[go: up one dir, main page]

CN111310506A - Decoding method and device for RFID reader - Google Patents

Decoding method and device for RFID reader Download PDF

Info

Publication number
CN111310506A
CN111310506A CN202010405234.XA CN202010405234A CN111310506A CN 111310506 A CN111310506 A CN 111310506A CN 202010405234 A CN202010405234 A CN 202010405234A CN 111310506 A CN111310506 A CN 111310506A
Authority
CN
China
Prior art keywords
signal
waveform
type
correlation result
absolute value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010405234.XA
Other languages
Chinese (zh)
Other versions
CN111310506B (en
Inventor
王于波
李德建
唐晓柯
陈家国
马岩
张喆
冯曦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Information and Telecommunication Co Ltd
Beijing Smartchip Microelectronics Technology Co Ltd
Original Assignee
State Grid Information and Telecommunication Co Ltd
Beijing Smartchip Microelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Information and Telecommunication Co Ltd, Beijing Smartchip Microelectronics Technology Co Ltd filed Critical State Grid Information and Telecommunication Co Ltd
Priority to CN202010405234.XA priority Critical patent/CN111310506B/en
Publication of CN111310506A publication Critical patent/CN111310506A/en
Application granted granted Critical
Publication of CN111310506B publication Critical patent/CN111310506B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10198Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves setting parameters for the interrogator, e.g. programming parameters and operating modes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/124Sampling or signal conditioning arrangements specially adapted for A/D converters
    • H03M1/1245Details of sampling arrangements or methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver

Landscapes

  • Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

本发明实施例提供一种用于RFID读写器的解码方法及装置,属于数字信号处理技术领域,解决了现有技术中RFID读写器在低信噪比环境下误码率高的问题。所述方法包括:接收电子标签的返回信号;以预设采样频率,从返回信号中得到同相信号和正交信号,预设采样频率为返回信号的返回频率的预设倍数;根据同相信号与正交信号的数据相位,得到返回信号对应的复信号;根据返回频率、预设采样频率、频率预设偏离范围以及返回信号的编码类型,确定复信号中的待解码数据以及实际过采样数;根据返回信号的编码类型以及实际过采样数,确定实际过采样数对应的相关周期内的待解码数据对应的解码结果。本发明实施例适用于RFID读写器的解码过程。

Figure 202010405234

Embodiments of the present invention provide a decoding method and device for an RFID reader, belonging to the technical field of digital signal processing, and solving the problem of a high bit error rate of an RFID reader in a low signal-to-noise ratio environment in the prior art. The method includes: receiving a return signal of an electronic tag; obtaining an in-phase signal and a quadrature signal from the return signal at a preset sampling frequency, where the preset sampling frequency is a preset multiple of the return frequency of the return signal; according to the in-phase signal According to the data phase of the quadrature signal, the complex signal corresponding to the return signal is obtained; according to the return frequency, the preset sampling frequency, the preset frequency deviation range and the encoding type of the return signal, the data to be decoded and the actual number of oversampling in the complex signal are determined ; According to the encoding type of the returned signal and the actual oversampling number, determine the decoding result corresponding to the data to be decoded in the correlation period corresponding to the actual oversampling number. The embodiments of the present invention are applicable to the decoding process of the RFID reader/writer.

Figure 202010405234

Description

用于RFID读写器的解码方法及装置Decoding method and device for RFID reader

技术领域technical field

本发明涉及数字信号处理技术领域,具体地涉及一种用于RFID读写器的解码方法及装置。The invention relates to the technical field of digital signal processing, in particular to a decoding method and device for an RFID reader/writer.

背景技术Background technique

RFID(Radio Frequency Identification,射频识别)技术是一种广泛应用于物流、资产管理、物品防伪等方面的无线通信技术。而RFID技术的核心技术之一就是解码技术。RFID (Radio Frequency Identification, radio frequency identification) technology is a wireless communication technology widely used in logistics, asset management, anti-counterfeiting and other aspects. One of the core technologies of RFID technology is decoding technology.

RFID读写器在接收到电子标签的输入信号后进行解码,在现有技术中,对于将要解码的输入信号没有明确地限定。输入信号包括同相信号和正交信号,在RFID读写器与电子标签的距离发生变化的过程中,强信号会在同相和正交信号两路之间快速的变换,当RFID读写器的处理速度跟不上强信号变换速度时,解调会出现误码。The RFID reader/writer performs decoding after receiving the input signal of the electronic tag. In the prior art, the input signal to be decoded is not clearly defined. The input signal includes in-phase signal and quadrature signal. In the process of changing the distance between the RFID reader and the electronic tag, the strong signal will rapidly change between the in-phase and quadrature signals. When the processing speed cannot keep up with the transformation speed of the strong signal, the demodulation will cause bit errors.

发明内容SUMMARY OF THE INVENTION

本发明实施例的目的是提供一种用于RFID读写器的解码方法及装置,解决了现有技术中RFID读写器在低信噪比环境下误码率高的问题,克服了RFID读写器与电子标签相对移动而造成的强信号快速变换。The purpose of the embodiments of the present invention is to provide a decoding method and device for an RFID reader, which solves the problem of a high bit error rate of the RFID reader in the prior art in a low signal-to-noise ratio environment, and overcomes the problem of RFID reading. The rapid change of strong signal caused by the relative movement of the writer and the electronic tag.

为了实现上述目的,本发明实施例提供一种用于RFID读写器的解码方法,所述方法包括:接收电子标签的返回信号;以预设采样频率,从所述返回信号中得到同相信号和正交信号,所述预设采样频率为所述返回信号的返回频率的预设倍数;根据所述同相信号与所述正交信号的数据相位,得到所述返回信号对应的复信号;根据所述返回频率、所述预设采样频率、频率预设偏离范围以及所述返回信号的编码类型,确定所述复信号中的待解码数据以及单导频音的实际过采样数;根据所述返回信号的编码类型以及所述实际过采样数,确定所述实际过采样数对应的相关周期内的所述待解码数据对应的解码结果。In order to achieve the above purpose, an embodiment of the present invention provides a decoding method for an RFID reader, the method includes: receiving a return signal of an electronic tag; obtaining an in-phase signal from the return signal at a preset sampling frequency and a quadrature signal, the preset sampling frequency is a preset multiple of the return frequency of the return signal; according to the data phase of the in-phase signal and the quadrature signal, the complex signal corresponding to the return signal is obtained; According to the return frequency, the preset sampling frequency, the frequency preset deviation range and the encoding type of the return signal, determine the data to be decoded in the complex signal and the actual oversampling number of a single pilot tone; The encoding type of the returned signal and the actual oversampling number are used to determine the decoding result corresponding to the data to be decoded in the correlation period corresponding to the actual oversampling number.

进一步地,所述以预设采样频率,从所述返回信号中得到同相信号和正交信号包括:通过模数转换器ADC采样,将所述返回信号中的同相信号与正交信号由模拟域变换为数字域;以所述预设采样频率,分别滤波所述数字域的所述同相信号与所述正交信号。Further, the obtaining the in-phase signal and the quadrature signal from the return signal at the preset sampling frequency includes: sampling through an analog-to-digital converter ADC, and sampling the in-phase signal and the quadrature signal in the return signal by The analog domain is transformed into the digital domain; the in-phase signal and the quadrature signal in the digital domain are filtered respectively at the preset sampling frequency.

进一步地,所述根据所述同相信号与所述正交信号的数据相位,得到所述返回信号对应的复信号包括:根据F=(I+j*Q)*e(-j*Φ),得到所述返回信号对应的复信号F,其中,I为所述同相信号,Q为所述正交信号,Φ为信道相位计算值,其中Φ≈atan(Q/I)。Further, obtaining the complex signal corresponding to the return signal according to the data phase of the in-phase signal and the quadrature signal includes: according to F=(I+j*Q)*e (-j*Φ) , obtain the complex signal F corresponding to the return signal, where I is the in-phase signal, Q is the quadrature signal, and Φ is the calculated value of the channel phase, where Φ≈atan(Q/I).

进一步地,在所述根据所述同相信号与所述正交信号的数据相位,得到所述返回信号对应的复信号之后,所述方法还包括:将所述复信号的实部与预设信号门限进行比较;当所述复信号的实部低于所述预设信号门限时,确定所述电子标签的返回信号为无效信号,结束所述返回信号的解码操作;当所述复信号的实部不低于所述预设信号门限时,确定所述电子标签的返回信号为有效信号,继续所述返回信号的解码操作。Further, after obtaining the complex signal corresponding to the return signal according to the data phase of the in-phase signal and the quadrature signal, the method further includes: comparing the real part of the complex signal with a preset compare the signal thresholds; when the real part of the complex signal is lower than the preset signal threshold, determine that the return signal of the electronic tag is an invalid signal, and end the decoding operation of the return signal; When the real part is not lower than the preset signal threshold, it is determined that the return signal of the electronic tag is a valid signal, and the decoding operation of the return signal is continued.

进一步地,所述根据所述返回频率、所述预设采样频率、频率预设偏离范围以及所述返回信号的编码类型,确定所述复信号中的待解码数据以及单导频音的实际过采样数包括:根据Hl=FS/[F0*(1+r)],Hh=FS/[F0*(1-r)],得到所述复信号中的单导频音的过采样数的下限值Hl与上限值Hh,其中,F0为所述返回频率,FS为所述预设采样频率,±r%为所述频率预设偏离范围;根据所述过采样数的下限值与上限值,得到所述复信号中的单导频音的过采样数的取值范围;根据所述过采样数的取值范围与所述返回信号的编码类型,确定所述过采样数的取值范围中的每个过采样数对应的前导码捕获系数;将每个过采样数对应的前导码捕获系数作为每个过采样数对应的前导码匹配滤波器的系数;将所述复信号的实部与每个过采样数对应的前导码匹配滤波器进行匹配,得到每个过采样数对应的匹配输出值;将所述匹配输出值中的最大值对应的过采样数作为所述复信号中的单导频音的实际过采样数;根据所述编码类型对应的编码协议,确定所述实际过采样数对应的前导码,并将去除所述复信号中的前导码后的数据作为待解码数据。Further, according to the return frequency, the preset sampling frequency, the frequency preset deviation range and the encoding type of the return signal, determine the data to be decoded in the complex signal and the actual frequency of the single pilot tone. The number of samples includes: obtaining a single pilot tone in the complex signal according to H l =F S /[F 0 *(1+r)], H h =F S /[F 0 *(1-r)] The lower limit H l and the upper limit H h of the number of oversampling, where F 0 is the return frequency, F S is the preset sampling frequency, and ±r% is the frequency preset deviation range; according to The lower limit value and the upper limit value of the oversampling number, the value range of the oversampling number of the single pilot tone in the complex signal is obtained; according to the value range of the oversampling number and the return signal Encoding type, determine the preamble capture coefficient corresponding to each oversampling number in the value range of the oversampling number; use the preamble capture coefficient corresponding to each oversampling number as the preamble matching corresponding to each oversampling number The coefficient of the filter; the real part of the complex signal is matched with the preamble matched filter corresponding to each oversampling number to obtain the matching output value corresponding to each oversampling number; The oversampling number corresponding to the value is used as the actual oversampling number of the single pilot tone in the complex signal; according to the encoding protocol corresponding to the encoding type, determine the preamble corresponding to the actual oversampling number, and remove the The data after the preamble in the complex signal is used as the data to be decoded.

进一步地,所述根据所述返回信号的编码类型以及所述实际过采样数,确定所述实际过采样数对应的相关周期内的所述待解码数据对应的解码结果包括:根据所述返回信号的编码类型以及所述实际过采样数,确定所述相关周期内的第一种波形与第二种波形的样点值;在所述待解码数据中,提取所述相关周期内的波形数据;将所述波形数据分别与所述第一种波形的样点值以及所述第二种波形的样点值进行乘累加操作,分别得到与所述第一种波形对应的第一种相关结果以及与所述第二种波形对应的第二种相关结果;将所述第一种相关结果与所述第二种相关结果中的最大值作为信号判决结果;将所述信号判决结果对应的波形确定为所述相关周期内的所述待解码数据对应的解码结果。Further, determining the decoding result corresponding to the data to be decoded in the correlation period corresponding to the actual oversampling number according to the encoding type of the return signal and the actual oversampling number includes: according to the return signal The encoding type and the actual number of oversamplings are determined to determine the sample point values of the first waveform and the second waveform in the relevant period; in the data to be decoded, extract the waveform data in the relevant period; Multiply and accumulate the waveform data with the sample point value of the first type of waveform and the sample point value of the second type of waveform, respectively, to obtain the first type of correlation result corresponding to the first type of waveform and The second type of correlation result corresponding to the second type of waveform; the maximum value between the first type of correlation result and the second type of correlation result is taken as the signal decision result; the waveform corresponding to the signal decision result is determined is the decoding result corresponding to the data to be decoded in the correlation period.

进一步地,所述将所述波形数据分别与所述第一种波形的样点值以及所述第二种波形的样点值进行乘累加操作,分别得到与所述第一种波形对应的第一种相关结果以及与所述第二种波形对应的第二种相关结果包括:将无延迟的所述波形数据、一采样点延迟的所述波形数据、二采样点延迟的所述波形数据分别与所述第一种波形的样点值进行乘累加操作,分别得到所述第一种波形对应的第一种超前相关结果、第一种当前相关结果、第一种延后相关结果;获取所述第一种波形对应的第一种超前相关结果、第一种当前相关结果、第一种延后相关结果对应的绝对值,并将最大的绝对值作为所述第一种波形对应的第一种相关结果;将无延迟的所述波形数据、一采样点延迟的所述波形数据、二采样点延迟的所述波形数据分别与所述第二种波形的样点值进行乘累加操作,分别得到所述第二种波形对应的第二种超前相关结果、第二种当前相关结果、第二种延后相关结果;获取所述第二种波形对应的第二种超前相关结果、第二种当前相关结果、第二种延后相关结果对应的绝对值,并将最大的绝对值作为所述第二种波形对应的第二种相关结果。Further, performing a multiplication and accumulation operation on the waveform data with the sample point value of the first type of waveform and the sample point value of the second type of waveform, respectively, to obtain the first waveform corresponding to the first type of waveform. A correlation result and a second correlation result corresponding to the second waveform include: the waveform data without delay, the waveform data delayed by one sampling point, and the waveform data delayed by two sampling points, respectively. Perform a multiply-accumulate operation with the sample point value of the first type of waveform to obtain the first type of advance correlation result, the first type of current correlation result, and the first type of delayed correlation result corresponding to the first type of waveform respectively; The absolute value corresponding to the first type of advance correlation result, the first type of current correlation result, and the first type of delayed correlation result corresponding to the first type of waveform, and the maximum absolute value is used as the first type of waveform corresponding to the first type of waveform. Correlation results; multiply and accumulate the waveform data without delay, the waveform data delayed by one sampling point, and the waveform data delayed by two sampling points with the sample point value of the second type of waveform, respectively. Obtain the second type of advance correlation result, the second type of current correlation result, and the second type of delayed correlation result corresponding to the second type of waveform; obtain the second type of advance correlation result corresponding to the second type of waveform. The absolute value corresponding to the current correlation result and the second type of delayed correlation result, and the largest absolute value is used as the second type of correlation result corresponding to the second type of waveform.

进一步地,在所述确定所述实际过采样数对应的相关周期内的所述待解码数据对应的解码结果之后,所述方法还包括:将所述第一种波形对应的第一种超前相关结果对应的绝对值与所述第二种波形对应的第二种超前相关结果对应的绝对值进行比较,将最大的绝对值作为超前相关结果绝对值;将所述第一种波形对应的第一种当前相关结果对应的绝对值与所述第二种波形对应的第二种当前相关结果对应的绝对值进行比较,将最大的绝对值作为当前相关结果绝对值;将所述第一种波形对应的第一种延后相关结果对应的绝对值与所述第二种波形对应的第二种延后相关结果对应的绝对值进行比较,将最大的绝对值作为延后相关结果绝对值;根据所述超前相关结果绝对值、当前相关结果绝对值以及延后相关结果绝对值中的最大值,确定读地址标志;根据下述公式中的任意一个,得到下一个相关周期的待解码数据的实际起始点:An=Ao+2-flag,或An=Ao+3-2*flag,其中,An为所述实际起始点,Ao为当前相关周期的结束点,flag为所述读地址标志,当所述超前相关结果绝对值最大时,flag取值为0,当所述当前相关结果绝对值最大时,flag取值为1,当所述延后相关结果绝对值最大时,flag取值为2;从所述实际起始点提取所述下一个相关周期的待解码数据进行解码操作。Further, after determining the decoding result corresponding to the data to be decoded in the correlation period corresponding to the actual oversampling number, the method further includes: correlating the first type of lead corresponding to the first type of waveform The absolute value corresponding to the result is compared with the absolute value corresponding to the second type of advance correlation result corresponding to the second type of waveform, and the largest absolute value is used as the absolute value of the advance correlation result; The absolute value corresponding to the current correlation result is compared with the absolute value corresponding to the second current correlation result corresponding to the second waveform, and the maximum absolute value is used as the absolute value of the current correlation result; the first waveform corresponding to The absolute value corresponding to the first type of delayed correlation result is compared with the absolute value corresponding to the second type of delayed correlation result corresponding to the second waveform, and the largest absolute value is used as the absolute value of the delayed correlation result; The maximum value among the absolute value of the preceding correlation result, the absolute value of the current correlation result and the absolute value of the delayed correlation result is determined, and the read address flag is determined; Starting point: An =A o + 2-flag, or An =A o + 3-2*flag, where An is the actual starting point, A o is the end point of the current correlation cycle, and flag is the Read the address flag, when the absolute value of the advanced correlation result is the largest, the flag value is 0, when the absolute value of the current correlation result is the largest, the flag value is 1, when the absolute value of the delayed correlation result is the largest, The value of flag is 2; the data to be decoded in the next relevant cycle is extracted from the actual starting point to perform a decoding operation.

相应地,本发明实施例还提供一种用于RFID读写器的解码装置,所述装置包括:接收单元,用于接收电子标签的返回信号;信号采样单元,用于以预设采样频率,从所述返回信号中得到同相信号和正交信号,所述预设采样频率为所述返回信号的返回频率的预设倍数;相位计算单元,用于根据所述同相信号与所述正交信号的数据相位,得到所述返回信号对应的复信号;待解码数据确定单元,用于根据所述返回频率、所述预设采样频率、频率预设偏离范围以及所述返回信号的编码类型,确定所述复信号中的待解码数据以及单导频音的实际过采样数;解码单元,用于根据所述返回信号的编码类型以及所述实际过采样数,确定所述实际过采样数对应的相关周期内的所述待解码数据对应的解码结果。Correspondingly, an embodiment of the present invention also provides a decoding device for an RFID reader, the device comprising: a receiving unit for receiving a return signal of an electronic tag; a signal sampling unit for, at a preset sampling frequency, The in-phase signal and the quadrature signal are obtained from the return signal, and the preset sampling frequency is a preset multiple of the return frequency of the return signal; The data phase of the cross signal is obtained to obtain the complex signal corresponding to the return signal; the data to be decoded determination unit is configured to determine the data phase according to the return frequency, the preset sampling frequency, the frequency preset deviation range and the encoding type of the return signal , to determine the actual oversampling number of the data to be decoded and the single pilot tone in the complex signal; the decoding unit is configured to determine the actual oversampling number according to the encoding type of the returned signal and the actual oversampling number The decoding result corresponding to the data to be decoded in the corresponding correlation period.

进一步地,所述信号采样单元还用于,通过模数转换器ADC采样,将所述返回信号中的同相信号与正交信号由模拟域变换为数字域;以所述预设采样频率,分别滤波所述数字域的所述同相信号与所述正交信号。Further, the signal sampling unit is further configured to convert the in-phase signal and the quadrature signal in the return signal from the analog domain to the digital domain by sampling through an analog-to-digital converter ADC; at the preset sampling frequency, The in-phase signal and the quadrature signal of the digital domain are filtered separately.

进一步地,所述相位计算单元还用于,根据F=(I+j*Q)*e(-j*Φ),得到所述返回信号对应的复信号F,其中,I为所述同相信号,Q为所述正交信号,Φ为信道相位计算值,其中Φ≈atan(Q/I)。Further, the phase calculation unit is further configured to obtain the complex signal F corresponding to the return signal according to F=(I+j*Q)*e (-j*Φ) , where I is the in-phase signal, Q is the quadrature signal, Φ is the calculated value of the channel phase, where Φ≈atan(Q/I).

进一步地,所述装置还包括:门限比较单元,用于将所述复信号的实部与预设信号门限进行比较;当所述复信号的实部低于所述预设信号门限时,确定所述电子标签的返回信号为无效信号,结束所述返回信号的解码操作;当所述复信号的实部不低于所述预设信号门限时,确定所述电子标签的返回信号为有效信号,继续所述返回信号的解码操作。Further, the device further includes: a threshold comparison unit, configured to compare the real part of the complex signal with a preset signal threshold; when the real part of the complex signal is lower than the preset signal threshold, determine The return signal of the electronic tag is an invalid signal, and the decoding operation of the return signal is ended; when the real part of the complex signal is not lower than the preset signal threshold, it is determined that the return signal of the electronic tag is a valid signal , and continue the decoding operation of the return signal.

进一步地,所述待解码数据确定单元还用于,根据Hl=FS/[F0*(1+r)],Hh=FS/[F0*(1-r)],得到所述复信号中的单导频音的过采样数的下限值Hl与上限值Hh,其中,F0为所述返回频率,FS为所述预设采样频率,±r%为所述频率预设偏离范围;根据所述过采样数的下限值与上限值,得到所述复信号中的单导频音的过采样数的取值范围;根据所述过采样数的取值范围与所述返回信号的编码类型,确定所述过采样数的取值范围中的每个过采样数对应的前导码捕获系数;将每个过采样数对应的前导码捕获系数作为每个过采样数对应的前导码匹配滤波器的系数;将所述复信号的实部与每个过采样数对应的前导码匹配滤波器进行匹配,得到每个过采样数对应的匹配输出值;将所述匹配输出值中的最大值对应的过采样数作为所述复信号中的单导频音的实际过采样数;根据所述编码类型对应的编码协议,确定所述实际过采样数对应的前导码,并将去除所述复信号中的前导码后的数据作为待解码数据。Further, the to-be-decoded data determination unit is also used to, according to H l =FS /[ F 0 *(1+r)], H h =FS /[ F 0 *(1-r)], to obtain The lower limit H l and the upper limit H h of the oversampling number of a single pilot tone in the complex signal, where F 0 is the return frequency, F S is the preset sampling frequency, ±r% Presetting the deviation range for the frequency; obtaining the value range of the oversampling number of the single pilot tone in the complex signal according to the lower limit value and the upper limit value of the oversampling number; according to the oversampling number The value range and the encoding type of the returned signal, determine the preamble capture coefficient corresponding to each oversampling number in the value range of the oversampling number; take the preamble capture coefficient corresponding to each oversampling number as The coefficient of the preamble matched filter corresponding to each oversampling number; the real part of the complex signal is matched with the preamble matched filter corresponding to each oversampling number to obtain the matching output value corresponding to each oversampling number ; Take the oversampling number corresponding to the maximum value in the matching output value as the actual oversampling number of the single pilot tone in the complex signal; According to the encoding protocol corresponding to the encoding type, determine the actual oversampling number corresponding preamble, and the data after removing the preamble in the complex signal is used as the data to be decoded.

进一步地,所述解码单元还用于,根据所述返回信号的编码类型以及所述实际过采样数,确定所述相关周期内的第一种波形与第二种波形的样点值;在所述待解码数据中,提取所述相关周期内的波形数据;将所述波形数据分别与所述第一种波形的样点值以及所述第二种波形的样点值进行乘累加操作,分别得到与所述第一种波形对应的第一种相关结果以及与所述第二种波形对应的第二种相关结果;将所述第一种相关结果与所述第二种相关结果中的最大值作为信号判决结果;将所述信号判决结果对应的波形确定为所述相关周期内的所述待解码数据对应的解码结果。Further, the decoding unit is further configured to, according to the encoding type of the returned signal and the actual oversampling number, determine the sample point values of the first waveform and the second waveform in the correlation period; In the data to be decoded, extract the waveform data in the relevant period; perform a multiply-accumulate operation on the waveform data with the sample point value of the first type of waveform and the sample point value of the second type of waveform, respectively. Obtain a first type of correlation result corresponding to the first type of waveform and a second type of correlation result corresponding to the second type of waveform; The value is used as the signal decision result; the waveform corresponding to the signal decision result is determined as the decoding result corresponding to the to-be-decoded data in the correlation period.

进一步地,所述解码单元还用于,将无延迟的所述波形数据、一采样点延迟的所述波形数据、二采样点延迟的所述波形数据分别与所述第一种波形的样点值进行乘累加操作,分别得到所述第一种波形对应的第一种超前相关结果、第一种当前相关结果、第一种延后相关结果;获取所述第一种波形对应的第一种超前相关结果、第一种当前相关结果、第一种延后相关结果对应的绝对值,并将最大的绝对值作为所述第一种波形对应的第一种相关结果;将无延迟的所述波形数据、一采样点延迟的所述波形数据、二采样点延迟的所述波形数据分别与所述第二种波形的样点值进行乘累加操作,分别得到所述第二种波形对应的第二种超前相关结果、第二种当前相关结果、第二种延后相关结果;获取所述第二种波形对应的第二种超前相关结果、第二种当前相关结果、第二种延后相关结果对应的绝对值,并将最大的绝对值作为所述第二种波形对应的第二种相关结果。Further, the decoding unit is further configured to separate the waveform data without delay, the waveform data delayed by one sample point, and the waveform data delayed by two sample points with the sample points of the first waveform respectively. Multiply and accumulate the values to obtain the first type of advance correlation result corresponding to the first type of waveform, the first type of current correlation result, and the first type of delayed correlation result; obtain the first type of waveform corresponding to the first type of waveform The absolute value corresponding to the leading correlation result, the first type of current correlation result, and the first type of delayed correlation result, and the maximum absolute value is taken as the first type of correlation result corresponding to the first type of waveform; The waveform data, the waveform data delayed by one sample point, and the waveform data delayed by two sample points are respectively multiplied and accumulated with the sample point value of the second waveform to obtain the first waveform corresponding to the second waveform. Two types of advance correlation results, the second type of current correlation results, and the second type of delayed correlation results; obtain the second type of advanced correlation results, the second type of current correlation results, and the second type of delayed correlation results corresponding to the second type of waveform The absolute value corresponding to the result, and the largest absolute value is used as the second correlation result corresponding to the second waveform.

进一步地,所述装置还包括:起始点校准单元,用于将所述第一种波形对应的第一种超前相关结果对应的绝对值与所述第二种波形对应的第二种超前相关结果对应的绝对值进行比较,将最大的绝对值作为超前相关结果绝对值;将所述第一种波形对应的第一种当前相关结果对应的绝对值与所述第二种波形对应的第二种当前相关结果对应的绝对值进行比较,将最大的绝对值作为当前相关结果绝对值;将所述第一种波形对应的第一种延后相关结果对应的绝对值与所述第二种波形对应的第二种延后相关结果对应的绝对值进行比较,将最大的绝对值作为延后相关结果绝对值;根据所述超前相关结果绝对值、当前相关结果绝对值以及延后相关结果绝对值中的最大值,确定读地址标志;根据下述公式中的任意一个,得到下一个相关周期的待解码数据的实际起始点An=Ao+2-flag,或An=Ao+3-2*flag,其中,An为所述实际起始点,Ao为当前相关周期的结束点,flag为所述读地址标志,当所述超前相关结果绝对值最大时,flag取值为0,当所述当前相关结果绝对值最大时,flag取值为1,当所述延后相关结果绝对值最大时,flag取值为2;从所述实际起始点提取所述下一个相关周期的待解码数据进行解码操作。Further, the device further includes: a starting point calibration unit, configured to compare the absolute value corresponding to the first type of advance correlation result corresponding to the first type of waveform with the second type of advance correlation result corresponding to the second type of waveform The corresponding absolute values are compared, and the largest absolute value is used as the absolute value of the leading correlation result; the absolute value corresponding to the first type of current correlation result corresponding to the first type of waveform and the second type of waveform corresponding to the second type of waveform. The absolute values corresponding to the current correlation results are compared, and the maximum absolute value is used as the absolute value of the current correlation result; the absolute value corresponding to the first type of delayed correlation result corresponding to the first type of waveform corresponds to the second type of waveform. The absolute value corresponding to the second type of delayed correlation result is compared, and the largest absolute value is used as the absolute value of the delayed correlation result; The maximum value of , determine the read address flag; according to any one of the following formulas, obtain the actual starting point of the data to be decoded in the next relevant cycle, A n =A o +2-flag, or An =A o + 3- 2*flag, wherein, A n is the actual starting point, A o is the end point of the current correlation cycle, flag is the read address flag, and when the absolute value of the lead correlation result is the largest, the value of flag is 0, When the absolute value of the current correlation result is the largest, the flag value is 1, and when the absolute value of the delayed correlation result is the largest, the flag value is 2; Decode data for decoding operation.

相应地,本发明实施例还提供一种RFID读写器,所述系统包括:如上所述的用于RFID读写器的解码装置。Correspondingly, an embodiment of the present invention further provides an RFID reader/writer, and the system includes: the above-mentioned decoding device for an RFID reader/writer.

相应地,本发明实施例还提供一种机器可读存储介质,该机器可读存储介质上存储有指令,该指令用于使得机器执行如上所述的用于RFID读写器的解码方法。Correspondingly, an embodiment of the present invention further provides a machine-readable storage medium, where instructions are stored on the machine-readable storage medium, and the instructions are used to cause a machine to execute the above-described decoding method for an RFID reader/writer.

通过上述技术方案,以预设采样频率,从电子标签返回的返回信号中得到同相信号和正交信号,并根据所述同相信号与所述正交信号的数据相位,得到所述返回信号对应的复信号,然后根据所述返回频率、所述预设采样频率、频率预设偏离范围以及所述返回信号的编码类型,确定所述复信号中的待解码数据以及单导频音的实际过采样数,之后根据所述返回信号的编码类型以及所述实际过采样数,确定所述实际过采样数对应的相关周期内的所述待解码数据对应的解码结果。本发明实施例适用于不同编码类型数据的解码(FM0/miller2/miller4/miller8),增强了解码的通用性,同时利用时域匹配滤波技术,捕获信号前导码,得到待解码数据,具有很强的弱信号检测能力。另外,利用同相和正交两路信号作相位计算和旋转,将信号能量集中到一路,既可提升信噪比又可节省处理资源,也能克服RFID读写器与电子标签相对移动而造成的强信号快速变换问题。Through the above technical solution, the in-phase signal and the quadrature signal are obtained from the return signal returned by the electronic tag at a preset sampling frequency, and the return signal is obtained according to the data phase of the in-phase signal and the quadrature signal. The corresponding complex signal, and then according to the return frequency, the preset sampling frequency, the frequency preset deviation range and the encoding type of the return signal, determine the actual data to be decoded and the single pilot tone in the complex signal. The number of oversampling, and then the decoding result corresponding to the data to be decoded in the correlation period corresponding to the actual number of oversampling is determined according to the encoding type of the returned signal and the actual number of oversampling. The embodiment of the present invention is suitable for the decoding of data of different encoding types (FM0/miller2/miller4/miller8), which enhances the versatility of decoding. At the same time, the time-domain matched filtering technology is used to capture the signal preamble and obtain the data to be decoded, which has strong advantages. weak signal detection capability. In addition, using the in-phase and quadrature signals for phase calculation and rotation, and concentrating the signal energy into one channel, can not only improve the signal-to-noise ratio, but also save processing resources, and can also overcome the relative movement of the RFID reader and the electronic tag. The problem of fast switching of strong signals.

本发明实施例的其它特征和优点将在随后的具体实施方式部分予以详细说明。Other features and advantages of embodiments of the present invention will be described in detail in the detailed description section that follows.

附图说明Description of drawings

附图是用来提供对本发明实施例的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明实施例,但并不构成对本发明实施例的限制。在附图中:The accompanying drawings are used to provide a further understanding of the embodiments of the present invention, and constitute a part of the specification, and are used to explain the embodiments of the present invention together with the following specific embodiments, but do not constitute limitations to the embodiments of the present invention. In the attached image:

图1是本发明实施例提供的一种用于RFID读写器的解码方法的流程示意图;1 is a schematic flowchart of a decoding method for an RFID reader provided by an embodiment of the present invention;

图2是本发明实施例提供的前导码捕获以及实际过采样数确定的结构示意图;2 is a schematic structural diagram of preamble acquisition and actual oversampling number determination provided by an embodiment of the present invention;

图3是本发明实施例提供的第一种波形的相关处理结构示意图;3 is a schematic diagram of a related processing structure of a first waveform provided by an embodiment of the present invention;

图4是本发明实施例提供的第二种波形的相关处理结构示意图;4 is a schematic diagram of a related processing structure of a second waveform provided by an embodiment of the present invention;

图5是本发明实施例提供的实际起始点的误差校准的实现结构示意图;5 is a schematic structural diagram of an implementation of error calibration of an actual starting point provided by an embodiment of the present invention;

图6是本发明实施例提供的一种用于RFID读写器的解码装置的结构示意图;6 is a schematic structural diagram of a decoding device for an RFID reader provided by an embodiment of the present invention;

图7是本发明实施例提供的另一种用于RFID读写器的解码装置的结构示意图;7 is a schematic structural diagram of another decoding device for an RFID reader provided by an embodiment of the present invention;

图8是本发明实施例提供的又一种用于RFID读写器的解码装置的结构示意图。FIG. 8 is a schematic structural diagram of another decoding device for an RFID reader/writer provided by an embodiment of the present invention.

具体实施方式Detailed ways

以下结合附图对本发明实施例的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明实施例,并不用于限制本发明实施例。The specific implementations of the embodiments of the present invention will be described in detail below with reference to the accompanying drawings. It should be understood that the specific implementation manners described herein are only used to illustrate and explain the embodiments of the present invention, and are not used to limit the embodiments of the present invention.

图1是本发明实施例提供的一种用于RFID读写器的解码方法的流程示意图。本发明实施例适用于FM0、miller2、miller4、miller8编码类型数据的解码。如图1所示,所述方法包括如下步骤:FIG. 1 is a schematic flowchart of a decoding method for an RFID reader provided by an embodiment of the present invention. The embodiment of the present invention is applicable to decoding of FM0, miller2, miller4, and miller8 encoding type data. As shown in Figure 1, the method includes the following steps:

步骤110,接收电子标签的返回信号。Step 110, receiving the return signal of the electronic tag.

在本发明实施例中,针对无源RFID,当RFID读写器向电子标签传输微波信号后,电子标签通过电磁感应线圈获取能量来对自身短暂供电,并将返回信号返回给所述RFID读写器。In the embodiment of the present invention, for passive RFID, after the RFID reader transmits the microwave signal to the electronic tag, the electronic tag obtains energy through the electromagnetic induction coil to supply power to itself for a short time, and returns the return signal to the RFID reading and writing device.

步骤120,以预设采样频率,从所述返回信号中得到同相信号和正交信号,所述预设采样频率为所述返回信号的返回频率的预设倍数。Step 120: Obtain an in-phase signal and a quadrature signal from the return signal at a preset sampling frequency, where the preset sampling frequency is a preset multiple of the return frequency of the return signal.

在接收所述电子标签的返回信号之后,分别利用模数转换器(Analog to DigitalConverter,ADC)采样,将所述返回信号中的同相信号与正交信号由模拟域变换为数字域。然后,以所述预设采样频率,分别滤波所述数字域的所述同相信号与所述正交信号。其中,由于返回信号的返回频率存在上下浮动,因此为了便于后续处理返回信号,并能够准确提取所述返回信号的实际返回频率,则所述预设采样频率为所述返回信号的返回频率的预设倍数,例如,所述预设倍数为大于或等于16。另外,滤波操作还可以滤除低频噪声、部分直流、高频分量。After receiving the return signal of the electronic tag, an analog-to-digital converter (Analog to Digital Converter, ADC) is used for sampling, and the in-phase signal and the quadrature signal in the return signal are transformed from the analog domain to the digital domain. Then, at the preset sampling frequency, the in-phase signal and the quadrature signal in the digital domain are filtered respectively. Wherein, since the return frequency of the return signal fluctuates up and down, in order to facilitate subsequent processing of the return signal and accurately extract the actual return frequency of the return signal, the preset sampling frequency is a preset sampling frequency of the return frequency of the return signal. Set the multiple, for example, the preset multiple is greater than or equal to 16. In addition, the filtering operation can also filter out low-frequency noise, part of DC, and high-frequency components.

步骤130,根据所述同相信号与所述正交信号的数据相位,得到所述返回信号对应的复信号。Step 130: Obtain a complex signal corresponding to the return signal according to the data phases of the in-phase signal and the quadrature signal.

其中,利用同相和正交两路信号进行相位计算和旋转,从而将信号能量集中到一路,即可提升信噪比又可节省处理资源,也能克服RFID读写器与电子标签相对移动而造成的强信号快速变换问题。Among them, the use of in-phase and quadrature signals for phase calculation and rotation, so as to concentrate the signal energy into one channel, can improve the signal-to-noise ratio and save processing resources, and can also overcome the relative movement of the RFID reader and the electronic tag. The problem of fast transformation of strong signals.

具体地,根据F=(I+j*Q)*e(-j*Φ),得到所述返回信号对应的复信号F,其中,I为所述同相信号,Q为所述正交信号,Φ为信道相位计算值,其中Φ≈atan(Q/I)。Specifically, according to F=(I+j*Q)*e (-j*Φ) , the complex signal F corresponding to the return signal is obtained, where I is the in-phase signal and Q is the quadrature signal , Φ is the calculated value of the channel phase, where Φ≈atan(Q/I).

经过上述相位计算和相位旋转之后,大部分信号都分布在所述复信号的实部,虚部仅有少量信号,在后续处理中可忽略虚部的信号。After the above phase calculation and phase rotation, most of the signals are distributed in the real part of the complex signal, and there are only a few signals in the imaginary part, and the signals in the imaginary part can be ignored in subsequent processing.

另外,为了提高解码的有效性,可对所述复信号进行有效性判断,从而确定其是否为有效信号。例如,将所述复信号的实部与预设信号门限进行比较。其中,所述预设信号门限可为设定噪声功率值的3至5倍。然后,当所述复信号的实部低于所述预设信号门限时,确定所述电子标签的返回信号为无效信号,结束所述返回信号的解码操作。当所述复信号的实部不低于所述预设信号门限时,确定所述电子标签的返回信号为有效信号,则可继续所述返回信号的下述解码操作。In addition, in order to improve the validity of decoding, the validity judgment may be performed on the complex signal, so as to determine whether it is a valid signal. For example, the real part of the complex signal is compared to a preset signal threshold. The preset signal threshold may be 3 to 5 times the set noise power value. Then, when the real part of the complex signal is lower than the preset signal threshold, it is determined that the return signal of the electronic tag is an invalid signal, and the decoding operation of the return signal is ended. When the real part of the complex signal is not lower than the preset signal threshold, it is determined that the return signal of the electronic tag is a valid signal, and the following decoding operation of the return signal can be continued.

步骤140,根据所述返回频率、所述预设采样频率、频率预设偏离范围以及所述返回信号的编码类型,确定所述复信号中的待解码数据以及单导频音的实际过采样数。Step 140, according to the return frequency, the preset sampling frequency, the frequency preset deviation range and the encoding type of the return signal, determine the actual oversampling number of the data to be decoded and the single pilot tone in the complex signal .

其中,确定所述复信号中的待解码数据实际上就是捕获所述复信号中实部的前导码,在将前导码去除后就是待解码数据。而在捕获前导码时,需要确定前导码匹配滤波器的系数,即确定前导码捕获系数。不同的编码类型对应不同的前导码捕获系数。如编码类型为MILLER编码,前导码捕获系数可以是前导码“010111”经过MILLER编码形成的系数或者前导码部分经过MILLER编码形成的系数;如编码类型为FM0编码,前导码捕获系数可以是FM0前导结构“1010v1”,也可以是“1010v1”中的部分。前导码捕获采用时域匹配滤波器对接收信号作处理,相关峰的输出时刻为接收信号的前导码出现时刻。Wherein, it is determined that the data to be decoded in the complex signal is actually the preamble that captures the real part of the complex signal, and the data to be decoded is the data to be decoded after the preamble is removed. When capturing the preamble, it is necessary to determine the coefficient of the preamble matched filter, that is, to determine the preamble capture coefficient. Different coding types correspond to different preamble capture coefficients. If the coding type is MILLER coding, the preamble capture coefficient can be the coefficient formed by the preamble "010111" through MILLER coding or the coefficient formed by the MILLER coding of the preamble part; if the coding type is FM0 coding, the preamble capture coefficient can be the FM0 preamble Structure "1010v1", also part of "1010v1". The preamble capture uses a time-domain matched filter to process the received signal, and the output time of the correlation peak is the time when the preamble of the received signal appears.

首先,需要确定前导码捕获系数。根据Hl=FS/[F0*(1+r)],Hh=FS/[F0*(1-r)],得到所述复信号中的单导频音的过采样数的下限值Hl与上限值Hh,其中,F0为所述返回频率,FS为所述预设采样频率,±r%为依据编码协议确定的所述频率预设偏离范围。根据所述过采样数的下限值与上限值,得到所述复信号中的单导频音的过采样数的取值范围(Hl,Hh)。其中,在计算过采样数的时候,会存在小数数值,在四舍五入后得到所述过采样数的取值范围中的过采样数。为了覆盖所述返回频率的频率偏离范围,需要并行设置过采样数个前导码匹配滤波器进行前导码捕获,每个前导码匹配滤波器的系数为前导码捕获系数。而根据所述过采样数的取值范围与所述返回信号的编码类型,即可确定所述过采样数的取值范围中的每个过采样数对应的前导码捕获系数。然后,将所述复信号的实部与每个过采样数对应的前导码匹配滤波器进行匹配,得到每个过采样数对应的匹配输出值。将过采样数个匹配输出值进行比较,将所述匹配输出值中的最大值对应的过采样数作为所述复信号中的单导频音的实际过采样数。由该实际过采样数也可确定返回信号的实际返回频率,即预设采样频率与实际过采样数的比值,即为实际返回频率。之后,根据所述编码类型对应的编码协议,确定所述实际过采样数对应的前导码,并将去除所述复信号中的前导码后的数据作为待解码数据。First, the preamble capture coefficients need to be determined. According to H l =F S /[F 0 *(1+r)], H h =F S /[F 0 *(1-r)], the oversampling number of the single pilot tone in the complex signal is obtained The lower limit value H l and the upper limit value H h of , where F 0 is the return frequency, F S is the preset sampling frequency, and ±r% is the frequency preset deviation range determined according to the coding protocol. According to the lower limit value and the upper limit value of the oversampling number, the value range (H l , H h ) of the oversampling number of the single pilot tone in the complex signal is obtained. Wherein, when calculating the oversampling number, there will be a decimal value, and after rounding, the oversampling number in the value range of the oversampling number is obtained. In order to cover the frequency deviation range of the return frequency, it is necessary to set up oversampling several preamble matched filters in parallel to perform preamble capture, and the coefficient of each preamble matched filter is the preamble capture coefficient. And according to the value range of the oversampling number and the encoding type of the returned signal, the preamble capture coefficient corresponding to each oversampling number in the value range of the oversampling number can be determined. Then, the real part of the complex signal is matched with the preamble matched filter corresponding to each oversampling number to obtain a matching output value corresponding to each oversampling number. A number of oversampled matching output values are compared, and the oversampling number corresponding to the maximum value in the matching output value is used as the actual oversampling number of the single pilot tone in the complex signal. The actual return frequency of the return signal can also be determined from the actual oversampling number, that is, the ratio of the preset sampling frequency to the actual oversampling number, that is, the actual return frequency. Then, according to the encoding protocol corresponding to the encoding type, the preamble corresponding to the actual oversampling number is determined, and the data after removing the preamble in the complex signal is used as the data to be decoded.

下面以FM0编码类型为例描述步骤104的执行过程,假设所述返回信号的返回频率为320KHz,预设采样频率为6400K,依据编码协议,所述频率预设偏离范围为±15%,则所述复信号中的单导频音的过采样数的取值范围为(6400/(320*1.15),6400/(320*0.85)),即过采样数包括17、18、19、20、21、22、23、24一共8个过采样数,则也需并行设置8个前导码匹配滤波器进行前导码捕获。The execution process of step 104 is described below by taking the FM0 encoding type as an example. Assuming that the return frequency of the return signal is 320KHz, the preset sampling frequency is 6400K, and according to the encoding protocol, the preset deviation range of the frequency is ±15%, then the The value range of the oversampling number of the single pilot tone in the complex signal is (6400/(320*1.15), 6400/(320*0.85)), that is, the oversampling number includes 17, 18, 19, 20, 21 , 22, 23, and 24 have a total of 8 oversampling numbers, then 8 preamble matched filters need to be set in parallel to capture the preamble.

然后,根据FM0编码类型的编码协议,得到8个过采样数对应的前导码捕获系数,即8个前导码匹配滤波器的系数:Then, according to the encoding protocol of the FM0 encoding type, the preamble capture coefficients corresponding to the 8 oversampling numbers are obtained, that is, the coefficients of the 8 preamble matched filters:

1)单导频音的过采样数为17对应的前导码匹配滤波器的系数:1) The coefficients of the preamble matched filter corresponding to the oversampling number of a single pilot tone is 17:

11111111111111111_00000000000000000_00000000111111111_00000000000000000_11111111100000000_1111111111111111111111111111111111_00000000000000000_00000000111111111_00000000000000000_111111111100000000_1111111111111111

2)单导频音的过采样数为18对应的前导码匹配滤波器的系数:2) The number of oversampling of a single pilot tone is 18. The coefficients of the preamble matched filter are:

111111111111111111_000000000000000000_000000000111111111_000000000000000000_111111111000000000_111111111111111111111111111111111111_000000000000000000_000000000111111111_000000000000000000_111111111000000000_111111111111111111

3)单导频音的过采样数为19对应的前导码匹配滤波器的系数:3) The oversampling number of a single pilot tone is 19. The coefficients of the preamble matched filter are:

1111111111111111111_0000000000000000000_0000000001111111111_0000000000000000000_1111111111000000000_11111111111111111111111111111111111111_0000000000000000000_0000000001111111111_0000000000000000000_1111111111000000000_111111111111111111

4)单导频音的过采样数为20对应的前导码匹配滤波器的系数:4) The coefficient of the preamble matched filter corresponding to the oversampling number of a single pilot tone is 20:

11111111111111111111_00000000000000000000_00000000001111111111_00000000000000000000_11111111110000000000_11111111111111111111111111111111111111111_00000000000000000000_00000000001111111111_00000000000000000000_111111111110000000000_1111111111111111111

5)单导频音的过采样数为21对应的前导码匹配滤波器的系数:5) The number of oversampling of a single pilot tone is 21, and the coefficients of the preamble matched filter corresponding to:

111111111111111111111_000000000000000000000_000000000011111111111_000000000000000000000_111111111110000000000_111111111111111111111111111111111111111111_000000000000000000000_000000000011111111111_000000000000000000000_1111111111110000000000_1111111111111111

6)单导频音的过采样数为22对应的前导码匹配滤波器的系数:6) The coefficient of the preamble matched filter corresponding to the oversampling number of a single pilot tone is 22:

1111111111111111111111_0000000000000000000000_0000000000011111111111_0000000000000000000000_1111111111100000000000_11111111111111111111111111111111111111111111_0000000000000000000000_0000000000011111111111_0000000000000000000000_1111111111100000000111111111111111111111111111111_000000000000000000000

7)单导频音的过采样数为23对应的前导码匹配滤波器的系数:7) The coefficients of the preamble matched filter corresponding to the oversampling number of a single pilot tone is 23:

11111111111111111111111_00000000000000000000000_00000000000011111111111_00000000000000000000000_11111111111100000000000_1111111111111111111111111111111111111111111111_00000000000000000000000_000000000000111111111_00000000000000000000000_1111111111111000001111111111111111111111111111111111111111111111111111111111111111111111111

8)单导频音的过采样数为24对应的前导码匹配滤波器的系数:8) The oversampling number of a single pilot tone is 24. The coefficients of the preamble matched filter are:

111111111111111111111111_000000000000000000000000_000000000000011111111111_000000000000000000000000_111111111111000000000000_111111111111111111111111111111111111111111111111_000000000000000000000000_000000000000011111111111_000000000000000000000000_111111111111000000000000_111111111111111111111111

另外,在具体实现时,上述前导码捕获系数中的0用-1表示。In addition, during specific implementation, 0 in the above-mentioned preamble acquisition coefficient is represented by -1.

在确定了8个前导码匹配滤波器的系数之后,即可用这8个前导码匹配滤波器对所述复信号的实部进行匹配。如图2所示,为前导码捕获以及实际过采样数确定的结构示意图,其中并行设置8个前导码匹配滤波器,每个前导码匹配滤波器之后为对应的匹配输出检测器,通过对应的匹配输出检测器得到每个过采样数对应的匹配输出值,并由最大匹配输出检测器得到所述匹配输出值中的最大值,并将该最大值对应的过采样数作为所述复信号中的单导频音的实际过采样数。之后,可根据所述编码类型对应的编码协议,确定所述实际过采样数对应的前导码,并将去除所述复信号中的前导码后的数据作为待解码数据。After the coefficients of the 8 preamble matched filters are determined, the real part of the complex signal can be matched with the 8 preamble matched filters. As shown in Figure 2, it is a schematic diagram of the structure of the preamble capture and the actual number of oversampling, in which 8 preamble matched filters are set in parallel, and each preamble matched filter is followed by a corresponding matched output detector. The matching output detector obtains the matching output value corresponding to each oversampling number, and the maximum matching output value is obtained by the maximum matching output detector, and the oversampling number corresponding to the maximum value is used as the complex signal. The actual number of oversampling for a single pilot tone. Afterwards, the preamble corresponding to the actual oversampling number may be determined according to the coding protocol corresponding to the coding type, and the data after removing the preamble in the complex signal is used as the data to be decoded.

步骤150,根据所述返回信号的编码类型以及所述实际过采样数,确定所述实际过采样数对应的相关周期内的所述待解码数据对应的解码结果。Step 150: Determine a decoding result corresponding to the data to be decoded in the correlation period corresponding to the actual oversampling number according to the encoding type of the returned signal and the actual oversampling number.

在得到实际过采样数之后,可根据所述返回信号的编码类型以及所述实际过采样数,确定所述相关周期内的第一种波形与第二种波形的样点值,即确定所述相关周期内的波形0与波形1的样点值,其中,所述相关周期为乘累加的时间周期,即图3和图4中的乘累加的时间周期。After the actual oversampling number is obtained, the sample point values of the first waveform and the second waveform in the relevant period may be determined according to the encoding type of the returned signal and the actual oversampling number, that is, the determination of the The sample point values of waveform 0 and waveform 1 in the correlation period, wherein the correlation period is the time period of multiplying and accumulating, that is, the time period of multiplying and accumulating in FIG. 3 and FIG. 4 .

对FM0编码类型来说,一个相关周期的样点值个数为所述实际过采样数;对MILLER2编码类型来说,一个相关周期的样点值个数为所述实际过采样数的2倍;对MILLER4编码类型来说,一个相关周期的样点值个数为所述实际过采样数的4倍;对MILLER8编码类型来说,一个相关周期的样点值个数为所述实际过采样数的8倍。For FM0 encoding type, the number of sample point values in one correlation cycle is the actual oversampling number; for MILLER2 encoding type, the number of sample point values in one correlation cycle is twice the actual oversampling number. ; For MILLER4 encoding type, the number of sample point values of a correlation cycle is 4 times the actual oversampling number; For MILLER8 encoding type, the number of sample point values of one correlation cycle is the actual oversampling number 8 times the number.

另外,要对所述待解码数据进行解码,就要首先获知其对应的波形0和波形1对应的样点值。In addition, in order to decode the to-be-decoded data, it is necessary to first obtain the sample values corresponding to waveform 0 and waveform 1 corresponding to the data to be decoded.

以FM0编码为例,说明波形0与波形1的产生方法。设一个相关周期的实际过采样数为N,如果N为偶数,一个相关周期内的波形1:N数据样点值均为“1”;一个相关周期内的波形0:相关周期前半部分有N/2个“1”,相关周期后半部分有N/2个“-1”。如果N为奇数,一个相关周期内的波形1:N数据样点值均为“1”;一个相关周期内的波形0:相关周期前半部分有(N-1)/2个“1”,相关周期后半部分有(N+1)/2个“-1”。Taking FM0 encoding as an example, the generation method of waveform 0 and waveform 1 will be described. Let the actual number of oversampling in a correlation cycle be N, if N is an even number, waveform 1 in a correlation cycle: N data sample values are all "1"; waveform 0 in a correlation cycle: there are N in the first half of the correlation cycle /2 "1" and N/2 "-1" in the second half of the relevant period. If N is an odd number, waveform 1 in one correlation cycle: N data sample values are all "1"; waveform 0 in one correlation cycle: There are (N-1)/2 "1"s in the first half of the correlation cycle, and the correlation There are (N+1)/2 "-1"s in the second half of the cycle.

以miller2编码为例,说明波形0与波形1的产生办法。设一个相关周期的实际过采样数为N,Taking the miller2 encoding as an example, the generation method of waveform 0 and waveform 1 will be described. Let the actual number of oversampling for a correlation cycle be N,

1)如果N为偶数且N/2为偶数,一个相关周期内的波形1:相关周期的第一个1/4部分有N/4个“1”,相关周期的第二个1/4部分有N/4个“-1”,相关周期的第三个1/4部分有N/4个“-1”,相关周期的第四个1/4部分有N/4个“1”;一个相关周期内的波形0:相关周期的第一个1/4部分有N/4个“1”,相关周期的第二个1/4部分有N/4个“-1”,相关周期的第三个1/4部分有N/4个“1”,相关周期的第四个1/4部分有N/4个“-1”。1) If N is even and N/2 is even, waveform 1 in one correlation period: the first 1/4 part of the correlation period has N/4 "1"s, the second 1/4 part of the correlation period There are N/4 "-1"s, the third 1/4 part of the correlation period has N/4 "-1"s, the fourth 1/4 part of the correlation period has N/4 "1"s; a Waveform 0 in the correlation period: the first 1/4 part of the correlation period has N/4 "1"s, the second 1/4 part of the correlation period has N/4 "-1"s, the first 1/4 part of the correlation period has N/4 "-1" The three 1/4 parts have N/4 "1"s, and the fourth 1/4 part of the relevant period has N/4 "-1"s.

2)如果N为偶数且N/2为奇数,一个相关周期内的波形1:相关周期的第一个1/4部分有(N-2)/4个“1”,相关周期的第二个1/4部分有(N+2)/4个“-1”,相关周期的第三个1/4部分有(N-2)/4个“-1”,相关周期的第四个1/4部分有(N+2)/4个“1”;一个相关周期内的波形0:相关周期的第一个1/4部分有(N-2)/4个“1”,相关周期的第二个1/4部分有(N+2)/4个“-1”,相关周期的第三个1/4部分有(N-2)/4个“1”,相关周期的第四个1/4部分有(N+2)/4个“-1”。2) If N is even and N/2 is odd, waveform 1 in one correlation period: the first 1/4 part of the correlation period has (N-2)/4 "1"s, the second of the correlation period has (N-2)/4 "1"s The 1/4 part has (N+2)/4 "-1"s, the third 1/4 part of the relevant period has (N-2)/4 "-1"s, the fourth 1/4 of the relevant period 4 parts have (N+2)/4 "1"s; waveform 0 in one correlation cycle: the first 1/4 part of the correlation cycle has (N-2)/4 "1"s, the first 1/4 part of the correlation cycle has (N-2)/4 "1", the Two 1/4 parts have (N+2)/4 "-1"s, the third 1/4 part of the relevant period has (N-2)/4 "1"s, the fourth 1 of the relevant period The /4 part has (N+2)/4 "-1"s.

3)如果N为奇数且(N-1)/2为偶数,一个相关周期内的波形1:相关周期的第一个1/4部分有(N-1)/4个“1”,相关周期的第二个1/4部分有(N-1)/4个“-1”,相关周期的第三个1/4部分有(N-1)/4个“-1”,相关周期的第四个1/4部分有(N+3)/4个“1”;一个相关周期内的波形0:相关周期的第一个1/4部分有(N-1)/4个“1”,相关周期的第二个1/4部分有(N-1)/4个“-1”,相关周期的第三个1/4部分有(N-1)/4个“1”,相关周期的第四个1/4部分有(N+3)/4个“-1”。3) If N is odd and (N-1)/2 is even, waveform 1 in one correlation period: the first 1/4 part of the correlation period has (N-1)/4 "1"s, the correlation period The second 1/4 part has (N-1)/4 "-1"s, the third 1/4 part of the relevant period has (N-1)/4 "-1"s, the first 1/4 part of the relevant period has (N-1)/4 "-1" Four 1/4 parts have (N+3)/4 "1"s; waveform 0 in one correlation cycle: the first 1/4 part of the correlation cycle has (N-1)/4 "1"s, The second 1/4 part of the relevant period has (N-1)/4 "-1"s, the third 1/4 part of the relevant period has (N-1)/4 "1"s, and the The fourth 1/4 part has (N+3)/4 "-1"s.

4)如果N为奇数且(N-1)/2为奇数,一个相关周期内的波形1:相关周期的第一个1/4部分有(N-3)/4个“1”,相关周期的第二个1/4部分有(N+1)/4个“-1”,相关周期的第三个1/4部分有(N+1)/4个“-1”,相关周期的第四个1/4部分有(N+1)/4个“1”;一个相关周期内的波形0:相关周期的第一个1/4部分有(N-3)/4个“1”,相关周期的第二个1/4部分有(N+1)/4个“-1”,相关周期的第三个1/4部分有(N+1)/4个“1”,相关周期的第四个1/4部分有(N+1)/4个“-1”。4) If N is odd and (N-1)/2 is odd, waveform 1 in one correlation period: the first 1/4 part of the correlation period has (N-3)/4 "1"s, the correlation period The second 1/4 part has (N+1)/4 "-1"s, the third 1/4 part of the relevant period has (N+1)/4 "-1"s, the first 1/4 part of the relevant period has (N+1)/4 "-1" Four 1/4 parts have (N+1)/4 "1"s; waveform 0 in one correlation cycle: the first 1/4 part of the correlation cycle has (N-3)/4 "1"s, The second 1/4 part of the relevant period has (N+1)/4 "-1"s, the third 1/4 part of the relevant period has (N+1)/4 "1"s, and the The fourth 1/4 part has (N+1)/4 "-1"s.

同理可得,在一个相关周期的实际过采样数已确定的情况下,也可得到miller4与miller8编码的波形0和波形1的产生方法,此处不再赘述。In the same way, in the case where the actual oversampling number of a relevant period has been determined, the generation method of the waveform 0 and the waveform 1 encoded by the miller4 and the miller8 can also be obtained, which will not be repeated here.

在已经获取每个编码类型对应的第一种波形和第二种波形的样点值之后,即可与所述待解码数据中的所述相关周期内的波形数据进行相关匹配。After the sample point values of the first waveform and the second waveform corresponding to each coding type have been acquired, correlation matching can be performed with the waveform data in the correlation period in the data to be decoded.

其中,将所述波形数据分别与所述第一种波形的样点值以及所述第二种波形的样点值进行乘累加操作,分别得到与所述第一种波形对应的第一种相关结果以及与所述第二种波形对应的第二种相关结果。The waveform data is respectively multiplied and accumulated with the sample point value of the first waveform and the sample point value of the second waveform to obtain the first correlation corresponding to the first waveform. results and a second correlation result corresponding to the second waveform.

具体的,如图3和图4所示的第一种波形的相关处理结构与第二种波形的相关处理结构。Specifically, as shown in FIG. 3 and FIG. 4 , the correlation processing structure of the first waveform and the correlation processing structure of the second waveform are shown.

其中,如图3所示,将无延迟的所述波形数据、一采样点延迟的所述波形数据、二采样点延迟的所述波形数据分别与所述第一种波形的样点值进行乘累加操作,分别得到所述第一种波形对应的第一种超前相关结果、第一种当前相关结果、第一种延后相关结果。然后,获取所述第一种波形对应的第一种超前相关结果、第一种当前相关结果、第一种延后相关结果对应的绝对值,并将最大的绝对值作为所述第一种波形对应的第一种相关结果。Wherein, as shown in FIG. 3 , the waveform data without delay, the waveform data delayed by one sampling point, and the waveform data delayed by two sampling points are respectively multiplied by the sample value of the first waveform The accumulation operation is performed to obtain the first type of advance correlation result, the first type of current correlation result, and the first type of delayed correlation result corresponding to the first type of waveform, respectively. Then, acquire the absolute values corresponding to the first type of advance correlation result, the first type of current correlation result, and the first type of delayed correlation result corresponding to the first type of waveform, and use the largest absolute value as the first type of waveform The corresponding first correlation result.

如图4所示,将无延迟的所述波形数据、一采样点延迟的所述波形数据、二采样点延迟的所述波形数据分别与所述第二种波形的样点值进行乘累加操作,分别得到所述第二种波形对应的第二种超前相关结果、第二种当前相关结果、第二种延后相关结果。然后,获取所述第二种波形对应的第二种超前相关结果、第二种当前相关结果、第二种延后相关结果对应的绝对值,并将最大的绝对值作为所述第二种波形对应的第二种相关结果。As shown in FIG. 4 , the waveform data without delay, the waveform data delayed by one sampling point, and the waveform data delayed by two sampling points are respectively multiplied and accumulated with the sample value of the second waveform. , respectively obtain the second type of advance correlation result, the second type of current correlation result, and the second type of delayed correlation result corresponding to the second type of waveform. Then, obtain the absolute values corresponding to the second type of advance correlation result, the second type of current correlation result, and the second type of delayed correlation result corresponding to the second type of waveform, and use the largest absolute value as the second type of waveform The corresponding second correlation result.

由于波形中的样值点存在“1”与“-1”,因此在乘累加之后可能存在负值,因此取上述相关结果的绝对值,以便于后续进行比较时的数据均为正值。Since there are "1" and "-1" in the sample points in the waveform, there may be negative values after multiplying and accumulating. Therefore, the absolute value of the above correlation result is taken so that the data for subsequent comparisons are all positive values.

之后,将所述第一种相关结果与所述第二种相关结果中的最大值作为信号判决结果,并将所述信号判决结果对应的波形确定为所述相关周期内的所述待解码数据对应的解码结果。也就是说,依据第一种相关结果(对应于波形0)和第二种相关结果(对应于波形1)进行数据0或数据1的判决。如果第一相关结果大于第二相关结果,则判定所述相关周期内的所述待解码数据对应的解码结果为0,反之,若第二相关结果大于第一相关结果,则判定所述相关周期内的所述待解码数据对应的解码结果为1,即得到了前导码之后的第一个相关周期内的待解码数据的解码结果。然后,通过步骤105再继续下一个相关周期内的待解码数据进行解码。After that, the maximum value of the first correlation result and the second correlation result is used as the signal decision result, and the waveform corresponding to the signal decision result is determined as the data to be decoded in the correlation period corresponding decoding result. That is, according to the first correlation result (corresponding to waveform 0) and the second correlation result (corresponding to waveform 1), the decision of data 0 or data 1 is performed. If the first correlation result is greater than the second correlation result, it is determined that the decoding result corresponding to the data to be decoded in the correlation period is 0; otherwise, if the second correlation result is greater than the first correlation result, the correlation period is determined The decoding result corresponding to the data to be decoded is 1, that is, the decoding result of the data to be decoded in the first correlation period after the preamble is obtained. Then, continue decoding the data to be decoded in the next relevant period through step 105 .

但是,由于累积误差和数据速率抖动,在进行相关周期内的待解码数据进行解码的时候,错误的起始点与累积误差会导致数据解码错误,因此,在每个相关周期内的待解码数据解码之后,有必要对下一个相关周期的实际起始点进行误差校准。However, due to accumulated error and data rate jitter, when decoding the data to be decoded in the correlation period, the wrong starting point and accumulated error will lead to data decoding errors. Therefore, the decoding of the to-be-decoded data in each correlation period After that, it is necessary to perform error calibration on the actual starting point of the next relevant cycle.

实际起始点的误差校准的实现结构如图5所示,将所述第一种波形对应的第一种超前相关结果对应的绝对值(即,波形0的第一种超前相关结果对应的绝对值)与所述第二种波形对应的第二种超前相关结果对应的绝对值(即,波形1的第二种超前相关结果对应的绝对值)进行比较,将最大的绝对值作为超前相关结果绝对值,例如,若波形0的第一种超前相关结果对应的绝对值大于波形1的第二种超前相关结果对应的绝对值,则超前相关结果绝对值为波形0的第一种超前相关结果对应的绝对值,反之,亦然。The implementation structure of the error calibration at the actual starting point is shown in FIG. 5 . ) is compared with the absolute value corresponding to the second type of advance correlation result corresponding to the second waveform (ie, the absolute value corresponding to the second type of advance correlation result of waveform 1), and the largest absolute value is taken as the absolute value of the advance correlation result For example, if the absolute value corresponding to the first type of lead correlation result of waveform 0 is greater than the absolute value of the second type of lead correlation result of waveform 1, then the absolute value of the lead correlation result corresponds to the first type of lead correlation result of waveform 0 The absolute value of , and vice versa.

将所述第一种波形对应的第一种当前相关结果对应的绝对值(即,波形0的第一种当前相关结果对应的绝对值)与所述第二种波形对应的第二种当前相关结果对应的绝对值(即,波形1的第二种当前相关结果对应的绝对值)进行比较,将最大的绝对值作为当前相关结果绝对值。The absolute value corresponding to the first type of current correlation result corresponding to the first type of waveform (that is, the absolute value corresponding to the first type of current correlation result of waveform 0) and the second type of current correlation corresponding to the second type of waveform. The absolute value corresponding to the result (that is, the absolute value corresponding to the second current correlation result of waveform 1) is compared, and the maximum absolute value is taken as the absolute value of the current correlation result.

将所述第一种波形对应的第一种延后相关结果对应的绝对值(即,波形0的第一种延后相关结果对应的绝对值)与所述第二种波形对应的第二种延后相关结果对应的绝对值(即,波形1的第二种延后相关结果对应的绝对值)进行比较,将最大的绝对值作为延后相关结果绝对值。The absolute value corresponding to the first type of delayed correlation result corresponding to the first type of waveform (that is, the absolute value corresponding to the first type of delayed correlation result of waveform 0) and the second type of waveform corresponding to the second type of waveform. The absolute values corresponding to the delayed correlation results (that is, the absolute values corresponding to the second type of delayed correlation results of waveform 1) are compared, and the largest absolute value is taken as the absolute value of the delayed correlation results.

然后,根据所述超前相关结果绝对值、当前相关结果绝对值以及延后相关结果绝对值中的最大值,确定读地址标志,其中,当所述超前相关结果绝对值最大时,所述读地址标志取值为0,当所述当前相关结果绝对值最大时,所述读地址标志取值为1,当所述延后相关结果绝对值最大时,所述读地址标志取值为2。所示读地址标志作为实际起始点的产生的输入参数。根据下述公式中的任意一个,得到下一个相关周期的待解码数据的实际起始点:Then, the read address flag is determined according to the maximum value among the absolute value of the early correlation result, the absolute value of the current correlation result, and the absolute value of the late correlation result, wherein, when the absolute value of the early correlation result is the largest, the read address The flag takes a value of 0, when the absolute value of the current correlation result is the largest, the read address flag takes a value of 1, and when the absolute value of the delayed correlation result is the largest, the read address flag takes a value of 2. The read address flag is shown as an input parameter for the generation of the actual starting point. Obtain the actual starting point of the data to be decoded for the next relevant cycle according to any of the following formulas:

An=Ao+2-flag,或An=Ao+3-2*flag,An =A o + 2-flag, or An =A o + 3-2*flag,

其中,An为所述实际起始点,Ao为当前相关周期的结束点,flag为所述读地址标志。Wherein, An is the actual start point, A o is the end point of the current relevant cycle, and flag is the read address flag.

进而,从所述实际起始点提取所述下一个相关周期的待解码数据继续进行解码操作,即执行步骤105中将下一个相关周期内的待解码数据与该编码类型对应的第一种波形的样点值与第二种波形的样点值分别进行相关匹配,从而通过匹配结果确定所述下一个相关周期内的待解码数据的解码结果。Further, extract the data to be decoded in the next relevant cycle from the actual starting point and continue the decoding operation, that is, execute step 105 to compare the data to be decoded in the next relevant cycle with the first waveform corresponding to the encoding type. Correlation matching is performed between the sample point value and the sample point value of the second waveform, so that the decoding result of the data to be decoded in the next correlation period is determined according to the matching result.

通过本发明实施例,能极大提升RFID读写器的解码信噪比。特别在处于环境干扰严重、多径衰落大等场景时,RFID读写器具有极高灵敏的信号检测能力、优秀的解码能力。在本发明实施例中,在解码阶段可以动态调整采样偏差,避免电子标签的返回信号频率出现抖动而引起解码错误,在一个相关周期结束处,通过改变波形相关处理结构的读地址而达到动态调整采样偏差,确定下一个相关周期的实际起始点。另外,不同编码类型数据的解码(FM0/miller2/miller4/miller8)均可通过本发明实施例实现,便于节省处理资源。利用时域匹配滤波技术,估计过采样数,为相关解调提供参数。另外,利用时域匹配滤波技术,捕获信号前导码,得到待解码数据,具有很强的弱信号检测能力。本发明实施例在解码的过程中,利用同相和正交两路信号作相位计算和旋转,产生一路复信号,既可提升信噪比又可节省处理资源,也能克服RFID读写器与电子标签相对移动而造成的强信号快速变换问题。Through the embodiments of the present invention, the decoding signal-to-noise ratio of the RFID reader/writer can be greatly improved. Especially in scenarios with severe environmental interference and large multipath fading, RFID readers have extremely sensitive signal detection capabilities and excellent decoding capabilities. In the embodiment of the present invention, the sampling deviation can be dynamically adjusted in the decoding stage to avoid the decoding error caused by the jitter of the return signal frequency of the electronic tag. At the end of a correlation period, the dynamic adjustment is achieved by changing the read address of the waveform correlation processing structure. Sampling bias, which determines the actual starting point for the next correlation cycle. In addition, the decoding of data of different encoding types (FM0/miller2/miller4/miller8) can be implemented by the embodiments of the present invention, which is convenient for saving processing resources. The time-domain matched filtering technique is used to estimate the number of oversampling to provide parameters for correlation demodulation. In addition, the time-domain matched filtering technology is used to capture the signal preamble to obtain the data to be decoded, which has a strong weak signal detection capability. In the decoding process of the embodiment of the present invention, the in-phase and quadrature signals are used for phase calculation and rotation to generate a complex signal, which can not only improve the signal-to-noise ratio, but also save processing resources, and can overcome the problem of RFID readers and electronic devices. The problem of rapid change of strong signal caused by the relative movement of the label.

相应地,图6是本发明实施例提供的一种用于RFID读写器的解码装置的结构示意图。如图6所示,所述装置60包括:接收单元61,用于接收电子标签的返回信号;信号采样单元62,用于以预设采样频率,从所述返回信号中得到同相信号和正交信号,所述预设采样频率为所述返回信号的返回频率的预设倍数;相位计算单元63,用于根据所述同相信号与所述正交信号的数据相位,得到所述返回信号对应的复信号;待解码数据确定单元64,用于根据所述返回频率、所述预设采样频率、频率预设偏离范围以及所述返回信号的编码类型,确定所述复信号中的待解码数据以及单导频音的实际过采样数;解码单元65,用于根据所述返回信号的编码类型以及所述实际过采样数,确定所述实际过采样数对应的相关周期内的所述待解码数据对应的解码结果。Correspondingly, FIG. 6 is a schematic structural diagram of a decoding device for an RFID reader provided by an embodiment of the present invention. As shown in FIG. 6 , the device 60 includes: a receiving unit 61 for receiving a return signal of the electronic tag; a signal sampling unit 62 for obtaining an in-phase signal and a positive signal from the return signal at a preset sampling frequency The preset sampling frequency is a preset multiple of the return frequency of the return signal; the phase calculation unit 63 is configured to obtain the return signal according to the data phases of the in-phase signal and the quadrature signal The corresponding complex signal; the to-be-decoded data determination unit 64 is configured to determine the to-be-decoded data in the complex signal according to the return frequency, the preset sampling frequency, the frequency preset deviation range and the encoding type of the return signal The actual oversampling number of data and a single pilot tone; the decoding unit 65 is configured to determine, according to the encoding type of the returned signal and the actual oversampling number, the to-be-to-be-sampled number in the relevant period corresponding to the actual oversampling number The decoding result corresponding to the decoded data.

进一步地,所述信号采样单元还用于,通过模数转换器ADC采样,将所述返回信号中的同相信号与正交信号由模拟域变换为数字域;以所述预设采样频率,分别滤波所述数字域的所述同相信号与所述正交信号。Further, the signal sampling unit is further configured to convert the in-phase signal and the quadrature signal in the return signal from the analog domain to the digital domain by sampling through an analog-to-digital converter ADC; at the preset sampling frequency, The in-phase signal and the quadrature signal of the digital domain are filtered separately.

进一步地,所述相位计算单元还用于,根据F=(I+j*Q)*e(-j*Φ),得到所述返回信号对应的复信号F,其中,I为所述同相信号,Q为所述正交信号,Φ为信道相位计算值,其中Φ≈atan(Q/I)。Further, the phase calculation unit is further configured to obtain the complex signal F corresponding to the return signal according to F=(I+j*Q)*e (-j*Φ) , where I is the in-phase signal, Q is the quadrature signal, Φ is the calculated value of the channel phase, where Φ≈atan(Q/I).

进一步地,如图7所示,所述装置还包括:门限比较单元66,用于将所述复信号的实部与预设信号门限进行比较;当所述复信号的实部低于所述预设信号门限时,确定所述电子标签的返回信号为无效信号,结束所述返回信号的解码操作;当所述复信号的实部不低于所述预设信号门限时,确定所述电子标签的返回信号为有效信号,继续所述返回信号的解码操作。Further, as shown in FIG. 7 , the apparatus further includes: a threshold comparison unit 66, configured to compare the real part of the complex signal with a preset signal threshold; when the real part of the complex signal is lower than the When the signal threshold is preset, it is determined that the return signal of the electronic tag is an invalid signal, and the decoding operation of the return signal is ended; when the real part of the complex signal is not lower than the preset signal threshold, it is determined that the electronic The returned signal of the tag is a valid signal, and the decoding operation of the returned signal is continued.

进一步地,所述待解码数据确定单元还用于,根据Hl=FS/[F0*(1+r)],Hh=FS/[F0*(1-r)],得到所述复信号中的单导频音的过采样数的下限值Hl与上限值Hh,其中,F0为所述返回频率,FS为所述预设采样频率,±r%为所述频率预设偏离范围;根据所述过采样数的下限值与上限值,得到所述复信号中的单导频音的过采样数的取值范围;根据所述过采样数的取值范围与所述返回信号的编码类型,确定所述过采样数的取值范围中的每个过采样数对应的前导码捕获系数;将每个过采样数对应的前导码捕获系数作为每个过采样数对应的前导码匹配滤波器的系数;将所述复信号的实部与每个过采样数对应的前导码匹配滤波器进行匹配,得到每个过采样数对应的匹配输出值;将所述匹配输出值中的最大值对应的过采样数作为所述复信号中的单导频音的实际过采样数;根据所述编码类型对应的编码协议,确定所述实际过采样数对应的前导码,并将去除所述复信号中的前导码后的数据作为待解码数据。Further, the to-be-decoded data determination unit is also used to, according to H l =FS /[ F 0 *(1+r)], H h =FS /[ F 0 *(1-r)], to obtain The lower limit H l and the upper limit H h of the oversampling number of a single pilot tone in the complex signal, where F 0 is the return frequency, F S is the preset sampling frequency, ±r% Presetting the deviation range for the frequency; obtaining the value range of the oversampling number of the single pilot tone in the complex signal according to the lower limit value and the upper limit value of the oversampling number; according to the oversampling number The value range and the encoding type of the returned signal, determine the preamble capture coefficient corresponding to each oversampling number in the value range of the oversampling number; take the preamble capture coefficient corresponding to each oversampling number as The coefficient of the preamble matched filter corresponding to each oversampling number; the real part of the complex signal is matched with the preamble matched filter corresponding to each oversampling number to obtain the matching output value corresponding to each oversampling number ; Take the oversampling number corresponding to the maximum value in the matching output value as the actual oversampling number of the single pilot tone in the complex signal; According to the encoding protocol corresponding to the encoding type, determine the actual oversampling number corresponding preamble, and the data after removing the preamble in the complex signal is used as the data to be decoded.

进一步地,所述解码单元还用于,根据所述返回信号的编码类型以及所述实际过采样数,确定所述相关周期内的第一种波形与第二种波形的样点值;在所述待解码数据中,提取所述相关周期内的波形数据;将所述波形数据分别与所述第一种波形的样点值以及所述第二种波形的样点值进行乘累加操作,分别得到与所述第一种波形对应的第一种相关结果以及与所述第二种波形对应的第二种相关结果;将所述第一种相关结果与所述第二种相关结果中的最大值作为信号判决结果;将所述信号判决结果对应的波形确定为所述相关周期内的所述待解码数据对应的解码结果。Further, the decoding unit is further configured to, according to the encoding type of the returned signal and the actual oversampling number, determine the sample point values of the first waveform and the second waveform in the correlation period; In the data to be decoded, extract the waveform data in the relevant period; perform a multiply-accumulate operation on the waveform data with the sample point value of the first type of waveform and the sample point value of the second type of waveform, respectively. Obtain a first type of correlation result corresponding to the first type of waveform and a second type of correlation result corresponding to the second type of waveform; The value is used as the signal decision result; the waveform corresponding to the signal decision result is determined as the decoding result corresponding to the to-be-decoded data in the correlation period.

进一步地,所述解码单元还用于,将无延迟的所述波形数据、一采样点延迟的所述波形数据、二采样点延迟的所述波形数据分别与所述第一种波形的样点值进行乘累加操作,分别得到所述第一种波形对应的第一种超前相关结果、第一种当前相关结果、第一种延后相关结果;获取所述第一种波形对应的第一种超前相关结果、第一种当前相关结果、第一种延后相关结果对应的绝对值,并将最大的绝对值作为所述第一种波形对应的第一种相关结果;将无延迟的所述波形数据、一采样点延迟的所述波形数据、二采样点延迟的所述波形数据分别与所述第二种波形的样点值进行乘累加操作,分别得到所述第二种波形对应的第二种超前相关结果、第二种当前相关结果、第二种延后相关结果;获取所述第二种波形对应的第二种超前相关结果、第二种当前相关结果、第二种延后相关结果对应的绝对值,并将最大的绝对值作为所述第二种波形对应的第二种相关结果。Further, the decoding unit is further configured to separate the waveform data without delay, the waveform data delayed by one sample point, and the waveform data delayed by two sample points with the sample points of the first waveform respectively. Multiply and accumulate the values to obtain the first type of advance correlation result corresponding to the first type of waveform, the first type of current correlation result, and the first type of delayed correlation result; obtain the first type of waveform corresponding to the first type of waveform The absolute value corresponding to the leading correlation result, the first type of current correlation result, and the first type of delayed correlation result, and the maximum absolute value is taken as the first type of correlation result corresponding to the first type of waveform; The waveform data, the waveform data delayed by one sample point, and the waveform data delayed by two sample points are respectively multiplied and accumulated with the sample point value of the second waveform to obtain the first waveform corresponding to the second waveform. Two types of advance correlation results, the second type of current correlation results, and the second type of delayed correlation results; obtain the second type of advanced correlation results, the second type of current correlation results, and the second type of delayed correlation results corresponding to the second type of waveform The absolute value corresponding to the result, and the largest absolute value is used as the second correlation result corresponding to the second waveform.

进一步地,如图8所示,所述装置还包括:起始点校准单元67,用于将所述第一种波形对应的第一种超前相关结果对应的绝对值与所述第二种波形对应的第二种超前相关结果对应的绝对值进行比较,将最大的绝对值作为超前相关结果绝对值;将所述第一种波形对应的第一种当前相关结果对应的绝对值与所述第二种波形对应的第二种当前相关结果对应的绝对值进行比较,将最大的绝对值作为当前相关结果绝对值;将所述第一种波形对应的第一种延后相关结果对应的绝对值与所述第二种波形对应的第二种延后相关结果对应的绝对值进行比较,将最大的绝对值作为延后相关结果绝对值;根据所述超前相关结果绝对值、当前相关结果绝对值以及延后相关结果绝对值中的最大值,确定为读地址标志;根据下述公式中的任意一个,得到下一个相关周期的待解码数据的实际起始点:An=Ao+2-flag,或An=Ao+3-2*flag,其中,An为所述实际起始点,Ao为当前相关周期的结束点,flag为所述读地址标志,当所述超前相关结果绝对值最大时,flag取值为0,当所述当前相关结果绝对值最大时,flag取值为1,当所述延后相关结果绝对值最大时,flag取值为2;从所述实际起始点提取所述下一个相关周期的待解码数据进行解码操作。Further, as shown in FIG. 8 , the device further includes: a starting point calibration unit 67, configured to correspond the absolute value corresponding to the first type of lead correlation result corresponding to the first type of waveform to the second type of waveform The absolute value corresponding to the second type of advanced correlation result is compared, and the largest absolute value is used as the absolute value of the advanced correlation result; the absolute value corresponding to the first type of current correlation result corresponding to the first type of waveform and the second Compare the absolute value corresponding to the second current correlation result corresponding to the first waveform, and use the largest absolute value as the absolute value of the current correlation result; compare the absolute value corresponding to the first delayed correlation result corresponding to the first waveform with The absolute values corresponding to the second type of delayed correlation result corresponding to the second type of waveform are compared, and the maximum absolute value is used as the absolute value of the delayed correlation result; according to the absolute value of the advanced correlation result, the absolute value of the current correlation result and The maximum value in the absolute value of the delayed correlation result is determined as the read address flag; according to any one of the following formulas, the actual starting point of the data to be decoded in the next correlation cycle is obtained: A n =A o +2-flag, Or An =A o + 3-2*flag, wherein, An is the actual starting point, A o is the end point of the current correlation cycle, and flag is the read address flag, when the absolute value of the lead correlation result is When the absolute value of the current correlation result is the largest, the flag value is 1, and when the absolute value of the delayed correlation result is the largest, the flag value is 2; from the actual starting point Extract the to-be-decoded data of the next correlation cycle to perform a decoding operation.

所述用于RFID读写器的解码装置的具体实现过程,参见上述用于RFID读写器的解码方法的处理过程。For the specific implementation process of the decoding device for an RFID reader/writer, refer to the above-mentioned processing procedure of the decoding method for an RFID reader/writer.

相应地,本发明实施例还提供一种RFID读写器,所述系统包括:如上所述的用于RFID读写器的解码装置。Correspondingly, an embodiment of the present invention further provides an RFID reader/writer, and the system includes: the above-mentioned decoding device for an RFID reader/writer.

相应地,本发明实施例还提供一种机器可读存储介质,该机器可读存储介质上存储有指令,该指令用于使得机器执行如上所述的用于RFID读写器的解码方法。Correspondingly, an embodiment of the present invention further provides a machine-readable storage medium, where instructions are stored on the machine-readable storage medium, and the instructions are used to cause a machine to execute the above-described decoding method for an RFID reader/writer.

本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present application is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block in the flowcharts and/or block diagrams, and combinations of flows and/or blocks in the flowcharts and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing device to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing device produce Means for implementing the functions specified in one or more of the flowcharts and/or one or more blocks of the block diagrams.

在一个典型的配置中,设备包括一个或多个处理器(CPU)、存储器和总线。设备还可以包括输入/输出接口、网络接口等。In a typical configuration, a device includes one or more processors (CPUs), memory, and a bus. Devices may also include input/output interfaces, network interfaces, and the like.

存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM),存储器包括至少一个存储芯片。存储器是计算机可读介质的示例。Memory may include non-persistent memory in computer readable media, random access memory (RAM) and/or non-volatile memory, such as read only memory (ROM) or flash memory (flash RAM), the memory including at least one memory chip. Memory is an example of a computer-readable medium.

计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存 (PRAM)、静态随机存取存储器 (SRAM)、动态随机存取存储器 (DRAM)、其他类型的随机存取存储器 (RAM)、只读存储器 (ROM)、电可擦除可编程只读存储器 (EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘 (DVD) 或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体 (transitory media),如调制的数据信号和载波。Computer-readable media includes both persistent and non-permanent, removable and non-removable media, and storage of information may be implemented by any method or technology. Information may be computer readable instructions, data structures, modules of programs, or other data. Examples of computer storage media include, but are not limited to, phase-change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), Electrically Erasable Programmable Read Only Memory (EEPROM), Flash Memory or other memory technology, Compact Disc Read Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical storage, Magnetic tape cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission medium that can be used to store information that can be accessed by a computing device. As defined herein, computer-readable media does not include transitory computer-readable media, such as modulated data signals and carrier waves.

还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、商品或者设备中还存在另外的相同要素。It should also be noted that the terms "comprising", "comprising" or any other variation thereof are intended to encompass a non-exclusive inclusion such that a process, method, article or device comprising a series of elements includes not only those elements, but also Other elements not expressly listed, or which are inherent to such a process, method, article of manufacture, or apparatus are also included. Without further limitation, an element qualified by the phrase "comprising a..." does not preclude the presence of additional identical elements in the process, method, article of manufacture or apparatus that includes the element.

本领域技术人员应明白,本申请的实施例可提供为方法、系统或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。It will be appreciated by those skilled in the art that the embodiments of the present application may be provided as a method, a system or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.

以上仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。The above are merely examples of the present application, and are not intended to limit the present application. Various modifications and variations of this application are possible for those skilled in the art. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of this application shall be included within the scope of the claims of this application.

Claims (18)

1.一种用于RFID读写器的解码方法,其特征在于,所述方法包括:1. a decoding method for an RFID reader, characterized in that the method comprises: 接收电子标签的返回信号;Receive the return signal of the electronic tag; 以预设采样频率,从所述返回信号中得到同相信号和正交信号,所述预设采样频率为所述返回信号的返回频率的预设倍数;obtaining an in-phase signal and a quadrature signal from the return signal at a preset sampling frequency, where the preset sampling frequency is a preset multiple of the return frequency of the return signal; 根据所述同相信号与所述正交信号的数据相位,得到所述返回信号对应的复信号;obtaining a complex signal corresponding to the return signal according to the data phase of the in-phase signal and the quadrature signal; 根据所述返回频率、所述预设采样频率、频率预设偏离范围以及所述返回信号的编码类型,确定所述复信号中的待解码数据以及单导频音的实际过采样数;According to the return frequency, the preset sampling frequency, the frequency preset deviation range and the encoding type of the return signal, determine the actual oversampling number of the data to be decoded and the single pilot tone in the complex signal; 根据所述返回信号的编码类型以及所述实际过采样数,确定所述实际过采样数对应的相关周期内的所述待解码数据对应的解码结果。According to the encoding type of the returned signal and the actual oversampling number, the decoding result corresponding to the data to be decoded in the correlation period corresponding to the actual oversampling number is determined. 2.根据权利要求1所述的用于RFID读写器的解码方法,其特征在于,所述以预设采样频率,从所述返回信号中得到同相信号和正交信号包括:2 . The decoding method for an RFID reader according to claim 1 , wherein the obtaining an in-phase signal and a quadrature signal from the return signal at a preset sampling frequency comprises: 2 . 通过模数转换器ADC采样,将所述返回信号中的同相信号与正交信号由模拟域变换为数字域;The in-phase signal and the quadrature signal in the return signal are transformed from the analog domain to the digital domain by sampling through the analog-to-digital converter ADC; 以所述预设采样频率,分别滤波所述数字域的所述同相信号与所述正交信号。The in-phase signal and the quadrature signal in the digital domain are filtered separately at the preset sampling frequency. 3.根据权利要求1所述的用于RFID读写器的解码方法,其特征在于,所述根据所述同相信号与所述正交信号的数据相位,得到所述返回信号对应的复信号包括:3 . The decoding method for an RFID reader according to claim 1 , wherein the complex signal corresponding to the return signal is obtained according to the data phase of the in-phase signal and the quadrature signal. 4 . include: 根据F=(I+j*Q)*e(-j*Φ),得到所述返回信号对应的复信号F,其中,I为所述同相信号,Q为所述正交信号,Φ为信道相位计算值,其中Φ≈atan(Q/I)。According to F=(I+j*Q)*e (-j*Φ) , the complex signal F corresponding to the return signal is obtained, where I is the in-phase signal, Q is the quadrature signal, and Φ is the Calculated value of the channel phase, where Φ≈atan(Q/I). 4.根据权利要求1所述的用于RFID读写器的解码方法,其特征在于,在所述根据所述同相信号与所述正交信号的数据相位,得到所述返回信号对应的复信号之后,所述方法还包括:4 . The decoding method for an RFID reader according to claim 1 , wherein in the data phase according to the in-phase signal and the quadrature signal, the complex corresponding to the return signal is obtained. 5 . After the signal, the method further includes: 将所述复信号的实部与预设信号门限进行比较;comparing the real part of the complex signal with a preset signal threshold; 当所述复信号的实部低于所述预设信号门限时,确定所述电子标签的返回信号为无效信号,结束所述返回信号的解码操作;When the real part of the complex signal is lower than the preset signal threshold, determine that the return signal of the electronic tag is an invalid signal, and end the decoding operation of the return signal; 当所述复信号的实部不低于所述预设信号门限时,确定所述电子标签的返回信号为有效信号,继续所述返回信号的解码操作。When the real part of the complex signal is not lower than the preset signal threshold, it is determined that the return signal of the electronic tag is a valid signal, and the decoding operation of the return signal is continued. 5.根据权利要求1所述的用于RFID读写器的解码方法,其特征在于,所述根据所述返回频率、所述预设采样频率、频率预设偏离范围以及所述返回信号的编码类型,确定所述复信号中的待解码数据以及单导频音的实际过采样数包括:5 . The decoding method for an RFID reader according to claim 1 , wherein the encoding according to the return frequency, the preset sampling frequency, the frequency preset deviation range, and the return signal. 6 . type, to determine the actual oversampling number of the data to be decoded and the single pilot tone in the complex signal, including: 根据Hl=FS/[F0*(1+r)],Hh=FS/[F0*(1-r)],得到所述复信号中的单导频音的过采样数的下限值Hl与上限值Hh,其中,F0为所述返回频率,FS为所述预设采样频率,±r%为所述频率预设偏离范围;According to H l =F S /[F 0 *(1+r)], H h =F S /[F 0 *(1-r)], the oversampling number of the single pilot tone in the complex signal is obtained The lower limit value H l and the upper limit value H h of , where F 0 is the return frequency, F S is the preset sampling frequency, and ±r% is the frequency preset deviation range; 根据所述过采样数的下限值与上限值,得到所述复信号中的单导频音的过采样数的取值范围;According to the lower limit value and the upper limit value of the oversampling number, the value range of the oversampling number of the single pilot tone in the complex signal is obtained; 根据所述过采样数的取值范围与所述返回信号的编码类型,确定所述过采样数的取值范围中的每个过采样数对应的前导码捕获系数;Determine the preamble capture coefficient corresponding to each oversampling number in the value range of the oversampling number according to the value range of the oversampling number and the encoding type of the return signal; 将每个过采样数对应的前导码捕获系数作为每个过采样数对应的前导码匹配滤波器的系数;Taking the preamble capture coefficient corresponding to each oversampling number as the coefficient of the preamble matched filter corresponding to each oversampling number; 将所述复信号的实部与每个过采样数对应的前导码匹配滤波器进行匹配,得到每个过采样数对应的匹配输出值;Matching the real part of the complex signal with the preamble matched filter corresponding to each oversampling number to obtain a matching output value corresponding to each oversampling number; 将所述匹配输出值中的最大值对应的过采样数作为所述复信号中的单导频音的实际过采样数;Taking the oversampling number corresponding to the maximum value in the matching output value as the actual oversampling number of the single pilot tone in the complex signal; 根据所述编码类型对应的编码协议,确定所述实际过采样数对应的前导码,并将去除所述复信号中的前导码后的数据作为待解码数据。According to the encoding protocol corresponding to the encoding type, the preamble corresponding to the actual oversampling number is determined, and the data after removing the preamble in the complex signal is used as the data to be decoded. 6.根据权利要求1所述的用于RFID读写器的解码方法,其特征在于,所述根据所述返回信号的编码类型以及所述实际过采样数,确定所述实际过采样数对应的相关周期内的所述待解码数据对应的解码结果包括:6 . The decoding method for an RFID reader according to claim 1 , wherein, according to the encoding type of the returned signal and the actual oversampling number, determine the corresponding actual oversampling number. 7 . The decoding results corresponding to the data to be decoded in the relevant period include: 根据所述返回信号的编码类型以及所述实际过采样数,确定所述相关周期内的第一种波形与第二种波形的样点值;Determine the sample point values of the first waveform and the second waveform in the correlation period according to the encoding type of the returned signal and the actual oversampling number; 在所述待解码数据中,提取所述相关周期内的波形数据;In the data to be decoded, extract the waveform data in the relevant period; 将所述波形数据分别与所述第一种波形的样点值以及所述第二种波形的样点值进行乘累加操作,分别得到与所述第一种波形对应的第一种相关结果以及与所述第二种波形对应的第二种相关结果;Multiply and accumulate the waveform data with the sample point value of the first type of waveform and the sample point value of the second type of waveform, respectively, to obtain the first type of correlation result corresponding to the first type of waveform and a second correlation result corresponding to the second waveform; 将所述第一种相关结果与所述第二种相关结果中的最大值作为信号判决结果;Taking the maximum value of the first correlation result and the second correlation result as a signal decision result; 将所述信号判决结果对应的波形确定为所述相关周期内的所述待解码数据对应的解码结果。The waveform corresponding to the signal decision result is determined as the decoding result corresponding to the data to be decoded in the correlation period. 7.根据权利要求6所述的用于RFID读写器的解码方法,其特征在于,所述将所述波形数据分别与所述第一种波形的样点值以及所述第二种波形的样点值进行乘累加操作,分别得到与所述第一种波形对应的第一种相关结果以及与所述第二种波形对应的第二种相关结果包括:7 . The decoding method for an RFID reader according to claim 6 , wherein the waveform data is respectively correlated with the sample point value of the first waveform and the sample value of the second waveform. 8 . The sample value is multiplied and accumulated to obtain a first correlation result corresponding to the first waveform and a second correlation result corresponding to the second waveform, including: 将无延迟的所述波形数据、一采样点延迟的所述波形数据、二采样点延迟的所述波形数据分别与所述第一种波形的样点值进行乘累加操作,分别得到所述第一种波形对应的第一种超前相关结果、第一种当前相关结果、第一种延后相关结果;Multiply and accumulate the waveform data without delay, the waveform data delayed by one sampling point, and the waveform data delayed by two sampling points with the sample point value of the first type of waveform, respectively, to obtain the first waveform data. The first type of advance correlation result, the first type of current correlation result, and the first type of delayed correlation result corresponding to one waveform; 获取所述第一种波形对应的第一种超前相关结果、第一种当前相关结果、第一种延后相关结果对应的绝对值,并将最大的绝对值作为所述第一种波形对应的第一种相关结果;Obtain the absolute values corresponding to the first type of advance correlation result, the first type of current correlation result, and the first type of delayed correlation result corresponding to the first type of waveform, and use the largest absolute value as the corresponding value of the first type of waveform. The first relevant result; 将无延迟的所述波形数据、一采样点延迟的所述波形数据、二采样点延迟的所述波形数据分别与所述第二种波形的样点值进行乘累加操作,分别得到所述第二种波形对应的第二种超前相关结果、第二种当前相关结果、第二种延后相关结果;Multiply and accumulate the waveform data without delay, the waveform data delayed by one sampling point, and the waveform data delayed by two sampling points with the sample point value of the second type of waveform, respectively, to obtain the first The second type of advance correlation result, the second type of current correlation result, and the second type of delayed correlation result corresponding to the two waveforms; 获取所述第二种波形对应的第二种超前相关结果、第二种当前相关结果、第二种延后相关结果对应的绝对值,并将最大的绝对值作为所述第二种波形对应的第二种相关结果。Acquire the absolute values corresponding to the second type of advance correlation result, the second type of current correlation result, and the second type of delayed correlation result corresponding to the second type of waveform, and use the largest absolute value as the corresponding value of the second type of waveform. The second related result. 8.根据权利要求7所述的用于RFID读写器的解码方法,其特征在于,在所述确定所述实际过采样数对应的相关周期内的所述待解码数据对应的解码结果之后,所述方法还包括:8. The decoding method for an RFID reader-writer according to claim 7, wherein after determining the decoding result corresponding to the data to be decoded in the correlation period corresponding to the actual oversampling number, The method also includes: 将所述第一种波形对应的第一种超前相关结果对应的绝对值与所述第二种波形对应的第二种超前相关结果对应的绝对值进行比较,将最大的绝对值作为超前相关结果绝对值;Compare the absolute value corresponding to the first type of lead correlation result corresponding to the first type of waveform with the absolute value corresponding to the second type of lead correlation result corresponding to the second type of waveform, and use the largest absolute value as the lead correlation result. absolute value; 将所述第一种波形对应的第一种当前相关结果对应的绝对值与所述第二种波形对应的第二种当前相关结果对应的绝对值进行比较,将最大的绝对值作为当前相关结果绝对值;Compare the absolute value corresponding to the first current correlation result corresponding to the first waveform with the absolute value corresponding to the second current correlation result corresponding to the second waveform, and use the largest absolute value as the current correlation result absolute value; 将所述第一种波形对应的第一种延后相关结果对应的绝对值与所述第二种波形对应的第二种延后相关结果对应的绝对值进行比较,将最大的绝对值作为延后相关结果绝对值;Compare the absolute value corresponding to the first type of delayed correlation result corresponding to the first type of waveform with the absolute value corresponding to the second type of delayed correlation result corresponding to the second type of waveform, and use the largest absolute value as the delayed correlation result. The absolute value of the post-correlation result; 根据所述超前相关结果绝对值、当前相关结果绝对值以及延后相关结果绝对值中的最大值,确定读地址标志;Determine the read address flag according to the maximum value among the absolute value of the leading correlation result, the absolute value of the current correlation result and the absolute value of the delayed correlation result; 根据下述公式中的任意一个,得到下一个相关周期的待解码数据的实际起始点:Obtain the actual starting point of the data to be decoded for the next relevant cycle according to any of the following formulas: An=Ao+2-flag,A n =A o +2-flag, 或An=Ao+3-2*flag,or An =A o + 3-2*flag, 其中,An为所述实际起始点,Ao为当前相关周期的结束点,flag为所述读地址标志,当所述超前相关结果绝对值最大时,flag取值为0,当所述当前相关结果绝对值最大时,flag取值为1,当所述延后相关结果绝对值最大时,flag取值为2;Wherein, An is the actual starting point, A o is the end point of the current correlation cycle, and flag is the read address flag. When the absolute value of the lead correlation result is the largest, the flag value is 0. When the absolute value of the correlation result is the largest, the flag value is 1, and when the absolute value of the delayed correlation result is the largest, the flag value is 2; 从所述实际起始点提取所述下一个相关周期的待解码数据进行解码操作。The data to be decoded in the next relevant cycle is extracted from the actual starting point to perform a decoding operation. 9.一种用于RFID读写器的解码装置,其特征在于,所述装置包括:9. A decoding device for an RFID reader, characterized in that the device comprises: 接收单元,用于接收电子标签的返回信号;a receiving unit for receiving the return signal of the electronic tag; 信号采样单元,用于以预设采样频率,从所述返回信号中得到同相信号和正交信号,所述预设采样频率为所述返回信号的返回频率的预设倍数;a signal sampling unit, configured to obtain an in-phase signal and a quadrature signal from the return signal at a preset sampling frequency, where the preset sampling frequency is a preset multiple of the return frequency of the return signal; 相位计算单元,用于根据所述同相信号与所述正交信号的数据相位,得到所述返回信号对应的复信号;a phase calculation unit, configured to obtain a complex signal corresponding to the return signal according to the data phase of the in-phase signal and the quadrature signal; 待解码数据确定单元,用于根据所述返回频率、所述预设采样频率、频率预设偏离范围以及所述返回信号的编码类型,确定所述复信号中的待解码数据以及单导频音的实际过采样数;A data-to-be-decoded determination unit, configured to determine the data to be decoded and the single pilot tone in the complex signal according to the return frequency, the preset sampling frequency, the frequency preset deviation range and the encoding type of the return signal The actual number of oversampling; 解码单元,用于根据所述返回信号的编码类型以及所述实际过采样数,确定所述实际过采样数对应的相关周期内的所述待解码数据对应的解码结果。A decoding unit, configured to determine a decoding result corresponding to the data to be decoded in the correlation period corresponding to the actual oversampling number according to the encoding type of the returned signal and the actual oversampling number. 10.根据权利要求9所述的用于RFID读写器的解码装置,其特征在于,所述信号采样单元还用于,通过模数转换器ADC采样,将所述返回信号中的同相信号与正交信号由模拟域变换为数字域;以所述预设采样频率,分别滤波所述数字域的所述同相信号与所述正交信号。10 . The decoding device for an RFID reader according to claim 9 , wherein the signal sampling unit is further configured to sample the in-phase signal in the return signal by sampling through an analog-to-digital converter ADC. 11 . The in-phase signal and the quadrature signal in the digital domain are respectively filtered at the preset sampling frequency. 11.根据权利要求9所述的用于RFID读写器的解码装置,其特征在于,所述相位计算单元还用于,根据F=(I+j*Q)*e(-j*Φ),得到所述返回信号对应的复信号F,其中,I为所述同相信号,Q为所述正交信号,Φ为信道相位计算值,其中Φ≈atan(Q/I)。11. The decoding device for an RFID reader according to claim 9, wherein the phase calculation unit is further configured to, according to F=(I+j*Q)*e (-j*Φ) , obtain the complex signal F corresponding to the return signal, where I is the in-phase signal, Q is the quadrature signal, and Φ is the calculated value of the channel phase, where Φ≈atan(Q/I). 12.根据权利要求9所述的用于RFID读写器的解码装置,其特征在于,所述装置还包括:门限比较单元,用于将所述复信号的实部与预设信号门限进行比较;当所述复信号的实部低于所述预设信号门限时,确定所述电子标签的返回信号为无效信号,结束所述返回信号的解码操作;当所述复信号的实部不低于所述预设信号门限时,确定所述电子标签的返回信号为有效信号,继续所述返回信号的解码操作。12 . The decoding device for an RFID reader according to claim 9 , wherein the device further comprises: a threshold comparison unit, configured to compare the real part of the complex signal with a preset signal threshold. 13 . ; When the real part of the complex signal is lower than the preset signal threshold, determine that the return signal of the electronic label is an invalid signal, and end the decoding operation of the return signal; when the real part of the complex signal is not low At the preset signal threshold, it is determined that the return signal of the electronic tag is a valid signal, and the decoding operation of the return signal is continued. 13.根据权利要求9所述的用于RFID读写器的解码装置,其特征在于,所述待解码数据确定单元还用于,根据Hl=FS/[F0*(1+r)],Hh=FS/[F0*(1-r)],得到所述复信号中的单导频音的过采样数的下限值Hl与上限值Hh,其中,F0为所述返回频率,FS为所述预设采样频率,±r%为所述频率预设偏离范围;根据所述过采样数的下限值与上限值,得到所述复信号中的单导频音的过采样数的取值范围;根据所述过采样数的取值范围与所述返回信号的编码类型,确定所述过采样数的取值范围中的每个过采样数对应的前导码捕获系数;将每个过采样数对应的前导码捕获系数作为每个过采样数对应的前导码匹配滤波器的系数;将所述复信号的实部与每个过采样数对应的前导码匹配滤波器进行匹配,得到每个过采样数对应的匹配输出值;将所述匹配输出值中的最大值对应的过采样数作为所述复信号中的单导频音的实际过采样数;根据所述编码类型对应的编码协议,确定所述实际过采样数对应的前导码,并将去除所述复信号中的前导码后的数据作为待解码数据。13. The decoding device for an RFID reader according to claim 9, wherein the data to be decoded determining unit is also used for, according to H l =F S /[F 0 *(1+r) ], H h =F S /[F 0 *(1-r)], obtain the lower limit H l and upper limit H h of the oversampling number of the single pilot tone in the complex signal, where F 0 is the return frequency, F S is the preset sampling frequency, and ±r% is the preset deviation range of the frequency; according to the lower limit value and the upper limit value of the oversampling number, the complex signal is obtained. The value range of the oversampling number of the single pilot tone; according to the value range of the oversampling number and the encoding type of the returned signal, determine each oversampling number in the value range of the oversampling number The corresponding preamble capture coefficient; the preamble capture coefficient corresponding to each oversampling number is used as the coefficient of the preamble matched filter corresponding to each oversampling number; the real part of the complex signal corresponds to each oversampling number The preamble matched filter is matched, and the matching output value corresponding to each oversampling number is obtained; the oversampling number corresponding to the maximum value in the matching output value is used as the actual oversampling of the single pilot tone in the complex signal. The number of samples; according to the encoding protocol corresponding to the encoding type, determine the preamble corresponding to the actual oversampling number, and use the data after removing the preamble in the complex signal as the data to be decoded. 14.根据权利要求9所述的用于RFID读写器的解码装置,其特征在于,所述解码单元还用于,根据所述返回信号的编码类型以及所述实际过采样数,确定所述相关周期内的第一种波形与第二种波形的样点值;在所述待解码数据中,提取所述相关周期内的波形数据;将所述波形数据分别与所述第一种波形的样点值以及所述第二种波形的样点值进行乘累加操作,分别得到与所述第一种波形对应的第一种相关结果以及与所述第二种波形对应的第二种相关结果;将所述第一种相关结果与所述第二种相关结果中的最大值作为信号判决结果;将所述信号判决结果对应的波形确定为所述相关周期内的所述待解码数据对应的解码结果。14. The decoding device for an RFID reader according to claim 9, wherein the decoding unit is further configured to determine the the sample point values of the first waveform and the second waveform in the relevant period; from the data to be decoded, extract the waveform data in the relevant period; respectively and the first waveform The sample point value and the sample point value of the second waveform are multiplied and accumulated to obtain a first correlation result corresponding to the first waveform and a second correlation result corresponding to the second waveform respectively. ; The maximum value in the first correlation result and the second correlation result is used as the signal decision result; The waveform corresponding to the signal decision result is determined as the corresponding waveform of the data to be decoded in the correlation period decoding result. 15.根据权利要求14所述的用于RFID读写器的解码装置,其特征在于,所述解码单元还用于,将无延迟的所述波形数据、一采样点延迟的所述波形数据、二采样点延迟的所述波形数据分别与所述第一种波形的样点值进行乘累加操作,分别得到所述第一种波形对应的第一种超前相关结果、第一种当前相关结果、第一种延后相关结果;获取所述第一种波形对应的第一种超前相关结果、第一种当前相关结果、第一种延后相关结果对应的绝对值,并将最大的绝对值作为所述第一种波形对应的第一种相关结果;将无延迟的所述波形数据、一采样点延迟的所述波形数据、二采样点延迟的所述波形数据分别与所述第二种波形的样点值进行乘累加操作,分别得到所述第二种波形对应的第二种超前相关结果、第二种当前相关结果、第二种延后相关结果;获取所述第二种波形对应的第二种超前相关结果、第二种当前相关结果、第二种延后相关结果对应的绝对值,并将最大的绝对值作为所述第二种波形对应的第二种相关结果。15 . The decoding device for an RFID reader according to claim 14 , wherein the decoding unit is further configured to convert the waveform data without delay, the waveform data delayed by one sampling point, The waveform data delayed by two sample points is respectively multiplied and accumulated with the sample point value of the first waveform, to obtain the first type of advance correlation result, the first type of current correlation result, the corresponding to the first type of waveform, respectively. The first type of delayed correlation result; obtain the first type of advance correlation result corresponding to the first type of waveform, the first type of current correlation result, and the absolute value corresponding to the first type of delayed correlation result, and use the largest absolute value as The first type of correlation result corresponding to the first type of waveform; the waveform data without delay, the waveform data delayed by one sampling point, and the waveform data delayed by two sampling points are respectively correlated with the second type of waveform Multiply and accumulate the sample values of The absolute value corresponding to the second type of advance correlation result, the second type of current correlation result, and the second type of delayed correlation result, and the largest absolute value is used as the second type of correlation result corresponding to the second type of waveform. 16.根据权利要求15所述的用于RFID读写器的解码装置,其特征在于,所述装置还包括:起始点校准单元,用于将所述第一种波形对应的第一种超前相关结果对应的绝对值与所述第二种波形对应的第二种超前相关结果对应的绝对值进行比较,将最大的绝对值作为超前相关结果绝对值;将所述第一种波形对应的第一种当前相关结果对应的绝对值与所述第二种波形对应的第二种当前相关结果对应的绝对值进行比较,将最大的绝对值作为当前相关结果绝对值;将所述第一种波形对应的第一种延后相关结果对应的绝对值与所述第二种波形对应的第二种延后相关结果对应的绝对值进行比较,将最大的绝对值作为延后相关结果绝对值;根据所述超前相关结果绝对值、当前相关结果绝对值以及延后相关结果绝对值中的最大值,确定读地址标志;根据下述公式中的任意一个,得到下一个相关周期的待解码数据的实际起始点:An=Ao+2-flag,或An=Ao+3-2*flag,其中,An为所述实际起始点,Ao为当前相关周期的结束点,flag为所述读地址标志,当所述超前相关结果绝对值最大时,flag取值为0,当所述当前相关结果绝对值最大时,flag取值为1,当所述延后相关结果绝对值最大时,flag取值为2;从所述实际起始点提取所述下一个相关周期的待解码数据进行解码操作。16 . The decoding device for an RFID reader according to claim 15 , wherein the device further comprises: a starting point calibration unit, configured to correlate the first type of waveform corresponding to the first type of waveform in advance. 17 . The absolute value corresponding to the result is compared with the absolute value corresponding to the second type of advance correlation result corresponding to the second type of waveform, and the largest absolute value is used as the absolute value of the advance correlation result; The absolute value corresponding to the current correlation result is compared with the absolute value corresponding to the second current correlation result corresponding to the second waveform, and the maximum absolute value is used as the absolute value of the current correlation result; the first waveform corresponding to The absolute value corresponding to the first type of delayed correlation result is compared with the absolute value corresponding to the second type of delayed correlation result corresponding to the second waveform, and the largest absolute value is used as the absolute value of the delayed correlation result; The maximum value among the absolute value of the preceding correlation result, the absolute value of the current correlation result and the absolute value of the delayed correlation result is determined, and the read address flag is determined; Starting point: An =A o + 2-flag, or An =A o + 3-2*flag, where An is the actual starting point, A o is the end point of the current correlation cycle, and flag is the Read the address flag, when the absolute value of the advanced correlation result is the largest, the flag value is 0, when the absolute value of the current correlation result is the largest, the flag value is 1, when the absolute value of the delayed correlation result is the largest, The value of flag is 2; the data to be decoded in the next relevant cycle is extracted from the actual starting point to perform a decoding operation. 17.一种RFID读写器,其特征在于,所述RFID读写器包括:根据权利要求9-16任一项所述的用于RFID读写器的解码装置。17. An RFID reader/writer, characterized in that, the RFID reader/writer comprises: the decoding device for an RFID reader/writer according to any one of claims 9-16. 18.一种机器可读存储介质,该机器可读存储介质上存储有指令,该指令用于使得机器执行上述权利要求1-8任一项所述的用于RFID读写器的解码方法。18. A machine-readable storage medium storing instructions on the machine-readable storage medium for causing a machine to execute the decoding method for an RFID reader/writer according to any one of claims 1-8.
CN202010405234.XA 2020-05-14 2020-05-14 Decoding method and device for RFID reader-writer Active CN111310506B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010405234.XA CN111310506B (en) 2020-05-14 2020-05-14 Decoding method and device for RFID reader-writer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010405234.XA CN111310506B (en) 2020-05-14 2020-05-14 Decoding method and device for RFID reader-writer

Publications (2)

Publication Number Publication Date
CN111310506A true CN111310506A (en) 2020-06-19
CN111310506B CN111310506B (en) 2020-08-04

Family

ID=71147564

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010405234.XA Active CN111310506B (en) 2020-05-14 2020-05-14 Decoding method and device for RFID reader-writer

Country Status (1)

Country Link
CN (1) CN111310506B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115102582A (en) * 2022-08-24 2022-09-23 北京智芯微电子科技有限公司 Decoding method and device for RFID reader-writer, storage medium and RFID reader-writer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070098089A (en) * 2006-03-31 2007-10-05 엘지이노텍 주식회사 RFID Reader
CN101320419A (en) * 2008-06-26 2008-12-10 桂林瀚特信息产业有限公司 Ultrahigh frequency RFID label reader-writer
CN102222246A (en) * 2011-06-25 2011-10-19 深圳市远望谷信息技术股份有限公司 Carrier inhibiting method for radio frequency identification reader-writer and radio frequency device
CN106374932A (en) * 2016-09-30 2017-02-01 湘潭大学 Decoder and decoding method of a dual-mode UHF-RFID reader
CN108256370A (en) * 2016-12-29 2018-07-06 航天信息股份有限公司 A kind of coding/decoding method of RFID reader and decoding system
CN108268807A (en) * 2017-12-22 2018-07-10 中国电子科技集团公司第三十研究所 A kind of demodulation method to ultrahigh frequency RFID signal under low signal-to-noise ratio

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070098089A (en) * 2006-03-31 2007-10-05 엘지이노텍 주식회사 RFID Reader
CN101320419A (en) * 2008-06-26 2008-12-10 桂林瀚特信息产业有限公司 Ultrahigh frequency RFID label reader-writer
CN102222246A (en) * 2011-06-25 2011-10-19 深圳市远望谷信息技术股份有限公司 Carrier inhibiting method for radio frequency identification reader-writer and radio frequency device
CN106374932A (en) * 2016-09-30 2017-02-01 湘潭大学 Decoder and decoding method of a dual-mode UHF-RFID reader
CN108256370A (en) * 2016-12-29 2018-07-06 航天信息股份有限公司 A kind of coding/decoding method of RFID reader and decoding system
CN108268807A (en) * 2017-12-22 2018-07-10 中国电子科技集团公司第三十研究所 A kind of demodulation method to ultrahigh frequency RFID signal under low signal-to-noise ratio

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115102582A (en) * 2022-08-24 2022-09-23 北京智芯微电子科技有限公司 Decoding method and device for RFID reader-writer, storage medium and RFID reader-writer
CN115102582B (en) * 2022-08-24 2023-01-24 北京智芯微电子科技有限公司 Decoding method and device for RFID reader-writer, storage medium and RFID reader-writer
WO2024040650A1 (en) * 2022-08-24 2024-02-29 北京智芯微电子科技有限公司 Decoding method and apparatus for rfid reader/writer, storage medium, and rfid reader/writer

Also Published As

Publication number Publication date
CN111310506B (en) 2020-08-04

Similar Documents

Publication Publication Date Title
CN108632185B (en) AIS system demodulation method and demodulation system of ship VDES system
WO2018107441A1 (en) Signal capturing method and receiver for satellite navigation system
US8781051B2 (en) Symbol clock recovery circuit
WO2018082356A1 (en) Method for demodulating frequency modulation signal of pma standard wireless charging device
US9584171B2 (en) Adaptive data recovery
CN105049069B (en) Symbol clock recovery circuit
US20150319024A1 (en) Adaptive Inverse Signal Transformation
CN204613959U (en) A Miller code decoding device for subcarrier modulation
Liu et al. Digital correlation demodulator design for RFID reader receiver
CN111310506B (en) Decoding method and device for RFID reader-writer
CN108989256A (en) A kind of FSK/GFSK demodulation method and device
CN105515753B (en) A kind of RFID lead code detecting method based on FPGA
CN107483078A (en) A Realization Method of Receive Frequency Offset Estimation in Ship VDES System ASM System
WO2024040650A1 (en) Decoding method and apparatus for rfid reader/writer, storage medium, and rfid reader/writer
CN114355299B (en) Radar echo signal detection method, device, system and storage medium
JP4779986B2 (en) Wireless tag reader
CN103795428A (en) Novel decoder in radio frequency identification data communication
CN115642988B (en) An optimal sampling signal identification method, device, electronic device and storage medium
US8942278B2 (en) Systems and methods for detecting data collisions for a near field communication system
CN108768909A (en) A kind of 2FSK symbol timing synchronization methods and system based on minimum variance
CN110401608B (en) Bit synchronization for on/off keying (OOK) communications
CN114266264A (en) Signal demodulation method, apparatus, receiver and computer readable storage medium
CN109698803B (en) Circuit structure for realizing FSK signal high-efficiency demodulation in wireless charging equipment
CN110535620A (en) A kind of signal detection and synchronous method based on decision-feedback
CN119728375A (en) A digital circuit demodulation and decoding method, device, equipment and storage medium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Zhao Dongyan

Inventor after: Wang Yubo

Inventor after: Li Dejian

Inventor after: Chen Jiaguo

Inventor after: Zhang Xiaoyi

Inventor after: Ma Yan

Inventor after: Zhang Zhe

Inventor after: Feng Xi

Inventor after: Tang Xiaoke

Inventor before: Wang Yubo

Inventor before: Li Dejian

Inventor before: Tang Xiaoke

Inventor before: Chen Jiaguo

Inventor before: Ma Yan

Inventor before: Zhang Zhe

Inventor before: Feng Xi

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20200619

Assignee: Beijing thinking Semiconductor Technology Co.,Ltd.

Assignor: BEIJING SMARTCHIP MICROELECTRONICS TECHNOLOGY Co.,Ltd.

Contract record no.: X2022990000698

Denomination of invention: Decoding method and device for RFID reader writer

Granted publication date: 20200804

License type: Common License

Record date: 20220923

Application publication date: 20200619

Assignee: RIZHAO SHANCHUAN ELECTRONIC INFORMATION TECHNOLOGY Co.,Ltd.

Assignor: BEIJING SMARTCHIP MICROELECTRONICS TECHNOLOGY Co.,Ltd.

Contract record no.: X2022990000697

Denomination of invention: Decoding method and device for RFID reader writer

Granted publication date: 20200804

License type: Common License

Record date: 20220923

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20200619

Assignee: CHINA GRIDCOM Co.,Ltd.

Assignor: BEIJING SMARTCHIP MICROELECTRONICS TECHNOLOGY Co.,Ltd.

Contract record no.: X2022980018383

Denomination of invention: Decoding method and device for RFID reader writer

Granted publication date: 20200804

License type: Common License

Record date: 20221019