CN111342801A - Grooved BAW resonators, filters and electronics - Google Patents
Grooved BAW resonators, filters and electronics Download PDFInfo
- Publication number
- CN111342801A CN111342801A CN201811560215.3A CN201811560215A CN111342801A CN 111342801 A CN111342801 A CN 111342801A CN 201811560215 A CN201811560215 A CN 201811560215A CN 111342801 A CN111342801 A CN 111342801A
- Authority
- CN
- China
- Prior art keywords
- resonator
- bottom electrode
- trench
- groove
- upper side
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/15—Constructional features of resonators consisting of piezoelectric or electrostrictive material
- H03H9/17—Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
- H03H9/171—Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
- H03H9/172—Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
- H03H9/175—Acoustic mirrors
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/15—Constructional features of resonators consisting of piezoelectric or electrostrictive material
- H03H9/17—Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/46—Filters
- H03H9/54—Filters comprising resonators of piezoelectric or electrostrictive material
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Abstract
带沟槽的体声波谐振器、滤波器和电子设备。本发明涉及一种体声波谐振器,包括:基底;声学镜;底电极,设置在基底上侧;顶电极;和压电层,设置在底电极上方以及底电极与顶电极之间,其中:声学镜、底电极、压电层、顶电极在基底的厚度方向重叠的区域为谐振器的有效区域;所述谐振器还包括至少一个沟槽,所述沟槽围绕所述有效区域延伸设置。所述沟槽可设置于所述压电层的下侧或者上侧;或者所述沟槽可设置于所述底电极的上侧或者下侧。本发明还涉及一种具有该谐振器的滤波器,一种具有上述滤波器或者谐振器的电子设备。
Grooved BAW resonators, filters and electronics. The invention relates to a bulk acoustic wave resonator, comprising: a substrate; an acoustic mirror; a bottom electrode, arranged on the upper side of the substrate; a top electrode; and a piezoelectric layer, arranged above the bottom electrode and between the bottom electrode and the top electrode, wherein: The area where the acoustic mirror, the bottom electrode, the piezoelectric layer, and the top electrode overlap in the thickness direction of the substrate is an effective area of the resonator; the resonator further includes at least one groove extending around the effective area. The trenches may be provided on the lower side or the upper side of the piezoelectric layer; or the trenches may be provided on the upper side or the lower side of the bottom electrode. The present invention also relates to a filter having the resonator, and an electronic device having the above-mentioned filter or resonator.
Description
技术领域technical field
本发明的实施例涉及半导体领域,尤其涉及一种体声波谐振器,一种具有该谐振器的滤波器,一种具有该滤波器的电子设备,以及一种提高谐振器的并联阻抗的方法。Embodiments of the present invention relate to the field of semiconductors, and in particular, to a bulk acoustic wave resonator, a filter having the resonator, an electronic device having the filter, and a method for increasing the parallel impedance of the resonator.
背景技术Background technique
当前,由体声波谐振器构成的射频前端滤波器在射频通讯系统中被广泛应用,这种滤波器通常具有优越的电性能,如低插入损耗、陡峭的过渡带、较大的功率容量、较强的抗静电放电能力,以及加工工艺能够与IC工艺相兼容,从而适宜大规模低成本制造。而滤波器的好坏与谐振器的各项性能指标息息相关。At present, RF front-end filters composed of bulk acoustic wave resonators are widely used in RF communication systems. Such filters usually have superior electrical properties, such as low insertion loss, steep transition band, large power capacity, relatively Strong anti-static discharge ability, and the processing technology can be compatible with IC technology, so it is suitable for large-scale low-cost manufacturing. The quality of the filter is closely related to the performance indicators of the resonator.
体声波谐振器一般具有两个谐振频率,定义阻抗最小的频率点为串联谐振频率fs,相应阻抗为串联阻抗Rs,阻抗最大的频率点为并联谐振频率fp,相应阻抗为并联阻抗Rp,通过有效机电耦合系数衡量谐振器中压电转换效率。通常,谐振器的串联谐振频率决定了滤波器的中心频率,而谐振器的有效机电耦合系数决定了滤波器可实现的最大带宽,谐振器的串联阻抗和并联阻抗决定了通带插入损耗及回波损耗。一般而言,谐振器的并联阻抗Rp越高,串联阻抗Rs越低,相应滤波器的通带插入损耗越好。因此,如何提高谐振器的性能,特别是提高谐振器的并联阻抗Rp,是滤波器设计中的一个重要而基础的问题。BAW resonators generally have two resonant frequencies. The frequency point with the smallest impedance is defined as the series resonant frequency fs, the corresponding impedance is the series impedance Rs, the frequency point with the largest impedance is the parallel resonant frequency fp, and the corresponding impedance is the parallel impedance Rp. The electromechanical coupling coefficient measures the piezoelectric conversion efficiency in the resonator. Generally, the series resonant frequency of the resonator determines the center frequency of the filter, while the effective electromechanical coupling coefficient of the resonator determines the maximum bandwidth that the filter can achieve, and the series and parallel impedances of the resonator determine the passband insertion loss and return wave loss. In general, the higher the parallel impedance Rp of the resonator and the lower the series impedance Rs, the better the passband insertion loss of the corresponding filter. Therefore, how to improve the performance of the resonator, especially the parallel impedance Rp of the resonator, is an important and fundamental problem in filter design.
发明内容SUMMARY OF THE INVENTION
本发明提出了一种通过设置沟槽提高体声波谐振器的并联阻抗的技术方案。The invention proposes a technical solution for improving the parallel impedance of a bulk acoustic wave resonator by arranging grooves.
根据本发明的实施例的一个方面,提出了一种体声波谐振器,包括:基底;声学镜;底电极,设置在基底上侧;顶电极;和压电层,设置在底电极上侧以及底电极与顶电极之间,其中:声学镜、底电极、压电层、顶电极在基底的厚度方向重叠的区域为谐振器的有效区域;所述谐振器还包括至少一个沟槽,所述沟槽围绕所述有效区域边缘延伸设置。According to an aspect of an embodiment of the present invention, a bulk acoustic wave resonator is proposed, including: a substrate; an acoustic mirror; a bottom electrode, disposed on the upper side of the substrate; a top electrode; and a piezoelectric layer, disposed on the upper side of the bottom electrode and between the bottom electrode and the top electrode, wherein: the area where the acoustic mirror, the bottom electrode, the piezoelectric layer, and the top electrode overlap in the thickness direction of the substrate is the effective area of the resonator; the resonator further includes at least one groove, the The grooves extend around the edge of the active area.
可选的,所述沟槽为环形沟槽。Optionally, the groove is an annular groove.
可选的,所述沟槽与所述声学镜的横向距离保持不变。Optionally, the lateral distance between the groove and the acoustic mirror remains unchanged.
可选的,所述至少一个沟槽包括一个沟槽。Optionally, the at least one groove includes one groove.
可选的,所述沟槽设置在基底上侧且为所述底电极完全覆盖。可选的,所述沟槽的深度H满足:0.1μm≤H≤0.6μm;且所述沟槽到所述声学镜的距离为D,所述沟槽的宽度为W,其中:1μm≤D≤1.8μm,且1.2μm≤W≤2.5μm。Optionally, the groove is disposed on the upper side of the substrate and completely covers the bottom electrode. Optionally, the depth H of the groove satisfies: 0.1 μm≤H≤0.6 μm; and the distance from the groove to the acoustic mirror is D, and the width of the groove is W, where: 1 μm≤D ≤1.8 μm, and 1.2 μm≤W≤2.5 μm.
可选的,所述沟槽设置在基底上侧且为所述底电极部分覆盖。或者可选的,所述沟槽设置在基底上侧且与底电极间隔开。进一步的,所述沟槽的深度H满足条件:0.6μm≤H≤1.1μm,或者1.7μm≤H≤2.3μm。更进一步的,在0.7μm≤H≤0.8μm,或者1.9μm≤H≤2.1μm。Optionally, the groove is disposed on the upper side of the substrate and partially covers the bottom electrode. Or alternatively, the groove is disposed on the upper side of the substrate and is spaced apart from the bottom electrode. Further, the depth H of the trench satisfies the condition: 0.6 μm≦H≦1.1 μm, or 1.7 μm≦H≦2.3 μm. Further, 0.7 μm≦H≦0.8 μm, or 1.9 μm≦H≦2.1 μm.
可选的,所述至少一个沟槽包括两个沟槽。Optionally, the at least one groove includes two grooves.
进一步的,所述两个沟槽设置在基底上侧且均被所述底电极完全覆盖。Further, the two grooves are arranged on the upper side of the substrate and are completely covered by the bottom electrode.
可选的,所述两个沟槽设置在基底上侧且均与所述底电极间隔开。Optionally, the two grooves are disposed on the upper side of the substrate and are spaced apart from the bottom electrode.
可选的,所述两个沟槽中的一个沟槽被所述底电极完全覆盖,另一个沟槽被所述底电极部分覆盖或者与所述底电极间隔开。可选的,所述两个沟槽中的一个沟槽被所述底电极部分覆盖,另一个沟槽被与所述底电极间隔开。Optionally, one of the two trenches is completely covered by the bottom electrode, and the other trench is partially covered by the bottom electrode or is spaced apart from the bottom electrode. Optionally, one of the two trenches is partially covered by the bottom electrode, and the other trench is spaced apart from the bottom electrode.
可选的,所述沟槽设置于所述压电层的下侧或者上侧;或者所述沟槽设置于所述底电极的上侧或者下侧。Optionally, the groove is provided on the lower side or the upper side of the piezoelectric layer; or the groove is provided on the upper side or the lower side of the bottom electrode.
可选的,所述至少一个沟槽包括多个沟槽段,所述多个沟槽段槽彼此之间间隔开且沿围绕所述有效区域设置。Optionally, the at least one groove includes a plurality of groove segments, and the plurality of groove segment grooves are spaced apart from each other and disposed along the active area.
根据本发明的实施例的另一方面,提出了一种滤波器,包括上述的体声波谐振器。According to another aspect of the embodiments of the present invention, a filter is proposed, comprising the above-mentioned bulk acoustic wave resonator.
根据本发明的实施例的再一方面,提出了一种电子设备,包括上述的滤波器或者上述的谐振器。According to yet another aspect of the embodiments of the present invention, an electronic device is provided, including the above-mentioned filter or the above-mentioned resonator.
本发明还涉及一种提高体声波谐振器的并联阻抗的方法,包括步骤:围绕所述谐振器的有效区域在谐振器的基底上侧形成至少一个环形沟槽。The present invention also relates to a method for increasing the parallel impedance of a bulk acoustic wave resonator, comprising the step of forming at least one annular groove on the upper side of the base of the resonator around the effective area of the resonator.
附图说明Description of drawings
以下描述与附图可以更好地帮助理解本发明所公布的各种实施例中的这些和其他特点、优点,图中相同的附图标记始终表示相同的部件,其中:These and other features and advantages of the various disclosed embodiments of the present invention may be better understood by the following description and accompanying drawings, in which like reference numerals refer to like parts throughout, wherein:
图1A为根据本发明的一个示例性实施例的体声波谐振器示意性俯视图,其中,仅设置了一个环形沟槽;1A is a schematic top view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention, wherein only one annular groove is provided;
图1B为根据本发明的一个示例性实施例的图1A中的体声波谐振器沿A-A’向的截面图;FIG. 1B is a cross-sectional view of the bulk acoustic wave resonator in FIG. 1A along the direction A-A' according to an exemplary embodiment of the present invention;
图1C为图1B中的体声波谐振器的关于沟槽的深度(即环形泳池高度H)与谐振器的并联阻抗的示例性关系曲线图;FIG. 1C is an exemplary graph of the depth of the trench (ie, the annular pool height H) versus the parallel impedance of the resonator for the bulk acoustic wave resonator of FIG. 1B ;
图1D为根据本发明的另一个示例性实施例的体声波谐振器的截面图;1D is a cross-sectional view of a bulk acoustic wave resonator according to another exemplary embodiment of the present invention;
图1E为图1D中的体声波谐振器的关于沟槽的深度(即环形泳池高度H)与谐振器的并联阻抗的示例性关系曲线图;FIG. 1E is an exemplary graph of the depth of the trench (ie, the annular pool height H) versus the parallel impedance of the resonator for the bulk acoustic wave resonator of FIG. ID;
图1F为根据本发明的再一个示例性实施例的体声波谐振器的截面图;1F is a cross-sectional view of a bulk acoustic wave resonator according to yet another exemplary embodiment of the present invention;
图1G为图1F中的体声波谐振器的关于沟槽的深度(即环形泳池高度H)与谐振器的并联阻抗的示例性关系曲线图;FIG. 1G is an exemplary graph of the depth of the trench (ie, the annular pool height H) versus the parallel impedance of the resonator for the bulk acoustic wave resonator of FIG. 1F ;
图2A为根据本发明的一个示例性实施例的体声波谐振器示意性俯视图,其中,仅设置了两个环形沟槽;2A is a schematic top view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention, wherein only two annular grooves are provided;
图2B为根据本发明的一个示例性实施例的图2A中的体声波谐振器沿B-B’向的截面图;2B is a cross-sectional view of the bulk acoustic wave resonator in FIG. 2A along the direction B-B' according to an exemplary embodiment of the present invention;
图2C为根据本发明的再一个示例性实施例的体声波谐振器的截面图;2C is a cross-sectional view of a bulk acoustic wave resonator according to yet another exemplary embodiment of the present invention;
图2D为根据本发明的又一个示例性实施例的体声波谐振器的截面图。2D is a cross-sectional view of a bulk acoustic wave resonator according to yet another exemplary embodiment of the present invention.
具体实施方式Detailed ways
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。在说明书中,相同或相似的附图标号指示相同或相似的部件。下述参照附图对本发明实施方式的说明旨在对本发明的总体发明构思进行解释,而不应当理解为对本发明的一种限制。The technical solutions of the present invention will be further described in detail below through embodiments and in conjunction with the accompanying drawings. In the specification, the same or similar reference numerals refer to the same or similar parts. The following description of the embodiments of the present invention with reference to the accompanying drawings is intended to explain the general inventive concept of the present invention, and should not be construed as a limitation of the present invention.
下面参照附图描述根据本发明的实施例的体声波谐振器。A bulk acoustic wave resonator according to an embodiment of the present invention will be described below with reference to the accompanying drawings.
图1A为根据本发明的一个示例性实施例的体声波谐振器示意性俯视图;图1B为根据本发明的一个示例性实施例的图1A中的体声波谐振器沿A-A’向的截面图。1A is a schematic top view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention; FIG. 1B is a cross-section of the bulk acoustic wave resonator in FIG. 1A along the AA' direction according to an exemplary embodiment of the present invention picture.
参见图1A和1B,体声波谐振器包括底电极120,压电层130,顶电极140,第一环形沟槽150。体声波谐振器包括基底100和声学镜110,此声学镜位于基底的上表面或嵌于基底的内部,在图1B中声学镜为嵌入基底中的空腔所构成,但是任何其它的声学镜结构如布拉格反射层也同样适用。Referring to FIGS. 1A and 1B , the BAW resonator includes a
体声波谐振器还包括底电极120、压电层130、顶电极140。底电极沉积在声学镜的上表面,并覆盖声学镜。可将底电极120的两侧末端部刻蚀成斜面,并且该斜面位于声反射镜的外边,此外还可以为阶梯状、垂直状或是其它相似的结构。所述的压电层130具有第一末端和对应的第二末端以及中间部分,并且位于底电极之上,两个末端部分分别向相反方向延伸到基底之上。顶电极140沉积在压电层130之上。环形沟槽150位于声学镜110的两侧,与声学镜有一定的间隔,且在底电极底部的非斜坡区域。The BAW resonator further includes a
顶电极、压电层、底电极、空腔在厚度方向重叠的区域为谐振器的有效区域,即图中的区域d2。当声波从有效区域泄露出来时,以行波形式在周围介质中传播,当增加了环形沟槽150时,由于引入空气界面,而空气的声阻抗为0,对应区域即图中的d1和d3区域的等效声阻抗会比相邻两侧声阻抗低,从而形成两个阻抗不匹配界面,使得声波在这两个界面处可以形成反射,使得一部分泄漏出的声波能量可以回到谐振腔d2中,从而提高并联阻抗Rp。The area where the top electrode, the piezoelectric layer, the bottom electrode, and the cavity overlap in the thickness direction is the effective area of the resonator, that is, the area d2 in the figure. When the sound wave leaks from the effective area, it propagates in the surrounding medium in the form of traveling waves. When the
环形沟槽的深度可以和空腔110深度可以相同或不同。参见图1B,定义H是环形沟槽的深度,W是环形沟槽的宽度,D是环形沟槽内边缘距离空腔边缘的距离,底电极超出空腔的距离为E。采用有限元法对上述结构进行二维仿真,其仿真结果如图1C所示。仿真中,设定E为5um,分别计算了W=1um,D=1um;W=1um,D=2um;W=2um,D=1um和W=2um,D=1um四种情况。图1C中横坐标为环形沟槽的深度H,纵坐标为并联阻抗Rp。H=0的情况是没有沟槽的情况;从图1C中可以看出,在W=2um,D=1um的情况下,当H=0.3um时,并联阻抗Rp可以达到2477,增大约250(约11.2%)。The depth of the annular groove may or may not be the same as the depth of the
相应的,在根据本发明的示例性实施例中,对于沟槽被底电极完全覆盖的情况,所述沟槽的深度H满足:0.1μm≤H≤0.6μm;且所述沟槽到所述声学镜的距离为D,所述沟槽的宽度为W,其中:1μm≤D≤1.8μm,且1.2μm≤W≤2.5μm。在进一步的实施例中,0.1μm≤H≤0.6μm。更进一步的,1μm≤D≤1.2μm,且1.8μm≤W≤2.0μm。Correspondingly, in the exemplary embodiment according to the present invention, for the case where the trench is completely covered by the bottom electrode, the depth H of the trench satisfies: 0.1 μm≤H≤0.6 μm; The distance of the acoustic mirror is D, and the width of the groove is W, wherein: 1 μm≤D≤1.8 μm, and 1.2 μm≤W≤2.5 μm. In a further embodiment, 0.1 μm≦H≦0.6 μm. Further, 1 μm≦D≦1.2 μm, and 1.8 μm≦W≦2.0 μm.
环形沟槽150也可设置在底电极120的外侧,如图1D所示。对图1D结构进行仿真,其仿真结果如图1E所示。仿真中,设定E为5um,分别计算了W=1um,D=5um;W=1um,D=7um;W=1um,D=9um三种情况。图中横坐标为环形沟槽的深度H,纵坐标为并联阻抗Rp。H=0的情况是没有环形沟槽的情况;在W=1um,D=7um的情况下,当H=0.7um时,并联阻抗Rp达到2929,增大约700(约31.5%)。在W=1um,D=9um的情况下,当H=2um时,并联阻抗Rp达到2977,增大约750(33.7%)。The
可选的,底电极120的末端位于环形沟槽150之上,但不全部覆盖环形沟槽150,如图1F所示。对图1F结构进行仿真,其仿真结果如图1G所示。仿真中,设定E为5um,分别计算了W=1um,D=4.25um;W=1um,D=4.5um;W=1um,D=4.75um三种情况。图中横坐标为环形沟槽的深度H,纵坐标为并联阻抗Rp。H=0的情况是没有环形沟槽的情况;在W=1um,D=4.5um的情况下,当H=0.8um时,并联阻抗Rp达到3015,增大约790(约35.6%)。对比图1C、1E、1G的仿真结果,可以看到,当沟槽宽度固定时,如W=1um时,当环形沟槽横跨底电极末端(第三种结构情况时)可以取得最好的提升并联阻抗Rp的效果。Optionally, the end of the
相应的,在根据本发明的示例性实施例中,对于沟槽没有被底电极覆盖或者没有完全被底电极覆盖的情况,所述沟槽的深度H满足条件:0.6μm≤H≤1.1μm,或者1.7μm≤H≤2.3μm。进一步的,在0.7μm≤H≤0.8μm,或者1.9μm≤H≤2.1μm。Correspondingly, in the exemplary embodiment according to the present invention, for the case where the trench is not covered by the bottom electrode or is not completely covered by the bottom electrode, the depth H of the trench satisfies the condition: 0.6 μm≤H≤1.1 μm, Or 1.7μm≤H≤2.3μm. Further, 0.7 μm≦H≦0.8 μm, or 1.9 μm≦H≦2.1 μm.
以上以单个沟槽为例进行说明,下面参照附图2A-2D以两个沟槽为例示例性说明根据本发明的谐振器。The above description takes a single trench as an example, and the following describes the resonator according to the present invention by taking two trenches as an example with reference to FIGS. 2A-2D .
如图2A-2D所示,体声波谐振器包括底电极220,压电层230,顶电极240,第一环形沟槽250和第二环形沟槽260。As shown in FIGS. 2A-2D , the BAW resonator includes a
图2B所示的实施例中,为体声波谐振器沿着图2A俯视图B-B’所取的截面图。体声波谐振器包括基底200和声学镜210,此声学镜位于基底的上表面或嵌于基底的内部,在图2B中声学镜为嵌入基底中的空腔所构成,但是任何其它的声学镜结构如布拉格反射层也同样适用。In the embodiment shown in FIG. 2B, it is a cross-sectional view of the bulk acoustic wave resonator taken along the top view B-B' of FIG. 2A. The BAW resonator includes a
体声波谐振器还包括底电极220,压电层230、顶电极240。底电极沉积在声学镜的上表面,并覆盖声学镜。可将底电极220的两侧末端部刻蚀成斜面,并且该斜面位于声反射镜的外边,此外还可以为阶梯状、垂直状或是其它相似的结构。所述的压电层230具有第一末端和对应的第二末端以及中间部分,并且位于底电极之上,两个末端部分分别向相反方向延伸到基底之上。顶电极240沉积在压电层230之上。第一环形沟槽250和第二环形沟槽260位于声学镜210的两侧,与声学镜有一定的间隔,且在底电极底部的非斜坡区域。The BAW resonator further includes a
通过设置多个环形沟槽,相比图1A中给出的实施例,可以形成更多声阻抗不匹配界面,从而将泄露声波多次反射回有效区域,以增强谐振器的并联阻抗Rp。By arranging multiple annular grooves, more acoustic impedance mismatch interfaces can be formed than the embodiment shown in FIG. 1A , thereby reflecting the leaked acoustic waves back to the effective area multiple times to enhance the parallel impedance Rp of the resonator.
第一环形沟槽250和第二环形沟槽260也可不全部设置在底电极底部的非斜坡区域。例如第一环形沟槽250设置在底电极220的外侧,第二环形沟槽260设置在底电极底部的斜坡区域,如图2C所示。The first
可选的,底电极220的末端位于第一环形沟槽250之上但不覆盖第一环形沟槽250,第二环形沟槽260设置在底电极220之下,如图2D所示。Optionally, the end of the
虽然在附图2A-2D中,仅仅示出了两个沟槽,但是基于需要,也可以设置三个或更多沟槽,这些均在本发明的保护范围之内。Although only two grooves are shown in FIGS. 2A-2D, three or more grooves may be provided as required, which are all within the protection scope of the present invention.
基于以上,本发明提出了一种体声波谐振器,包括:Based on the above, the present invention proposes a bulk acoustic wave resonator, comprising:
基底100或200;base 100 or 200;
声学镜110或210;
底电极120或220,设置在基底100或200上侧;The
顶电极140或240;和
压电层130或230,设置在底电极上侧以及底电极与顶电极之间,The
其中:in:
声学镜、底电极、压电层、顶电极在基底的厚度方向重叠的区域为谐振器的有效区域;The area where the acoustic mirror, the bottom electrode, the piezoelectric layer, and the top electrode overlap in the thickness direction of the substrate is the effective area of the resonator;
所述谐振器还包括沟槽150或250或260,所述沟槽围绕所述有效区域(在图1A中,示例性的,可以认为对应于顶电极140的边界区域d2)边缘延伸设置。The resonator further includes a
在本发明中,在谐振器的有效区域的一边或多边边缘处,在例如基底上加工一种沟槽结构,实践中通过选择合适的沟槽尺寸,能够有效反射泄露到基底中的声波,从而有效提高谐振器并联阻抗Rp值。In the present invention, a groove structure is processed on, for example, a substrate at one or multiple edges of the effective area of the resonator. In practice, by selecting an appropriate groove size, the acoustic waves leaking into the substrate can be effectively reflected, thereby Effectively improve the parallel impedance Rp value of the resonator.
沟槽为微槽结构。在本发明的附图中,沟槽为环形沟槽。不过,沟槽也可以为多个沟槽段,所述多个沟槽段彼此之间间隔开且沿围绕所述有效区域设置。例如,沟槽段可以为设置在图1A中所示的多边形的有效区域的一条边或多条边的一个或多个沟槽段。The groove is a micro-groove structure. In the drawings of the present invention, the grooves are annular grooves. However, the grooves may also be a plurality of groove segments spaced apart from each other and arranged along the active area. For example, the groove segment may be one or more groove segments disposed on one or more sides of the active area of the polygon shown in FIG. 1A .
在本发明中,如附图所示,在可选的实施例中,所述沟槽与所述声学镜的横向距离保持不变。In the present invention, as shown in the accompanying drawings, in an optional embodiment, the lateral distance between the groove and the acoustic mirror remains unchanged.
在本发明的一个示例性实施例中,沟槽均形成在基底上。但是,本发明不限于此,沟槽也可以形成在与基底相对的压电层的下表面处,或者设置在压电层的上表面处。或者所述沟槽设置于所述底电极的上侧或者下侧。In an exemplary embodiment of the present invention, the trenches are all formed on the substrate. However, the present invention is not limited thereto, and the groove may be formed at the lower surface of the piezoelectric layer opposite to the substrate, or provided at the upper surface of the piezoelectric layer. Alternatively, the trench is disposed on the upper side or the lower side of the bottom electrode.
在本发明中,沟槽或者沟槽段内可以填充其他材料,也可以不填充,均在本发明的保护范围之内。In the present invention, the trench or the trench segment may be filled with other materials, or not filled, all within the protection scope of the present invention.
在本发明的可选实施例中,所述两个沟槽中的一个沟槽被所述底电极完全覆盖,另一个沟槽被所述底电极部分覆盖或者与所述底电极间隔开。可选的,所述两个沟槽中的一个沟槽被所述底电极部分覆盖,另一个沟槽被与所述底电极间隔开。In an alternative embodiment of the invention, one of the two trenches is completely covered by the bottom electrode and the other trench is partially covered by the bottom electrode or is spaced apart from the bottom electrode. Optionally, one of the two trenches is partially covered by the bottom electrode, and the other trench is spaced apart from the bottom electrode.
在本发明中,方位中的“上侧”表示在谐振器的厚度方向上远离基底的一侧,而“下侧”表示在谐振器的厚度方向上靠近基底的一侧。In the present invention, "upper side" in the orientation means the side away from the substrate in the thickness direction of the resonator, and "lower side" means the side close to the substrate in the thickness direction of the resonator.
基于以上,本发明的实施例也涉及一种滤波器,包括上述的体声波谐振器。Based on the above, the embodiments of the present invention also relate to a filter including the above-mentioned bulk acoustic wave resonator.
本发明的实施例也涉及一种电子设备,包括上述的滤波器或者谐振器。需要指出的是,这里的电子设备,包括但不限于射频前端、滤波放大模块等中间产品,以及手机、WIFI、无人机等终端产品。Embodiments of the present invention also relate to an electronic device comprising the above-mentioned filter or resonator. It should be pointed out that the electronic equipment here includes but is not limited to intermediate products such as RF front-end, filter and amplifier modules, and terminal products such as mobile phones, WIFI, and drones.
相应的,本发明还提出了一种提高体声波谐振器的并联阻抗的方法,包括步骤:围绕所述谐振器的有效区域在谐振器的基底上侧形成至少一个环形沟槽。Correspondingly, the present invention also provides a method for increasing the parallel impedance of a bulk acoustic wave resonator, comprising the step of: forming at least one annular groove on the upper side of the base of the resonator around the effective area of the resonator.
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行变化,本发明的范围由所附权利要求及其等同物限定。Although embodiments of the present invention have been shown and described, it will be understood by those of ordinary skill in the art that changes may be made to these embodiments without departing from the principles and spirit of the invention, the scope of which is determined by It is defined by the appended claims and their equivalents.
Claims (20)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811560215.3A CN111342801B (en) | 2018-12-19 | 2018-12-19 | Grooved BAW resonators, filters and electronic devices |
PCT/CN2019/121094 WO2020125353A1 (en) | 2018-12-19 | 2019-11-27 | Grooved bulk acoustic wave resonator, filter and electronic device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811560215.3A CN111342801B (en) | 2018-12-19 | 2018-12-19 | Grooved BAW resonators, filters and electronic devices |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111342801A true CN111342801A (en) | 2020-06-26 |
CN111342801B CN111342801B (en) | 2025-03-14 |
Family
ID=71100160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811560215.3A Active CN111342801B (en) | 2018-12-19 | 2018-12-19 | Grooved BAW resonators, filters and electronic devices |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111342801B (en) |
WO (1) | WO2020125353A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112039487A (en) * | 2020-08-06 | 2020-12-04 | 诺思(天津)微系统有限责任公司 | Bulk acoustic wave resonator with heat conduction structure, manufacturing method thereof, filter and electronic equipment |
CN113258899A (en) * | 2021-05-18 | 2021-08-13 | 苏州汉天下电子有限公司 | Film bulk acoustic resonator and manufacturing method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6377139B1 (en) * | 1999-03-19 | 2002-04-23 | Murata Manufacturing Co., Ltd | Edge reflection type surface acoustic wave device with grooves or steps at the reflection edges |
JP2005252851A (en) * | 2004-03-05 | 2005-09-15 | Toshiba Corp | Thin film piezoelectric resonator and manufacturing method thereof |
CN1794572A (en) * | 2004-12-22 | 2006-06-28 | 安捷伦科技有限公司 | Acoustic resonator performance enhancement using selective metal etch |
US20150280688A1 (en) * | 2014-03-28 | 2015-10-01 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Acoustic resonator device including trench for providing stress relief |
US20160308509A1 (en) * | 2011-02-28 | 2016-10-20 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Acoustic resonator device with at least one air-ring and frame |
CN111193488A (en) * | 2018-11-14 | 2020-05-22 | 天津大学 | Heat dissipation structure, bulk acoustic wave resonator with heat dissipation structure, filter and electronic equipment |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009290367A (en) * | 2008-05-27 | 2009-12-10 | Panasonic Electric Works Co Ltd | Baw resonance device and method of manufacturing the same |
CN108134589B (en) * | 2018-02-05 | 2020-02-18 | 武汉衍熙微器件有限公司 | Film bulk acoustic resonator |
-
2018
- 2018-12-19 CN CN201811560215.3A patent/CN111342801B/en active Active
-
2019
- 2019-11-27 WO PCT/CN2019/121094 patent/WO2020125353A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6377139B1 (en) * | 1999-03-19 | 2002-04-23 | Murata Manufacturing Co., Ltd | Edge reflection type surface acoustic wave device with grooves or steps at the reflection edges |
JP2005252851A (en) * | 2004-03-05 | 2005-09-15 | Toshiba Corp | Thin film piezoelectric resonator and manufacturing method thereof |
CN1794572A (en) * | 2004-12-22 | 2006-06-28 | 安捷伦科技有限公司 | Acoustic resonator performance enhancement using selective metal etch |
US20160308509A1 (en) * | 2011-02-28 | 2016-10-20 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Acoustic resonator device with at least one air-ring and frame |
US20150280688A1 (en) * | 2014-03-28 | 2015-10-01 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Acoustic resonator device including trench for providing stress relief |
CN111193488A (en) * | 2018-11-14 | 2020-05-22 | 天津大学 | Heat dissipation structure, bulk acoustic wave resonator with heat dissipation structure, filter and electronic equipment |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112039487A (en) * | 2020-08-06 | 2020-12-04 | 诺思(天津)微系统有限责任公司 | Bulk acoustic wave resonator with heat conduction structure, manufacturing method thereof, filter and electronic equipment |
CN112039487B (en) * | 2020-08-06 | 2021-08-10 | 诺思(天津)微系统有限责任公司 | Bulk acoustic wave resonator with heat conduction structure, manufacturing method thereof, filter and electronic equipment |
CN113258899A (en) * | 2021-05-18 | 2021-08-13 | 苏州汉天下电子有限公司 | Film bulk acoustic resonator and manufacturing method thereof |
CN113258899B (en) * | 2021-05-18 | 2024-06-04 | 苏州汉天下电子有限公司 | Film bulk acoustic resonator and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
WO2020125353A1 (en) | 2020-06-25 |
CN111342801B (en) | 2025-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101953072B (en) | Lamb wave resonator | |
CN100474766C (en) | Piezoelectric thin-film resonator and filter using the same | |
CN100505531C (en) | Piezoelectric thin film resonator and filter using same | |
US20050269904A1 (en) | Thin film bulk acoustic resonator and method of manufacturing the same | |
CN110995196B (en) | Method for manufacturing resonator and resonator | |
JP2006005924A (en) | Acoustic resonator | |
CN111010116B (en) | Bulk acoustic wave resonators, filters and electronic devices with highly graded raised structures | |
US20240267019A1 (en) | Bulk acoustic resonator and manufacturing method thereof, filter and electronic device | |
CN109167585B (en) | Bulk acoustic wave resonator, manufacturing method thereof and filter | |
CN108574473A (en) | Resonators and methods for providing resonators | |
JP4895323B2 (en) | Thin film piezoelectric resonator | |
JP5040172B2 (en) | Thin film piezoelectric resonator and thin film piezoelectric filter | |
JP2006345170A (en) | Thin-film piezoelectric resonator | |
JP2008182543A (en) | Thin film piezoelectric resonator and thin film piezoelectric filter using the same | |
CN115395917A (en) | Bulk acoustic wave resonant structure and method of manufacturing the same | |
CN111342801A (en) | Grooved BAW resonators, filters and electronics | |
KR20240079190A (en) | Bulk acoustic resonators and devices related thereto, and methods of manufacturing bulk acoustic resonators | |
JP2024533900A (en) | Bulk acoustic resonator, resonator unit, filter and electronic device | |
CN100576735C (en) | Noise suppression method for filter | |
CN116131803B (en) | Resonator, resonator preparation method and filter | |
JP4802714B2 (en) | Bulk acoustic wave resonator | |
CN116827298A (en) | Acoustic wave resonator | |
CN116318018B (en) | Bulk acoustic wave resonator and method for manufacturing the same | |
CN117375560B (en) | Bulk acoustic wave resonant device and preparation method thereof | |
CN217693270U (en) | Acoustic wave resonator, filter, and communication apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |