CN111351848B - Preparation method of sensor, sensor and detection method of sensor - Google Patents
Preparation method of sensor, sensor and detection method of sensor Download PDFInfo
- Publication number
- CN111351848B CN111351848B CN202010196266.3A CN202010196266A CN111351848B CN 111351848 B CN111351848 B CN 111351848B CN 202010196266 A CN202010196266 A CN 202010196266A CN 111351848 B CN111351848 B CN 111351848B
- Authority
- CN
- China
- Prior art keywords
- sensor
- early
- cardiac injury
- micro
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/02—Analysing fluids
- G01N29/036—Analysing fluids by measuring frequency or resonance of acoustic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/01—Indexing codes associated with the measuring variable
- G01N2291/014—Resonance or resonant frequency
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/022—Liquids
- G01N2291/0228—Aqueous liquids
Landscapes
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Acoustics & Sound (AREA)
- Peptides Or Proteins (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
本发明属于即时检验技术领域,特别涉及一种用于心脏损伤早期标志物检测的传感器的制备方法、通过该制备方法制得的传感器以及该传感器的检测方法。其中,通过制备方法制得的传感器(由于压电薄膜谐振器尺寸较小,仅为毫米量级)尺寸较小,利于采用半导体工艺进行大规模及低成本制造,可集成于可穿戴电子设备或其他小型电子设备中;另外,通过制备方法制得的传感器,基于质量敏感原理进行心脏损伤早期标志物检测,降低了液体样品本身的干扰,利于提高心脏损伤早期标志物检测的精度;此外,本发明还提出了一种基于以上制备方法制得的传感器的检测方法,利于实现对心脏损伤早期标志物的实时测量。
The invention belongs to the technical field of point-of-care testing, and in particular relates to a preparation method of a sensor for detecting early markers of cardiac injury, a sensor prepared by the preparation method, and a detection method of the sensor. Among them, the sensor prepared by the preparation method (due to the small size of the piezoelectric thin film resonator, only in the order of millimeters) is small in size, which is conducive to large-scale and low-cost manufacturing using semiconductor technology, and can be integrated in wearable electronic devices or In other small electronic devices; in addition, the sensor prepared by the preparation method can detect early markers of cardiac injury based on the principle of mass sensitivity, which reduces the interference of the liquid sample itself and is beneficial to improve the detection accuracy of early markers of cardiac injury; The invention also proposes a detection method based on the sensor prepared by the above preparation method, which is beneficial to realize real-time measurement of early markers of cardiac injury.
Description
技术领域technical field
本发明属于即时检验技术领域,特别涉及一种用于心脏损伤早期标志物检测的传感器的制备方法、通过所述制备方法制得的传感器以及所述传感器的检测方法。The invention belongs to the technical field of point-of-care testing, and in particular relates to a preparation method of a sensor for detecting early markers of cardiac injury, a sensor prepared by the preparation method, and a detection method of the sensor.
背景技术Background technique
心血管疾病是危害人类健康及生命的最严重疾病之一。其中,急性心肌梗死最常见、最危险。尽早诊断和治疗急性心肌梗死是降低其死亡率和改善患者预后的关键。心脏损伤早期标志物是临床诊断心肌梗死、心肌缺血、心衰等心脏疾病的重要检测指标。Cardiovascular disease is one of the most serious diseases that endanger human health and life. Among them, acute myocardial infarction is the most common and most dangerous. Early diagnosis and treatment of acute myocardial infarction is the key to reducing its mortality and improving patient outcomes. Early markers of cardiac injury are important indicators for clinical diagnosis of myocardial infarction, myocardial ischemia, heart failure and other cardiac diseases.
心脏损伤早期标志物主要包括肌酸激酶MB同工酶(CK-MB)、心肌肌钙蛋白(cTn)、心型脂肪酸结合蛋白(h-FABP)、B型尿钠肽(BNP)等。目前,大多数常规实验室检测的心脏损伤早期标志物是基于化学发光、酶联免疫吸附法(ELISA)和免疫比浊法。虽然这些方法能够提供精确、可靠和质量控制的结果,但需要复杂的设备、毫升体积的样品和专业操作。Early markers of cardiac injury mainly include creatine kinase MB isoenzyme (CK-MB), cardiac troponin (cTn), heart-type fatty acid-binding protein (h-FABP), and B-type natriuretic peptide (BNP). Currently, most routine laboratory tests for early markers of cardiac injury are based on chemiluminescence, enzyme-linked immunosorbent assay (ELISA), and immunoturbidimetry. While these methods provide precise, reliable, and quality-controlled results, they require complex equipment, milliliter volumes of samples, and specialized manipulation.
近年来,随着即时检验(point-of-care testing,简称POCT)技术的兴起,医学行为发生了革命性的变化。POCT设备的分析时间短,样品消耗量低,对急性心肌梗死等危急重大疾病的诊断具有重要意义。目前,已经开发出多种有希望用于检测心脏生物标志物的POCT心脏损伤早期标志物传感器,包括电化学、磁学、荧光等多种原理。例如:In recent years, the rise of point-of-care testing (POCT) technology has revolutionized the behavior of medicine. POCT equipment has short analysis time and low sample consumption, which is of great significance for the diagnosis of critical and major diseases such as acute myocardial infarction. At present, a variety of promising POCT cardiac injury early marker sensors have been developed for the detection of cardiac biomarkers, including electrochemical, magnetic, fluorescence and other principles. E.g:
专利文献1公开了一种用于心肌五项标志物检测的生物芯片、检测方法,包括生物传感器,为晶元平台以及晶元平台上包被的点样抗体,点样抗体能够与磁珠偶联抗体和标志物蛋白形成免疫复合物,通过测定生物传感器上复合物上磁阻信号强弱判断标志物蛋白浓度。
专利文献2公开了一种心梗心衰磁微粒微流控生物芯片、检测方法,包括具有微流通道的PCB板,微流通道内设置有生物传感器,点样抗体能够与磁珠偶联抗体和标志物蛋白形成免疫复合物,通过测定晶元平台上复合物磁阻信号强弱判断标志物蛋白浓度。
专利文献3公开了一种心肌肌钙蛋白I的免标记电化学传感器制备方法及对cTnI的检测方法,通过现场制备具有电化学活性的物质与生物免疫反应相结合构建了新型的免标记型的传感器,将传感器与目标分子(心脏标志物cTnI)进行特异性反应,得到心脏标志物抗原-抗体结合层,从而引起电化学活性扰动,使输出的电化学信号产生规律性变化。Patent Document 3 discloses a method for preparing a label-free electrochemical sensor for cardiac troponin I and a method for detecting cTnI. A new label-free type of sensor is constructed by combining on-site preparation of electrochemically active substances with biological immune responses. The sensor specifically reacts the sensor with the target molecule (cardiac marker cTnI) to obtain the cardiac marker antigen-antibody binding layer, thereby causing electrochemical activity disturbance and regular changes in the output electrochemical signal.
专利文献4公开了一种二茂铁基共价有机框架修饰电极的制备方法及其电化学检测肌钙蛋白的方法,该发明专利申请提供一种选择性高、检测灵敏度较高的二茂铁基共价有机框架修饰电极的制备方法及其在电化学传感器上的应用。
然而,以上基于电化学、磁学或荧光等原理的技术方案存在如下缺陷:However, the above technical solutions based on the principles of electrochemistry, magnetism or fluorescence have the following defects:
(1)、器件尺寸较大,且很难形成微型集成测试系统;(2)、磁阻或电化学检测原理的测试容易受到液体测试样品本身的介电性和磁学性质影响,导致最终的检测结果不准确。(1) The size of the device is large, and it is difficult to form a miniature integrated test system; (2) The test of magnetoresistance or electrochemical detection principle is easily affected by the dielectric and magnetic properties of the liquid test sample itself, resulting in the final The test result is inaccurate.
现有技术文献prior art literature
专利文献Patent Literature
专利文献1:公开号为:CN 108845146A,公开日期:2018年11月20日;Patent Document 1: Publication number: CN 108845146A, publication date: November 20, 2018;
专利文献2:公开号为:CN 108663525A,公开日期:2018年10月16日;Patent Document 2: Publication number: CN 108663525A, publication date: October 16, 2018;
专利文献3:公开号为:CN 110161100A,公开日期:2019年08月23日;Patent Document 3: Publication number: CN 110161100A, publication date: August 23, 2019;
专利文献4:公开号为:CN 110044987A,公开日期:2019年07月23日。Patent Document 4: Publication number: CN 110044987A, publication date: July 23, 2019.
发明内容SUMMARY OF THE INVENTION
本发明的目的之一在于提出一种用于心脏损伤早期标志物检测的传感器的制备方法,以便制得能够进行心脏损伤早期标志物检测的传感器。One of the objectives of the present invention is to provide a method for preparing a sensor for detecting early markers of cardiac injury, so as to prepare a sensor capable of detecting early markers of cardiac injury.
本发明为了实现上述目的,采用如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
一种用于心脏损伤早期标志物检测的传感器的制备方法,包括如下步骤:A method for preparing a sensor for detecting early markers of cardiac injury, comprising the following steps:
I.制备压电薄膜传感器;I. Preparation of piezoelectric thin film sensor;
II.在压电薄膜传感器的上电极表面沉积氧化硅层;II. Deposit a silicon oxide layer on the surface of the upper electrode of the piezoelectric thin film sensor;
III.在氧化硅层的表面制作微流道侧壁;III. Making microchannel sidewalls on the surface of the silicon oxide layer;
IV.在微流道侧壁的上表面设置玻璃盖板,形成微流道;IV. A glass cover plate is arranged on the upper surface of the side wall of the microchannel to form a microchannel;
V.在微流道内氧化硅层的表面组装心脏损伤早期标志物抗体。V. Assemble an antibody for early marker of cardiac injury on the surface of the silicon oxide layer in the microfluidic channel.
优选地,步骤I中,压电薄膜传感器包括横膈膜型压电薄膜传感器、具有声反射层的固体装配型压电薄膜传感器、或空气隙型结构压电薄膜传感器。Preferably, in step I, the piezoelectric thin film sensor includes a diaphragm type piezoelectric thin film sensor, a solid mounted piezoelectric thin film sensor with an acoustic reflection layer, or an air gap structure piezoelectric thin film sensor.
优选地,步骤II中,氧化硅层采用磁控溅射沉积的方法得到。Preferably, in step II, the silicon oxide layer is obtained by a method of magnetron sputtering deposition.
优选地,步骤III中,微流道侧壁选用SU8负胶、聚二甲基硅氧烷或聚酰亚胺材料,并采用普通光刻、软光刻或纳米压印方法制作而成;微流道侧壁的高度为1-5毫米。Preferably, in step III, the sidewall of the microchannel is made of SU8 negative glue, polydimethylsiloxane or polyimide material, and is made by ordinary photolithography, soft photolithography or nano-imprinting method; The height of the runner side wall is 1-5 mm.
优选地,步骤IV中,在设置玻璃盖板之前将玻璃盖板和微流道侧壁表面使用氧等粒子处理。Preferably, in step IV, prior to disposing the glass cover plate, the surface of the glass cover plate and the sidewall of the microchannel is treated with particles such as oxygen.
优选地,步骤V中,心脏损伤早期标志物抗体的组装过程如下:Preferably, in step V, the assembly process of the early cardiac injury marker antibody is as follows:
首先在微流道中通入去离子水和乙醇清洗表面;Firstly, deionized water and ethanol were passed into the microfluidic channel to clean the surface;
然后通入氨丙基三乙氧基硅烷的乙醇溶液,与氧化硅层的羟基相互作用形成氨基表面;Then, the ethanol solution of aminopropyltriethoxysilane is introduced to interact with the hydroxyl group of the silicon oxide layer to form an amino surface;
进一步通入戊二醛水溶液进行醛基改性;Further feed into glutaraldehyde aqueous solution to carry out aldehyde group modification;
再通入心脏损伤早期标志物抗体的磷酸盐缓冲液溶液,进行抗体的共价结合;Re-pass the phosphate buffered saline solution of the early marker antibody of cardiac injury for covalent binding of the antibody;
最后通入牛血清蛋白的磷酸盐缓冲液溶液阻断未结合的醛基。Unbound aldehyde groups are blocked by a final passage of bovine serum albumin in phosphate buffered saline.
优选地,步骤V中,在微流道内氧化硅层的表面组装的心脏损伤早期标志物抗体包括肌酸激酶MB同工酶、心肌肌钙蛋白、心型脂肪酸结合蛋白或B型尿钠肽抗体。Preferably, in step V, the early marker antibody of cardiac injury assembled on the surface of the silicon oxide layer in the microfluidic channel comprises creatine kinase MB isoenzyme, cardiac troponin, cardiac fatty acid binding protein or B-type natriuretic peptide antibody .
本发明的目的之二在于提出一种用于心脏损伤早期标志物检测的传感器,该传感器的尺寸较小,利用该传感器能够有效提高心脏损伤早期标志物浓度的检测精度。The second purpose of the present invention is to provide a sensor for detecting early markers of cardiac injury, the sensor is small in size, and the sensor can effectively improve the detection accuracy of the concentration of early markers of cardiac injury.
本发明为了实现上述目的,采用如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
一种用于心脏损伤早期标志物检测的传感器,其是通过上述传感器的制备方法制得的。A sensor for detecting early markers of cardiac injury, which is prepared by the above-mentioned preparation method of the sensor.
本发明的目的之三在于提出一种用于心脏损伤早期标志物检测的传感器的检测方法,以便实现对心脏损伤早期标志物浓度的实时测量。The third purpose of the present invention is to provide a sensor detection method for detecting early cardiac injury markers, so as to realize real-time measurement of the concentration of early cardiac injury markers.
本发明为了实现上述目的,采用如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
一种用于心脏损伤早期标志物检测的传感器的检测方法,基于上面提到的传感器;A detection method of a sensor for early marker detection of cardiac injury, based on the sensor mentioned above;
该传感器的检测方法包括如下步骤:The detection method of the sensor includes the following steps:
s1.在微流道中通入纯血清样品,测量压电薄膜谐振器的谐振频率;s1. Pass pure serum sample into the microfluidic channel to measure the resonance frequency of the piezoelectric thin film resonator;
将谐振器处于稳定状态时的谐振频率作为测量的频率基线;Take the resonant frequency of the resonator when the resonator is in a steady state as the frequency baseline for the measurement;
s2.在微流道中依次通入含有不同浓度心脏损伤早期标志物的血清标准溶液,并持续测量压电薄膜谐振器在不同浓度心脏损伤早期标志物的血清标准溶液下的谐振频率;s2. Passing serum standard solutions containing different concentrations of early cardiac injury markers into the microchannel in turn, and continuously measuring the resonance frequency of the piezoelectric thin film resonator under the serum standard solutions of different concentrations of early cardiac injury markers;
通过以上过程依次得到多个谐振频率随时间的变化曲线;Through the above process, a plurality of resonant frequency variation curves with time are sequentially obtained;
s3.取各个变化曲线中谐振频率的稳定值,然后分别与频率基线进行比较,将频率移动值作为传感器的响应,得到该传感器对心脏损伤早期标志物的浓度校正曲线;s3. Take the stable value of the resonance frequency in each change curve, and then compare it with the frequency baseline respectively, and use the frequency shift value as the response of the sensor to obtain the concentration correction curve of the sensor for early markers of cardiac injury;
其中,频率移动值=频率基线值-谐振频率的稳定值;Among them, the frequency shift value = the frequency baseline value - the stable value of the resonance frequency;
s4.在微流道中通入待测血清样品;s4. Pass the serum sample to be tested in the microfluidic channel;
s5.持续测量压电薄膜谐振器的谐振频率,得到谐振频率随时间的变化曲线,取该变化曲线上的频率稳定值,并与频率基线比较,以频率移动值作为传感器响应;s5. Continuously measure the resonant frequency of the piezoelectric thin film resonator, obtain the change curve of the resonant frequency with time, take the frequency stability value on the change curve, compare it with the frequency baseline, and use the frequency shift value as the sensor response;
s6.对照步骤s3中的浓度校正曲线,获得传感器响应对应的心脏损伤早期标志物浓度。s6. Comparing with the concentration calibration curve in step s3, obtain the concentration of the early cardiac injury marker corresponding to the sensor response.
优选地,步骤s2中,在每次通入不同浓度心脏损伤早期标志物的血清标准溶液之后,均需要使用十二烷基硫酸钠恢复心脏损伤早期标志物抗体吸附后的传感器。Preferably, in step s2, after each time the serum standard solution of the early marker of cardiac injury with different concentrations is injected, sodium dodecyl sulfate needs to be used to restore the sensor after the antibody of the early cardiac injury marker is adsorbed.
本发明具有如下优点:The present invention has the following advantages:
如上所述,本发明提出了一种用于心脏损伤早期标志物检测的传感器的制备方法,通过该方法制得的传感器(由于压电薄膜谐振器尺寸较小,仅为毫米量级)尺寸较小,利于采用半导体工艺进行大规模及低成本制造,可集成于可穿戴电子设备或其他小型电子设备中。通过上述方法制得的传感器,基于质量敏感原理进行心脏损伤早期标志物检测,降低了液体样品本身的干扰,利于提高心脏损伤早期标志物检测的精度;此外,本发明还提出了一种基于上述方法制得的传感器的检测方法,利于实现对心脏损伤早期标志物的实时测量。As described above, the present invention proposes a method for preparing a sensor for detecting early markers of cardiac injury. The sensor prepared by this method (due to the small size of the piezoelectric thin film resonator, only in the order of millimeters) has a relatively small size. It is small, which is conducive to large-scale and low-cost manufacturing using semiconductor technology, and can be integrated into wearable electronic devices or other small electronic devices. The sensor prepared by the above method can detect the early markers of cardiac injury based on the principle of mass sensitivity, which reduces the interference of the liquid sample itself, and is beneficial to improve the accuracy of the detection of the early markers of cardiac injury; in addition, the present invention also proposes a method based on the above The detection method of the sensor prepared by the method is beneficial to realize the real-time measurement of the early markers of cardiac injury.
附图说明Description of drawings
图1为本发明实施例1中用于心脏损伤早期标志物检测的传感器的制备方法的流程框图;FIG. 1 is a flowchart of a method for preparing a sensor for detecting early markers of cardiac injury in Example 1 of the present invention;
图2为本发明实施例1中压电薄膜传感器的结构示意图;2 is a schematic structural diagram of a piezoelectric thin-film sensor in
图3为本发明实施例1中用于心脏损伤早期标志物检测的传感器的组装示意图;3 is a schematic diagram of the assembly of a sensor for detecting early markers of cardiac injury in Example 1 of the present invention;
图4为本发明实施例2中用于心脏损伤早期标志物检测的传感器的结构示意图;4 is a schematic structural diagram of a sensor for detecting early markers of cardiac injury in Example 2 of the present invention;
图5为本发明实施例3中用于心脏损伤早期标志物检测的传感器的检测方法的流程框图;5 is a flowchart of a method for detecting a sensor for detecting early markers of cardiac injury in Embodiment 3 of the present invention;
图6为本发明实施例3中用于心脏损伤早期标志物检测的传感器对纯血清和心脏损伤早期标志物心肌肌钙蛋白(cTnI)的血清标准溶液的频率-时间曲线图;Figure 6 is a frequency-time curve diagram of the sensor used for the detection of early cardiac injury markers in Example 3 of the present invention to pure serum and a serum standard solution of cardiac troponin (cTnI), an early cardiac injury marker;
图7为本发明实施例3中对心肌肌钙蛋白(cTnI)的浓度校正曲线图。FIG. 7 is a graph showing the concentration calibration curve of cardiac troponin (cTnI) in Example 3 of the present invention.
图8为采用本发明实施例3中的检测方法与常规化学发光法进行测量对照的结果示意图。FIG. 8 is a schematic diagram showing the results of measurement and comparison using the detection method in Example 3 of the present invention and the conventional chemiluminescence method.
其中,101-压电层,102-上电极,103-下电极,104-支撑层,105-硅衬底,106-氧化硅层,107-微流道侧壁,108-玻璃盖板;Wherein, 101-piezoelectric layer, 102-upper electrode, 103-lower electrode, 104-support layer, 105-silicon substrate, 106-silicon oxide layer, 107-microchannel sidewall, 108-glass cover plate;
109-心脏损伤早期标志物抗体,110-声反射层,111-空气隙,112-微流道。109-early marker antibody of cardiac injury, 110-acoustic reflection layer, 111-air gap, 112-microfluidic channel.
具体实施方式Detailed ways
下面结合附图以及具体实施方式对本发明作进一步详细说明:The present invention is described in further detail below in conjunction with the accompanying drawings and specific embodiments:
实施例1Example 1
本实施例1述及了一种用于心脏损伤早期标志物检测的传感器的制备方法。This Example 1 describes a method for preparing a sensor for detecting early markers of cardiac injury.
如图1所示,该传感器的制备方法包括如下步骤:As shown in Figure 1, the preparation method of the sensor includes the following steps:
I.制备压电薄膜传感器。I. Preparation of piezoelectric thin film sensor.
本实施例1制得的压电薄膜传感器例如是横膈膜型压电薄膜传感器,如图2(a)所示。The piezoelectric thin-film sensor prepared in Example 1 is, for example, a diaphragm-type piezoelectric thin-film sensor, as shown in FIG. 2( a ).
该传感器采用氮化铝薄膜为压电层101,c轴与垂直方向具有倾角24度,厚度为1微米。上电极102为金材料,下电极103为钨材料,厚度均为100纳米。The sensor uses an aluminum nitride film as the
支撑层104为氮化硅薄膜,厚度为800纳米。The
声波震荡区域下方的硅衬底105被完全刻蚀形成横膈膜结构。The
当然,本实施例1制得的压电薄膜传感器还可以是具有声反射层的固体装配型压电薄膜传感器,如图2(b)所示,或空气隙型结构压电薄膜传感器,如图2(c)所示。Of course, the piezoelectric thin film sensor made in Example 1 can also be a solid assembled piezoelectric thin film sensor with an acoustic reflection layer, as shown in Figure 2(b), or an air gap type piezoelectric thin film sensor, as shown in Figure 2(b) 2(c).
其中,图2(b)中,标记110表示声反射层,图2(c)中,标记111表示空气隙。Here, in FIG. 2( b ),
下面以横膈膜型压电薄膜传感器为例具体说明本实施例1中传感器的制备过程。The following takes a diaphragm type piezoelectric thin film sensor as an example to specifically describe the preparation process of the sensor in the first embodiment.
II.在制得的压电薄膜传感器(如图3(a)中示出了一种横膈膜型压电薄膜传感器)的上电极表面沉积氧化硅层106,如图3(b)所示。II. Deposit a
该氧化硅层106是采用磁控溅射沉积的方法得到的,沉积厚度为200纳米。The
氧化硅层106的作用是为组装敏感抗体提供羟基表面,同时隔离测试液体与电极。The function of the
III.在氧化硅层106的表面制作微流道侧壁107,如图3(c)所示。由图3(c)可知,本实施例1制得的微流道侧壁107有两个,且均位于氧化硅层106的表面。III. Fabricating the
微流道侧壁107优选采用聚二甲基硅氧烷(PDMS),采用普通光刻胶为模板,软光刻法制作而成。当然,微流道侧壁107还可以选用SU8负胶或聚酰亚胺(PI)材料等。The
微流道侧壁107的制作工艺例如还包括普通光刻或纳米压印方法等。For example, the fabrication process of the
微流道侧壁107的高度1-5毫米,例如可以取值为2毫米。The height of the
IV.在微流道侧壁107的上表面设置玻璃盖板108,形成微流道,如图3(d)所示。IV. A
其中,在设置玻璃盖板108之前,需要将玻璃盖板和微流道侧壁表面使用氧等粒子处理,处理功率密度为1瓦/平方厘米,氧气的气氛压强为20Pa,处理时间10分钟。Before setting the
氧等粒子表面处理的作用在于,保证微流道侧壁107与玻璃盖板108之间的连接效果,保证微流道的使用可靠性,同时避免微流道中的溶液出现泄漏。The role of the surface treatment of particles such as oxygen is to ensure the connection effect between the
本实施例1在压电薄膜传感器上设计微流道的作用在于:使得该方法制得的传感器,能够基于质量敏感原理对通入到微流道内的待测样品溶液进行实时的连续性测量,利于保证测量结果的精确性,同时利于更换溶液,实现样品的快速测量(不需要等干燥)。The effect of designing a micro-channel on the piezoelectric film sensor in Example 1 is to enable the sensor prepared by this method to perform real-time continuous measurement on the sample solution to be tested introduced into the micro-channel based on the principle of mass sensitivity, It is beneficial to ensure the accuracy of the measurement results, and at the same time, it is beneficial to change the solution, and realize the rapid measurement of the sample (no need to wait for drying).
V.在微流道内氧化硅层106的表面组装心脏损伤早期标志物抗体109,如图3(e)所示。V. Assemble the
以心肌肌钙蛋白为例说明心脏损伤早期标志物抗体的组装过程,具体如下:Taking cardiac troponin as an example to illustrate the assembly process of the early marker antibody of cardiac injury, the details are as follows:
首先在微流道112中通入去离子水和乙醇清洗表面。First, deionized water and ethanol are poured into the
然后通入氨丙基三乙氧基硅烷(APTES)浓度2%的乙醇溶液并浸泡60分钟。由于APTES的硅烷基团与氧化硅层的羟基相互作用,形成氨基表面。Then a 2% ethanol solution of aminopropyltriethoxysilane (APTES) was introduced and soaked for 60 minutes. The amino surface is formed due to the interaction of the silane groups of APTES with the hydroxyl groups of the silicon oxide layer.
进一步通入戊二醛5%的水溶液30分钟,对氨基表面进行醛基改性。A 5% aqueous solution of glutaraldehyde was further passed through for 30 minutes to modify the surface of the amino group with aldehyde groups.
再通入10微克/毫升的心肌肌钙蛋白(cTnI)的磷酸盐缓冲液(PBS)溶液2小时,进行抗体的共价结合。Covalent binding of the antibody was carried out by infusing a 10 μg/ml solution of cardiac troponin (cTnI) in phosphate buffered saline (PBS) for 2 hours.
最后通入0.1%牛血清蛋白(BSA)的PBS溶液阻断未结合的醛基30分钟,使得非特异性结合效应最小化。通过以上过程,实现了心肌肌钙蛋白抗体的组装过程。Unbound aldehyde groups were blocked by a final passage of 0.1% bovine serum albumin (BSA) in PBS for 30 minutes to minimize non-specific binding effects. Through the above process, the assembly process of cardiac troponin antibody is realized.
组装肌酸激酶MB同工酶(CK-MB)、心型脂肪酸结合蛋白(h-FABP)、以及B型尿钠肽(BNP)等其他心脏损伤早期标志物抗体的方法与上述方法相同,此处不再赘述。The method for assembling other early markers of cardiac injury such as creatine kinase MB isoenzyme (CK-MB), heart-type fatty acid-binding protein (h-FABP), and B-type natriuretic peptide (BNP) is the same as the above method. It is not repeated here.
通过本实施例1中制备方法能够制得用于心脏损伤早期标志物检测的传感器。A sensor for detecting early markers of cardiac injury can be prepared by the preparation method in Example 1.
由于本实施例1制得的传感器尺寸较小,因而利于采用半导体工艺进行大规模及低成本制造,可集成于可穿戴电子设备或其他小型电子设备中。Due to the small size of the sensor prepared in this
此外,本实施例1制得的传感器,基于质量敏感原理进行心脏损伤早期标志物检测,利于降低液体样品本身的干扰,从而提高心脏损伤早期标志物检测的精度。In addition, the sensor prepared in Example 1 can detect early markers of cardiac injury based on the principle of mass sensitivity, which is beneficial to reduce the interference of the liquid sample itself, thereby improving the detection accuracy of early markers of cardiac injury.
实施例2Example 2
本实施例2述及了一种用于心脏损伤早期标志物检测的传感器,该传感器基于上述实施例1中用于心脏损伤早期标志物检测的传感器的制备方法制得的。This
如图4所示,该传感器包括压电薄膜传感器、氧化硅层106、微流道侧壁107、玻璃盖板108以及心脏损伤早期标志物抗体109。As shown in FIG. 4 , the sensor includes a piezoelectric thin film sensor, a
其中,氧化硅层106位于压电薄膜传感器的上电极102表面。The
微流道侧壁107设置于氧化硅层106表面。The
玻璃盖板108覆盖于微流道侧壁107的上表面并与微流道侧壁107连接,形成微流道112。The
心脏损伤早期标志物抗体109组装于微流道内氧化硅层106的表面。The
本实施例2中的心脏损伤早期标志物抗体109包括肌酸激酶MB同工酶(CK-MB)、心肌肌钙蛋白(cTnI)、心型脂肪酸结合蛋白(h-FABP)或B型尿钠肽(BNP)等抗体。The cardiac injury
在实施例1中已对本实施例2中传感器的优点做了比较详细的描述,此处不再赘述。The advantages of the sensor in this
本实施例2还可以针对不同的传感器分别组装不同的敏感(即心脏损伤早期标志物)抗体,组成传感器阵列,能够同时对多种心脏损伤早期标志物进行联合检测。In Example 2, different sensitive (ie, early cardiac injury markers) antibodies can be assembled for different sensors to form a sensor array, which can simultaneously perform joint detection of multiple early cardiac injury markers.
实施例3Example 3
本实施例3述及了一种用于心脏损伤早期标志物检测的传感器的检测方法,该检测方法基于上述实施例2中述及的用于心脏损伤早期标志物检测的传感器实现。This embodiment 3 describes a detection method for a sensor for detecting early markers of cardiac injury, and the detection method is implemented based on the sensor for detecting early markers for cardiac injury described in
下面以心肌肌钙蛋白为例说明心脏损伤早期标志物的检测过程。The following takes cardiac troponin as an example to illustrate the detection process of early markers of cardiac injury.
如图5所示,用于心脏损伤早期标志物检测的传感器的检测方法,包括如下步骤:As shown in Figure 5, the detection method of the sensor used for the detection of early markers of cardiac injury includes the following steps:
s1.在微流道112中通入纯血清样品,测量压电薄膜谐振器的谐振频率。s1. Pass the pure serum sample into the
其中,微流道112的进口和出口分别使用注射针头进行液体样品的输入和输出,并通过注射泵、流动泵注入液体样品,使用网络分析仪或频率测量电路测量谐振器频率。The inlet and outlet of the
由于质量和阻尼负载,通入液体(此处是指上面提到的纯血清样品)后,薄膜传感器的谐振器频率有明显下降,应取稳定状态的谐振频率为频率基线,如图6所示。Due to the mass and damping load, the resonator frequency of the thin film sensor drops significantly after the liquid (here refers to the pure serum sample mentioned above) is introduced, and the resonant frequency in the steady state should be taken as the frequency baseline, as shown in Figure 6 .
s2.在微流道112中依次通入含有不同浓度心肌肌钙蛋白(cTnI)的血清标准溶液,由于抗体和抗原发生反应,因此,谐振器的谐振频率会逐渐下降并稳定,如图6所示。s2. Serum standard solutions containing different concentrations of cardiac troponin (cTnI) are sequentially introduced into the
持续测量谐振器在不同浓度心脏损伤早期标志物的血清标准溶液下的谐振频率。The resonant frequencies of the resonators under different concentrations of serum standard solutions of early markers of cardiac injury were continuously measured.
由于每次通入一定浓度的心肌肌钙蛋白(cTnI)的血清标准溶液,均会得到一组频率随时间的变化曲线,因此通过以上过程能够依次得到多个谐振频率随时间的变化曲线。Since each time a certain concentration of serum standard solution of cardiac troponin (cTnI) is injected, a set of frequency variation curves with time will be obtained. Therefore, multiple resonance frequency variation curves with time can be sequentially obtained through the above process.
在图6中示出的心肌肌钙蛋白(cTnI)的血清标准溶液浓度为0.1ng/ml。The serum standard solution concentration of cardiac troponin (cTnI) shown in Figure 6 was 0.1 ng/ml.
在每次通入不同浓度心肌肌钙蛋白(cTnI)的血清标准溶液之后,均需要使用1%的十二烷基硫酸钠(SDS)恢复心脏损伤早期标志物抗体吸附后的传感器,使传感器可重复使用。After each injection of serum standard solutions of cardiac troponin (cTnI) with different concentrations, 1% sodium dodecyl sulfate (SDS) should be used to restore the sensor after antibody adsorption of early marker of cardiac injury, so that the sensor can be reuse.
当然,本实施例3也并不局限于使用SDS,还可以采用其他与SDS有相同或相近功能的液体恢复心脏损伤早期标志物抗体吸附后的传感器,使传感器可重复使用。Of course, this Example 3 is not limited to the use of SDS, and other liquids with the same or similar functions as SDS can also be used to restore the sensor after the adsorption of the antibody of the early marker of cardiac injury, so that the sensor can be reused.
s3.取各个变化曲线中谐振频率的稳定值,然后分别与频率基线比较,将频率移动值作为传感器的响应,得到该传感器对心脏损伤早期标志物的浓度校正曲线,如图7所示。s3. Take the stable value of the resonant frequency in each change curve, and then compare it with the frequency baseline respectively, and use the frequency shift value as the response of the sensor to obtain the concentration correction curve of the sensor for early markers of cardiac injury, as shown in Figure 7.
其中,方块表示实际测试获得的数据点(方块上下的线表示为5次测量的标准差),虚线表示对测试结果的线性拟合。由图7可知,在对数坐标系下,心肌肌钙蛋白(cTnI)的浓度与其频率移动值呈近似线性关系。其中,频率移动值=频率基线值-谐振频率的稳定值。Among them, the squares represent the data points obtained by the actual test (the lines above and below the squares represent the standard deviation of 5 measurements), and the dashed lines represent the linear fitting of the test results. It can be seen from Fig. 7 that in the logarithmic coordinate system, the concentration of cardiac troponin (cTnI) has an approximate linear relationship with its frequency shift value. Wherein, frequency shift value=frequency baseline value-stable value of resonance frequency.
s4.在微流道中通入待测血清样品。s4. Pass the serum sample to be tested in the microfluidic channel.
本实施例3中的待测血清样品为通过标准采血过程获得的人血样本。The serum sample to be tested in this Example 3 is a human blood sample obtained through a standard blood collection process.
s5.持续测量压电薄膜谐振器的谐振频率,得到谐振频率随时间的变化曲线,取该变化曲线上的频率稳定值,并与频率基线比较,以频率移动值作为传感器响应。s5. Continuously measure the resonant frequency of the piezoelectric thin-film resonator to obtain a change curve of the resonant frequency with time, take the frequency stability value on the change curve, compare it with the frequency baseline, and use the frequency shift value as the sensor response.
s6.对照步骤s3中的浓度校正曲线,获得传感器响应对应的心肌肌钙蛋白(cTnI)浓度。s6. Compare the concentration calibration curve in step s3 to obtain the cardiac troponin (cTnI) concentration corresponding to the sensor response.
以上过程为心肌肌钙蛋白(cTnI)浓度的检测方法。The above process is the detection method of cardiac troponin (cTnI) concentration.
对于肌酸激酶MB同工酶(CK-MB)、心型脂肪酸结合蛋白(h-FABP)、以及B型尿钠肽(BNP)等其他心脏损伤早期标志物的检测过程与上述方法相同,此处不再赘述。The detection process for other early markers of cardiac injury such as creatine kinase MB isoenzyme (CK-MB), heart-type fatty acid-binding protein (h-FABP), and B-type natriuretic peptide (BNP) is the same as the above method. It is not repeated here.
本实施例3利于实现对心脏损伤早期标志物的实时动态检测,且检测结果精确可靠,具体原理分析如下:测试中流动的液体能够将没有结合在传感器表面抗体的物质冲走,从而降低传感器表面的非特异性吸附,从而提高准确性。另外,微流道具有固定的通道和腔体体积,从而能够精确控制进入传感器敏感区的样品体积,使测试的可靠性和重复性提高。This example 3 is conducive to realizing real-time dynamic detection of early markers of cardiac injury, and the detection results are accurate and reliable. The specific principle is analyzed as follows: the liquid flowing in the test can wash away the substances that are not bound to the antibody on the sensor surface, thereby reducing the sensor surface. non-specific adsorption, thereby improving accuracy. In addition, the microfluidic channel has a fixed channel and cavity volume, so that the sample volume entering the sensitive area of the sensor can be precisely controlled, which improves the reliability and repeatability of the test.
由于压电薄膜谐振器采用硅半导体工艺制造,可以集成于微型集成测试系统中,流动液体动态测量能够实现与其他组件(如血液分离、离心等)的连续性、自动化测量,并且一次测量完成后,可通入新的液体(例如SDS)清除表面后,实现多次自动化反复测量。Since the piezoelectric thin film resonator is fabricated by silicon semiconductor process, it can be integrated in a micro integrated test system. The dynamic measurement of flowing liquid can realize continuous and automated measurement with other components (such as blood separation, centrifugation, etc.), and after one measurement is completed , after a new liquid (such as SDS) can be introduced to clear the surface, multiple automated repeated measurements can be realized.
此外,本实施例3还对采用本发明方法进行检测的结果与常规化学发光法结果进行了对照,对照结果如图8所示。其中,方块表示实际测试获得的数据点的检测结果,虚线表示对测试结果的线性拟合的结果。通过将本发明方法检测的结果与常规化学发光法得到的结果进行对照,结果呈现一致性,表明本发明实施例3中的检测方法的检测准确性较好。In addition, this Example 3 also compared the results of the detection by the method of the present invention with the results of the conventional chemiluminescence method, and the comparison results are shown in FIG. 8 . Among them, the square represents the detection result of the data point obtained by the actual test, and the dotted line represents the result of linear fitting to the test result. By comparing the results detected by the method of the present invention with the results obtained by the conventional chemiluminescence method, the results are consistent, indicating that the detection method in Example 3 of the present invention has better detection accuracy.
当然,以上说明仅仅为本发明的较佳实施例,本发明并不限于列举上述实施例,应当说明的是,任何熟悉本领域的技术人员在本说明书的教导下,所做出的所有等同替代、明显变形形式,均落在本说明书的实质范围之内,理应受到本发明的保护。Of course, the above descriptions are only the preferred embodiments of the present invention, and the present invention is not limited to the above-mentioned embodiments. , and obvious deformation forms, all fall within the essential scope of this specification, and should be protected by the present invention.
Claims (8)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010196266.3A CN111351848B (en) | 2020-03-19 | 2020-03-19 | Preparation method of sensor, sensor and detection method of sensor |
PCT/CN2020/087123 WO2021184494A1 (en) | 2020-03-19 | 2020-04-27 | Manufacturing method of sensor, sensor, and detection method of sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010196266.3A CN111351848B (en) | 2020-03-19 | 2020-03-19 | Preparation method of sensor, sensor and detection method of sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111351848A CN111351848A (en) | 2020-06-30 |
CN111351848B true CN111351848B (en) | 2020-10-16 |
Family
ID=71196400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010196266.3A Active CN111351848B (en) | 2020-03-19 | 2020-03-19 | Preparation method of sensor, sensor and detection method of sensor |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111351848B (en) |
WO (1) | WO2021184494A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117524372B (en) * | 2023-11-16 | 2024-05-17 | 浙江大学 | Microfluidic metamaterial design method based on genetic algorithm, electronic device, medium |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1325026A (en) * | 2001-07-10 | 2001-12-05 | 重庆大学 | Piezoelectric biological chip miniflow detector |
US20050148065A1 (en) * | 2003-12-30 | 2005-07-07 | Intel Corporation | Biosensor utilizing a resonator having a functionalized surface |
CN100578224C (en) * | 2006-06-27 | 2010-01-06 | 中国科学院力学研究所 | Microfluidic detection chip for detection of cell surface markers |
CN100547396C (en) * | 2007-05-08 | 2009-10-07 | 中国科学院上海微系统与信息技术研究所 | A silicon-based piezoelectric thin film sensor applied to the detection of biological micro quality and its manufacturing method |
DE102011107046B4 (en) * | 2011-07-11 | 2016-03-24 | Friedrich-Schiller-Universität Jena | micropump |
CN102435747A (en) * | 2011-10-26 | 2012-05-02 | 中国科学院苏州纳米技术与纳米仿生研究所 | Biosensor for acute myocardial infarction diagnosis and preparation method thereof |
CN102621026A (en) * | 2012-03-12 | 2012-08-01 | 山东科技大学 | Thin film acoustic wave resonance biochemical sensor integrating microchannel |
CN102628802B (en) * | 2012-04-17 | 2013-12-18 | 王利兵 | Method for detecting biotoxins in foods based on surface plasma resonance technology |
CN103472129B (en) * | 2013-09-17 | 2017-01-11 | 天津大学 | Resonance sensor for fluid environment detection |
US9910015B2 (en) * | 2014-04-14 | 2018-03-06 | Texas Instruments Incorporated | Sensor array chip with piezoelectric transducer including inkjet forming method |
WO2017070177A1 (en) * | 2015-10-21 | 2017-04-27 | Qorvo Us, Inc. | Resonator structure with enhanced reflection of shear and longitudinal modes of acoustic vibrations |
US10352904B2 (en) * | 2015-10-26 | 2019-07-16 | Qorvo Us, Inc. | Acoustic resonator devices and methods providing patterned functionalization areas |
WO2017078992A1 (en) * | 2015-11-06 | 2017-05-11 | Qorvo Us, Inc. | Acoustic resonator devices and fabrication methods providing hermeticity and surface functionalization |
EP3427043B1 (en) * | 2016-03-11 | 2024-08-28 | Zomedica Biotechnologies LLC | Baw sensor fluidic device with increased dynamic measurement range |
CN106788317B (en) * | 2016-11-22 | 2019-12-03 | 山东科技大学 | Piezoelectric thin film resonator, its manufacturing method and method for detecting coagulation time |
CN107340317A (en) * | 2017-06-19 | 2017-11-10 | 天津大学 | A kind of Gas Distinguishing Method, gas sensor and gas identification device |
CN107727845B (en) * | 2017-09-26 | 2019-09-10 | 中国科学院苏州生物医学工程技术研究所 | Lamb wave sensor, biological detection chip and fast screening system |
CN108375559B (en) * | 2018-02-08 | 2021-01-15 | 南京岚煜生物科技有限公司 | Myocardial troponin kit based on micro-fluidic chip and preparation and detection methods thereof |
CN109012771B (en) * | 2018-07-23 | 2020-06-09 | 武汉大学 | Full-transparent microfluidic acoustic bulk wave chip and preparation method thereof |
CN110061715B (en) * | 2019-03-29 | 2020-07-07 | 山东科技大学 | A method for fabricating piezoelectric thin-film resonators on non-silicon substrates |
CN110161100B (en) * | 2019-05-23 | 2022-04-08 | 闽南师范大学 | Preparation method of label-free electrochemical sensor for cardiac troponin I and detection method for cTnI |
-
2020
- 2020-03-19 CN CN202010196266.3A patent/CN111351848B/en active Active
- 2020-04-27 WO PCT/CN2020/087123 patent/WO2021184494A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
CN111351848A (en) | 2020-06-30 |
WO2021184494A1 (en) | 2021-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7993854B2 (en) | Detection and quantification of biomarkers via a piezoelectric cantilever sensor | |
Vairaperumal et al. | Optical nanobiosensor-based point-of-care testing for cardiovascular disease biomarkers | |
Fathil et al. | Diagnostics on acute myocardial infarction: Cardiac troponin biomarkers | |
Qureshi et al. | Biosensors for cardiac biomarkers detection: A review | |
de Ávila et al. | Ultrasensitive amperometric magnetoimmunosensor for human C-reactive protein quantification in serum | |
JP6013519B2 (en) | Microfluidic device based on integrated electrochemical immunoassay and its substrate | |
KR101833558B1 (en) | Array with extended dynamic range and associated method | |
Zhang et al. | A novel piezoelectric quartz micro-array immunosensor based on self-assembled monolayer for determination of human chorionic gonadotropin | |
Lei et al. | CMOS biosensors for in vitro diagnosis–transducing mechanisms and applications | |
WO2009023857A1 (en) | Impedance spectroscopy of biomolecules using functionalized nanoparticles | |
KR20090011557A (en) | Microfluidic Sensor Complex Structure | |
Sarangadharan et al. | Rapid detection of NT-proBNP from whole blood using FET based biosensors for homecare | |
CN103543081B (en) | Portable sensing system for early diagnosing liver cancer and functional modification method of portable sensing system | |
Prasad et al. | Silicon nanosensor for diagnosis of cardiovascular proteomic markers | |
BR112014027489B1 (en) | ELECTRODE AND METHOD TO DETECT A TARGET SPECIES | |
CN112020645A (en) | Biosensors based on porous electrodes | |
KR20110126942A (en) | Biochip and its manufacturing method, method for detecting analyte using the same | |
JP2015127694A (en) | An internal correction method in a one-chip assay and a test substance measurement method using the method. | |
CN201707336U (en) | Test strip device for fast and quantitatively detecting first cardiac troponin | |
CN111351848B (en) | Preparation method of sensor, sensor and detection method of sensor | |
Zeng et al. | Development of quartz-crystal-microbalance-based immunosensor array for clinical immunophenotyping of acute leukemias | |
Bao et al. | A novel method for multiple cardiovascular disease biomarker detection using a SERF-based microfluidic platform | |
WO2016035197A1 (en) | Cartridge for electrochemical immunity sensor and measurement device using same | |
CN110596375B (en) | Microporous plate and high-sensitivity immunofluorescence detection method based on microporous plate | |
JP6309950B2 (en) | Processing sample fluids with target components |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |