CN111320230A - Device for sterilizing fluids - Google Patents
Device for sterilizing fluids Download PDFInfo
- Publication number
- CN111320230A CN111320230A CN201911274037.2A CN201911274037A CN111320230A CN 111320230 A CN111320230 A CN 111320230A CN 201911274037 A CN201911274037 A CN 201911274037A CN 111320230 A CN111320230 A CN 111320230A
- Authority
- CN
- China
- Prior art keywords
- container
- inner cavity
- wall
- light source
- shape
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
- C02F1/32—Treatment of water, waste water, or sewage by irradiation with ultraviolet light
- C02F1/325—Irradiation devices or lamp constructions
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23B—PRESERVATION OF FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES; CHEMICAL RIPENING OF FRUIT OR VEGETABLES
- A23B11/00—Preservation of milk or dairy products
- A23B11/10—Preservation of milk or milk preparations
- A23B11/16—Preservation of milk or milk preparations by irradiation, e.g. by microwaves
- A23B11/164—Preservation of milk or milk preparations by irradiation, e.g. by microwaves by ultraviolet or infrared radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/0005—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
- A61L2/0011—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using physical methods
- A61L2/0029—Radiation
- A61L2/0047—Ultraviolet radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/02—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
- A61L2/08—Radiation
- A61L2/10—Ultraviolet radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L9/00—Disinfection, sterilisation or deodorisation of air
- A61L9/16—Disinfection, sterilisation or deodorisation of air using physical phenomena
- A61L9/18—Radiation
- A61L9/20—Ultraviolet radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/007—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by irradiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B19/00—Condensers, e.g. light collectors or similar non-imaging optics
- G02B19/0033—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
- G02B19/0047—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
- G02B19/0061—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2202/00—Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
- A61L2202/10—Apparatus features
- A61L2202/11—Apparatus for generating biocidal substances, e.g. vaporisers, UV lamps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2202/00—Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
- A61L2202/20—Targets to be treated
- A61L2202/22—Blood or products thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/91—Bacteria; Microorganisms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/06—Polluted air
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/80—Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
- B01D2259/804—UV light
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/32—Details relating to UV-irradiation devices
- C02F2201/322—Lamp arrangement
- C02F2201/3222—Units using UV-light emitting diodes [LED]
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/32—Details relating to UV-irradiation devices
- C02F2201/322—Lamp arrangement
- C02F2201/3227—Units with two or more lamps
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/32—Details relating to UV-irradiation devices
- C02F2201/322—Lamp arrangement
- C02F2201/3228—Units having reflectors, e.g. coatings, baffles, plates, mirrors
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/32—Details relating to UV-irradiation devices
- C02F2201/326—Lamp control systems
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/04—Disinfection
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Environmental & Geological Engineering (AREA)
- Toxicology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Biomedical Technology (AREA)
- General Chemical & Material Sciences (AREA)
- Wood Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Hydrology & Water Resources (AREA)
- Zoology (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
- Physical Water Treatments (AREA)
Abstract
本发明涉及用于为流体消毒的装置(1、1’、1”、1”’、1””)及其制造方法,该装置包括:用于容纳流体的容器(2、2’、2”、2”’、2””),其具有包围内腔(24)的外壁(12);和具有至少一个LED(8a‑8k、8n)的光源(8),其设置用于将波长在UV辐射范围中的光经由容器的外壁(12)或从外壁附近的相应位置出发以一种辐射特性发射到容器的内腔中,以照射被包含在内腔中的流体。外壁(12)的朝向内腔(24)的表面(14)在至少一个子部段(18、20、32、48)中具有基本匹配发射到内腔(24)中的光的辐射特性的形状。表面(14)的形状优选基本匹配由光源(8)发射到内腔中的光的等强度面(I1、I2、I3、I4)或射线束的包络线(44)。
The present invention relates to a device (1, 1', 1", 1"', 1"") for sterilizing a fluid and a method for its manufacture, the device comprising: a container (2, 2', 2") for containing the fluid , 2"', 2"") having an outer wall (12) surrounding the inner cavity (24); and a light source (8) having at least one LED (8a-8k, 8n) arranged to convert wavelengths in the UV Light in the radiation range is emitted via the outer wall ( 12 ) of the container or from a corresponding position in the vicinity of the outer wall with a radiation characteristic into the inner cavity of the container in order to illuminate the fluid contained in the inner cavity. The surface (14) of the outer wall (12) facing the inner cavity (24) has a shape in at least one subsection (18, 20, 32, 48) that substantially matches the radiation characteristics of the light emitted into the inner cavity (24) . The shape of the surface (14) preferably substantially matches the iso-intensity surface (I1, I2, I3, I4) or envelope (44) of the beam of light emitted by the light source (8) into the lumen.
Description
技术领域technical field
本发明涉及一种用于为流体消毒的装置,其具有:用于容纳流体的容器,该容器具有包围内腔的外壁;和包括至少一个LED(发光二极管)的光源,该光源设置用于,将具有在UV(紫外)辐射范围、优选UV-C(短波紫外)辐射范围中的波长的光经由容器的外壁或者从外壁附近的相应位置出发发射到容器的内腔中,以便照射被包含在内腔中的流体。这样的装置也被称为UV反应器。The present invention relates to a device for sterilizing fluids, comprising: a container for containing the fluid, the container having an outer wall surrounding an inner cavity; and a light source comprising at least one LED (Light Emitting Diode), which is provided for, Light with a wavelength in the UV (ultraviolet) radiation range, preferably in the UV-C (short-wave ultraviolet) radiation range, is emitted into the inner cavity of the container via the outer wall of the container or from a corresponding position in the vicinity of the outer wall, so that the radiation is contained in the container. fluid in the lumen. Such devices are also known as UV reactors.
背景技术Background technique
已知的是,UV反应器用于制备饮用水或者用于使洗碗机中的洗涤水等灭菌或消毒。通过作用于流体的UV辐射能够使其中所包含的微生物、特别是病毒、细菌或真菌失去活性。在此,相应的病菌由UV辐射直接杀死或者至少在其DNA方面造成伤害,并且因此防止其复制。在此证明特别有效的是在200nm至280nm的波长范围中的辐射,其根据标准DIN5031-7也被称为远紫外(FUV)辐射。还获得与其相关的在100nm至200nm的范围,其辐射被相应地称为真空紫外(VUV)辐射。It is known that UV reactors are used for preparing drinking water or for sterilizing or disinfecting wash water in dishwashers or the like. Microorganisms, in particular viruses, bacteria or fungi, contained therein can be inactivated by UV radiation acting on the fluid. In this case, the corresponding germs are directly killed by UV radiation or at least damage their DNA and thus prevent their replication. Particularly effective here is radiation in the wavelength range from 200 nm to 280 nm, which is also referred to as far-ultraviolet (FUV) radiation according to standard DIN 5031-7. Also obtained is associated therewith the radiation in the range of 100 nm to 200 nm, the radiation of which is correspondingly referred to as vacuum ultraviolet (VUV) radiation.
此外,在249nm至338nm的范围中的UV辐射针对生物薄膜上的细菌起作用,其中在292nm至306nm之间的波长范围有特别高的有效性,其在296nm的情况下有最大效果。生物薄膜在该申请的范围中包括非液态的流体。具有该波长的辐射在大气层中被吸收,从而大多数微生物对其没有抵抗力。DNA特别地最多在大约260nm至270nm之间吸收辐射。Furthermore, UV radiation in the range of 249 nm to 338 nm acts against bacteria on the biofilm, with a particularly high effectiveness in the wavelength range between 292 nm and 306 nm, which has the greatest effect at 296 nm. Biofilms within the scope of this application include non-liquid fluids. Radiation with this wavelength is absorbed in the atmosphere, so that most microorganisms are not resistant to it. DNA in particular absorbs radiation at most between about 260 nm and 270 nm.
以上说明的直到280nm的波长范围中的辐射在本申请中被概括为UV-C辐射,280nm至315nm的范围中的辐射被概括为UV-B辐射,并且315nm至380nm的范围中的辐射被概括为UV-A辐射,并且这些辐射大多数用在UV反应器中。对于本申请的目的而言,在此应用的概念UV-C辐射也包括10nm至121nm(极紫外线)的范围。Radiation in the wavelength range up to 280 nm explained above is summarized in this application as UV-C radiation, radiation in the range from 280 nm to 315 nm is summarized as UV-B radiation, and radiation in the range from 315 nm to 380 nm is summarized as UV-B radiation It is UV-A radiation, and most of these radiations are used in UV reactors. For the purposes of this application, the concept UV-C radiation as applied here also includes the range from 10 nm to 121 nm (extreme ultraviolet).
在UV-C的波长范围中也能够应用发射辐射的LED,以为流体消毒或杀菌。在此,LED所采用的材料为其带隙(以波长传输)落入UV-C辐射的范围中的材料,例如氮化铝镓(AlGaN;包括AlN:6.1eV和GaN:3.45eV,即从大约210nm起)、或者六方氮化硼(hBN;5.8eV,即大约215nm)等。然而在能超过10000小时的运行持续时间期间,LED在UV-C范围中的效率(每次使用能量发射的辐射)在此期间仍低于常规的汞低压灯。此外,效率相对于越来越短的波长还戏剧性地降低,然而在此实现了另外的改进。Radiation-emitting LEDs can also be used in the UV-C wavelength range to disinfect or sterilize fluids. Here, LEDs are made of materials whose band gap (transmission in wavelength) falls within the range of UV-C radiation, such as aluminum gallium nitride (AlGaN; including AlN: 6.1 eV and GaN: 3.45 eV, i.e. from From about 210nm), or hexagonal boron nitride (hBN; 5.8eV, that is, about 215nm), etc. However, the efficiency of the LEDs in the UV-C range (radiation emitted per energy use) is still lower than that of conventional mercury low-pressure lamps during the duration of operation, which can exceed 10,000 hours. In addition, the efficiency is also dramatically reduced with respect to shorter and shorter wavelengths, yet another improvement is achieved here.
因此,在采用LED进行消毒时刚好必要的是,尽可能高效地照射在反应器中由要消毒的流体流过(或包含流体)的内腔。通常,当采用多个强照射的、设置在相应的容器的不同侧面上的LED时,仅在高开销的条件下实现前述状态。例如,流量反应器的几何形状通常具有简单的圆形横截面或规则的多边形横截面(例如正方形)。因此,在另外考虑到通常从外射入的光中的附加光折射时,在内腔中能够产生少量小生态环境(Nischen),其最后没有由UV辐射照射或仅微弱地并进而不足地由UV辐射照射。因此,刚好在那里能够存在病菌或生物薄膜。Therefore, when sterilizing with LEDs, it is just necessary to irradiate as efficiently as possible the lumen in the reactor through which the fluid to be sterilized flows (or contains the fluid). In general, the aforementioned states are only achieved with high overhead when using a plurality of intensely illuminating LEDs arranged on different sides of the respective container. For example, flow reactor geometries typically have simple circular cross-sections or regular polygonal cross-sections (eg, squares). Therefore, taking into account additional light refraction in the light that is usually incident from the outside, a small amount of microenvironments can be created in the inner cavity, which are ultimately not irradiated by UV radiation or are only weakly and thus insufficiently affected by UV radiation. UV radiation exposure. Thus, germs or biofilms can exist just there.
作为防止小生态环境形成的措施可以使用光学元件,其以合适的方式分配容器内腔中的辐射。例如,透镜能够扩展入射的辐射。可选地,能够应用通常由与LED相对置的反射壁形成的镜,其例如以合适的材料涂敷形成。随后,内反射器表面能够刚好也沿小生态环境的方向反射入射辐射或通常将光反向散射。As a measure to prevent the formation of niches, optical elements can be used which distribute the radiation in the interior of the container in a suitable manner. For example, a lens can expand incident radiation. Alternatively, a mirror, usually formed by a reflective wall opposite the LED, can be applied, eg coated with a suitable material. The internal reflector surface can then reflect incident radiation or generally backscatter light just also in the direction of the niche.
然而,该措施一方面能使开销很大,另一方面能形成复杂的辐射场,辐射场还取决于相关的流体的透射率。因此不能一直阻止病菌的产生或生物薄膜的小生态环境的产生,从而使已消毒的和未消毒的流体混合。However, on the one hand this measure can be very expensive and on the other hand a complex radiation field can be formed, which also depends on the transmittance of the relevant fluid. Therefore, the production of germs or the production of biofilm niches cannot be prevented at all times, thereby mixing sterilized and unsterilized fluids.
发明内容SUMMARY OF THE INVENTION
因此,本发明的目的在于提供一种用于为流体消毒的装置,其中避免形成不被照射的小生态环境,并且作为替代保障通过内腔的完整的横截面的充足照射。另一个目的在于提供相应的方法。It is therefore an object of the present invention to provide a device for sterilizing fluids in which the formation of unirradiated niches is avoided and, instead, adequate irradiation through a complete cross-section of the lumen is ensured. Another object is to provide a corresponding method.
该目的通过用于为流体消毒的装置以及相应的方法实现。This object is achieved by a device for sterilizing fluids and a corresponding method.
首先提出一种用于为流体消毒的装置,其包括用于容纳流体的容器,其中,该容器具有包围内腔的外壁。该容器在此能够是作为UV反应器的流量反应器或者能再填充的罐。在能再填充的罐的情况下,在容器中进行消毒时能够将流体首先填入并且随后排出。A device for sterilizing a fluid is first proposed, comprising a container for containing the fluid, wherein the container has an outer wall surrounding an inner cavity. The vessel can here be a flow reactor as a UV reactor or a refillable tank. In the case of a refillable tank, fluid can be first filled and then drained during sterilization in the container.
此外设有包括至少一个LED的光源。该光源设计用于,将波长在UV辐射范围中的光经由容器的外壁、或者从外壁附近的相应位置出发以一种辐射特性发射到容器的内腔中,以便照射被包含在内腔中的流体。优选地,LED发出在10nm至280nm的波长范围中的UV-C辐射的光。根据本发明确定的实施方式还能够包括UV-B辐射(280nm至315nm,根据标准DIN5031-7的“中等UV”)或者UV-A辐射(315nm至380nm)。针对生物薄膜的产生,其包括直到338nm的波长范围。Furthermore, a light source comprising at least one LED is provided. The light source is designed to emit light with a wavelength in the UV radiation range via the outer wall of the container or from a corresponding position in the vicinity of the outer wall with a radiation characteristic into the interior of the container in order to illuminate the material contained in the interior. fluid. Preferably, the LED emits light of UV-C radiation in the wavelength range of 10 nm to 280 nm. Embodiments determined according to the invention can also comprise UV-B radiation (280 nm to 315 nm, "medium UV" according to standard DIN 5031-7) or UV-A radiation (315 nm to 380 nm). For the production of biofilms, it covers the wavelength range up to 338 nm.
相应地,容器或实际上的反应器的外壁为此尤其对于UV-C或UV-B和/或必要时对于UV-A辐射基本上是透明的。根据壁材料和壁厚度以及在光斜射入时在外壁上的反射,与波长相关的透射率例如大于50%,优选大于80%,或甚至大于90%。此外,在由UV发光二极管照射的光的波长低于300nm时,例如水晶玻璃或高硼的硼硅酸盐玻璃、氟石、蓝宝石或者钠钾硅酸盐等是透明的并且因此适合作为容器的外壁的材料。Accordingly, the outer wall of the container or the actual reactor is essentially transparent for this purpose, in particular for UV-C or UV-B and/or if necessary UV-A radiation. Depending on the wall material and wall thickness and the reflection on the outer wall when light is incident obliquely, the wavelength-dependent transmission is for example greater than 50%, preferably greater than 80%, or even greater than 90%. Furthermore, when the wavelength of the light irradiated by the UV light-emitting diode is below 300 nm, for example crystal glass or borosilicate glass with high boron, fluorspar, sapphire or sodium potassium silicate, etc. are transparent and therefore suitable as containers material of the outer wall.
根据本发明,在该装置中或在该UV反应器中现在设置,外壁的朝向内腔的表面在至少一个子部段中具有特别匹配的形状。形状基本上匹配于由光源发射到内腔中的光的辐射场。辐射场将辐射强度的分布反馈到内腔中的各种位置上。在此,强度被理解为单位面积的UV源的辐射强度。在UV范围中,辐射强度作为物理参量对应于可见范围中的光强度。除了确定实际的光源的辐射特性(强度沿空间方向、例如通过在可能的情况下具有光学部件的LED的分布)之外,容器的有关透明的耦合输入窗口的特性在此还确定辐射场或辐射强度的通过容器的内腔中的各种位置的分布。这些特性能够干扰入射的UV光(吸收、透射、反射或镜反射、干涉、衍射、散射等)。According to the invention, it is now provided in the device or in the UV reactor that the surface of the outer wall facing the interior has a particularly adapted shape in at least one subsection. The shape substantially matches the radiation field of the light emitted into the cavity by the light source. The radiation field feeds back the distribution of radiation intensity to various locations in the lumen. Here, intensity is understood to be the radiation intensity of the UV source per unit area. In the UV range, the radiation intensity corresponds as a physical parameter to the light intensity in the visible range. In addition to determining the radiation properties of the actual light source (distribution of the intensity in the spatial direction, for example by means of LEDs with optical components, if possible), the properties of the container in relation to the transparent coupling-in window also determine the radiation field or radiation. The distribution of intensity through various locations in the lumen of the container. These properties can interfere with incident UV light (absorption, transmission, reflection or specular reflection, interference, diffraction, scattering, etc.).
此外,还能够预先设定穿过流体的不透明部所产生的透射,在透射的基础上确定内腔中的辐射场。容器或者反应器的外壁的内表面上的、相对置的反向散射或反射的涂层被视为光源的一部分。Furthermore, it is also possible to preset the transmission through the opaque portion of the fluid, on the basis of which the radiation field in the lumen can be determined. The opposing backscattering or reflective coating on the inner surface of the outer wall of the vessel or reactor is considered part of the light source.
根据本发明的一个方面,能够在子部段的形状方面如所述那样仅匹配外壁的内表面的子部段,例如仅匹配位于光源的预先设定的间距之中的全部这种子部段,例如在10mm(毫米)或更大的范围之内和/或在20cm或更小的范围之内。子部段也能够分别在共同形成容器的内表面的闭合的几何形状(例如圆柱形外罩面或球形外罩面、球形区段外罩面等)中被确定。According to one aspect of the invention, it is possible to match only sub-segments of the inner surface of the outer wall as described in terms of the shape of the sub-segments, for example only all such sub-segments lying within a preset spacing of the light sources, For example within a range of 10 mm (millimeters) or more and/or within a range of 20 cm or less. The sub-sections can also be respectively defined in closed geometries that together form the inner surface of the container (eg cylindrical or spherical outer surfaces, spherical segment outer surfaces, etc.).
根据本发明的另一个方面,外壁的内表面能够在其形状上在所有可能的子部段中、即完整的内表面中匹配辐射场。According to another aspect of the invention, the inner surface of the outer wall is capable of matching the radiation field in its shape in all possible subsections, ie in the complete inner surface.
本发明的原理在于,不再预先设定具有内表面的确定形状的、随后在定位、辐射方向等方面以最可能的措施匹配光源的容器,而是反过来用光源显示叠加的出发点,并且随后使容器的形状匹配形成的辐射场。因为容器的形状匹配本身对辐射场有反作用,所以该装置的这种设计也能是重复的过程。The principle of the invention consists in that instead of presetting a container with a defined shape of the inner surface and then adapting it to the light source in the best possible way in terms of positioning, radiation direction, etc., the light source is used instead to display the starting point of the superposition, and then Match the shape of the container to the radiation field formed. This design of the device can also be an iterative process because the shape matching of the container itself reacts to the radiation field.
最终能够通过以下方式来实现,即为辐射场预先设定最小强度,并且容器的形状匹配该辐射场,以使内腔中没有低于最小强度的部位。也就是说,通过由容器的内腔排除辐射场的相应子空间的方式,避免了具有更小强度或具有低于最小强度的强度的小生态环境。所追求的最小强度的规格优选小于落入外壁的内表面上的整体辐射的10%,还优选小于5%,又优选小于2%。最后,最小强度应当高于充分消毒所必需的阈值,该阈值例如导致菌落形成单位(KBE)以超过10-4的减小倍数减少。Ultimately this can be achieved by presetting a minimum intensity for the radiation field and by adapting the shape of the container to the radiation field so that there are no points in the lumen below the minimum intensity. That is to say, by excluding the corresponding subspace of the radiation field by the inner cavity of the container, a small ecological environment with a smaller intensity or with an intensity lower than the minimum intensity is avoided. The specification of the minimum intensity sought is preferably less than 10% of the overall radiation falling on the inner surface of the outer wall, also preferably less than 5%, still preferably less than 2%. Finally, the minimum intensity should be above the threshold necessary for adequate disinfection, which results in, for example, a reduction in colony-forming units (KBE) by a factor of more than 10 −4 .
一个特别的优点在于,内腔的总容积或至少各个总横截面通过由UV光源发射的辐射检测,而使外壁的内表面例如直接由于生物薄膜、钙沉淀或其它污染物发生的改变不对辐射场造成不再能控制的影响。特别地,通过直接在内表面处确保的最小强度避免了在内表面处或之上形成生物薄膜。否则,这也可能引起辐射场自身的改变。生物薄膜的形成或者其它污染物或沉淀物的产生由此不再对装置的光学特性产生显著的影响。A particular advantage is that the total volume or at least the respective total cross-sections of the inner cavity are detected by the radiation emitted by the UV light source, while the inner surface of the outer wall, for example directly due to biofilms, calcium precipitation or other contaminants, is not affected by the radiation field. cause effects that can no longer be controlled. In particular, the formation of biofilms at or on the inner surface is avoided by the minimum strength ensured directly at the inner surface. Otherwise, this may also cause changes in the radiation field itself. The formation of biofilms or the production of other contaminants or deposits thus no longer has a significant effect on the optical properties of the device.
另一个优点在于,能够放弃用于照射容器的复杂的光源或相应的光学部件。由此能够节省开销和成本。Another advantage is that complex light sources or corresponding optics for illuminating the container can be dispensed with. As a result, outlays and costs can be saved.
此外能够实现的是,除耦合输入窗口之外应用用于外壁的不透明的材料,该材料尤其也在UV范围中表现小的反射率和少量反向散射,例如是黄铜或不锈钢。其允许应用在饮用水中,从而能在那里有利地采用该装置。Furthermore, it is possible to use, in addition to the coupling-in window, an opaque material for the outer wall, which also exhibits low reflectivity and little backscatter, in particular in the UV range, for example brass or stainless steel. It allows application in drinking water, so that the device can be used advantageously there.
根据本发明的一个改进方案,朝向内腔的表面的至少子部段的形状基本上匹配于由光源发射到内腔中的光的等强度面换句话说,射入的UV光在内表面的部位处的强度至少在所观察的子部段的范围之中基本上是恒定的。因此,内表面(至少在该子范围中)造成恒定的强度的面。由此有利地实现了所有有关的表面范围的均匀和受控的照射。生物薄膜或病菌聚集物的形成被有效地抑制。此外得出用于流体的可能的最大容积,因为表面的形状与仅对应刚好必要的最小强度的这种等强度面“相关”,以便消灭UV反应器中的病菌。According to a development of the invention, the shape of at least a subsection of the surface facing the interior is substantially matched to the iso-intensity surface of the light emitted by the light source into the interior In other words, the intensity of the incident UV light at the location of the inner surface is substantially constant, at least over the range of the subsections observed. Thus, the inner surface (at least in this sub-range) results in a face of constant strength. A uniform and controlled irradiation of all relevant surface areas is thereby advantageously achieved. The formation of biofilms or bacterial aggregates is effectively inhibited. In addition, the maximum possible volume for the fluid is obtained, since the shape of the surface is "correlated" with such an iso-intensity surface, which corresponds only to the minimum intensity just necessary in order to destroy germs in the UV reactor.
此外,能够根据该改进方案采用的用于容器的材料,该材料在稳定性、完整性和耐久性方面通常仅承受小的UV剂量。为此确保在外壁的内表面的部位处仅存在该最小强度。根据本发明的一个相应的改进方案,等强度面对应于强度的大于零的值。Furthermore, the materials for the containers that can be used according to this refinement are generally only subjected to small UV doses in terms of stability, integrity and durability. To this end it is ensured that only this minimum strength is present at the location of the inner surface of the outer wall. According to a corresponding development of the invention, the iso-intensity surface corresponds to a value of the intensity greater than zero.
可选地或附加地,等强度面与LED的最大间距大于或等于10mm,和/或小于或等于20cm。在10mm的流体厚度上具有0.1至0.98的透射率的、待消毒的流体的这些间距和一般的不透明部的情况下,能够保障足够的最小强度。Alternatively or additionally, the maximum distance between the iso-intensity surface and the LED is greater than or equal to 10 mm, and/or less than or equal to 20 cm. With these spacings of the fluid to be sterilized and a general opacity with a transmittance of 0.1 to 0.98 over a fluid thickness of 10 mm, a sufficient minimum strength can be guaranteed.
根据本发明的另一个改进方案,光源包括两个或更多个LED,LED设计用于,从不同位置将光分别经由容器的外壁、或者从外壁附近的相应位置出发以一辐射特性发射到容器的内腔中,其中外壁的朝向内腔的表面的至少子部段的形状基本上匹配于由LED叠加的光的等强度面。由多个LED造成的叠加的辐射场允许UV反应器中的内腔的更好并且首先更均匀的照射。由此简单地满足了对内表面的匹配的形状的几何要求。According to another development of the invention, the light source comprises two or more LEDs, which are designed to emit light from different positions to the container with a radiation characteristic via the outer wall of the container, respectively, or from corresponding positions in the vicinity of the outer wall. , wherein at least a subsection of the surface of the outer wall facing the inner cavity is substantially shaped to match the iso-intensity surface of the light superimposed by the LEDs. The superimposed radiation field caused by the plurality of LEDs allows for better and above all more uniform illumination of the inner cavity in the UV reactor. As a result, the geometrical requirements for a matching shape of the inner surface are simply met.
根据本发明的另一个改进方案,光源包括两个、三个或更多个LED,LED设计用于,从沿着直线或曲线的不同位置将光分别经由容器的外壁、或者从外壁附近的相应位置出发以一辐射特性发射到容器的内腔中,其中,在容器的垂直于该直线或曲线的横截面中观察,外壁的朝向内腔的表面的形状分别匹配于由至少一个LED发射到内腔中的光的等强度面。该方面尤其涉及流量反应器,其中容器设计为管状的并且LED能够沿着这些管的纵轴线放置在线上。在此,在可能的情况下仅相邻的LED在有关由其生成的辐射场方面叠加。该方面还提出,每个LED对于其自身来说尽可能优化地照射确定的纵向距离(例如对应到线上的最近的LED的间距)上的、正好配属于该LED的横截面。为此,根据该改进方案使横截面(视为经由纵向距离远去的空间)在其内表面的形状方面匹配辐射场。According to another refinement of the invention, the light source comprises two, three or more LEDs designed to direct light from different positions along a straight line or curve, respectively, via the outer wall of the container, or from corresponding positions near the outer wall. Starting from the position, it emits a radiation characteristic into the interior of the container, wherein, viewed in a cross-section of the container perpendicular to the line or curve, the shape of the surface of the outer wall facing the interior is adapted to the shape of the surface emitted into the interior by the at least one LED. The iso-intensity surface of the light in the cavity. This aspect relates in particular to flow reactors in which the vessel is designed in the form of tubes and the LEDs can be placed on the lines along the longitudinal axis of these tubes. In this case, only adjacent LEDs overlap with respect to the radiation fields generated by them, if possible. This aspect also proposes that each LED illuminates, as optimally as possible for itself, the cross-section that is exactly assigned to this LED at a certain longitudinal distance (eg the distance to the closest LED on the line). For this purpose, according to this refinement, the cross-section (considered as the space removed via the longitudinal distance) is adapted to the radiation field in terms of the shape of its inner surface.
两个最后描述的方面(多个LED的辐射场的叠加、LED在流量反应器中沿着管依次布置)能够被有利地组合。The two last-described aspects (superposition of radiation fields of multiple LEDs, sequential arrangement of LEDs along the tube in the flow reactor) can be advantageously combined.
根据本发明的另一个改进方案,容器的朝向内腔的表面的形状对应于截锥体形状,该截锥体形状具有平坦的或朝内腔中弯曲或从内腔朝外弯曲的顶面、外罩面以及平坦的或从内腔朝外弯曲的底面,其中,光源或者至少一个LED布置在容器的截锥体形状的表面的顶面上或附近。证明该形状特别有利的是,采用仅一个LED或较少的在附近并列放置的LED,LED的通过UV光生成的辐射场相互叠加。当一个LED或多个LED在耦合输入窗口之外在顶面附近作为耦合输入窗口放置时,平坦的或朝内腔中弯曲的顶面实现将锥体形的UV光入射到内腔中。According to another development of the invention, the shape of the surface of the container facing the inner cavity corresponds to the shape of a truncated cone with a flat top surface or a top surface that is curved into the inner cavity or outwards from the inner cavity, An outer cover surface and a flat or curved bottom surface from the inner cavity, wherein the light source or at least one LED is arranged on or near the top surface of the frustoconical shaped surface of the container. This shape has proven to be particularly advantageous when, with only one LED or a few LEDs placed next to each other, the radiation fields of the LEDs generated by the UV light are superimposed on each other. When an LED or LEDs are placed outside the in-coupling window near the top surface as an in-coupling window, a flat or curved top surface into the cavity enables a cone-shaped incidence of UV light into the cavity.
外罩面在形状和固定方面匹配辐射锥体,其中,内表面优选地如上所述与最小强度对应地设在等强度面上,即尽可能不直接位于锥体之外的阴影中。外罩面允许具有小的弯曲拱形,因为随着与光源的间距的增大,朝向光学轴线(截锥体轴线)的等强度面与理想的椎体形状的偏差也增加。The outer cover surface is adapted to the radiation cone in terms of shape and fixation, wherein the inner surface is preferably arranged on an iso-intensity surface corresponding to the minimum intensity as described above, ie as far as possible not directly in the shadow outside the cone. The outer cover surface is allowed to have a small curved dome, since the deviation of the iso-intensity surface towards the optical axis (truncated cone axis) from the ideal cone shape increases as the distance from the light source increases.
在此,底面也能够在形状和固定方面匹配辐射场。根据LED的辐射特性,该底面能够从内腔朝外弯曲,以便例如遵守预先设定的等强度面。具有到光源的最大间距的表面点能够位于光学或截锥体轴线上。Here, too, the bottom surface can be adapted to the radiation field in terms of shape and fixation. Depending on the radiation properties of the LED, the bottom surface can be bent outwards from the inner space in order, for example, to comply with a predetermined iso-intensity surface. The surface point with the greatest distance to the light source can lie on the optical or frustum axis.
截锥体形的容器能够是具有仅一个入口/出口的能再填充的罐,或者具有入口和另外的出口并且因此作为流量反应器运行。The truncated cone-shaped vessel can be a refillable tank with only one inlet/outlet, or have an inlet and a further outlet and thus operate as a flow reactor.
该方面或者该改进方案的特别的优点在于,容器的完整的内表面能够基本位于等强度面上,当然除了透明的耦合输入窗口、即顶面和光学的入口和/或出口之外。在此特别有效地避免了病菌形成和/或产生生物薄膜。同时,在此实现了使用的外壁材料和包围的容积的良好比例,同时在LED装置的结构方面产生仅很小的开销。A particular advantage of this aspect or this refinement is that the complete inner surface of the container can lie substantially on the iso-intensity surface, with the exception of course the transparent coupling-in window, ie the top surface and the optical inlet and/or outlet. The formation of germs and/or the production of biofilms is particularly effectively avoided here. At the same time, a good ratio of the outer wall material used and the enclosed volume is achieved here, while at the same time generating only a small outlay in terms of the structure of the LED arrangement.
根据本发明的前述方面(即截锥体形状)的一个改进方案,外罩面具有半张角θ,其中,半张角θ基本上对应于适用于空气与流体之间的边界面的、全反射的角度。该特性确保了截锥体的外罩面的外壁的内表面正好落到入射的光的光影边界上。According to a refinement of the aforementioned aspect of the invention (ie the frustum shape), the outer cover has a half-span angle θ, wherein the half-span angle θ corresponds substantially to the total reflection applicable to the boundary surface between air and fluid Angle. This property ensures that the inner surface of the outer wall of the outer shroud of the frustum falls exactly on the shadow boundary of the incident light.
半张角θ能够在水和空气的特殊情况下例如在40°和55°之间,优选在45°和50°之间,还优选在48°和49°之间,最优选在48.5°和48.8°之间。在空气(标准条件)和液态的纯水之间的边界的全反射的精确值为大约48.75°。The half-opening angle θ can for example be between 40° and 55°, preferably between 45° and 50°, also preferably between 48° and 49°, most preferably between 48.5° and 49° in the special case of water and air between 48.8°. The exact value of total reflection at the boundary between air (standard conditions) and liquid pure water is about 48.75°.
根据有关截锥体形状的前述方面的另一个改进方案,截锥体形状的表面的底面具有从内腔朝外弯曲的、具有球半径r的球面的形状。由此,与外罩面一起得出容器的简单的几何形状,其还具有相对较大的容积。此外的特征在于,相应形成并且安装在外罩面的远端处的球形区段连接到内腔中的辐射场的相应的等强度面上。这能够对应预先设定的最小强度,如上所述。According to another refinement of the aforementioned aspect with regard to the shape of the truncated cone, the base of the surface of the truncated cone shape has the shape of a spherical surface with a spherical radius r that is curved outwards from the inner cavity. This results in a simple geometry of the container together with the outer cover, which also has a relatively large volume. It is further characterized in that the spherical segment formed accordingly and mounted at the distal end of the outer shroud surface is connected to the corresponding iso-intensity surface of the radiation field in the lumen. This can correspond to a preset minimum intensity, as described above.
根据具有外罩面和球形区段的前述方面的另一个改进方案,容器具有从顶面的中点出发沿着容器的对称轴线到与球面的交点为止所测定的高度H。在该实施方式中,容器的高度H与朝外弯曲的球形表面的球半径r之间比例在1.25和2.01之间,优选在1.35和1.91之间,还优选在1.35和1.85之间。假定水作为流体,对于该值范围来说,找到了几何结构与在其中形成的等强度面的特别好的匹配。According to a further development of the aforementioned aspect with the outer cover surface and the spherical section, the container has a height H measured from the midpoint of the top surface along the axis of symmetry of the container to the point of intersection with the spherical surface. In this embodiment, the ratio between the height H of the container and the spherical radius r of the outwardly curved spherical surface is between 1.25 and 2.01, preferably between 1.35 and 1.91, also preferably between 1.35 and 1.85. Assuming water as the fluid, for this value range a particularly good match of the geometry to the iso-intensity surfaces formed therein is found.
根据该方面的特别的实施方式,用于为(特别是基于水的)该流体消毒的装置被设定成,使得该流体具有通过10mm的液体测量或者以该液体标准化得出的透射率T,其中,容器的高度H与球半径r之间的比例H/r为大约0.62·T+1.29。换句话说,对于特殊的流体来说,尤其得到有关所述的截锥体形状的特别优化的几何形状。According to a particular embodiment of this aspect, the device for sterilizing the fluid (in particular water-based) is set such that the fluid has a transmittance T measured through 10 mm of the fluid or normalized to the fluid, Therein, the ratio H/r between the height H of the container and the radius r of the sphere is approximately 0.62·T+1.29. In other words, especially for special fluids, particularly optimized geometries with regard to the shape of the truncated cone are obtained.
根据具有外罩面和球形区段的前述方面的另一个改进方案,在与至少一个LED相对置的球面处设有一个或多个传感器。传感器检测发射到内腔中并且经由球面射出的光。由此能够一方面确定LED的功能,并且另一方面测量当前流过的或在容器中存在的流体的透射率。借助于传感器,能够随后在容器的高度H与球形区段面的半径r之间的上述优化的比例的光中确定:对于测量的透射率来说该近似值当前是否适用于等强度面。如果其例如经过更长的时间段后是否定的情况,那么就能够采取措施来阻止可能的病菌形成或者产生生物薄膜,在最简单的情况下提高LED的辐射功率。According to a further development of the aforementioned aspect with the cover surface and the spherical section, one or more sensors are provided on the spherical surface opposite the at least one LED. The sensor detects light that is emitted into the cavity and exits through the spherical surface. This makes it possible on the one hand to determine the function of the LED and on the other hand to measure the transmittance of the fluid currently flowing through or present in the container. With the aid of a sensor, it can then be determined in light of the above-mentioned optimized ratio between the height H of the container and the radius r of the spherical segment surface whether this approximation is currently valid for the iso-intensity surface for the measured transmittance. If, for example, this is the negative case after a longer period of time, measures can be taken to prevent possible germ formation or biofilm formation, in the simplest case increasing the radiant power of the LED.
根据具有外罩面和球形区段的前述方面的另一个改进方案,顶面是平坦的并且是圆形的,并且顶面具有半径ρ,该半径最高为R+14mm,优选为R+1.6mm,其中,R是光源中的相应应用的圆形的(光)源面的半径(即例如光源直径的一半)。According to another refinement of the previous aspect with the outer cover surface and the spherical section, the top surface is flat and circular, and the top surface has a radius ρ which is at most R+14mm, preferably R+1.6mm, where R is the radius of the circular (light) source face of the respective application in the light source (ie for example half the diameter of the light source).
根据实施例,半径ρ能够据此得出最大值:According to an embodiment, the radius ρ can derive a maximum value from this:
ρ=R+l·tan(α)+d·tan(arcsin(n1/n3·sin(α))) (1)ρ=R+l·tan(α)+d·tan(arcsin(n 1 /n 3 ·sin(α))) (1)
其中,α是(相对于光学或对称轴线的)最大角,该最大角直到射线能够进入顶面的玻璃中并且传输到内腔中(并且不反射)为止。最大角能够大于或等于75°,优选大于或等于80°,还优选大于或等于85°。R是光源中的相应应用的圆形的(光)源面的半径,l是光源到窗口(到顶面)的间距并且能够纯示例性地在0.2mm和1mm之间,并且d是透明的玻璃材料的厚度并且例如能够在1mm和3mm之间。相应地,n1是空气的折射率(例如n1=1.0),并且n3是玻璃的折射率(在水晶玻璃的情况下例如n3=1.46)。where a is the maximum angle (relative to the optical or symmetry axis) until the ray can enter the glass of the top surface and transmit into the lumen (and is not reflected). The maximum angle can be greater than or equal to 75°, preferably greater than or equal to 80°, also preferably greater than or equal to 85°. R is the radius of the circular (light) source face of the respective application in the light source, l is the distance from the light source to the window (to the top face) and can be purely exemplary between 0.2 mm and 1 mm, and d is the transparent glass The thickness of the material can for example be between 1 mm and 3 mm. Correspondingly, n 1 is the refractive index of air (eg n 1 =1.0) and n 3 is the refractive index of glass (eg n 3 =1.46 in the case of crystal glass).
根据本发明的完全不同的改进方案,由具有至少一个LED的光源发射到内腔中的光的辐射场由光源的光学部件产生。在此,光学部件使光朝向容器的对称轴线聚集并且由此将光限界到具有包络线的空间范围。在此,容器的外壁的朝向内腔的表面的至少子部段的形状基本上与包络线一致。光学部件能够包括镜和透镜元件,在一个优选的实施方式中涉及TIR(全内反射)透镜(TIR:Total Internal Reflection)。在此涉及透镜和反射器的组合。在任何情况下,目的是生成准直或离散或聚焦的、任何情况下都聚集的来自一个或多个点光源的光射线。聚集在与光束的辐射场的边沿处导致横交于(即基本上垂直于)光学轴线的非常陡的强度斜度。辐射场被清晰地划界。具有非常陡的斜度的边沿是包络线。According to a completely different development of the invention, the radiation field of the light emitted into the interior cavity by the light source with at least one LED is generated by the optical components of the light source. Here, the optical component concentrates the light towards the axis of symmetry of the container and thus delimits the light to a spatial extent with an envelope. In this case, the shape of at least a subsection of the surface of the outer wall of the container facing the interior substantially corresponds to the envelope. The optical components can comprise mirrors and lens elements, which in a preferred embodiment are TIR (Total Internal Reflection) lenses (TIR: Total Internal Reflection). The combination of lens and reflector is involved here. In any case, the aim is to generate collimated or discrete or focused, in any case concentrated, light rays from one or more point light sources. Concentration at the edge of the radiation field with the beam results in a very steep intensity slope transverse to (ie substantially perpendicular to) the optical axis. The radiation field is clearly delimited. An edge with a very steep slope is an envelope.
在该辐射场中,内表面准确地匹配包络线,以使其实现最小强度的辐射,从而防止病菌形成以及产生微型膜。在该情况下优化地使用辐射场并且防止形成不期望的小生态环境。In this radiation field, the inner surface matches the envelope exactly so that it achieves a minimum intensity of radiation, preventing the formation of germs and the creation of microfilms. In this case, the radiation field is used optimally and the formation of undesired niches is prevented.
根据该方面的一个改进方案,外壁的朝向内腔的表面的至少子部段的形状对应于沿着对称轴线延伸的管。具有至少一个LED和光学部件的光源能够固定在该管的端部处。随后,射线束沿着对称轴线或管轴线定向,即光学轴线和流动方向重合。流体在此流到光源上或者通过管从光源流走。该实施方式在均匀照射和因此的消毒以及高流速和因此的机械除膜方面是特别有利的。According to a development of this aspect, the shape of at least a subsection of the surface of the outer wall facing the lumen corresponds to a tube extending along the axis of symmetry. A light source with at least one LED and optics can be fixed at the end of the tube. Subsequently, the beam of rays is oriented along the axis of symmetry or tube axis, ie the optical axis and the flow direction coincide. The fluid here flows onto the light source or away from the light source through the tube. This embodiment is particularly advantageous in terms of uniform irradiation and thus sterilization as well as high flow rates and thus mechanical film removal.
也能考虑另外的光学部件,例如透镜、反射器、衍射光学系统(光栅、光缝等)、全息图等。Additional optical components are also contemplated, such as lenses, reflectors, diffractive optics (gratings, optical slits, etc.), holograms, and the like.
根据该方面的一个改进方案,管具有内直径,内直径随着从光学部件到狭窄部的间距沿着对称轴线增加而减小。由光源的光学部件汇聚地发射的光聚焦在该狭窄部的位置处。该装置特别有利的是:通过聚焦也以到光源的更大的距离维持了更简单的强度轮廓,从而使一同流动的病菌也如外壁的内表面一样经由更长的距离暴露在大致相同的UV强度等级下。此外,狭窄部在局部提高了流动速度,从而进一步使在该中央区域中的生物薄膜的形成变得困难。狭窄部后面(从光源观察)的再次变宽的区域例如能够通过用于流体的特殊的入口喷嘴进行清洁。或者可选地,在例如镜面对称的装置中在第一光源的相应另外的侧上设置具有对应的光学部件的第二光源。According to a refinement of this aspect, the tube has an inner diameter that decreases as the distance from the optical component to the constriction increases along the axis of symmetry. The light emitted convergingly by the optics of the light source is focused at the location of the constriction. The device is particularly advantageous in that, by focusing, also a simpler intensity profile is maintained at a greater distance from the light source, so that co-flowing germs are also exposed to approximately the same UV over a longer distance as the inner surface of the outer wall at the strength level. Furthermore, the constriction locally increases the flow velocity, further making the formation of biofilms in this central region more difficult. The re-widened area behind the constriction (viewed from the light source) can be cleaned, for example, by means of special inlet nozzles for the fluid. Or alternatively, a second light source with corresponding optics is provided on a corresponding further side of the first light source, eg in a mirror-symmetric arrangement.
根据该方面的另一个改进方案,该装置被设计为具有分别设在容器中的用于流体的入口和出口的流量反应器,其中,入口分别设置在管的端部处。在一个特别优选的实施方式中,能够由流动的流体环绕地冲洗具有光学部件的光源,该流体提供线性的直线布置。According to another refinement of this aspect, the device is designed as a flow reactor with an inlet and an outlet for the fluid, respectively, provided in the vessel, wherein the inlets are respectively provided at the ends of the tubes. In a particularly preferred embodiment, the light source with optics can be flushed around by a flowing fluid, which provides a linear rectilinear arrangement.
根据本发明还提供一种用于制造如上所述的装置的方法。该方法包括以下步骤:According to the invention there is also provided a method for manufacturing a device as described above. The method includes the following steps:
预先设定包括至少一个LED的光源,其中,光源设置用于,将具有在UV-C辐射范围中的波长的光经由用于容纳流体的容器的外壁、或者从外壁附近的相应位置出发以一种辐射特性发射到容器的内腔中,以便照射被包含在内腔中的流体,其中,容器具有包围内腔的外壁;A light source comprising at least one LED is preset, wherein the light source is provided to transmit light with a wavelength in the UV-C radiation range via the outer wall of the container for holding the fluid or from a corresponding position in the vicinity of the outer wall with a a radiation characteristic is emitted into the interior cavity of the container to irradiate the fluid contained in the interior cavity, wherein the container has an outer wall surrounding the interior cavity;
确定用于外壁的朝向内腔的表面的在至少一个子部段中的形状,该形状基本上匹配于发射到内腔中的光的辐射特性;determining a shape in at least one subsection for the surface of the outer wall facing the inner cavity, the shape substantially matching the radiation properties of the light emitted into the inner cavity;
制造具有外壁的容器,该外壁的朝向内腔的表面具有该形状,并且将光源和容器组合在一起。A container is produced having an outer wall whose surface facing the inner cavity has this shape, and the light source and the container are combined together.
该方法与参考装置和其改进方案一样得出相同的优点。This method yields the same advantages as the reference device and its refinements.
附图说明Description of drawings
由优选的实施方式的以下描述以及根据附图得出本发明的另外的优点、特征和细节。在附图中,相同的标号表示相同的特征和功能。Further advantages, features and details of the invention emerge from the following description of preferred embodiments and from the accompanying drawings. In the drawings, the same reference numbers refer to the same features and functions.
在此示出:Shown here:
图1示出根据本发明的第一实施例的UV流量反应器的横截面示意图;Figure 1 shows a schematic cross-sectional view of a UV flow reactor according to a first embodiment of the present invention;
图2示出根据第一实施例的流量反应器的高度H一方面与截锥体形状的使用的球形区段的半径r、另一方面与流过的流体的透射率T的比例的关系图;FIG. 2 shows a graph of the height H of the flow reactor according to the first embodiment on the one hand with the radius r of the spherical section of the truncated cone shape used and on the other hand with the ratio of the transmittance T of the fluid flowing through it ;
图3示出根据第二实施例(具有LED 8a、8b、8c)或者根据第三实施例(具有一个LED)的UV流量反应器的横截面示意图;Figure 3 shows a schematic cross-sectional view of a UV flow reactor according to the second embodiment (with
图4示出根据第四实施例的具有现在管状的容器的流量反应器的半透明透视示意图;Figure 4 shows a schematic translucent perspective view of a flow reactor with a now tubular vessel according to a fourth embodiment;
图5示出根据本发明的第五实施例的具有TIR透镜和束腰的管形的UV流量反应器的横截面示意图;5 shows a schematic cross-sectional view of a tubular UV flow reactor with a TIR lens and a beam waist according to a fifth embodiment of the present invention;
图6示出根据本发明的第六实施例的具有TIR透镜和束腰的管形的UV流量反应器的横截面示意图。6 shows a schematic cross-sectional view of a tubular UV flow reactor with a TIR lens and a beam waist according to a sixth embodiment of the present invention.
具体实施方式Detailed ways
图1示出了用于为流体消毒的装置1的第一实施例的横截面示意图。在此涉及具有入口4和单独的出口6的流量反应器。在此待消毒的流体能够如开头所述例如是冲洗水或洗涤水等。装置1包括容器2、即实际的UV反应器以及光源8,光源在此构造为发射UV-C辐射的LED。本发明不局限于确定的技术,其能够涉及以SMD(surface mounted device,表面组装器件)或COB(chip-on-board,板上芯片)形式安装的LED。同样能够在该实施例和接下来的实施例中设置一个或多个控制装置(未示出),其控制例如在图1中示出的传感器10的光源的运行和可能的用于流量的泵(未示出)。利用传感器10能够确定当前流动的流体的透射率以及检查LED的功能或状态、例如老化程度。Figure 1 shows a schematic cross-sectional view of a first embodiment of a
容器2在该特别的实施中以截锥体形状设计。容器包括具有内表面14的外壁12,截锥体形状具有顶面16、外罩面18和(在此强烈)向外弯曲的底面20。顶面16或者顶壁是圆形的并且设计为平坦的并且实施为耦合输入窗口。光源8或者UV发光二极管具有源面(发射光的基底表面),其以到顶面16或耦合输入窗口的外表面的间距l间隔开布置。在该实例中,光源布置在容器2之外。该间距l尽量小地进行选择,以便能够使用尽可能多的UV光功率。间距应当为小于或等于0.5mm,优选小于或等于0.2mm。该间距l也能够优选地选择为在0.2mm和0.5mm之间。The
在该实施例中纯示例性地应用水晶玻璃作为用于耦合输入窗口的材料。能够实现的是,耦合输入窗口、即顶面16构造为容器2中的实际的窗口,即外罩面18的和底面20的范围中的外壁12能够由其它不透明的材料、例如钢或黄铜制成。然而也能够实现的是,整个外壁12由对于相应的UV辐射(UV-A、UV-B或UV-C)透明的并且此外也分别稳定的材料制成,并且单独从相对于光源8的相对位置获得耦合输入窗口的功能。In this example, crystal glass is used purely by way of example as material for the coupling-in window. It can be achieved that the coupling-in window, ie the
内表面14的另一部分构造为球形外罩面18,该外罩面从顶面16延伸并且沿着对称轴线22以到光源8和顶面16的增加的间距利用恒定的张角扩展。该扩展不必是恒定的,其也能够轻微呈钟形(增加间距地扩展),或者轻微呈抛物形(扩展轻微减小)等。外罩面的半张角θ(即外罩面相对于对称轴线22的角度)在此为47.5°。该角度大约对应对于从容器的内部到水和空气之间的边界的辐射的全反射角度(UV-C范围中的临界角度:大约48°,其中,忽略该设计中的容器的透明材料,因为其在辐射的从水到容器中的过渡中并且从容器到周围空气中的过渡中基本上无作用)。该角度由此计算:Another portion of the
θcrit=arcsin(n1/n2) (2)θ crit = arcsin(n 1 /n 2 ) (2)
其中在射入的光的相应波长的情况下,n1是源环境的折射系数,并且n2是流体(例如水)的折射系数。为张角选择的值大约小于全反射的临界角度,因此为外壁12的内表面14在外罩面18的范围中施加确定的辐射。where n 1 is the index of refraction of the source environment and n 2 is the index of refraction of the fluid (eg water) at the respective wavelengths of the incident light. The value chosen for the opening angle is approximately less than the critical angle for total reflection, so that the
在容器2的内腔24中,从光源8经由耦合输入窗口(顶面16)射出的UV-C光根据光源的辐射特征(各种空间方向上的辐射强度)、耦合输入窗口的光学特征和外壁12的内表面14的反射和/或反向散射来形成辐射场。图1示意性地(在横截面上以虚线或点线)示出所谓的等强度面I1、I2、I3、I4,等强度面在空间中以分别预先设定的相同的恒定的强度表示。因为强度随着到光源的增加的间距而减小,所以等强度面I1至I4粗略地形成内腔24中的复制的球面。在此适用的是:等强度面I1的强度>等强度面I2的强度>等强度面I3的强度>等强度面I4的强度。In the
然而在图1中能至少能隐含地识别的是:由于接近临界角度θcrit,朝内腔24的侧向边沿、即朝外壁12形成陡的强度斜度,因为相对于光学或对称轴线22较大的角度使辐射不再能从光源8出来进入到在内腔24中所容纳的流体中。该过渡是相对突然的。在该示意图中,在内腔之中还存在等强度面I1至I4。然而在此,半张角θ如所述那样选择,从而在内表面上总还存在最小强度,然而仅大到使得辐射功率的最多10%落到外壁12的内表面14上。However, it can be at least implicitly recognized in FIG. 1 that, due to the approach to the critical angle θ crit , a steep intensity slope is formed towards the lateral edge of the
然而,由此仍总有足够的UV-C辐射功率达到外壁12,从而在外壁的内表面14上不能形成病菌或者产生生物薄膜。同时辐射功率的大部分用于广泛的透射。In this way, however, there is still always sufficient UV-C radiation power to reach the
如图1所示,在外罩面18的边沿26处连接有截锥体形状的从内腔朝外弯曲的底面20。内表面能够在该范围中(然而也像用于反射或反向散射的外罩面的范围中那样)以相应的材料涂敷,例如通过铝、PTFE(聚四氟乙烯)或TiO2填充的材料或介电的涂层系统等。As shown in FIG. 1 , the
如所述那样,能够进一步在侧向的外壁12之中并且远离该外壁地通过球面在10mm深度上的0.1至1.0的透射率的范围中近似形成水中的等强度面。在该实施例中,底面基本上是球形区段状的。底面的形状粗略地近似为强度的等强度面I4。因此,底面在此也向外弯曲。该强度等级以相同的方式也通过内表面14在外罩面18的范围近似形成。稍微低于该强度等级的值在该实施例中表示在外壁12的内表面14的每个子部段中存在的最小强度,除了顶面16的内表面和入口4或出口6之外。由此避免了容器的表面中的薄弱点,在薄弱点处首先形成病菌或产生生物薄膜。As already mentioned, an iso-intensity surface in water can be approximately formed in the lateral
图2示出了流量反应器或容器2(仅在内腔高度方面)的高度H一方面与截锥体形状的底面20的使用的球形区段的半径r、另一方面与当前流过的流体的透射率T的比例的关系图。图1示意性标出了球形底面20到其中点M的半径r。减少的透射率影响了内表面的反向散射和反射的程度,并且因此间接影响辐射场,从而在争取优化近似形成等强度面时也要使球形区段形状匹配其半径r。因此,在图2的图表中标出的线对于相应的透射率T表示分别在该方面优化的、用于容器2的比例(H/r)。在该图表的基础上进行模拟。对于图2中的线来说近似地给出等式:FIG. 2 shows the height H of the flow reactor or vessel 2 (only in terms of the height of the inner chamber) on the one hand with the radius r of the spherical section used for the truncated cone-shaped
H/r=0.62·T+1.29 (3)H/r=0.62·T+1.29 (3)
此外,能够计算截锥体形状的顶面16。其最大半径ρ能够如上所述由此计算:Furthermore, the
ρ=R+l·tan(α)+d·tan(arcsin(n1/n3·sin(α))) (4)ρ=R+l·tan(α)+d·tan(arcsin(n 1 /n 3 ·sin(α))) (4)
其中,α是(相对于光学或对称轴线的)最大角,最大角直到射线能够进入玻璃中并且传输到内腔中并且不由玻璃反射为止。R是分别应用的圆形的(光)源面的半径,l是光源到窗口(顶面)的间距,并且d是透明的玻璃材料的厚度。相应地,n1是空气的折射率(例如n1=1.0),并且n3玻璃的折射率(在此应用水晶玻璃的情况下例如n3=1.46)。等式右侧的三项,从平面几何方面,以源面自身的延展、直至窗口的扩张光路和通过窗口材料继续扩张的光路的这种顺序得出。源面和窗口之间的间距l的优选的值在上面给出(小于或等于0.5mm或者小于或等于0.2mm)。顶面16的水晶玻璃窗口能够具有1mm的厚度d。其在容器2中的更大的压力稳定性方面也能够要求3-5mm(整体上为1至5mm的范围)。然而不考虑这些限制该实施例的特殊值,并且其它的值也是可能的,特别是当应用其它材料或者采用其它的几何形状或至少是其变形时,或者当要利用该装置使其它流体消毒时。where a is the maximum angle (relative to the optical or symmetry axis) until the ray can enter the glass and be transmitted into the lumen and not be reflected by the glass. R is the radius of the respectively applied circular (light) source face, l is the distance from the light source to the window (top face), and d is the thickness of the transparent glass material. Correspondingly, n 1 is the refractive index of air (eg n 1 =1.0), and n 3 the refractive index of glass (eg n 3 =1.46 in the case of crystal glass being used here). The three terms on the right-hand side of the equation, in terms of plane geometry, result from the extension of the source surface itself, the expansion optical path up to the window, and the optical path that continues to expand through the window material in this order. Preferred values for the spacing l between the source surface and the window are given above (less than or equal to 0.5 mm or less than or equal to 0.2 mm). The crystal glass window of the
要说明的是,图1示出的入口和出口是可选的,并且换而言之能采用整体的入口和出口(未示出)。在该情况下,容器2是能再填充的罐,并且流体在消毒期间位于容器中。在最后的情况中,也能够设置搅拌器或搅动器(未示出),其持续或仅间隔地运行,以便实现经过流体的辐射的均匀的剂量。可选地,装置能够设置成使其移动容器2,从而在内腔中造成涡流、例如振动运动。It is to be noted that the inlet and outlet shown in Figure 1 are optional, and in other words an integral inlet and outlet (not shown) can be employed. In this case, the
图3示出了根据本发明的装置1’的第二或第三实施例的示意性截面。图1的细节、如传感器或入口和出口在此略掉。图1的实例在此修改为,根据第二实施例由3个或更多个LED 8a、8b、8c组成光源8,其中,光源的发射到内腔24中的UV光叠加为共同的辐射场。在此,LED 8a至8c能够具有不同的光学轴线或对称轴线22a、22b、22c,以便更好更有效地照射内腔24。获得的辐射场更宽地以扇形展开,从而使得由现在更复杂的顶面16’的临界角度引起的、包围的圆锥形状具有另外的张角。球形的底面20由此占据优势。Figure 3 shows a schematic cross-section of a second or third embodiment of a device 1' according to the invention. Details of Figure 1 such as sensors or inlets and outlets are omitted here. The example of FIG. 1 is here modified so that, according to the second embodiment, the
作为LED 8a至8c的替换,第三实施例涉及仅一个LED,然而其现在放置在内腔24之中而不是之外。由于没有耦合输入窗口,现在轴线由光源8的辐射特性自身确定内腔24中的辐射场,该光源能够以另外的角度从其源面发射光到内腔24中。在此,容器2’的外壁12的内表面14以与第二实施例中非常相似的形状匹配等强度面。As an alternative to the
图4示出了第四实施例。在半透明的透视图中,光源8的LED 8e、8f、8g、8h、8i布置在一条线上。所示的装置1”是流量反应器,其中,在图1中示出旋转对称的横截面的容器2在此转换为管状的容器2”,通过其使流体在纵向方向28上运动。LED 8e至8i的UV光在此也至少部分地叠加。然而在此的基本构思为,光源8的LED 8e至8i中的每一个对于管状的容器的使用的至少一个横截面34(图4中阴影面)来说通过对应其的长度或距离30照射,如其在第一实施例中那样为整个容器实施光源8的LED。在例如用于由LED 8i发射的UV光的相应的子部段32中,随后使内表面14的形状匹配内腔24中的辐射场。LED相对于顶面16的布置与第一实施例(图1)中相似。原则上对应多个LED的容器根据图1并排成列,其中,LED的形状通过叠加成管的方式被打开和连接。FIG. 4 shows a fourth embodiment. In the translucent perspective view, the
图5示出第五实施例。在装置的横截面图中由相关的容器2”’的管形状识别的是,其涉及流量反应器。在容器2”’的一个端部(图5左侧)处,在耦合输入窗口之外设有光源8的LED 8k,其将UV光经由TIR透镜的在内腔24中布置的镜8l、8m发射到内腔中。在此如上实施的那样能够涉及UV-C、UV-B或UV-A。TIR透镜影响准直的或轻微聚焦的或轻微分散的射线束36,其沿着管状的容器2”’的纵向和对称轴线42引导。如所识别的那样(仅示意性指出外面的射线),射线束36具有包络线44,其直径随着从光源8到狭窄部46的增加的间距以到光源8的确定的距离减小。FIG. 5 shows a fifth embodiment. Recognized in the cross-sectional view of the device by the tube shape of the associated
根据该实施例,从光源8的TIR透镜(镜8l、8m)到狭窄部46的对应管的外壁的子部段48的形状匹配于该包络线。换句话说,容器2”’自身是束腰的并且在到光源8的预先确定的间距具有相同的狭窄部46。包络线如在第一实施例中那样表现为陡的强度斜度,在其中通过容器2”’的形状的匹配“放入”该子部段48的内表面14,从而在该内表面上仍存在最小强度。According to this embodiment, the shape of the
此外,通过TIR透镜的聚焦作用,沿着光学或纵向对称轴线42经由另外的区域较高地保持强度等级。根据应用能够不同地选择焦点、即狭窄部46的间距。优选地,其应当在穿透深度的范围中,在其中辐射在流体中大约落在光源8的方位上的输出功率的一半上。特别优选地,狭窄部46应当在一定间距中,在其中辐射功率下降1/e2倍,即大约0.135(即大约辐射功率的13.5%)。Furthermore, through the focusing action of the TIR lens, the intensity level is maintained higher via further regions along the optical or
根据可替换的实施方式,能够通过光源8(具有TIR透镜的光学部件)以与图5中相似的方式也以10°或更小的半角来稍微分散生成的射线束。According to an alternative embodiment, the generated beam of rays can be slightly dispersed by the light source 8 (optical component with TIR lens) in a similar manner as in FIG. 5 also by a half angle of 10° or less.
在这些实施例中(也如接下来那样),反应器根据待消毒的流体的透射率具有长度,管状的容器2”’的端部处的有效的透射性与输出功率相比仅还为0.1或更小,优选为0.05或更小。In these embodiments (also as follows), the reactor has a length according to the transmittance of the fluid to be sterilized, the effective transmittance at the end of the
在第五实施例中,反应器中的流动方向38与射线束36的方向相反,即朝向光源。然而流动方向也能够反过来远离光源地定向。此外,在第五实施例中,出口6在侧面分叉地设置在TIR透镜(镜8l、8m)的高度上。在与图5相反的流动方向地情况下,能够设置喷嘴(未示出),其通过强射线防止入口区域中(在图5中的出口6的位置上)的病菌形成等。In the fifth embodiment, the flow direction 38 in the reactor is opposite to the direction of the beam 36, ie towards the light source. However, the flow direction can also be directed away from the light source in reverse. Furthermore, in the fifth embodiment, the
图6示出了第六实施例的通过用于为流体消毒的装置1””的横截面。该结构类似于图5,从而在接下来的描述中仅阐述不同之处。光源8具有LED 8n,其作为布置在管状的容器2””之外的替代现在布置在其之中。在类似于第四实施例的布置中,光学部件以具有镜8l、8m的TIR透镜的形式设置,其如上所述生成具有包络线的准直的或聚焦(又或者轻微发散)的射线束。外壁的内表面14的在子部段48中直到狭窄部46的匹配束腰的包络线的形状类似于图5。Figure 6 shows a cross-section through a
通过管状的容器2””之中的LED的布置,如图6中箭头39a、39b表示的那样能够实现以流体环绕冲洗光源8。由此能够有效地冷却光源8、特别是其LED 8n。此外,通过该结构实现了线性的直线布置。在所示的实施例中,选择与第五实施例相反的流动方向39,即流体环绕冲洗光源并且随后从其离开经过变窄的管状容器流向出口6。By means of the arrangement of the LEDs in the
根据该实施例的一个特别的改进方案,图6中的容器2””的右侧的出口6由透明的玻璃、如水晶管制成。在该情况下,水晶玻璃的导光作用能够导致直到管的出口的辐射传输,其中,管在出口6的范围中也能够弯曲。由此实现了直到出口6以及直到其出口的消毒作用。According to a particular refinement of this embodiment, the
然而也在图6所示的实施例中能够实现流动方向39的反向。当在实施装置时要避免出口处的辐射射出的时候,这样的结构是合理的,在该情况下出口位于图6左侧的光源8之后。因此,安全规格能够支持计算。However, a reversal of the
第五和第六实施例的改进方案包括其变体方案等都在水龙头(厨房或浴室配件)中或在类似的供水管或入口中设置实现具有管状的容器2”’、2””的装置。The improvements of the fifth and sixth embodiments, including their variants, etc., are provided in the tap (kitchen or bathroom fitting) or in a similar water supply pipe or inlet to realize the device having the
要说明的是,上述实施例代表了特殊的实施方式而并不限制本发明的保护范围。特别地,各个实施例的各个特征也能够分别在其它的实施例中进行组合。因此,用于外壁12的对前三个实施例描述的材料也在第五和第六实施例和其变体方案中采用,即特别是水晶玻璃或水晶或高硼的硼硅酸盐玻璃、氟石、蓝宝石或者钠钾硅酸盐玻璃。此外,所述的钢或黄铜的优点包括所有相应的合金的选择等都能够在所有的实施例中应用,合金在UV-C波长范围中仅具有小的反射。It should be noted that the above embodiments represent special implementations and do not limit the protection scope of the present invention. In particular, the individual features of the individual embodiments can also be combined in other embodiments, respectively. Therefore, the materials described for the first three embodiments for the
在前三个实施例(图1至图4)中,光源8和相应的耦合输入窗口在下方示出。然而相应的装置或容器也能够转180度,从而使耦合输入窗口在容器上方定位。在该情况下能够实现的是,去掉耦合输入窗口或顶面16。其优点在于,流体不再与窗口接触并且破坏生物薄膜的形成。此外取消了光学元件。光源能够通过气压、气流或气门被保护。In the first three embodiments ( FIGS. 1 to 4 ), the
同样地,也能够在存在窗口的情况下(其适用于所有的实施例)设置机械刷,其在容器中例如以一定的时间间隔清除生物薄膜或病菌。Likewise, a mechanical brush can also be provided in the presence of a window (which applies to all embodiments), which removes biofilms or germs in the container, for example at certain time intervals.
此外,仅为前3个实施例描述反射或反向散射的涂层(例如铝或PTFE等)。然而立刻能意识到的是,该涂层能以相同的方式也在第四或第五实施例和其变体方案中以类似的作用在外壁12的内表面14上使用。Furthermore, only the first 3 examples are described for reflective or backscattered coatings (eg aluminum or PTFE, etc.). It will be immediately appreciated, however, that this coating can be used in the same manner on the
在前述实施例中,在光源8方面描述了发射UV-C辐射的LED。然而根据应用情况,由此也能够采用发射UV-A或UV-B辐射的LED,或者特别地也采用各种辐射在一个布置中的LED组合。In the preceding embodiments, LEDs emitting UV-C radiation were described in terms of
本发明不受限于特殊实施例中应用的洗涤水或冲洗水形式的流体。与水不同的其它流体、如血、牛奶或柴油微生物污染物也能够由根据本发明的UV反应器消毒。这也包括非液体的流体、如空气或烟雾等。The present invention is not limited to the fluid in the form of wash water or rinse water used in the particular embodiment. Other fluids than water, such as blood, milk or diesel microbial contamination can also be sterilized by the UV reactor according to the invention. This also includes non-liquid fluids such as air or smoke.
参考标号列表List of reference signs
1、1’、1”、1”” 装置1, 1’, 1”, 1”” device
2、2’、2”、2”’、2”” 容器(反应器)2, 2', 2", 2"', 2"" Vessel (Reactor)
4 入口4 entrances
6 出口6 exit
8 光源8 Light source
8a-8k、8n LED8a-8k, 8n LEDs
8l、8m TIR透镜的镜Mirror for 8l, 8m TIR lens
10 传感器10 Sensors
12 外壁12 outer wall
14 内表面14 inner surface
16 顶面16 top
16’ 具有更复杂结构的顶面16’ top surface with more complex construction
18 外罩面18 outer cover
20 底面(球面)20 Bottom surface (spherical surface)
22、22a 对称轴线22, 22a Axis of symmetry
22b、22c 另外的对称轴线22b, 22c Additional axis of symmetry
24 内腔24 lumen
26 外罩面的边沿26 Edge of the outer face
28 纵向方向28 Portrait orientation
30 距离(配属于LED的部段)30 distance (segment assigned to LED)
32 子部段32 Subsections
34 (容器的)垂直于LED布置的横截面34 Cross-section (of the container) perpendicular to the LED arrangement
36 射线束36 beams
38 流动方向38 Flow direction
39 流动方向(反向)39 Flow direction (reverse)
42 对称轴线42 Axis of symmetry
44 射线束的包络线44 Envelopes of ray beams
46 狭窄部46 Stenosis
H 高度H height
I1、I2、I3、I4 等强度面Intensity surfaces such as I1, I2, I3, I4
l LED到顶面或水晶玻璃窗口的间距l Spacing from LED to top surface or crystal glass window
M 球面的中点The midpoint of the M sphere
r 球面的半径r the radius of the sphere
θ 半张角。θ half-opening angle.
Claims (24)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018221634.7 | 2018-12-13 | ||
DE102018221634.7A DE102018221634A1 (en) | 2018-12-13 | 2018-12-13 | DEVICE FOR DISinfecting A FLUID |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111320230A true CN111320230A (en) | 2020-06-23 |
Family
ID=70858716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911274037.2A Pending CN111320230A (en) | 2018-12-13 | 2019-12-12 | Device for sterilizing fluids |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111320230A (en) |
DE (1) | DE102018221634A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022147878A1 (en) * | 2021-01-11 | 2022-07-14 | 佛山科学技术学院 | Collimation-type water disinfection and purification apparatus |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102021003356B3 (en) * | 2021-06-30 | 2022-04-21 | Johann-Marius Milosiu | Device for amplifying light by means of reflections in ducts |
IT202100020087A1 (en) * | 2021-07-28 | 2023-01-28 | Nvk Design Di Natasha Calandrino | DEVICE FOR THE SANITIZATION OF AIR BY ULTRAVIOLET RADIATION |
DE102022123220A1 (en) * | 2022-09-12 | 2024-03-14 | Osram Gmbh | OPTICAL DEVICE FOR THE DISINFECTION OF UPPER AIR LAYERS IN A ROOM |
DE102023123288A1 (en) * | 2023-08-30 | 2025-03-06 | Smart United Holding Gmbh | Radiation generating device and gas-conducting arrangement for inactivating light-sensitive pollutants and method therefor |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002095379A2 (en) * | 2001-05-18 | 2002-11-28 | Dr. Ing. Willing Gmbh | Light for matching surfaces |
US20060279955A1 (en) * | 2002-11-13 | 2006-12-14 | Ville Kettunen | Light emitting device |
CN1977127A (en) * | 2004-03-30 | 2007-06-06 | 照明管理解决方案公司 | Apparatus and method for improved illumination area fill |
US20100172135A1 (en) * | 2006-02-27 | 2010-07-08 | Illumination Management Solutions Inc. | Led device for wide beam generation |
DE102011102406A1 (en) * | 2011-05-24 | 2012-11-29 | Morteza Mobalegh Naseri | Lamp e.g. street lamp mounted in residential area, has LED whose connection pins are plugged into base element so that central region of irradiation axis of LED is set at specific angle with respect to board |
CN104780945A (en) * | 2012-11-15 | 2015-07-15 | 肖特股份有限公司 | Compact system with high homgenity of the radiation field |
CN105258077A (en) * | 2014-07-09 | 2016-01-20 | 欧司朗有限公司 | LIGHTING DEVICE WITH OPTOELECTRONIC LIGHT SOURCE and uses |
US20160215956A1 (en) * | 2013-09-12 | 2016-07-28 | Quarkstar Llc | Light-Emitting Device and Luminaire Incorporating Same |
CN105899868A (en) * | 2014-01-20 | 2016-08-24 | 奥斯兰姆奥普托半导体有限责任公司 | Lighting means having a specifiable emission characteristic and production method for an optical element |
CN108883390A (en) * | 2016-01-19 | 2018-11-23 | 英属哥伦比亚大学 | Method and apparatus for controlling the fluid radiation dosage in UV-LED Photoreactor |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006089450A2 (en) * | 2005-02-28 | 2006-08-31 | Lucea Ag Wey & Spiess Treuhand- Und Revisionsgesellschaft | Light source |
-
2018
- 2018-12-13 DE DE102018221634.7A patent/DE102018221634A1/en active Pending
-
2019
- 2019-12-12 CN CN201911274037.2A patent/CN111320230A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002095379A2 (en) * | 2001-05-18 | 2002-11-28 | Dr. Ing. Willing Gmbh | Light for matching surfaces |
US20060279955A1 (en) * | 2002-11-13 | 2006-12-14 | Ville Kettunen | Light emitting device |
CN1977127A (en) * | 2004-03-30 | 2007-06-06 | 照明管理解决方案公司 | Apparatus and method for improved illumination area fill |
US20100172135A1 (en) * | 2006-02-27 | 2010-07-08 | Illumination Management Solutions Inc. | Led device for wide beam generation |
DE102011102406A1 (en) * | 2011-05-24 | 2012-11-29 | Morteza Mobalegh Naseri | Lamp e.g. street lamp mounted in residential area, has LED whose connection pins are plugged into base element so that central region of irradiation axis of LED is set at specific angle with respect to board |
CN104780945A (en) * | 2012-11-15 | 2015-07-15 | 肖特股份有限公司 | Compact system with high homgenity of the radiation field |
US20150246148A1 (en) * | 2012-11-15 | 2015-09-03 | Schott Ag | Compact system with high homogeneity of the radiation field |
US20160215956A1 (en) * | 2013-09-12 | 2016-07-28 | Quarkstar Llc | Light-Emitting Device and Luminaire Incorporating Same |
CN105899868A (en) * | 2014-01-20 | 2016-08-24 | 奥斯兰姆奥普托半导体有限责任公司 | Lighting means having a specifiable emission characteristic and production method for an optical element |
CN105258077A (en) * | 2014-07-09 | 2016-01-20 | 欧司朗有限公司 | LIGHTING DEVICE WITH OPTOELECTRONIC LIGHT SOURCE and uses |
CN108883390A (en) * | 2016-01-19 | 2018-11-23 | 英属哥伦比亚大学 | Method and apparatus for controlling the fluid radiation dosage in UV-LED Photoreactor |
Non-Patent Citations (1)
Title |
---|
王智晓: "《大学物理(下册)》", 西安电子科技大学出版社, pages: 95 - 96 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022147878A1 (en) * | 2021-01-11 | 2022-07-14 | 佛山科学技术学院 | Collimation-type water disinfection and purification apparatus |
Also Published As
Publication number | Publication date |
---|---|
DE102018221634A1 (en) | 2020-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111320230A (en) | Device for sterilizing fluids | |
JP6374403B2 (en) | Method and apparatus for liquid disinfection with light emitted from light emitting diodes | |
JP7011931B2 (en) | Fluid sterilizer | |
CN109395118B (en) | Method and apparatus for disinfecting flowing fluid | |
JP6675287B2 (en) | Fluid sterilizer | |
CN108136058A (en) | Fluid sterilizing unit | |
JP6698496B2 (en) | UV light irradiation device | |
WO2019151364A1 (en) | Ultraviolet sterilization tube and ultraviolet sterilization device | |
KR101683351B1 (en) | Light curtain type LED irradiator | |
US12257373B2 (en) | Fluid system with integrated disinfecting optics | |
JP6963956B2 (en) | UV sterilizer and UV irradiation device | |
KR20180115978A (en) | Sterilizing apparatus for fluid | |
JP7071144B2 (en) | UV sterilizer and UV irradiation device | |
JP2020103498A (en) | Ultraviolet light irradiation device, and fluid ejection device equipped with the ultraviolet light irradiation device | |
JP6606703B2 (en) | Beverage sterilization unit and water server equipped with this beverage sterilization unit | |
JP7213682B2 (en) | humidifier | |
JP7011930B2 (en) | Fluid sterilizer | |
JP7607453B2 (en) | Sterilization Equipment | |
JP6771399B2 (en) | Irradiation device | |
JP2020014647A (en) | Ultraviolet sterilization device, and ultraviolet irradiation device | |
JP2022069596A (en) | Irradiation device | |
WO2021070350A1 (en) | Ultraviolet sterilization device and ultraviolet irradiation device | |
JP7132992B2 (en) | Irradiation device | |
JP2022062415A (en) | Fluid sterilization apparatus, fluid sterilization method, water treatment facility, and water purification equipment | |
JP2024008165A (en) | Sterilizer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |