CN111311905A - Particle swarm optimization wavelet neural network-based expressway travel time prediction method - Google Patents
Particle swarm optimization wavelet neural network-based expressway travel time prediction method Download PDFInfo
- Publication number
- CN111311905A CN111311905A CN202010068929.3A CN202010068929A CN111311905A CN 111311905 A CN111311905 A CN 111311905A CN 202010068929 A CN202010068929 A CN 202010068929A CN 111311905 A CN111311905 A CN 111311905A
- Authority
- CN
- China
- Prior art keywords
- neural network
- layer
- output
- travel time
- toll
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 59
- 239000002245 particle Substances 0.000 title claims abstract description 46
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 43
- 238000005457 optimization Methods 0.000 title claims abstract description 30
- 238000004458 analytical method Methods 0.000 claims abstract description 16
- 238000003062 neural network model Methods 0.000 claims abstract description 15
- 238000012549 training Methods 0.000 claims description 36
- 238000004364 calculation method Methods 0.000 claims description 23
- 238000011160 research Methods 0.000 claims description 18
- 230000002159 abnormal effect Effects 0.000 claims description 15
- 238000012545 processing Methods 0.000 claims description 15
- 238000013519 translation Methods 0.000 claims description 15
- 238000010276 construction Methods 0.000 claims description 6
- 230000006870 function Effects 0.000 claims description 6
- 210000004205 output neuron Anatomy 0.000 claims description 6
- 230000001133 acceleration Effects 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 claims description 3
- 238000012937 correction Methods 0.000 claims description 3
- 238000011478 gradient descent method Methods 0.000 claims description 3
- 210000002364 input neuron Anatomy 0.000 claims description 3
- 230000001360 synchronised effect Effects 0.000 claims description 3
- 239000013598 vector Substances 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 3
- 230000010355 oscillation Effects 0.000 abstract description 3
- 230000007547 defect Effects 0.000 abstract description 2
- 238000002474 experimental method Methods 0.000 abstract description 2
- 238000011156 evaluation Methods 0.000 description 12
- 101001095088 Homo sapiens Melanoma antigen preferentially expressed in tumors Proteins 0.000 description 8
- 102100037020 Melanoma antigen preferentially expressed in tumors Human genes 0.000 description 8
- 238000013524 data verification Methods 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0125—Traffic data processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/004—Artificial life, i.e. computing arrangements simulating life
- G06N3/006—Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Software Systems (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域technical field
本发明设计一种实用性模型,属于智能交通范畴,具体说是能够为出行者提供高实时性和可靠性的出行信息的一种基于粒子群优化小波神经网络的高速公路行程时间预测方法。The invention designs a practicability model, which belongs to the category of intelligent transportation, and specifically is a method for predicting highway travel time based on particle swarm optimization wavelet neural network, which can provide travelers with high real-time and reliable travel information.
背景技术Background technique
行程时间的精确预测为交通管理者制定管理决策和出行者合理安排出行计划提供了依据。目前,行程时间预测的方法包括:时间序列模型,多元回归模型,Kalman滤波预测和人工神经网络等。但是,时间序列模型不考虑影响行程时间的其他因素,而是通过分析过去数据中的类似趋势预测未来行程时间。多元回归模型研究目标路段和相邻路段的数据,预测结果通常不令人满意。Kalman滤波模型在预测过程中需要不断对权值进行修正,使得计算时耗过大,预测实时性较差。人工神经网络是行程时间预测较为常用的方式,但是在运用过程中存在易陷入局部最优解、易产生振荡效应和收敛缓慢等不足之处。Accurate prediction of travel time provides a basis for traffic managers to make management decisions and travelers to rationally arrange travel plans. At present, the methods of travel time prediction include: time series model, multiple regression model, Kalman filter prediction and artificial neural network. However, time series models do not take into account other factors that affect travel times, but predict future travel times by analyzing similar trends in past data. Multiple regression models study the data of the target road segment and adjacent road segments, and the prediction results are usually unsatisfactory. The Kalman filter model needs to constantly modify the weights in the prediction process, which makes the calculation time is too large and the real-time prediction is poor. Artificial neural network is a commonly used method for travel time prediction, but in the process of application, it is easy to fall into local optimal solution, easy to produce oscillation effect and slow convergence.
因此,本发明在对行程时间进行预测时,综合考虑现有方法优缺点,建立新的高速公路行程时间预测模型。Therefore, when the present invention predicts the travel time, the advantages and disadvantages of the existing methods are comprehensively considered, and a new expressway travel time prediction model is established.
发明内容SUMMARY OF THE INVENTION
鉴于现有技术的不足及研究趋势,本发明的目的在于提供一种基于粒子群优化小波神经网络的高速公路行程时间预测方法模型,精确预测行程时间,从而为有关部门进行交通管理和优化提供良好的理论支持和决策依据。In view of the deficiencies and research trends of the prior art, the purpose of the present invention is to provide a method model of expressway travel time prediction based on particle swarm optimization wavelet neural network, which can accurately predict the travel time, so as to provide a good solution for traffic management and optimization by relevant departments. theoretical support and decision-making basis.
为了实现本发明目的,所采用的技术方案为:In order to realize the purpose of the present invention, the technical scheme adopted is:
高速公路行程时间预测方法研究,其研究方法主要步骤包括:Research on the prediction method of expressway travel time. The main steps of the research method include:
A.对高速公路收费数据进行处理,提取研究所需的收据字段;A. Process the highway toll data and extract the receipt fields required for research;
B.对提取的收费数据字段进行数据处理;B. Perform data processing on the extracted charging data fields;
C.在数据处理的基础上,利用小波神经网络模型对高速公路行程时间进行预测;C. On the basis of data processing, use the wavelet neural network model to predict the travel time of the expressway;
D.在数据处理的基础上,利用粒子群优化小波神经网络模型对高速公路行程时间进行预测;D. On the basis of data processing, use particle swarm optimization wavelet neural network model to predict highway travel time;
E.采用平均绝对误差(MAE),平均相对误差(MAPE)、均方误差(MSE)3项评价指标对2种预测模型精度进行对比分析。通过对比结果可知粒子群优化的小波神经网络模型可更精确实现高速公路行程时间的预测,并在实际数据验证中表现出更好的适应性。E. Using mean absolute error (MAE), mean relative error (MAPE) and mean square error (MSE) three evaluation indicators to compare and analyze the accuracy of the two prediction models. By comparing the results, it can be seen that the wavelet neural network model of particle swarm optimization can more accurately predict the travel time of expressways, and show better adaptability in actual data verification.
所述的高速公路行程时间预测方法研究,其中,所述步骤A的具体分析过程为:The research on the expressway travel time prediction method, wherein, the specific analysis process of the step A is:
A1.我国高速公路收费采用全面覆盖收费过程的信息化系统,因而可以采集大量收费数据。研究所需的数据字段包括INSTATIONID(入口收费站编码)、INTIME(入口时间)、EXITSTATION(出口收费站编码)、EXITTIME(出口时间),如表1所示。A1. my country's highway toll collection adopts an information system that fully covers the toll collection process, so a large amount of toll data can be collected. The data fields required for the study include INSTATIONID (entry toll station code), INTIME (entry time), EXITSTATION (exit toll station code), EXITTIME (exit time), as shown in Table 1.
表1收费数据字段说明表Table 1 Charge data field description table
所述的高速公路行程时间预测方法研究,其中,所述步骤B的具体分析过程为:The research on the expressway travel time prediction method, wherein, the specific analysis process of the step B is:
B1.收费数据处理分两步进行,第一:剔除异常数据,包括缺失数据、错误数据等;第二:根据四分位法筛选有效数据,有效数据是指可以有效反映整体数值情况的数据集合,其区间为[tmin,tmax]。B1. The charging data processing is carried out in two steps. The first is to eliminate abnormal data, including missing data and wrong data. , whose interval is [t min ,t max ].
B2.异常数据主要包含以下四种类型:B2. Abnormal data mainly includes the following four types:
缺少进入/离开收费站或进入/离开的时间信息:当收费系统软件产生异常或者线路传输出现错误时,收费系统无法录入完整的收费数据信息;Lack of entry/exit toll booth or entry/exit time information: When the toll system software is abnormal or there is an error in the line transmission, the toll system cannot input complete toll data information;
相同进出收费站数据:当驾驶员在服务区交换收费卡从而逃避收费的行为发生时,会导致收费系统中记录的车辆在入口收费站和出口收费站的时间相同;The same data entering and leaving the toll booth: When the driver exchanges the toll card in the service area to avoid the toll collection, it will cause the vehicle recorded in the toll collection system to have the same time at the entrance toll booth and the exit toll booth;
异常时间数据记录。收费系统虽日益完善,但也存在不同收费站的系统不同步的弊端,从而导致不同收费站时间出现偏差,造成了入口时间晚于出口时间的现象。通常这种情况会在凌晨收费系统更新日期时发生;Abnormal time data record. Although the toll collection system is becoming more and more perfect, there is also the disadvantage that the systems of different toll stations are not synchronized, which leads to the deviation of the time of different toll stations, resulting in the phenomenon that the entrance time is later than the exit time. Usually this happens in the early hours of the morning when the charging system is updated;
异常时间数据记录。由于高速公路的特殊性,路段上一般会设置服务区和停车区,从而出现长途车辆长时间驻留的现象。Abnormal time data record. Due to the particularity of expressways, service areas and parking areas are generally set up on the road sections, resulting in the phenomenon of long-distance vehicles staying for a long time.
B3.在去除错误数据的基础上,基于四分位法筛选有效数据。行程时间有效数据集合下限和上限计算公式为:B3. On the basis of removing erroneous data, screen valid data based on quartile method. The formula for calculating the lower limit and upper limit of the valid data set of travel time is:
tmin=t25%-1.5×(t75%-t25%)t min =t 25% -1.5×(t 75% -t 25% )
tmax=t75%+1.5×(t75%-t25%)t max =t 75% +1.5×(t 75% -t 25% )
t25%--25%分位数t 25% --25% quantile
t75%---75%分位数t 75% --- 75% quantile
tmin---行程时间有效数据集合下限值t min --- lower limit value of valid data set of travel time
tmax---行程时间有效数据集合上限值。t max ---The upper limit value of the valid data set of travel time.
所述的高速公路行程时间预测方法研究,其中,所述步骤C的具体分析过程为:The research on the expressway travel time prediction method, wherein, the specific analysis process of the step C is:
C1.网络构建。构建包含输入层、隐含层和输出层的三层小波神经网络。如图1所示,其中X1,X2,...,Xm(m表示输入神经元个数)表示小波神经网络的输入,Y1,Y2,...,Yn(n表示输出神经元个数),J表示隐含层节点个数,ωij和ωjk分别指输入层与隐含层,隐含层和输出层之间的权重,其中i=1,2,...,m;j=1,2,...,J;k=1,2,...,n。C1. Network construction. Construct a three-layer wavelet neural network with input layer, hidden layer and output layer. As shown in Figure 1, where X 1 , X 2 ,...,X m (m represents the number of input neurons) represents the input of the wavelet neural network, Y 1 , Y 2 ,..., Y n (n represents the input of the wavelet neural network) The number of output neurons), J represents the number of hidden layer nodes, ω ij and ω jk respectively refer to the weight between the input layer and the hidden layer, the hidden layer and the output layer, where i=1, 2, .. .,m; j=1,2,...,J; k=1,2,...,n.
C2.网络初始化。随机初始化小波函数的伸缩因子aj,平移因子bj,连接权重ωij(输入层与隐含层)和ωjk(隐含层与输出层)。设置小波神经网络的学习速率η1和η2。C2. Network initialization. Randomly initialize the scaling factor a j of the wavelet function, the translation factor b j , the connection weights ω ij (input layer and hidden layer) and ω jk (hidden layer and output layer). Set the learning rates η 1 and η 2 of the wavelet neural network.
伸缩因子的调整公式如下:The adjustment formula of the scaling factor is as follows:
---调整前伸缩因子; --- Adjust the front scaling factor;
--调整后伸缩因子; -- Adjusted scaling factor;
η2---小波参数的学习速率,可取η2=0.01。η 2 --- the learning rate of wavelet parameters, which can be taken as η 2 =0.01.
平移因子的调整公式如下:The adjustment formula of the translation factor is as follows:
---调整前平移因子值; ---Translation factor value before adjustment;
---调整后平移因子值; --- Adjusted translation factor value;
η2---小波参数的学习速率,可取η2=0.01。η 2 --- the learning rate of wavelet parameters, which can be taken as η 2 =0.01.
输入层和隐含层之间可通过下式修正调整:The adjustment between the input layer and the hidden layer can be adjusted by the following formula:
---调整之前输入层与隐含层之间的权值; --- Adjust the weights between the input layer and the hidden layer before;
---调整之后输入层与隐含之间的权值; ---The weight between the input layer and the hidden layer after adjustment;
η1---网络权值参数的学习速率,可取η1=0.01。η 1 --- the learning rate of the network weight parameter, which can be η 1 =0.01.
隐含层和输出层之间可通过下式修正调整:The adjustment between the hidden layer and the output layer can be adjusted by the following formula:
---调整之前隐含层与输出层之间的权值; --- Adjust the weights between the hidden layer and the output layer before;
---调整之后隐含层与输出层之间的权值; ---After adjustment, the weights between the hidden layer and the output layer;
η1---网络权值参数的学习速率,可取η1=0.01。η 1 --- the learning rate of the network weight parameter, which can be η 1 =0.01.
C3.预测输出。将训练样本输入网络,从而计算网络的预测输出并计算网络输出和期望输出误差e。C3. Predict output. The training samples are fed into the network to calculate the predicted output of the network and calculate the error e between the network output and the expected output.
C4.误差计算。计算网络的预测输出和期望输出之间的误差e。具体计算公式为:C4. Error calculation. Calculate the error e between the predicted output of the network and the expected output. The specific calculation formula is:
yp,k(k)---实际输出值;y p,k (k)---actual output value;
tp,k---理想输出值。t p,k --- ideal output value.
C5.权值修正。为了使得误差满足要求,采用梯度下降法修正小波神经网络的权值和参数。C5. Weight correction. In order to make the error meet the requirements, the weights and parameters of the wavelet neural network are modified by the gradient descent method.
C6.如果训练次数大于1000或者e满足预测精度要求(e<0.0001,误差精度设定为0.0001,若误差精度若设定过高,网络收敛速度慢;若误差精度设定过低,影响预测结果的准确性)时,结束训练返回预测结果,否则继续学习和训练。C6. If the number of training times is greater than 1000 or e meets the prediction accuracy requirements (e<0.0001, the error accuracy is set to 0.0001. If the error accuracy is set too high, the network convergence speed will be slow; if the error accuracy is set too low, the prediction result will be affected. accuracy), end the training and return the prediction result, otherwise continue learning and training.
基于小波神经网络的行程时间预测试验流程如图2所示。The test flow of travel time prediction based on wavelet neural network is shown in Figure 2.
所述的高速公路行程时间预测方法研究,其中,所述步骤D的具体分析过程为:The research on the method for predicting the travel time of the expressway, wherein, the specific analysis process of the step D is:
D1.网络构建:构建包含输入层、隐含层和输出层的三层POS-WNN神经网络D1. Network construction: construct a three-layer POS-WNN neural network including input layer, hidden layer and output layer
D2.参数初始化处理:系统随机生成S个粒子,并利用这些粒子的位置矢量来表示小波基函数中的伸缩因子和平移因子aj,bj;以及权重值ωij(第i个输入和第j个隐层间的权重值)和ωj(第j个隐层和输出层间的权重值),计算公式如下。同时设定粒子的最大最小速度,学习速率及最大迭代次数。D2. Parameter initialization processing: the system randomly generates S particles, and uses the position vectors of these particles to represent the scaling factors and translation factors a j , b j in the wavelet basis function; and the weight value ω ij (the ith input and the first The weight value between the j hidden layers) and ω j (the weight value between the jth hidden layer and the output layer), the calculation formula is as follows. At the same time, set the maximum and minimum speed of particles, the learning rate and the maximum number of iterations.
xs=(xs,1,...,xs,d,...,xs,D)=(a1,...,aJ,b1,...,bJ,ω11,...,ω1J,ω21,...,ω2J,...,ω291,...,ω29J,ω1,...,ωJ)x s =(x s,1 ,...,x s,d ,...,x s,D )=(a 1 ,...,a J ,b 1 ,...,b J ,ω 11 ,...,ω 1J ,ω 21 ,...,ω 2J ,...,ω 291 ,...,ω 29J ,ω 1 ,...,ω J )
D=m×J+J×(m-n)+(m-1)×JD=m×J+J×(m-n)+(m-1)×J
m---输入层节点数m---number of input layer nodes
J---隐含层节点数J---the number of hidden layer nodes
n---输出层节点数n---the number of output layer nodes
D3.网络训练。基于实际输出值与理想输出值间的误差,计算每次迭代过程中粒子适应度,计算公式如下。D3. Network training. Based on the error between the actual output value and the ideal output value, the particle fitness in each iteration process is calculated, and the calculation formula is as follows.
Q---训练样本总数Q---Total number of training samples
n---网络输出神经元个数n---the number of output neurons of the network
yp,k(k)---实际输出值y p,k (k)---actual output value
tp,k---理想输出值。t p,k --- ideal output value.
D4.将粒子适应度作为判定是否达到设定的误差要求的指标,如果能够达到设定的误差要求,即适应度值基本保持不变,则完成训练,转至第F步;如果依旧达不到误差要求,则进行下一步。D4. Use the particle fitness as an indicator to determine whether the set error requirement is met. If the set error requirement can be met, that is, the fitness value remains basically unchanged, then the training is completed and go to step F; if it still fails to meet the set error requirement To the error requirement, proceed to the next step.
D5.判断训练的次数是否达到了设定的最大迭代次数,如果达到了,则跳出循环,转至第F步,停止训练;否则按照下式更新粒子的速度和位置,返回步骤C继续训练。D5. Determine whether the number of training has reached the set maximum number of iterations, if so, jump out of the loop, go to step F, and stop training; otherwise, update the speed and position of the particle according to the following formula, and return to step C to continue training.
vs,d(i+1)=ω×vs,d(i)+c1r1[ps,d-xs,d(i)]+c2r2[pg,d-xs,d(i)]v s,d (i+1)=ω×v s,d (i)+c 1 r 1 [p s,d -x s,d (i)]+c 2 r 2 [p g,d -x s,d (i)]
xs,d(i+1)=xs,d(i)+vs,d(i+1)x s,d (i+1)=x s,d (i)+v s,d (i+1)
s=1,2,..,S;d=1,2,...,Ds=1,2,..,S; d=1,2,...,D
c1,c2---加速因子c 1 ,c 2 --- acceleration factor
i---当前迭代次数i---current iteration number
ω---惯性因子ω---Inertia factor
r1,r2---0和1之间均匀分布的随机数。r 1 ,r 2 --- Random numbers uniformly distributed between 0 and 1.
D6.网络调试:选择训练样本的特定时段样本值作为输入值,训练样本中的另一特定时段的实际值作为理想输出值,根据步骤C适应度计算公式计算误差,若满足误差精度的设定,则结束运行;若不能满足设定的误差精度,则转至第C步。D6. Network debugging: Select the sample value of the training sample in a specific period as the input value, and the actual value of another specific period in the training sample as the ideal output value, and calculate the error according to the fitness calculation formula of step C. If the error accuracy setting is satisfied , then end the operation; if the set error accuracy cannot be met, go to step C.
基于粒子群优化小波神经网络的行程时间预测模型实验流程如图3所示。The experimental flow of the travel time prediction model based on particle swarm optimization wavelet neural network is shown in Figure 3.
所述的高速公路行程时间预测方法研究,其中,所述步骤E的具体分析过程为:The research on the method for predicting the travel time of the expressway, wherein, the specific analysis process of the step E is:
E1.采用平均绝对误差(MAE),平均相对误差(MAPE)、均方误差(MSE)3项评价指标对2种预测模型精度进行对比分析。E1. Using mean absolute error (MAE), mean relative error (MAPE) and mean square error (MSE) three evaluation indicators to compare and analyze the accuracy of the two prediction models.
E2.设tp,k表示行程时间实际值,yp,k(k)表示行程时间预测值,l表示预测时间段个数。E2. Let t p,k represent the actual value of travel time, y p,k (k) represent the predicted value of travel time, and l represent the number of predicted time periods.
E3.对平均绝对误差评价指标进行计算,具体的计算表达式为:E3. Calculate the mean absolute error evaluation index, and the specific calculation expression is:
平均绝对误差(MAE)——用于评定实际值与预测值之间的差异的指标。Mean Absolute Error (MAE) - A measure used to assess the difference between actual and predicted values.
E4.对平均相对误差评价指标进行计算,具体的计算表达式为:E4. Calculate the average relative error evaluation index, and the specific calculation expression is:
平均相对误差(MAPE)——在行程时间预测过程中,用于评定行程时间预测结果精确度大小的指标。Mean Relative Error (MAPE)—In the process of travel time prediction, it is used to evaluate the accuracy of travel time prediction results.
E5.对均方误差评价指标进行计算,具体的计算表达式为:E5. Calculate the mean square error evaluation index, and the specific calculation expression is:
均方误差(MSE)----综合评价数据的变化程度。Mean Squared Error (MSE)----Comprehensive evaluation of the degree of change in the data.
采用平均绝对误差(MAE),平均相对误差(MAPE)、均方误差(MSE)3项评价指标对2种预测模型精度进行对比分析。实验结果显示:粒子群优化的小波神经网络行程时间预测模型预测结果的平均绝对误差,平均相对误差和均方误差相较于小波神经网络模型分别降低了83.36%,82.20%和98.15%。粒子群优化的小波神经网络行程时间预测模型不仅预测精度高,而且能比较准确的预测出行程时间的走向及波动情况,在收敛速度方面也呈现出一定的优势,具有较好的适应能力。The mean absolute error (MAE), mean relative error (MAPE) and mean square error (MSE) were used to compare and analyze the accuracy of the two prediction models. The experimental results show that the mean absolute error, mean relative error and mean square error of the prediction results of the wavelet neural network travel time prediction model of particle swarm optimization are reduced by 83.36%, 82.20% and 98.15% respectively compared with the wavelet neural network model. The wavelet neural network travel time prediction model of particle swarm optimization not only has high prediction accuracy, but also can accurately predict the trend and fluctuation of travel time. It also shows certain advantages in convergence speed and has good adaptability.
本发明公开了一种基于粒子群优化小波神经网络的行程时间预测方法。粒子群优化算法通过不断的迭代优化小波神经网络的参数,解决了小波神经网络模型的缺陷,包括收敛速度缓慢、易陷入局部最小值和易产生振荡效应。通过对比实验分析,粒子群优化小波神经网络模型不仅能准确预测行程时间的变化趋势,也能比较准确预测行程时间的波动情况。基于粒子群优化小波神经网络模型的高速公路行程时间预测实验证明了粒子群优化小波神经网络具有收敛速度快,预测精度高,适应性强的优点。The invention discloses a travel time prediction method based on particle swarm optimization wavelet neural network. The particle swarm optimization algorithm solves the defects of the wavelet neural network model through continuous iterative optimization of the parameters of the wavelet neural network, including slow convergence speed, easy to fall into local minimum and easy to produce oscillation effect. Through comparative experimental analysis, the particle swarm optimization wavelet neural network model can not only accurately predict the change trend of travel time, but also more accurately predict the fluctuation of travel time. The expressway travel time prediction experiment based on the particle swarm optimization wavelet neural network model proves that the particle swarm optimization wavelet neural network has the advantages of fast convergence, high prediction accuracy and strong adaptability.
应当理解的是,本发明不局限于上述最佳实施方式,任何人在本发明的启示下都可得出其他各种形式的产品,但不论在其形状或结构上作任何变化,凡是具有与本申请相同或相近似的技术方案,均落在本发明的保护范围之内。It should be understood that the present invention is not limited to the above-mentioned best embodiment, and anyone can draw other various forms of products under the inspiration of the present invention, but no matter if any changes are made in its shape or structure, any The same or similar technical solutions of the present application all fall within the protection scope of the present invention.
附图说明Description of drawings
图1紧致型小波神经网络结构图Fig.1 Structure of compact wavelet neural network
图2小波神经网络流程图Figure 2 Flow chart of wavelet neural network
图3粒子群优化小波神经网络行程时间预测模型实验流程图Fig. 3 The experimental flow chart of the particle swarm optimization wavelet neural network travel time prediction model
高速公路行程时间预测方法研究,其研究方法主要步骤包括:Research on the prediction method of expressway travel time. The main steps of the research method include:
A.对高速公路收费数据进行处理,提取研究所需的收据字段;A. Process the highway toll data and extract the receipt fields required for research;
B.对提取的收费数据字段进行数据处理;B. Perform data processing on the extracted charging data fields;
C.在数据处理的基础上,利用小波神经网络模型对高速公路行程时间进行预测;C. On the basis of data processing, use the wavelet neural network model to predict the travel time of the expressway;
D.在数据处理的基础上,利用粒子群优化小波神经网络模型对高速公路行程时间进行预测;D. On the basis of data processing, use particle swarm optimization wavelet neural network model to predict highway travel time;
E.采用平均绝对误差(MAE),平均相对误差(MAPE)、均方误差(MSE)3项评价指标对2种预测模型精度进行对比分析。通过对比结果可知粒子群优化的小波神经网络模型可更精确实现高速公路行程时间的预测,并在实际数据验证中表现出更好的适应性。E. Using mean absolute error (MAE), mean relative error (MAPE) and mean square error (MSE) three evaluation indicators to compare and analyze the accuracy of the two prediction models. By comparing the results, it can be seen that the wavelet neural network model of particle swarm optimization can more accurately predict the travel time of expressways, and show better adaptability in actual data verification.
所述的高速公路行程时间预测方法研究,其中,所述步骤A的具体分析过程为:The research on the expressway travel time prediction method, wherein, the specific analysis process of the step A is:
A1.我国高速公路收费采用全面覆盖收费过程的信息化系统,因而可以采集大量收费数据。研究所需的数据字段包括INSTATIONID(入口收费站编码)、INTIME(入口时间)、EXITSTATION(出口收费站编码)、EXITTIME(出口时间),如表1所示。A1. my country's highway toll collection adopts an information system that fully covers the toll collection process, so a large amount of toll data can be collected. The data fields required for the study include INSTATIONID (entry toll station code), INTIME (entry time), EXITSTATION (exit toll station code), EXITTIME (exit time), as shown in Table 1.
表1收费数据字段说明表Table 1 Charge data field description table
所述的高速公路行程时间预测方法研究,其中,所述步骤B的具体分析过程为:The research on the expressway travel time prediction method, wherein, the specific analysis process of the step B is:
B1.收费数据处理分两步进行,第一:剔除异常数据,包括缺失数据、错误数据等;第二:根据四分位法筛选有效数据,有效数据是指可以有效反映整体数值情况的数据集合,其区间为[tmin,tmax]。B1. The charging data processing is carried out in two steps. The first is to eliminate abnormal data, including missing data and wrong data. , whose interval is [t min ,t max ].
B2.异常数据主要包含以下四种类型:B2. Abnormal data mainly includes the following four types:
缺少进入/离开收费站或进入/离开的时间信息:当收费系统软件产生异常或者线路传输出现错误时,收费系统无法录入完整的收费数据信息;Lack of entry/exit toll booth or entry/exit time information: When the toll system software is abnormal or there is an error in the line transmission, the toll system cannot input complete toll data information;
相同进出收费站数据:当驾驶员在服务区交换收费卡从而逃避收费的行为发生时,会导致收费系统中记录的车辆在入口收费站和出口收费站的时间相同;The same data entering and leaving the toll booth: When the driver exchanges the toll card in the service area to avoid the toll collection, it will cause the vehicle recorded in the toll collection system to have the same time at the entrance toll booth and the exit toll booth;
异常时间数据记录。收费系统虽日益完善,但也存在不同收费站的系统不同步的弊端,从而导致不同收费站时间出现偏差,造成了入口时间晚于出口时间的现象。通常这种情况会在凌晨收费系统更新日期时发生;Abnormal time data record. Although the toll collection system is becoming more and more perfect, there is also the disadvantage that the systems of different toll stations are not synchronized, which leads to the deviation of the time of different toll stations, resulting in the phenomenon that the entrance time is later than the exit time. Usually this happens in the early hours of the morning when the charging system is updated;
异常时间数据记录。由于高速公路的特殊性,路段上一般会设置服务区和停车区,从而出现长途车辆长时间驻留的现象。Abnormal time data record. Due to the particularity of expressways, service areas and parking areas are generally set up on the road sections, resulting in the phenomenon of long-distance vehicles staying for a long time.
B3.在去除错误数据的基础上,基于四分位法筛选有效数据。行程时间有效数据集合下限和上限计算公式为:B3. On the basis of removing erroneous data, screen valid data based on quartile method. The formula for calculating the lower limit and upper limit of the valid data set of travel time is:
tmin=t25%-1.5×(t75%-t25%)t min =t 25% -1.5×(t 75% -t 25% )
tmax=t75%+1.5×(t75%-t25%)t max =t 75% +1.5×(t 75% -t 25% )
t25%--25%分位数t 25% --25% quantile
t75%---75%分位数t 75% --- 75% quantile
tmin---行程时间有效数据集合下限值t min --- lower limit value of valid data set of travel time
tmax---行程时间有效数据集合上限值。t max ---The upper limit value of the valid data set of travel time.
所述的高速公路行程时间预测方法研究,其中,所述步骤C的具体分析过程为:The research on the expressway travel time prediction method, wherein, the specific analysis process of the step C is:
C1.网络构建。构建包含输入层、隐含层和输出层的三层小波神经网络。如图1所示,其中X1,X2,...,Xm(m表示输入神经元个数)表示小波神经网络的输入,Y1,Y2,...,Yn(n表示输出神经元个数),J表示隐含层节点个数,ωij和ωjk分别指输入层与隐含层,隐含层和输出层之间的权重,其中i=1,2,...,m;j=1,2,...,J;k=1,2,...,n。C1. Network construction. Construct a three-layer wavelet neural network with input layer, hidden layer and output layer. As shown in Figure 1, where X 1 , X 2 ,...,X m (m represents the number of input neurons) represents the input of the wavelet neural network, Y 1 , Y 2 ,..., Y n (n represents the input of the wavelet neural network) The number of output neurons), J represents the number of hidden layer nodes, ω ij and ω jk respectively refer to the weight between the input layer and the hidden layer, the hidden layer and the output layer, where i=1, 2, .. .,m; j=1,2,...,J; k=1,2,...,n.
C2.网络初始化。随机初始化小波函数的伸缩因子aj,平移因子bj,连接权重ωij(输入层与隐含层)和ωjk(隐含层与输出层)。设置小波神经网络的学习速率η1和η2。C2. Network initialization. Randomly initialize the scaling factor a j of the wavelet function, the translation factor b j , the connection weights ω ij (input layer and hidden layer) and ω jk (hidden layer and output layer). Set the learning rates η 1 and η 2 of the wavelet neural network.
伸缩因子的调整公式如下:The adjustment formula of the scaling factor is as follows:
---调整前伸缩因子; --- Adjust the front scaling factor;
---调整后伸缩因子; --- Adjusted scaling factor;
η2---小波参数的学习速率,可取η2=0.01。η 2 --- the learning rate of wavelet parameters, which can be taken as η 2 =0.01.
平移因子的调整公式如下:The adjustment formula of the translation factor is as follows:
---调整前平移因子值; ---Translation factor value before adjustment;
---调整后平移因子值; --- Adjusted translation factor value;
η2---小波参数的学习速率,可取η2=0.01。η 2 --- the learning rate of wavelet parameters, which can be taken as η 2 =0.01.
输入层和隐含层之间可通过下式修正调整:The adjustment between the input layer and the hidden layer can be adjusted by the following formula:
---调整之前输入层与隐含层之间的权值; --- Adjust the weights between the input layer and the hidden layer before;
---调整之后输入层与隐含之间的权值; ---The weight between the input layer and the hidden layer after adjustment;
η1---网络权值参数的学习速率,可取η1=0.01。η 1 --- the learning rate of the network weight parameter, which can be η 1 =0.01.
隐含层和输出层之间可通过下式修正调整:The adjustment between the hidden layer and the output layer can be adjusted by the following formula:
---调整之前隐含层与输出层之间的权值; --- Adjust the weights between the hidden layer and the output layer before;
---调整之后隐含层与输出层之间的权值; ---After adjustment, the weights between the hidden layer and the output layer;
η1---网络权值参数的学习速率,可取η1=0.01。η 1 --- the learning rate of the network weight parameter, which can be η 1 =0.01.
C3.预测输出。将训练样本输入网络,从而计算网络的预测输出并计算网络输出和期望输出误差e。C3. Predict output. The training samples are fed into the network to calculate the predicted output of the network and calculate the error e between the network output and the expected output.
C4.误差计算。计算网络的预测输出和期望输出之间的误差e。具体计算公式为:C4. Error calculation. Calculate the error e between the predicted output of the network and the expected output. The specific calculation formula is:
yp,k(k)---实际输出值;y p,k (k)---actual output value;
tp,k---理想输出值。t p,k --- ideal output value.
C5.权值修正。为了使得误差满足要求,采用梯度下降法修正小波神经网络的权值和参数。C5. Weight correction. In order to make the error meet the requirements, the weights and parameters of the wavelet neural network are modified by the gradient descent method.
C6.如果训练次数大于1000或者e满足预测精度要求(e<0.0001,误差精度设定为0.0001,若误差精度若设定过高,网络收敛速度慢;若误差精度设定过低,影响预测结果的准确性)时,结束训练返回预测结果,否则继续学习和训练。C6. If the number of training times is greater than 1000 or e meets the prediction accuracy requirements (e<0.0001, the error accuracy is set to 0.0001. If the error accuracy is set too high, the network convergence speed will be slow; if the error accuracy is set too low, the prediction result will be affected. accuracy), end the training and return the prediction result, otherwise continue learning and training.
基于小波神经网络的行程时间预测试验流程如图2所示。The test flow of travel time prediction based on wavelet neural network is shown in Figure 2.
所述的高速公路行程时间预测方法研究,其中,所述步骤D的具体分析过程为:The research on the method for predicting the travel time of the expressway, wherein, the specific analysis process of the step D is:
D1.网络构建:构建包含输入层、隐含层和输出层的三层POS-WNN神经网络D1. Network construction: construct a three-layer POS-WNN neural network including input layer, hidden layer and output layer
D2.参数初始化处理:系统随机生成S个粒子,并利用这些粒子的位置矢量来表示小波基函数中的伸缩因子和平移因子aj,bj;以及权重值ωij(第i个输入和第j个隐层间的权重值)和ωj(第j个隐层和输出层间的权重值),计算公式如下。同时设定粒子的最大最小速度,学习速率及最大迭代次数。D2. Parameter initialization processing: the system randomly generates S particles, and uses the position vectors of these particles to represent the scaling factors and translation factors a j , b j in the wavelet basis function; and the weight value ω ij (the ith input and the first The weight value between the j hidden layers) and ω j (the weight value between the jth hidden layer and the output layer), the calculation formula is as follows. At the same time, set the maximum and minimum speed of particles, the learning rate and the maximum number of iterations.
xs=(xs,1,...,xs,d,...,xs,D)=(a1,...,aJ,b1,...,bJ,ω11,...,ω1J,ω21,...,ω2J,...,ω291,...,ω29J,ω1,...,ωJ)x s =(x s,1 ,...,x s,d ,...,x s,D )=(a 1 ,...,a J ,b 1 ,...,b J ,ω 11 ,...,ω 1J ,ω 21 ,...,ω 2J ,...,ω 291 ,...,ω 29J ,ω 1 ,...,ω J )
D=m×J+J×(m-n)+(m-1)×JD=m×J+J×(m-n)+(m-1)×J
m---输入层节点数m---number of input layer nodes
J---隐含层节点数J---the number of hidden layer nodes
n---输出层节点数n---the number of output layer nodes
D3.网络训练。基于实际输出值与理想输出值间的误差,计算每次迭代过程中粒子适应度,计算公式如下。D3. Network training. Based on the error between the actual output value and the ideal output value, the particle fitness in each iteration process is calculated, and the calculation formula is as follows.
Q---训练样本总数Q---Total number of training samples
n---网络输出神经元个数n---the number of output neurons of the network
yp,k(k)---实际输出值y p,k (k)---actual output value
tp,k---理想输出值。t p,k --- ideal output value.
D4.将粒子适应度作为判定是否达到设定的误差要求的指标,如果能够达到设定的误差要求,即适应度值基本保持不变,则完成训练,转至第F步;如果依旧达不到误差要求,则进行下一步。D4. Use the particle fitness as an indicator to determine whether the set error requirement is met. If the set error requirement can be met, that is, the fitness value remains basically unchanged, then the training is completed and go to step F; if it still fails to meet the set error requirement To the error requirement, proceed to the next step.
D5.判断训练的次数是否达到了设定的最大迭代次数,如果达到了,则跳出循环,转至第F步,停止训练;否则按照下式更新粒子的速度和位置,返回步骤C继续训练。D5. Determine whether the number of training has reached the set maximum number of iterations, if so, jump out of the loop, go to step F, and stop training; otherwise, update the speed and position of the particle according to the following formula, and return to step C to continue training.
vs,d(i+1)=ω×vs,d(i)+c1r1[ps,d-xs,d(i)]+c2r2[pg,d-xs,d(i)]v s,d (i+1)=ω×v s,d (i)+c 1 r 1 [p s,d -x s,d (i)]+c 2 r 2 [p g,d -x s,d (i)]
xs,d(i+1)=xs,d(i)+vs,d(i+1)x s,d (i+1)=x s,d (i)+v s,d (i+1)
s=1,2,..,S;d=1,2,...,Ds=1,2,..,S; d=1,2,...,D
c1,c2---加速因子c 1 ,c 2 --- acceleration factor
i---当前迭代次数i---current iteration number
ω---惯性因子ω---Inertia factor
r1,r2---0和1之间均匀分布的随机数。r 1 ,r 2 --- Random numbers uniformly distributed between 0 and 1.
D6.网络调试:选择训练样本的特定时段样本值作为输入值,训练样本中的另一特定时段的实际值作为理想输出值,根据步骤C适应度计算公式计算误差,若满足误差精度的设定,则结束运行;若不能满足设定的误差精度,则转至第C步。D6. Network debugging: Select the sample value of the training sample in a specific period as the input value, and the actual value of another specific period in the training sample as the ideal output value, and calculate the error according to the fitness calculation formula in step C. If the error accuracy setting is satisfied , then end the operation; if the set error accuracy cannot be met, go to step C.
基于粒子群优化小波神经网络的行程时间预测模型实验流程如图3所示。The experimental flow of the travel time prediction model based on particle swarm optimization wavelet neural network is shown in Figure 3.
所述的高速公路行程时间预测方法研究,其中,所述步骤E的具体分析过程为:The research on the method for predicting the travel time of the expressway, wherein, the specific analysis process of the step E is:
E1.采用平均绝对误差(MAE),平均相对误差(MAPE)、均方误差(MSE)3项评价指标对2种预测模型精度进行对比分析。E1. Using mean absolute error (MAE), mean relative error (MAPE) and mean square error (MSE) three evaluation indicators to compare and analyze the accuracy of the two prediction models.
E2.设tp,k表示行程时间实际值,yp,k(k)表示行程时间预测值,l表示预测时间段个数。E2. Let t p,k represent the actual value of travel time, y p,k (k) represent the predicted value of travel time, and l represent the number of predicted time periods.
E3.对平均绝对误差评价指标进行计算,具体的计算表达式为:E3. Calculate the mean absolute error evaluation index, and the specific calculation expression is:
平均绝对误差(MAE)——用于评定实际值与预测值之间的差异的指标。Mean Absolute Error (MAE) - A measure used to assess the difference between actual and predicted values.
E4.对平均相对误差评价指标进行计算,具体的计算表达式为:E4. Calculate the average relative error evaluation index, and the specific calculation expression is:
平均相对误差(MAPE)——在行程时间预测过程中,用于评定行程时间预测结果精确度大小的指标。Mean Relative Error (MAPE)—In the process of travel time prediction, it is used to evaluate the accuracy of travel time prediction results.
E5.对均方误差评价指标进行计算,具体的计算表达式为:E5. Calculate the mean square error evaluation index, and the specific calculation expression is:
均方误差(MSE)----综合评价数据的变化程度。Mean Squared Error (MSE)----Comprehensive evaluation of the degree of change in the data.
采用平均绝对误差(MAE),平均相对误差(MAPE)、均方误差(MSE)3项评价指标对2种预测模型精度进行对比分析。实验结果显示:粒子群优化的小波神经网络行程时间预测模型预测结果的平均绝对误差,平均相对误差和均方误差相较于小波神经网络模型分别降低了83.36%,82.20%和98.15%。粒子群优化的小波神经网络行程时间预测模型不仅预测精度高,而且能比较准确的预测出行程时间的走向及波动情况,在收敛速度方面也呈现出一定的优势,具有较好的适应能力。The mean absolute error (MAE), mean relative error (MAPE) and mean square error (MSE) were used to compare and analyze the accuracy of the two prediction models. The experimental results show that the mean absolute error, mean relative error and mean square error of the prediction results of the wavelet neural network travel time prediction model of particle swarm optimization are reduced by 83.36%, 82.20% and 98.15% respectively compared with the wavelet neural network model. The wavelet neural network travel time prediction model of particle swarm optimization not only has high prediction accuracy, but also can accurately predict the trend and fluctuation of travel time. It also shows certain advantages in convergence speed and has good adaptability.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010068929.3A CN111311905A (en) | 2020-01-21 | 2020-01-21 | Particle swarm optimization wavelet neural network-based expressway travel time prediction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010068929.3A CN111311905A (en) | 2020-01-21 | 2020-01-21 | Particle swarm optimization wavelet neural network-based expressway travel time prediction method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111311905A true CN111311905A (en) | 2020-06-19 |
Family
ID=71144901
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010068929.3A Pending CN111311905A (en) | 2020-01-21 | 2020-01-21 | Particle swarm optimization wavelet neural network-based expressway travel time prediction method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111311905A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112633592A (en) * | 2020-12-30 | 2021-04-09 | 鱼快创领智能科技(南京)有限公司 | Vehicle frequent-running route calculation method and system based on machine learning clustering algorithm |
CN112906993A (en) * | 2021-01-12 | 2021-06-04 | 西安石油大学 | Expressway green traffic station-passing inspection time prediction method |
CN115158094A (en) * | 2022-08-02 | 2022-10-11 | 重庆大学 | Plug-in hybrid electric vehicle energy management method based on long-short-term SOC (System on chip) planning |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3099934B2 (en) * | 1994-09-08 | 2000-10-16 | 株式会社東芝 | Travel time prediction device |
JP3212241B2 (en) * | 1995-08-25 | 2001-09-25 | 株式会社東芝 | Traffic flow prediction device |
CN103077610A (en) * | 2012-12-31 | 2013-05-01 | 清华大学 | Road trip time estimating method and system |
CN105355049A (en) * | 2015-11-05 | 2016-02-24 | 北京航空航天大学 | Highway running state evaluation method based on macroscopic fundamental diagram |
CN105761488A (en) * | 2016-03-30 | 2016-07-13 | 湖南大学 | Real-time limit learning machine short-time traffic flow prediction method based on fusion |
CN105913661A (en) * | 2016-06-15 | 2016-08-31 | 北京航空航天大学 | Highway road section traffic state discrimination method based on charging data |
CN106372722A (en) * | 2016-09-18 | 2017-02-01 | 中国科学院遥感与数字地球研究所 | Subway short-time flow prediction method and apparatus |
CN106971536A (en) * | 2017-04-17 | 2017-07-21 | 武汉云砥信息科技有限公司 | It is a kind of to merge Floating Car and the highway congestion status detection method of trackside video |
-
2020
- 2020-01-21 CN CN202010068929.3A patent/CN111311905A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3099934B2 (en) * | 1994-09-08 | 2000-10-16 | 株式会社東芝 | Travel time prediction device |
JP3212241B2 (en) * | 1995-08-25 | 2001-09-25 | 株式会社東芝 | Traffic flow prediction device |
CN103077610A (en) * | 2012-12-31 | 2013-05-01 | 清华大学 | Road trip time estimating method and system |
CN105355049A (en) * | 2015-11-05 | 2016-02-24 | 北京航空航天大学 | Highway running state evaluation method based on macroscopic fundamental diagram |
CN105761488A (en) * | 2016-03-30 | 2016-07-13 | 湖南大学 | Real-time limit learning machine short-time traffic flow prediction method based on fusion |
CN105913661A (en) * | 2016-06-15 | 2016-08-31 | 北京航空航天大学 | Highway road section traffic state discrimination method based on charging data |
CN106372722A (en) * | 2016-09-18 | 2017-02-01 | 中国科学院遥感与数字地球研究所 | Subway short-time flow prediction method and apparatus |
CN106971536A (en) * | 2017-04-17 | 2017-07-21 | 武汉云砥信息科技有限公司 | It is a kind of to merge Floating Car and the highway congestion status detection method of trackside video |
Non-Patent Citations (3)
Title |
---|
姚佳辰: "基于浮动车GPS数据的城市路况判别与短时预测", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 * |
李少华等: "基于改进的PSO算法的小波神经网络", 《科研新视野》 * |
陈娇娜: "大数据驱动下的高速公路交通运行状态评价与分析", 《中国博士学位论文全文数据库 工程科技Ⅱ辑》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112633592A (en) * | 2020-12-30 | 2021-04-09 | 鱼快创领智能科技(南京)有限公司 | Vehicle frequent-running route calculation method and system based on machine learning clustering algorithm |
CN112633592B (en) * | 2020-12-30 | 2023-07-18 | 鱼快创领智能科技(南京)有限公司 | Vehicle constant running route calculation method and system based on machine learning clustering algorithm |
CN112906993A (en) * | 2021-01-12 | 2021-06-04 | 西安石油大学 | Expressway green traffic station-passing inspection time prediction method |
CN115158094A (en) * | 2022-08-02 | 2022-10-11 | 重庆大学 | Plug-in hybrid electric vehicle energy management method based on long-short-term SOC (System on chip) planning |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023056696A1 (en) | Urban rail transit short-term passenger flow forecasting method based on recurrent neural network | |
CN108269401B (en) | Data-driven viaduct traffic jam prediction method | |
CN111951553B (en) | Prediction method based on traffic big data platform and mesoscopic simulation model | |
CN111931978B (en) | A method for predicting passenger flow status of urban rail transit based on spatiotemporal characteristics | |
CN115240431B (en) | Real-time online simulation system and method for traffic flow of highway toll station | |
CN106845768B (en) | Bus travel time model construction method based on survival analysis parameter distribution | |
CN114596700B (en) | Real-time traffic estimation method for expressway section based on portal data | |
CN111311905A (en) | Particle swarm optimization wavelet neural network-based expressway travel time prediction method | |
CN110210648B (en) | A method for predicting strategic flow in controlled airspace based on gray long-short-term memory network | |
CN113591380A (en) | Traffic flow prediction method, medium and equipment based on graph Gaussian process | |
CN115512543B (en) | Vehicle path chain reconstruction method based on deep reverse reinforcement learning | |
CN111179592B (en) | Urban traffic prediction method and system based on spatio-temporal data flow fusion analysis | |
CN108417032A (en) | A Method for Analysis and Prediction of On-street Parking Demand in Urban Central Area | |
CN113449905A (en) | Traffic jam early warning method based on gated cyclic unit neural network | |
CN112767684A (en) | Highway traffic jam detection method based on charging data | |
CN110889092A (en) | Short-time large-scale activity peripheral track station passenger flow volume prediction method based on track transaction data | |
Yang et al. | Short-term prediction of airway congestion index using machine learning methods | |
CN110991776A (en) | Method and system for realizing water level prediction based on GRU network | |
CN108600965A (en) | A kind of passenger flow data prediction technique based on guest location information | |
CN110659774B (en) | Parking demand forecasting method driven by big data method | |
Bao | A multi-index fusion clustering strategy for traffic flow state identification | |
CN118397826A (en) | Traffic flow prediction method based on graph neural network and distribution characterization matching | |
CN114116756B (en) | Engineering cost data correction system and method thereof | |
CN110008571A (en) | An urban rail transit project investment calculation method and system | |
CN109255956A (en) | A kind of charge station's magnitude of traffic flow method for detecting abnormality |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20200619 |