,所述单元本体262上设置有单元进口和若干个液速分配出口,所述单元进口与所述预混物料进料口22连接,所述液速分配出口上设置有出料管261,所述液速分配出口和出料管261分别沿所述反应器的横截面分布;越靠近所述反应器20的边壁的出料管的横截面积越大,越靠近所述反应器20的中心的出料管的横截面积越小;且越靠近所述反应器20的边壁的所述出料管的长度越短,越靠近所述反应器20的中心的所述出料管261的长度越长;以使所述反应器20中部的液体的流速相对较小,液体量相对较少;靠近所述反应器20边壁的液体的流速相对较大,液体量相对较多;The liquid
所述出料管261的最大横截面积不超过100平方厘米;所述出料管261的最小横截面积不小于1平方毫米;The maximum cross-sectional area of the
所述预混物料与主流程气相进料V1在所述液速分配单元26上方实现上行式平推流动,并向上进入所述反应主控单元23。The premixed material and the main process gas-phase feed V1 realize an upward parallel flow above the liquid
本实施例的气液反应装置,使用过程如下:The gas-liquid reaction device of the present embodiment is used as follows:
(1)、所述液相进料L全部经所述液相进料口12进入所述液力预混器10,所述部分气相进料V1经所述部分气相进料口13进入所述液力预混器10,并在所述液力预混器10内经所述较大气泡发生器15形成含有较大气泡的混合进料;(1) All the liquid phase feed L enters the
(2)、然后使所述含有较大气泡的混合进料经过若干个水平设置的高速流道16,以使所述含有较大气泡的混合进料内的较大气泡快速溶解至液相中,得到气体溶解量较多的混合进料;(2), then make the mixed feed containing larger bubbles pass through several horizontally arranged high-
(3)、然后使所述气体溶解量较多的混合进料流进所述微细气泡发生器17,在高剪切作用下形成含有微细气泡的混合进料;(3), then make the mixed feed with a larger amount of dissolved gas flow into the
(4)、然后使所述含有微细气泡的混合进料经过若干个水平设置的低速流道18,并在所述低速流道18中得到良好溶解,达到饱和溶解浓度,完成预先混,得到预混物料。(4), then make the mixed feed containing fine bubbles pass through several low-
(5)、然后所述预混物料从所述液力预混器10的预混物料出料口14出来,然后经进料管道,并从所述进料管道末端相连的预混物料进料口22进入所述反应器20中,并经所述液速分配单元26分布;所述主流程气相进料V2经所述主流程气相进料口21进入所述反应器20的底部的所述气体分布器25,并与所述预混物料在液速分配单元26上方实现上行式平推流动,并进入反应主控单元23,经过催化反应后,得到的气、液相反应产物从所述气相反应产物出口24和液相反应产物出口27流出。(5), then the premixed material comes out from the premixed
经检测,所述预混物料中气相的浓度均能够达到饱和溶解浓度。After testing, the concentration of the gas phase in the premixed material can all reach the saturated dissolved concentration.
需要说明的是,本领域技术人员很容易理解上述液速分配单元26的具体结构,例如,所述液速分配单元26可以为液体分布器,具体可以为蛇形的同心环管,所述蛇形的同心环管上开设若干个横截面积不同的所述液速分配出口,所述液速分配出口上插设有横截面积不同的所述出料管261。It should be noted that those skilled in the art can easily understand the specific structure of the above-mentioned liquid
实施例3、效果检测Embodiment 3, effect detection
分别采用实施例1、实施例2的装置和传统的鼓泡反应器装置进行对比试验。常规鼓泡反应器的反应流程如图6所示。The devices of Example 1 and Example 2 and the traditional bubble reactor device were used for comparative experiments respectively. The reaction flow of a conventional bubbling reactor is shown in Figure 6.
(一)、进行自催化氧化反应——异丙苯氧化为过氧化氢异丙苯。过程及参数如下:(1), carry out autocatalytic oxidation reaction - cumene is oxidized to cumene hydrogen peroxide. The process and parameters are as follows:
异丙苯氧化为过氧化氢异丙苯反应条件:反应温度110℃,反应压力0.6MPa,气液比9:1。Oxidation of cumene to cumene hydrogen peroxide reaction conditions: the reaction temperature is 110°C, the reaction pressure is 0.6MPa, and the gas-liquid ratio is 9:1.
以内径为180mm、高度为2000mm的有机玻璃筒作为反应器进行试验。所述反应主控单元23内为空筒,并未设置填料或催化剂层。A plexiglass cylinder with an inner diameter of 180 mm and a height of 2000 mm was used as a reactor for testing. The reaction
所述液力预混器10的筒体内径D为50mm,总长度为2000mm,高速流道有10个,每一个高速流道的内径为6mm。The inner diameter D of the cylinder of the
所述微细气泡发生器17中,混合物料进口直径d0为5mm,渐缩喷嘴出口直径d1为2.5mm,所述节流喷嘴的节流腔直径d2为1.2mm,所述渐扩喷嘴的出口腔直径d3为6mm。外壳总长度L1为400mm,节流腔的长度L2为3.6mm。In the
单位时间内,所述部分气相进料的量为使所述液相进料达到气相饱和溶解浓度所需的气相量的1.2倍。The amount of the part of the gas-phase feed per unit time is 1.2 times the gas-phase amount required to make the liquid-phase feed reach the gas-phase saturated dissolved concentration.
在三种实验装置条件下,保持进入反应器的气体流量、液体流量均相同,且确保反应器内液体停留时间均为5小时。Under the conditions of the three experimental devices, the gas flow and liquid flow into the reactor were kept the same, and the liquid residence time in the reactor was ensured for 5 hours.
实施例2中,所述液速分配单元26的内圈均布4根所述出液管261,外圈均布8根所述出液管261,外圈的所述出液管261的横截面积为0.5平方厘米,内圈的所述出液管261的横截面积为0.083平方厘米。外圈的所述出液管261的横截面积与内圈的所述出液管261的横截面积之比为6。In Example 2, the inner ring of the liquid
所述液力预混器10中所述高速流道16中的液体雷诺数为4000,所述低速流道18中的液体雷诺数为1000,所述高速流道16中的气体停留时间与所述低速流道18中的气体停留时间之比为0.1;微细气泡的颗粒雷诺数为0.2。所述高速流道16中的气体停留时间为1.5秒。The liquid Reynolds number in the high-
所述实施例1、实施例2中,控制所述主流程气相进料V2在所述反应器20内的表观气速为0.05m/s。所述鼓泡反应器装置中,控制气相进料在所述反应器20内的表观气速为0.05m/s。经检测,所述预混物料中气相的浓度达到饱和溶解浓度。In the examples 1 and 2, the superficial gas velocity of the main process gas-phase feed V2 in the
结果如表2所示。The results are shown in Table 2.
表2、异丙苯氧化为过氧化氢异丙苯中的反应主控单元参数值比较Table 2, cumene oxidation is the reaction main control unit parameter value comparison in hydrogen peroxide cumene
本实施例中,含气率的定义:反应器内气相占反应器总体积的百分比。气相总进气量:进入反应器的气相的总量。In this embodiment, the definition of gas content: the percentage of the gas phase in the reactor to the total volume of the reactor. Total gas phase inlet: the total amount of gas phase entering the reactor.
由表2的数据可知,实施例1和实施例2的选择性分别相对鼓泡反应器装置的转化率分别提高了7.5%和15%,选择性提高了3.3%和6.5%,含气率分别提高了200%和300%。It can be seen from the data in Table 2 that the selectivity of Example 1 and Example 2 are respectively increased by 7.5% and 15% compared with the conversion rate of the bubbling reactor device, the selectivity is increased by 3.3% and 6.5%, and the gas content is increased by 3.3% and 6.5%, respectively. Increased by 200% and 300%.
(二)、改变相关参数进行效果检测(2), change the relevant parameters to test the effect
(1)、其他条件与(一)相同,区别在于:(1), other conditions are the same as (1), the difference is:
单位时间内,所述部分气相进料的量为使所述液相进料达到气相饱和溶解浓度所需的气相量的1.01倍。The amount of the part of the gas-phase feed per unit time is 1.01 times the gas-phase amount required to make the liquid-phase feed reach the gas-phase saturated dissolved concentration.
控制所述液力预混器10中所述高速流道16中的液体雷诺数为2000,所述低速流道18中的液体雷诺数为0.1,所述高速流道16中的气体停留时间与所述低速流道18中的气体停留时间之比为0.01,微细气泡的颗粒雷诺数为0.15。所述高速流道16中的气体停留时间为1.5秒。The liquid Reynolds number in the high-
结果如表3所示。The results are shown in Table 3.
表3、异丙苯氧化为过氧化氢异丙苯中的反应主控单元参数值比较Table 3, cumene oxidation is the reaction main control unit parameter value comparison in hydrogen peroxide cumene
由表3的数据可知,实施例1和实施例2的选择性分别相对鼓泡反应器装置的转化率分别提高了7.7%和12.8%,选择性提高了3.2%和4.3%,含气率分别提高了205%和281%。From the data in Table 3, it can be seen that the selectivity of Example 1 and Example 2 are respectively increased by 7.7% and 12.8% compared to the conversion rate of the bubbling reactor device, the selectivity is increased by 3.2% and 4.3%, and the gas content is increased by 3.2% and 4.3%, respectively. improved by 205% and 281%.
(2)、其他条件与(一)相同,区别在于:(2), other conditions are the same as (1), the difference is:
单位时间内,所述部分气相进料的量为使所述液相进料达到气相饱和溶解浓度所需的气相量的2倍。In a unit time, the amount of the part of the gas phase feed is twice the amount of the gas phase required to make the liquid phase feed reach the saturated dissolved concentration in the gas phase.
控制所述液力预混器10中所述高速流道16中的液体雷诺数为200000,所述低速流道18中的液体雷诺数为2000,所述高速流道16中的气体停留时间与所述低速流道18中的气体停留时间之比为1,微细气泡的颗粒雷诺数为0.8。所述高速流道16中的气体停留时间为1.5秒。The liquid Reynolds number in the high-
结果如表4所示。The results are shown in Table 4.
表4、异丙苯氧化为过氧化氢异丙苯中的反应主控单元参数值比较Table 4, cumene oxidation is the reaction main control unit parameter value comparison in hydrogen peroxide cumene
由表4的数据可知,实施例1和实施例2的选择性分别相对鼓泡反应器装置的转化率分别提高了15%和25%,选择性提高了3.3%和5.5%,含气率分别提高了183%和275%。From the data in Table 4, it can be seen that the selectivity of Example 1 and Example 2 are respectively increased by 15% and 25% compared with the conversion rate of the bubbling reactor device, the selectivity is increased by 3.3% and 5.5%, and the gas content is increased by 3.3% and 5.5%, respectively. 183% and 275% higher.
由表2至表4的数据可知,在气相总进气量相当的条件下,与常规鼓泡反应器装置相比,本实施例1和实施例2装置的含气率在鼓泡反应器装置的基础上提高了183%~300%。由此可见,实施例1和实施例2的装置及本发明的反应参数条件下,反应器内的含气率有大幅的提升。因此,在达到相同的含气率前提下,可以大大降低所需主流程气体的流量,从而降低气液比,也可以减少输送气体所需的气体压缩机能耗。根据理论计算,气液比可降低到(3~4):1。It can be seen from the data in Tables 2 to 4 that, under the condition that the total gas inlet amount of the gas phase is equivalent, compared with the conventional bubbling reactor device, the gas content of the device of Example 1 and Example 2 is higher than that of the bubbling reactor device. On the basis of the increase of 183% to 300%. It can be seen that, under the conditions of the devices of Example 1 and Example 2 and the reaction parameters of the present invention, the gas content in the reactor is greatly improved. Therefore, under the premise of achieving the same gas content, the flow rate of the required main process gas can be greatly reduced, thereby reducing the gas-liquid ratio, and also reducing the energy consumption of the gas compressor required to transport the gas. According to theoretical calculations, the gas-liquid ratio can be reduced to (3-4):1.
本领域技术人员熟知,异丙苯氧化为过氧化氢异丙苯反应中,经转化平衡计算,转化率的上限约25%,选择性的上限约98~99%。且越接近上限,其提高难度越大。与常规鼓泡反应器装置相比,实施例1和实施例2的装置的转化率提高了7.5%~25%,选择性提高了3.2%~6.5%。采用本发明的装置和方法,能够在传统的鼓泡反应器装置的基础上进一步提高转化率至21~25%,已经很接近转化率上限;进一步提高选择性至94~98%,也已经很接近转化率上限。如果在达到相同的转化率和选择性的条件下,采用本发明的装置和方法,能够有效减小反应器的体积。因此,采用本发明的装置和方法,能够有效提高转化率和选择性,对提高产物纯度、提高原材料利用率具有十分重要的意义。It is well known to those skilled in the art that in the reaction of cumene oxidation to cumene hydroperoxide, the upper limit of the conversion rate is about 25%, and the upper limit of the selectivity is about 98-99% according to the conversion equilibrium calculation. And the closer it is to the upper limit, the more difficult it is to improve. Compared with the conventional bubbling reactor device, the conversion rate of the devices of Example 1 and Example 2 is increased by 7.5% to 25%, and the selectivity is increased by 3.2% to 6.5%. By using the device and method of the present invention, the conversion rate can be further increased to 21-25% on the basis of the traditional bubbling reactor device, which is already very close to the upper limit of the conversion rate; the selectivity can be further increased to 94-98%, which is already very high. Approaching the conversion rate limit. Under the conditions of achieving the same conversion rate and selectivity, the device and method of the present invention can effectively reduce the volume of the reactor. Therefore, by adopting the device and method of the present invention, the conversion rate and selectivity can be effectively improved, and it is of great significance to improve the product purity and the utilization rate of raw materials.
综上所述,在本发明的装置及反应参数范围内,均能够实现本发明的有益技术效果。本发明的气液反应方法和对应的装置,能够有效实现使预混物料中气相达到饱和溶解浓度,即提前进入反应准备阶段,有利于反应效率,从而可提高反应器含气率、反应的转化率和选择性,并减少反应器体积。To sum up, within the scope of the device and reaction parameters of the present invention, the beneficial technical effects of the present invention can be achieved. The gas-liquid reaction method and the corresponding device of the present invention can effectively realize that the gas phase in the premixed material reaches the saturated dissolved concentration, that is, the reaction preparation stage is entered in advance, which is beneficial to the reaction efficiency, thereby improving the gas content of the reactor and the conversion of the reaction. efficiency and selectivity, and reduce reactor volume.
(三)、主流程气相进料在反应器内的表观气速(3), the apparent gas velocity of the main process gas phase feed in the reactor
在上述实施例2的基础上,为了尽量达到反应器内的平推流的效果,现改变所述主流程气相进料在所述反应器内的表观气速,并得出了本实验装置条件下的液速分配单元的出料管的最大横截面积与最小横截面积之比的范围如下:On the basis of the above Example 2, in order to achieve the effect of the plug flow in the reactor as much as possible, the apparent gas velocity of the main process gas phase feed in the reactor is now changed, and the experimental device is obtained. The range of the ratio of the maximum cross-sectional area to the minimum cross-sectional area of the discharge pipe of the liquid velocity distribution unit under the conditions is as follows:
当所述主流程气相进料在所述反应器内的表观气速小于5mm/s时,优选所述液速分配单元的出料管的最大横截面积与最小横截面积之比不大于1.5。此时,表观气速很低,属于安静鼓泡状态。When the superficial gas velocity of the main process gas phase feed in the reactor is less than 5 mm/s, preferably the ratio of the maximum cross-sectional area to the minimum cross-sectional area of the outlet pipe of the liquid velocity distribution unit is not greater than 1.5. At this time, the apparent gas velocity is very low, which belongs to the quiet bubbling state.
当所述主流程气相进料在所述反应器内的表观气速在5mm/s~0.1m/s时,优选所述液速分配单元的出料管261的最大横截面积与最小横截面积之比为1.5~10。此时,表观气速适中,为良好的平推流状态。When the superficial gas velocity of the main process gas phase feed in the reactor is in the range of 5 mm/s to 0.1 m/s, it is preferable that the maximum cross-sectional area and the minimum cross-sectional area of the
当所述主流程气相进料在所述反应器内的表观气速大于0.1m/s时,优选所述液速分配单元的出料管的最大横截面积与最小横截面积之比不小于10。此时,表观气速较大,湍动较大,为近似平推流状态。When the superficial gas velocity of the main process gas phase feed in the reactor is greater than 0.1 m/s, preferably the ratio of the maximum cross-sectional area to the minimum cross-sectional area of the outlet pipe of the liquid velocity distribution unit is not equal to less than 10. At this time, the apparent gas velocity is large and the turbulence is large, which is an approximate plug flow state.
与表2中实施例2的检测数据相比,在上述条件下,均能实现良好的含气率,且转化率均能达到21~25%,选择性均能达到94~98%。Compared with the test data of Example 2 in Table 2, under the above conditions, good gas content can be achieved, and the conversion rate can reach 21-25%, and the selectivity can reach 94-98%.
综上所述,本发明中,采用所述液力预混器进行气液预混,需要两个步骤。首先,产生均匀的较大尺度的较大气泡和提供较强的液相湍动,在远离亚稳定平衡状态前利用较强液相湍动进行快速溶解。然后,当接近亚稳定平衡状态时,产生均匀微细尺度的微细气泡,再提供一个较弱液相湍动,最终达到流动过程中的亚稳定平衡状态,得到的预混物料达到或超过气相的饱和浓度,提前进入了反应准备状态。To sum up, in the present invention, using the hydraulic premixer for gas-liquid premixing requires two steps. First, larger bubbles with uniform larger scales are generated and strong liquid phase turbulence is provided, and the strong liquid phase turbulence is used for rapid dissolution before moving away from the metastable equilibrium state. Then, when the metastable equilibrium state is approached, fine bubbles with uniform and fine scales are generated, and then a weaker liquid phase turbulence is provided, and finally the metastable equilibrium state in the flow process is reached, and the obtained premixed material reaches or exceeds the saturation of the gas phase. concentration, and entered the reaction preparation state in advance.
以上对本发明的具体实施例进行了详细描述,但其只作为范例,本发明并不限制于以上描述的具体实施例。对于本领域技术人员而言,任何对该实用进行的等同修改和替代也都在本发明的范畴之中。因此,在不脱离本发明的精神和范围下所作的均等变换和修改,都应涵盖在本发明的范围内。The specific embodiments of the present invention have been described above in detail, but they are only used as examples, and the present invention is not limited to the specific embodiments described above. For those skilled in the art, any equivalent modifications and substitutions made to this utility are also within the scope of the present invention. Therefore, equivalent changes and modifications made without departing from the spirit and scope of the present invention should be included within the scope of the present invention.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010096185.6A CN111359539B (en) | 2020-02-17 | 2020-02-17 | Gas-liquid reaction method and gas-liquid reaction device capable of entering reaction preparation state in advance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010096185.6A CN111359539B (en) | 2020-02-17 | 2020-02-17 | Gas-liquid reaction method and gas-liquid reaction device capable of entering reaction preparation state in advance |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111359539A true CN111359539A (en) | 2020-07-03 |
CN111359539B CN111359539B (en) | 2022-03-18 |
Family
ID=71200293
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010096185.6A Active CN111359539B (en) | 2020-02-17 | 2020-02-17 | Gas-liquid reaction method and gas-liquid reaction device capable of entering reaction preparation state in advance |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111359539B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110420609A (en) * | 2019-09-02 | 2019-11-08 | 南京中汇能源科技研发中心 | A kind of micro/nano-scale multiphase flow process intensification reaction unit |
CN111744421A (en) * | 2020-07-21 | 2020-10-09 | 圣奥化学科技有限公司 | A continuous feed mixer |
CN115406804A (en) * | 2022-09-13 | 2022-11-29 | 台州学院 | Measuring method of jet bubble weeping effect on turbulent flow in gas-liquid bubbling fluidized bed |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008161825A (en) * | 2006-12-28 | 2008-07-17 | Daikin Ind Ltd | Gas dissolver |
CN102049220A (en) * | 2009-10-27 | 2011-05-11 | 中国石油化工股份有限公司 | Method for enhancing gas-liquid mass transfer of ebullated bed hydrogenation reactor |
CN102051207A (en) * | 2009-10-27 | 2011-05-11 | 中国石油化工股份有限公司 | Method for enhancing mass transfer through suspension bed hydrogenation technology |
CN106673176A (en) * | 2016-12-31 | 2017-05-17 | 陕西师范大学 | Y-type gas-liquid mixing reactor |
US20180162757A1 (en) * | 2016-05-16 | 2018-06-14 | New Environmental Engineering, Inc. | Venturi apparatus and method of use |
CN109433035A (en) * | 2018-10-26 | 2019-03-08 | 四川大学 | A kind of venturi type bubble generator of more Venturi tube structures |
CN109731490A (en) * | 2018-08-21 | 2019-05-10 | 北京环域生态环保技术有限公司 | A kind of the nano bubble method for generation and device of secondary pressurized multiple stage crushing |
CN110064314A (en) * | 2018-01-24 | 2019-07-30 | 傅开彬 | A kind of novel controllable nano bubble generator |
CN110465249A (en) * | 2019-07-01 | 2019-11-19 | 华东理工大学 | A kind of regulation size bubble fractal structure strengthens the method and device of mass transfer |
-
2020
- 2020-02-17 CN CN202010096185.6A patent/CN111359539B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008161825A (en) * | 2006-12-28 | 2008-07-17 | Daikin Ind Ltd | Gas dissolver |
CN102049220A (en) * | 2009-10-27 | 2011-05-11 | 中国石油化工股份有限公司 | Method for enhancing gas-liquid mass transfer of ebullated bed hydrogenation reactor |
CN102051207A (en) * | 2009-10-27 | 2011-05-11 | 中国石油化工股份有限公司 | Method for enhancing mass transfer through suspension bed hydrogenation technology |
US20180162757A1 (en) * | 2016-05-16 | 2018-06-14 | New Environmental Engineering, Inc. | Venturi apparatus and method of use |
CN106673176A (en) * | 2016-12-31 | 2017-05-17 | 陕西师范大学 | Y-type gas-liquid mixing reactor |
CN110064314A (en) * | 2018-01-24 | 2019-07-30 | 傅开彬 | A kind of novel controllable nano bubble generator |
CN109731490A (en) * | 2018-08-21 | 2019-05-10 | 北京环域生态环保技术有限公司 | A kind of the nano bubble method for generation and device of secondary pressurized multiple stage crushing |
CN109433035A (en) * | 2018-10-26 | 2019-03-08 | 四川大学 | A kind of venturi type bubble generator of more Venturi tube structures |
CN110465249A (en) * | 2019-07-01 | 2019-11-19 | 华东理工大学 | A kind of regulation size bubble fractal structure strengthens the method and device of mass transfer |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110420609A (en) * | 2019-09-02 | 2019-11-08 | 南京中汇能源科技研发中心 | A kind of micro/nano-scale multiphase flow process intensification reaction unit |
CN110420609B (en) * | 2019-09-02 | 2024-02-20 | 杭州烃能科技研究有限公司 | Micro-nano scale multiphase flow process strengthening reaction device |
CN111744421A (en) * | 2020-07-21 | 2020-10-09 | 圣奥化学科技有限公司 | A continuous feed mixer |
CN115406804A (en) * | 2022-09-13 | 2022-11-29 | 台州学院 | Measuring method of jet bubble weeping effect on turbulent flow in gas-liquid bubbling fluidized bed |
Also Published As
Publication number | Publication date |
---|---|
CN111359539B (en) | 2022-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3231870U (en) | Micro-interface-enhanced hydrogenation reaction system | |
CN111359539A (en) | Gas-liquid reaction method and gas-liquid reaction device capable of entering reaction preparation state in advance | |
CN205042452U (en) | Percussion flow heterogeneous reaction ware | |
CN100582079C (en) | Oxidation reactor for producing polybasic carboxylic acid | |
CN106732308A (en) | A kind of micro- bubbling gas-liquid reactor | |
CN109675453B (en) | Gas-liquid mixing equipment and application | |
JPS63178833A (en) | Method and apparatus for introducing gas into liquid | |
CN108714376B (en) | Venturi mixer containing porous annular cavity and application of venturi mixer in synthesizing cyanohydrin | |
WO2017008720A1 (en) | Apparatus for strengthening gas-liquid mass transfer of bubbling bed hydrogenation reactor | |
CN101249405A (en) | Air-lift type circular current reactor | |
CN113332947B (en) | A kind of high-flow ratio rapid mixer and the annular reaction system utilizing the above-mentioned mixer | |
CN101185859A (en) | Jet atomizer mixer for bioreactor | |
RU2738849C1 (en) | Apparatus for growing microorganisms | |
CN102059081A (en) | Tubular reactor for performing liquid phase oxidation on cyclohexane by utilizing pure oxygen (enriched oxygen) | |
CN205528736U (en) | Two formula gas lift formula circulation flow reactor that spout of gas -liquid | |
CN214716658U (en) | Gas-liquid reaction device | |
CN102133517A (en) | Liquid continuous impact flow heterogeneous reaction and aerobic fermentation technical equipment | |
CN114699939B (en) | Supergravity gas mixing device for gradually cutting bubbles and application thereof | |
CN109678121B (en) | High-efficiency hydrogenation process and system for producing hydrogen peroxide by anthraquinone method | |
JPH01160476A (en) | Bubble tower-type reactor | |
CN101596437B (en) | Fluid distributor of polyphase reactor suitable for toluene method caprolactam technology | |
CN110038498B (en) | Continuous reactor and use method thereof | |
CN222550843U (en) | A system for preparing glyphosate by oxidation of diglyphosate | |
CN112569871A (en) | For CO2Gas-liquid uniform distribution tube type reactor for carbonylation reaction | |
CN111167385B (en) | Jet type gas-liquid reactor for acid production from aldehyde feedstock and air |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |