CN111309038A - Hybrid execution mechanism configuration optimization method based on TU cooperative game manipulation law - Google Patents
Hybrid execution mechanism configuration optimization method based on TU cooperative game manipulation law Download PDFInfo
- Publication number
- CN111309038A CN111309038A CN202010106372.8A CN202010106372A CN111309038A CN 111309038 A CN111309038 A CN 111309038A CN 202010106372 A CN202010106372 A CN 202010106372A CN 111309038 A CN111309038 A CN 111309038A
- Authority
- CN
- China
- Prior art keywords
- max
- cmg
- configuration
- hybrid actuator
- channel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005457 optimization Methods 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 title claims abstract description 20
- 230000001133 acceleration Effects 0.000 claims abstract description 11
- 238000005265 energy consumption Methods 0.000 abstract description 6
- 230000009286 beneficial effect Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000009434 installation Methods 0.000 description 3
- 238000012800 visualization Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D17/00—Control of torque; Control of mechanical power
- G05D17/02—Control of torque; Control of mechanical power characterised by the use of electric means
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D27/00—Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00
- G05D27/02—Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00 characterised by the use of electric means
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
本发明公开了一种基于TU合作博弈操纵律的混合执行机构构型配置优化方法,包括:选择混合执行机构CMG+RW的构型和操纵律;确定CMG最大框架角速度和RW最大角加速度;根据航天器姿态机动任务要求,获取控制力矩要求,并得到最大控制力矩;判断最大控制力矩情况,并匹配CMG转子角动量和RW转动惯量;根据匹配得到的单个CMG转子角动量大小和单个RW的转动惯量选择混合执行机构。本发明首次采用根据具体的设计要求对混合执行机构进行构型配置优化,保证混合执行机构能无误差地输出控制力矩,并尽可能减小该混合执行机构的质量、体积和能量能耗,从而有利于航天器的小型化和轻量化,并有利于增加星上有效载荷。
The invention discloses a configuration and configuration optimization method of a hybrid actuator based on a TU cooperative game manipulation law, comprising: selecting the configuration and manipulation law of the hybrid actuator CMG+RW; determining the CMG maximum frame angular velocity and the RW maximum angular acceleration; The spacecraft attitude maneuver task requirements, obtain the control torque requirements, and obtain the maximum control torque; judge the maximum control torque situation, and match the CMG rotor angular momentum and RW moment of inertia; according to the matching obtained single CMG rotor angular momentum and single RW rotation Inertia selection for hybrid actuators. For the first time, the present invention optimizes the configuration and configuration of the hybrid actuator according to specific design requirements, ensures that the hybrid actuator can output control torque without error, and reduces the mass, volume and energy consumption of the hybrid actuator as much as possible. It is beneficial to the miniaturization and light weight of the spacecraft, and it is beneficial to increase the payload on the star.
Description
技术领域technical field
本发明涉及卫星姿态控制技术,尤其涉及一种基于TU合作博弈操纵律的混合执行机构构型配置优化方法。The invention relates to a satellite attitude control technology, in particular to a configuration and configuration optimization method of a hybrid actuator based on a TU cooperative game manipulation law.
背景技术Background technique
航天器姿态机动的敏捷性需要姿态控制执行机构保障,即需要执行机构高精度输出大力矩,由控制力矩陀螺(Control Moment Gyro,CMG)和反作用飞轮(Reaction Wheel,RW) 组合成的混合执行机构CMG+RW能够满足该要求,并且性能远远优于由其他执行机构组合而成的混合执行机构。不同任务需要的控制力矩不同,则配置的混合执行机构 CMG+RW的大小也不同;混合执行机构CMG+RW的配置不足,则无法满足设计要求,使得输出力矩误差较大;混合执行机构CMG+RW的配置过大,尽管能满足设计要求,但其占星上的质量和体积也较大,且能耗随之增加,造成星上资源浪费,不利于增加有效载荷。因此,需要对混合执行机构CMG+RW进行配置优化,使得混合执行机构 CMG+RW在能满足设计要求的同时,质量和体积尽可能小。The agility of the spacecraft attitude maneuver requires the assurance of the attitude control actuator, that is, the actuator needs to output a large torque with high precision, and a hybrid actuator composed of a Control Moment Gyro (CMG) and a Reaction Wheel (RW) CMG+RW can meet this requirement, and its performance is far superior to the hybrid actuator composed of other actuators. If the control torque required by different tasks is different, the size of the configured hybrid actuator CMG+RW is also different; if the configuration of the hybrid actuator CMG+RW is insufficient, it cannot meet the design requirements, resulting in a large output torque error; the hybrid actuator CMG+RW The configuration of the RW is too large. Although it can meet the design requirements, its astrological mass and volume are also large, and the energy consumption increases accordingly, resulting in a waste of on-board resources, which is not conducive to increasing the payload. Therefore, it is necessary to optimize the configuration of the hybrid actuator CMG+RW, so that the mass and volume of the hybrid actuator CMG+RW can be as small as possible while meeting the design requirements.
针对混合执行机构CMG+RW,大部分的优化针对于其操纵律层面上的设计,例如分别基于合作博弈论和TU合作博弈论设计了混合执行机构操纵律,通过使CMG框架角速度和RW角加速度最小化,优化混合执行机构CMG+RW的角动量路径,在保证输出力矩无误差的同时,对角动量进行管理,减少能耗。但所有混合执行机构操纵律保障输出力矩无误差的前提均为混合执行机构构型配置与设计要求匹配,即操纵律层面上的设计与构型配置层面上的优化有区别,且操纵律的设计无法真正保障输出力矩精度。For the hybrid actuator CMG+RW, most of the optimizations are aimed at the design of its manipulation law. For example, the manipulation law of the hybrid actuator is designed based on cooperative game theory and TU cooperative game theory. By making the CMG frame angular velocity and RW angular acceleration Minimize and optimize the angular momentum path of the hybrid actuator CMG+RW, manage the angular momentum and reduce energy consumption while ensuring no error in the output torque. However, the premise of all hybrid actuator control laws to ensure that the output torque is error-free is that the configuration configuration of the hybrid actuator matches the design requirements, that is, the design at the level of the control law is different from the optimization at the level of configuration configuration, and the design of the control law is different. The output torque accuracy cannot be truly guaranteed.
然而,目前尚未有针对混合执行机构CMG+RW进行构型配置优化的研究。较为相似的,例如针对单轴快速机动任务设计了新的RW构型,并对该构型的安装夹角进行优化设计,解决RW能力利用不充分的问题。另有,通过有限元建模设计陀螺在柔性上安装的位置,以抑制柔性体的快速振动。再有根据能控性指标和能观性指标,判断各执行机构和敏感器组合特性的判断指标,并根据该指标选择配置节点,该方法主要针对执行机构和敏感器安装数量和安装位置的优化,未对执行机构的大小进行配置。再有,通过对飞轮内部结构进行设计,完成对电机的优化操作,以实现轴向分相磁悬浮开关磁阻飞轮电机多目标协同优化。上述研究均未涉及混合执行机构CMG+RW构型配置优化。However, there is no research on the configuration optimization of the hybrid actuator CMG+RW. Similar, for example, a new RW configuration is designed for single-axis fast maneuvering tasks, and the installation angle of this configuration is optimized to solve the problem of insufficient utilization of RW capabilities. In addition, the position where the gyro is installed on the flexible body is designed through finite element modeling to suppress the rapid vibration of the flexible body. Then, according to the controllability index and the observability index, the judgment index of the combined characteristics of each actuator and the sensor is judged, and the configuration node is selected according to the index. This method is mainly aimed at the optimization of the installation quantity and installation position of the actuator and the sensor. , the size of the actuator is not configured. Furthermore, by designing the internal structure of the flywheel, the optimization operation of the motor is completed, so as to realize the multi-objective synergistic optimization of the axial split-phase magnetic suspension switched reluctance flywheel motor. None of the above studies involved the configuration optimization of the hybrid actuator CMG+RW.
发明内容SUMMARY OF THE INVENTION
发明目的:本发明目的是提供一种基于TU合作博弈操纵律的混合执行机构构型配置优化方法,能在保证CMG不陷入奇异状态的前提条件下,给出混合执行机构 CMG+RW构型参数配置的法则。Purpose of the invention: The purpose of the present invention is to provide a configuration and configuration optimization method of a hybrid actuator based on the TU cooperative game manipulation law, which can provide the CMG+RW configuration parameters of the hybrid actuator under the premise that the CMG does not fall into a singular state. configuration rules.
技术方案:为实现上述发明目的,本发明采用以下技术方案:Technical scheme: In order to realize the above-mentioned purpose of the invention, the present invention adopts the following technical scheme:
一种基于TU合作博弈操纵律的混合执行机构构型配置优化方法,包括以下步骤:A hybrid actuator configuration configuration optimization method based on TU cooperative game manipulation law, comprising the following steps:
(1)选择混合执行机构CMG+RW的构型和操纵律;(1) Select the configuration and manipulation law of the hybrid actuator CMG+RW;
(2)确定可选CMG的最大框架角速度和可选RW的最大角加速度 (2) Determine the maximum frame angular velocity of the optional CMG and the maximum angular acceleration of the optional RW
(3)根据航天器姿态机动任务要求,获取控制力矩要求,并得到最大控制力矩;(3) According to the requirements of the spacecraft attitude maneuvering task, obtain the control torque requirements and obtain the maximum control torque;
(4)假如ux,max>>uy,max并且ux,max>>uz,max,或,uy,max>>ux,max并且uy,max>>uz,max,或,uz,max>>ux,max并且uz,max>>uy,max,为单通道大力矩情况,进入步骤(5);假如ux,max≈uy,max>>uz,max,或uy,max≈uz,max>>ux,max,或ux,max≈uz,max>>uy,max,为双通道大力矩输出情况,进入步骤(6);假如ux,max≈uz,max≈uy,max,为三通道大力矩输出情况,进入步骤(7);(4) If u x,max >>u y,max and u x,max >>u z,max , or, u y,max >>u x,max and u y,max >>u z,max , Or, u z,max >>u x,max and u z,max >>u y,max , in the case of single-channel large torque, go to step (5); if u x,max ≈u y,max >>u z,max , or u y,max ≈u z,max >>u x,max , or u x,max ≈u z,max >>u y,max , for the case of dual-channel large torque output, go to step (6 ); if u x,max ≈u z,max ≈u y,max , it is a three-channel high-torque output situation, and go to step (7);
(5)根据单通道大力矩输出情况匹配CMG转子角动量和RW转动惯量;(5) Match the angular momentum of the CMG rotor and the moment of inertia of the RW according to the single-channel high torque output;
(6)根据双通道大力矩输出情况匹配CMG转子角动量和RW转动惯量;(6) Match the CMG rotor angular momentum and the RW moment of inertia according to the dual-channel high torque output;
(7)根据三通道大力矩输出情况匹配CMG转子角动量和RW转动惯量;(7) Match the angular momentum of the CMG rotor and the moment of inertia of the RW according to the three-channel high-torque output;
(8)根据匹配得到的单个CMG转子角动量大小h0,和单个RW的转动惯量JRW选择混合执行机构。(8) Select the hybrid actuator according to the angular momentum h 0 of the single CMG rotor obtained by matching and the moment of inertia J RW of the single RW.
进一步的,步骤(1)中混合执行机构CMG+RW的构型包括M个控制力矩陀螺CMG 和N个反作用飞轮RW,并选择TU合作博弈操纵律作为混合执行机构操纵律。Further, the configuration of the hybrid actuator CMG+RW in step (1) includes M control moment gyroscopes CMG and N reaction flywheels RW, and the TU cooperative game manipulation law is selected as the hybrid actuator manipulation law.
进一步的,步骤(3)中控制力矩要求,包括x、y和z通道的最大控制力矩ux,max、uy,max和uz,max,并取最大力矩值为:umax=max(ux,max,uy,max,uz,max)。Further, the control torque requirement in step (3) includes the maximum control torques u x,max , u y,max and u z,max of the x, y and z channels, and the maximum torque value is taken as: u max =max( u x,max ,u y,max ,u z,max ).
进一步的,步骤(5)中单通道大力矩情况根据下式匹配混合执行机构,单个CMG 转子角动量大小h0,和单个RW的转动惯量JRW应满足:Further, in step (5), the single-channel high-torque case is matched to the hybrid actuator according to the following formula, the angular momentum h 0 of a single CMG rotor, and the moment of inertia J RW of a single RW should satisfy:
umax,CMG=umax,RW=umax u max,CMG =u max,RW =u max
其中,Sa为系统奇异度量函数,|Sa|min为Sa绝对值的最小值,umax,CMG和umax,RW分别为基于CMG的输出性能和基于RW的输出性能,和分别为第k个 CMG的x通道函数、y通道函数和z通道函数,和分别为第k个RW 的x通道函数、y通道函数和z通道函数,进入步骤(8)。Among them, Sa is the system singularity metric function, |S a | min is the minimum value of the absolute value of Sa, u max,CMG and u max,RW are the output performance based on CMG and the output performance based on RW, respectively, and are the x-channel function, y-channel function and z-channel function of the kth CMG, respectively, and are the x-channel function, the y-channel function, and the z-channel function of the kth RW, respectively, and go to step (8).
进一步的,步骤(6)中双通道大力矩输出情况根据下式匹配混合执行机构,单个CMG转子角动量大小h0,和单个RW的转动惯量JRW应满足:Further, in step (6), the dual-channel high-torque output condition matches the hybrid actuator according to the following formula, the angular momentum h 0 of a single CMG rotor, and the moment of inertia J RW of a single RW should satisfy:
umax,CMG=umax,RW=umax;u max,CMG =u max,RW =u max ;
其中,Sa为系统奇异度量函数,|Sa|min为Sa绝对值的最小值,umax,CMG和umax,RW分别为基于CMG的输出性能和基于RW的输出性能,和分别为第k个 CMG的x通道函数、y通道函数和z通道函数,和分别为第k个RW 的x通道函数、y通道函数和z通道函数,进入步骤(8)。Among them, Sa is the system singularity metric function, |S a | min is the minimum value of the absolute value of Sa, u max,CMG and u max,RW are the output performance based on CMG and the output performance based on RW, respectively, and are the x-channel function, y-channel function and z-channel function of the kth CMG, respectively, and are the x-channel function, the y-channel function, and the z-channel function of the kth RW, respectively, and go to step (8).
进一步的,步骤(7)中三通道大力矩输出情况根据下式匹配混合执行机构,单个CMG转子角动量大小h0,和单个RW的转动惯量JRW应满足:Further, in step (7), the three-channel high-torque output condition matches the hybrid actuator according to the following formula, the angular momentum h 0 of a single CMG rotor, and the moment of inertia J RW of a single RW should satisfy:
umax,CMG=umax,RW=umax;u max,CMG =u max,RW =u max ;
其中,Sa为系统奇异度量函数,|Sa|min为Sa绝对值的最小值,umax,CMG和umax,RW分别为基于CMG的输出性能和基于RW的输出性能,和分别为第k个 CMG的x通道函数、y通道函数和z通道函数,和分别为第k个RW 的x通道函数、y通道函数和z通道函数,进入步骤(8)。Among them, Sa is the system singularity metric function, |S a | min is the minimum value of the absolute value of Sa, u max,CMG and u max,RW are the output performance based on CMG and the output performance based on RW, respectively, and are the x-channel function, y-channel function and z-channel function of the kth CMG, respectively, and are the x-channel function, the y-channel function, and the z-channel function of the kth RW, respectively, and go to step (8).
进一步的,步骤(8)中当匹配的混合执行机构CMG+RW能满足任务要求时,CMG 框架角速度最大值和RW角加速度最大值与最大控制力矩umax满足以下不等式组:Further, in step (8), when the matched hybrid actuator CMG+RW can meet the task requirements, the maximum value of the angular velocity of the CMG frame is and RW maximum angular acceleration and the maximum control torque u max satisfies the following set of inequalities:
其中,和分别为第k个CMG的x通道函数、y通道函数和z通道函数,和分别为第k个RW的x通道函数、y通道函数和z通道函数, umax为最大力矩值,|Sa|min为混合执行机构CMG+RW的系统奇异度量函数绝对值的最小值。in, and are the x-channel function, y-channel function and z-channel function of the kth CMG, respectively, and are the x-channel function, y-channel function and z-channel function of the kth RW, respectively, u max is the maximum torque value, |S a | min is the minimum value of the absolute value of the system singularity metric function of the hybrid actuator CMG+RW.
进一步的,步骤(8)中混合执行机构构型配置受混合执行机构CMG+RW的系统奇异度量函数绝对值的最小值|Sa|min影响,保证|Sa|min值与单个CMG转子角动量大小h0和单个RW的转动惯量JRW成反比。Further, the configuration of the hybrid actuator in step (8) is affected by the minimum value |S a | min of the absolute value of the system singular metric function of the hybrid actuator CMG+RW, ensuring that the |S a | min value is related to the rotor angle of a single CMG. The magnitude of momentum h 0 is inversely proportional to the moment of inertia J RW of a single RW.
有益效果:与现有技术相比,本发明首次根据具体设计要求对混合执行机构 CMG+RW进行构型配置优化,保证混合执行机构CMG+RW能无误差地输出控制力矩,并尽可能减小该混合执行机构的质量、体积和能量能耗,从而有利于航天器的小型化和轻量化,并有利于增加星上有效载荷。Beneficial effects: Compared with the prior art, the present invention optimizes the configuration and configuration of the hybrid actuator CMG+RW according to specific design requirements for the first time, so as to ensure that the hybrid actuator CMG+RW can output the control torque without error, and reduce as much as possible. The mass, volume and energy consumption of the hybrid actuator are beneficial to the miniaturization and light-weight of the spacecraft, as well as to increase the on-board payload.
附图说明Description of drawings
图1为本发明的混合执行机构CMG+RW构型配置优化方法流程图;Fig. 1 is the flow chart of the CMG+RW configuration configuration optimization method of the hybrid actuator of the present invention;
图2为本发明的单通道大力矩输出情况混合执行机构CMG+RW构型配置关系曲面显化图;FIG. 2 is a surface visualization diagram of the configuration configuration relationship of the hybrid actuator CMG+RW in the single-channel high-torque output situation of the present invention;
图3为本发明的双通道大力矩输出情况混合执行机构CMG+RW构型配置关系曲面显化图;FIG. 3 is a surface visualization diagram of the configuration and configuration relationship of the hybrid actuator CMG+RW in the case of dual-channel high-torque output of the present invention;
图4为本发明的三通道大力矩输出情况混合执行机构CMG+RW构型配置关系曲面显化图。FIG. 4 is a surface visualization diagram of the configuration relationship of the CMG+RW configuration of the hybrid actuator of the present invention in the case of a three-channel high-torque output.
具体实施方式Detailed ways
下面结合附图对本发明作进一步说明。The present invention will be further described below in conjunction with the accompanying drawings.
一种基于TU合作博弈操纵律的混合执行机构构型配置优化方法,能在保证CMG 不陷入奇异状态的前提条件下,给出混合执行机构CMG+RW构型参数配置的法则。即根据设计要求的最大控制力矩配置混合执行机构CMG+RW的参数,包括CMG转子的角动量大小和框架角速度的最大值、RW转动惯量和角加速度的最大值,使得混合执行机构CMG+RW能完美地输出控制力矩,不发生输出误差,以保证高精度完成航天器姿态控制任务,并且选择最优混合执行机构CMG+RW的参数能减少航天器的质量、体积及其能耗。A hybrid actuator configuration configuration optimization method based on the TU cooperative game manipulation law can provide the CMG+RW configuration parameter configuration rule for the hybrid actuator under the premise of ensuring that the CMG does not fall into a singular state. That is, the parameters of the hybrid actuator CMG+RW are configured according to the maximum control torque required by the design, including the angular momentum of the CMG rotor and the maximum value of the frame angular velocity, the RW moment of inertia and the maximum value of the angular acceleration, so that the hybrid actuator CMG+RW can Perfectly output the control torque without output error to ensure the high-precision completion of the spacecraft attitude control task, and selecting the parameters of the optimal hybrid actuator CMG+RW can reduce the mass, volume and energy consumption of the spacecraft.
本发明所述的混合执行机构配置优化方法针对混合执行机构CMG+RW,并基于具体的混合执行机构构型,在采用混合执行机构TU合作博弈操纵律的前提下,根据设计要求的最大控制力矩umax和混合执行机构CMG+RW的系统奇异度量函数Sa,以及可选择CMG的框架角速度最大值可选择RW的角加速度最大值配置混合执行机构CMG+RW的参数,即选择CMG转子的角动量大小h0、RW的转动惯量IRW。The hybrid actuator configuration optimization method of the present invention is aimed at the hybrid actuator CMG+RW, and based on the specific hybrid actuator configuration, on the premise of using the hybrid actuator TU cooperative game manipulation law, according to the design requirements of the maximum control torque u max and the system singularity metric function Sa of the hybrid actuator CMG + RW, and the maximum frame angular velocity of the optional CMG Selectable maximum angular acceleration of RW Configure the parameters of the hybrid actuator CMG+RW, that is, select the angular momentum h 0 of the CMG rotor and the moment of inertia I RW of RW .
如图1所示,本发明的一种基于TU合作博弈操纵律的混合执行机构构型配置优化方法,包括以下步骤:As shown in Figure 1, a hybrid actuator configuration configuration optimization method based on the TU cooperative game manipulation law of the present invention includes the following steps:
(1)选择混合执行机构CMG+RW的构型,其包括M个控制力矩陀螺CMG和N 个反作用飞轮RW。(1) Select the configuration of the hybrid actuator CMG+RW, which includes M control moment gyroscopes CMG and N reaction flywheels RW.
(2)选择TU合作博弈操纵律作为混合执行机构操纵律。(2) The TU cooperative game manipulation law is selected as the manipulation law of the hybrid executive.
(3)确定可选CMG的最大框架角速度和可选RW的最大角加速度 (3) Determine the maximum frame angular velocity of the optional CMG and the maximum angular acceleration of the optional RW
(4)根据航天器姿态机动任务要求,获取控制力矩要求,包括x、y和z通道的最大控制力矩ux,max、uy,max和uz,max。(4) According to the spacecraft attitude maneuvering task requirements, obtain the control torque requirements, including the maximum control torques u x,max , u y,max and u z,max of the x, y and z channels.
(5)取最大力矩值为umax=max(ux,max,uy,max,uz,max)。(5) Take the maximum moment value as u max =max(u x,max ,u y,max ,u z,max ).
(6)假如ux,max>>uy,max并且ux,max>>uz,max,或,uy,max>>ux,max并且uy,max>>uz,max,或,uz,max>>ux,max并且uz,max>>uy,max,为单通道大力矩情况,进入步骤(7);假如ux,max≈uy,max>>uz,max,或uy,max≈uz,max>>ux,max,或ux,max≈uz,max>>uy,max,为双通道大力矩输出情况,进入步骤(8);假如ux,max≈uz,max≈uy,max,为三通道大力矩输出情况,进入步骤(9)。(6) If u x,max >>u y,max and u x,max >>u z,max , or, u y,max >>u x,max and u y,max >>u z,max , Or, u z,max >>u x,max and u z,max >>u y,max , in the case of single-channel large torque, go to step (7); if u x,max ≈u y,max >>u z,max , or u y,max ≈u z,max >>u x,max , or u x,max ≈u z,max >>u y,max , for the case of dual-channel large torque output, go to step (8 ); if u x,max ≈u z,max ≈u y,max , it is a three-channel high-torque output situation, and go to step (9).
(7)根据单通道大力矩输出情况匹配CMG转子角动量和RW转动惯量;(7) Match the angular momentum of the CMG rotor and the moment of inertia of the RW according to the single-channel large torque output;
单通道大力矩情况根据下式匹配混合执行机构,单个CMG转子角动量大小h0,和单个RW的转动惯量JRW应满足:In the case of single-channel large torque, the hybrid actuator is matched according to the following formula, the angular momentum h 0 of a single CMG rotor, and the moment of inertia J RW of a single RW should satisfy:
umax,CMG=umax,RW=umax;u max,CMG =u max,RW =u max ;
其中,Sa为系统奇异度量函数,|Sa|min为Sa绝对值的最小值,umax,CMG和umax,RW分别为基于CMG的输出性能和基于RW的输出性能,和分别为第k个 CMG的x通道函数、y通道函数和z通道函数,和分别为第k个RW 的x通道函数、y通道函数和z通道函数。Among them, Sa is the system singularity metric function, |S a | min is the minimum value of the absolute value of Sa, u max,CMG and u max,RW are the output performance based on CMG and the output performance based on RW, respectively, and are the x-channel function, y-channel function and z-channel function of the kth CMG, respectively, and are the x-channel function, the y-channel function, and the z-channel function of the kth RW, respectively.
系统奇异度量函数Sa、第k个CMG的x通道函数第k个CMG的y通道函数和第k个CMG的z通道函数以及第k个RW的x通道函数第k个 RW的y通道函数和第k个RW的z通道函数分别均与混合执行机构构型有关,以由金字塔构型CMG系统和3-RW正交构型的RW组成的混合执行机构为例,上述物理量表达式为:System singularity metric function Sa, x -channel function of the kth CMG The y-channel function of the kth CMG and the z-channel function of the kth CMG and the x-channel function of the kth RW The y channel function of the kth RW and the z-channel function of the kth RW They are all related to the configuration of the hybrid actuator. Taking a hybrid actuator composed of a pyramid configuration CMG system and a 3-RW orthogonal configuration RW as an example, the above physical quantities are expressed as:
其中:in:
其中,Aik为系统矩阵A第i行第k列元素,JCMGik为单位CMG雅克比矩阵第i行第k列元素,Sk为自适应参数,并且有:Among them, A ik is the element of the i-th row and the k-th column of the system matrix A, and J CMGik is the unit CMG Jacobian matrix The i-th row and the k-th column element, S k is an adaptive parameter, and has:
进入步骤(10)。Go to step (10).
(8)根据双通道大力矩输出情况匹配CMG转子角动量和RW转动惯量;(8) Match the angular momentum of the CMG rotor and the moment of inertia of the RW according to the dual-channel high torque output;
双通道大力矩输出情况根据下式匹配混合执行机构,单个CMG转子角动量大小h0,和单个RW的转动惯量JRW应满足:In the case of dual-channel high torque output, the hybrid actuator is matched according to the following formula, the angular momentum h 0 of a single CMG rotor, and the moment of inertia J RW of a single RW should satisfy:
umax,CMG=umax,RW=umax;u max,CMG =u max,RW =u max ;
进入步骤(10);Enter step (10);
(9)根据三通道大力矩输出情况匹配CMG转子角动量和RW转动惯量;(9) Match the angular momentum of the CMG rotor and the moment of inertia of the RW according to the three-channel high torque output;
三通道大力矩输出情况根据下式匹配混合执行机构,单个CMG转子角动量大小h0,和单个RW的转动惯量JRW应满足:In the case of three-channel high torque output, the hybrid actuator is matched according to the following formula, the angular momentum h 0 of a single CMG rotor, and the moment of inertia J RW of a single RW should satisfy:
umax,CMG=umax,RW=umax;u max,CMG =u max,RW =u max ;
进入步骤(10);Enter step (10);
(10)根据匹配得到的单个CMG转子角动量大小h0,和单个RW的转动惯量JRW选择混合执行机构;(10) Select the hybrid actuator according to the size h 0 of the single CMG rotor angular momentum obtained by matching and the moment of inertia J RW of the single RW;
当匹配的混合执行机构CMG+RW能满足任务要求时,CMG框架角速度最大值和RW角加速度最大值与最大控制力矩umax满足以下不等式组:When the matched hybrid actuator CMG+RW can meet the mission requirements, the maximum value of the angular velocity of the CMG frame and RW maximum angular acceleration and the maximum control torque u max satisfies the following set of inequalities:
其中,|Sa|min为混合执行机构CMG+RW的系统奇异度量函数绝对值的最小值。Among them, |S a | min is the minimum value of the absolute value of the system singularity metric function of the hybrid actuator CMG+RW.
混合执行机构构型配置受|Sa|min影响,可保证|Sa|min值与单个CMG转子角动量大小h0和单个RW的转动惯量JRW成反比。The configuration of the hybrid actuator is affected by |S a | min , which guarantees that the value of |S a | min is inversely proportional to the angular momentum h 0 of a single CMG rotor and the moment of inertia J RW of a single RW.
如图2-4所示,以采用4-CMG金字塔构型的CMG系统和3-RW正交构型的RW系统的混合执行机构为例,设各RW的转动惯量为JRW=0.005kg·m2,分别得到单通道大力矩输出情况、双通道大力矩输出情况和三通道大力矩输出情况的混合执行机构CMG+RW构型配置关系曲面显化图,即CMG转子的角动量大小h0、归一化的系统奇异度量函数最小值和最大控制力矩umax之间的关系曲面显化图,并具有以下结论:As shown in Figure 2-4, taking the hybrid actuator of the 4-CMG pyramid configuration CMG system and the 3-RW orthogonal configuration RW system as an example, let the moment of inertia of each RW be J RW =0.005kg· m 2 , the surface display diagrams of the CMG+RW configuration and configuration relationship of the hybrid actuator for the single-channel high-torque output case, the two-channel high-torque output case and the three-channel high-torque output case are obtained respectively, that is, the angular momentum of the CMG rotor h 0 , the normalized minimum of the system singular metric function and the maximum control moment u max is a graphical representation of the relationship surface, and has the following conclusions:
(1)在单通道大力矩输出情况中,当h0=1Nms且时,能无误差输出的最大控制力矩为umax=1.2091Nm;(1) In the case of single-channel high torque output, when h 0 =1Nms and When , the maximum control torque that can be output without error is u max =1.2091Nm;
(2)在双通道大力矩输出情况中,当h0=1Nms且时,能无误差输出的最大控制力矩为umax=0.8526Nm,(2) In the case of dual-channel high torque output, when h 0 =1Nms and , the maximum control torque that can be output without error is u max =0.8526Nm,
(3)在三通道大力矩输出情况中,当h0=1Nms且时,能无误差输出的最大控制力矩为umax=0.7003Nm;(3) In the case of three-channel high torque output, when h 0 =1Nms and When , the maximum control torque that can be output without error is u max = 0.7003Nm;
(4)当CMG转子的角动量大小h0或系统奇异度量函数最小值Sa,min增大时,混合执行机构CMG+RW能保证无误差输出的最大控制力矩umax越大;(4) When the angular momentum h 0 of the CMG rotor or the minimum value S a,min of the system singular metric function increases, the maximum control torque u max that the hybrid actuator CMG+RW can ensure error-free output is larger;
(5)在相同的CMG转子的角动量大小h0、系统奇异度量函数最小值Sa,min和RW 转动惯量JRW条件下,单通道大力矩输出情况的最大输出力矩大于双通道大力矩输出情况的最大输出力矩,双通道大力矩输出情况的最大输出力矩大于三通道大力矩输出情况的最大输出力矩。(5) Under the same angular momentum h 0 of the CMG rotor, the minimum value of the system singular metric function S a,min and the RW moment of inertia J RW , the maximum output torque of the single-channel high-torque output is larger than that of the dual-channel high-torque output The maximum output torque of the two-channel high-torque output situation is greater than the maximum output torque of the three-channel high-torque output situation.
综上,本发明的一种基于TU合作博弈操纵律的混合执行机构构型配置优化方法,在保证CMG不陷入奇异状态的前提条件下,给出混合执行机构CMG+RW构型参数配置的法则,即根据设计要求的最大控制力矩配置混合执行机构CMG+RW的参数,包括 CMG转子的角动量大小和框架角速度的最大值、RW转动惯量和角加速度的最大值,使得混合执行机构CMG+RW能完美地输出控制力矩,不发生输出误差,以保证高精度完成航天器姿态控制任务,并且选择最优混合执行机构CMG+RW的参数。本发明首次采用根据具体的设计要求对混合执行机构CMG+RW进行构型配置优化,保证混合执行机构CMG+RW能无误差地输出控制力矩,并尽可能减小该混合执行机构的质量、体积和能量能耗,从而有利于航天器的小型化和轻量化,并有利于增加星上有效载荷。To sum up, a method for optimizing the configuration configuration of the hybrid actuator based on the TU cooperative game manipulation law of the present invention provides a rule for configuring the configuration parameters of the hybrid actuator CMG+RW under the premise that the CMG does not fall into a singular state. , that is, configure the parameters of the hybrid actuator CMG+RW according to the maximum control torque required by the design, including the angular momentum of the CMG rotor and the maximum value of the frame angular velocity, the RW moment of inertia and the maximum value of the angular acceleration, so that the hybrid actuator CMG+RW It can perfectly output the control torque without output error, so as to ensure the high-precision completion of the spacecraft attitude control task, and select the parameters of the optimal hybrid actuator CMG+RW. For the first time, the invention adopts the configuration optimization of the hybrid actuator CMG+RW according to the specific design requirements, so as to ensure that the hybrid actuator CMG+RW can output the control torque without error, and reduce the mass and volume of the hybrid actuator as much as possible. and energy consumption, which is conducive to the miniaturization and lightening of the spacecraft, and is conducive to increasing the payload on the satellite.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010106372.8A CN111309038B (en) | 2020-02-21 | 2020-02-21 | A configuration and configuration optimization method for hybrid actuators based on TU cooperative game manipulation law |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010106372.8A CN111309038B (en) | 2020-02-21 | 2020-02-21 | A configuration and configuration optimization method for hybrid actuators based on TU cooperative game manipulation law |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111309038A true CN111309038A (en) | 2020-06-19 |
CN111309038B CN111309038B (en) | 2021-05-11 |
Family
ID=71145104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010106372.8A Active CN111309038B (en) | 2020-02-21 | 2020-02-21 | A configuration and configuration optimization method for hybrid actuators based on TU cooperative game manipulation law |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111309038B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114115305A (en) * | 2021-11-01 | 2022-03-01 | 武汉大学 | A control system design method for a high-precision remote sensing small satellite with fast attitude maneuvering |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102749846A (en) * | 2012-06-15 | 2012-10-24 | 北京航空航天大学 | Design method of double parallel configuration VSDGCMGs singularity avoidance steering law |
US9567112B1 (en) * | 2013-06-27 | 2017-02-14 | The United States Of America, As Represented By The Secretary Of The Navy | Method and apparatus for singularity avoidance for control moment gyroscope (CMG) systems without using null motion |
CN106896821A (en) * | 2017-03-10 | 2017-06-27 | 北京航空航天大学 | A kind of angular momentum management method of variable speed control moment gyro |
CN107992062A (en) * | 2017-11-28 | 2018-05-04 | 南京航空航天大学 | A kind of space high dynamic target with high precision Attitude tracking control method based on mixing executing agency |
WO2018088873A1 (en) * | 2016-11-14 | 2018-05-17 | 김계현 | Positioning control device and method therefor |
CN108594267A (en) * | 2018-04-28 | 2018-09-28 | 中国科学院长春光学精密机械与物理研究所 | The design method of highly integrated integration microsatellite attitude control signal processing unit |
CN108839824A (en) * | 2018-05-16 | 2018-11-20 | 南京航空航天大学 | A kind of mixing executing agency momentum optimum management method based on cooperative game |
CN109116730A (en) * | 2018-07-11 | 2019-01-01 | 南京航空航天大学 | A kind of energy-optimised management method of mixing executing agency based on TU cooperative game |
CN110471433A (en) * | 2019-07-18 | 2019-11-19 | 南京航空航天大学 | A kind of spacecraft GNC system and implementation method based on distributed intelligence component |
EP3584177A1 (en) * | 2018-05-28 | 2019-12-25 | Pedro Sanz-Aranguez Sanz | Aerospace inertial actuator |
-
2020
- 2020-02-21 CN CN202010106372.8A patent/CN111309038B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102749846A (en) * | 2012-06-15 | 2012-10-24 | 北京航空航天大学 | Design method of double parallel configuration VSDGCMGs singularity avoidance steering law |
US9567112B1 (en) * | 2013-06-27 | 2017-02-14 | The United States Of America, As Represented By The Secretary Of The Navy | Method and apparatus for singularity avoidance for control moment gyroscope (CMG) systems without using null motion |
WO2018088873A1 (en) * | 2016-11-14 | 2018-05-17 | 김계현 | Positioning control device and method therefor |
CN106896821A (en) * | 2017-03-10 | 2017-06-27 | 北京航空航天大学 | A kind of angular momentum management method of variable speed control moment gyro |
CN107992062A (en) * | 2017-11-28 | 2018-05-04 | 南京航空航天大学 | A kind of space high dynamic target with high precision Attitude tracking control method based on mixing executing agency |
CN108594267A (en) * | 2018-04-28 | 2018-09-28 | 中国科学院长春光学精密机械与物理研究所 | The design method of highly integrated integration microsatellite attitude control signal processing unit |
CN108839824A (en) * | 2018-05-16 | 2018-11-20 | 南京航空航天大学 | A kind of mixing executing agency momentum optimum management method based on cooperative game |
EP3584177A1 (en) * | 2018-05-28 | 2019-12-25 | Pedro Sanz-Aranguez Sanz | Aerospace inertial actuator |
CN109116730A (en) * | 2018-07-11 | 2019-01-01 | 南京航空航天大学 | A kind of energy-optimised management method of mixing executing agency based on TU cooperative game |
CN110471433A (en) * | 2019-07-18 | 2019-11-19 | 南京航空航天大学 | A kind of spacecraft GNC system and implementation method based on distributed intelligence component |
Non-Patent Citations (1)
Title |
---|
YUNHUA WU: "Attitude control for on-orbit servicing spacecraft using hybrid actuator", 《ADVANCES IN SPACE RESEARCH 》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114115305A (en) * | 2021-11-01 | 2022-03-01 | 武汉大学 | A control system design method for a high-precision remote sensing small satellite with fast attitude maneuvering |
Also Published As
Publication number | Publication date |
---|---|
CN111309038B (en) | 2021-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103412491B (en) | A kind of Spacecraft feature axis attitude maneuver index time-varying sliding-mode control | |
CN102073280B (en) | A Fuzzy Singular Perturbation Modeling and Attitude Control Method for Complex Flexible Spacecraft | |
CN106202640B (en) | Day ground three body gravitational fields in halo orbit spacecraft bias track design method | |
CN104483835B (en) | A kind of flexible spacecraft multiple target integrated control method based on T S fuzzy models | |
CN104267732B (en) | Flexible satellite high stability attitude control method based on frequency-domain analysis | |
CN103869704B (en) | Based on the robot for space star arm control method for coordinating of expansion Jacobian matrix | |
CN107402516B (en) | Hierarchical saturation fuzzy PD attitude control method based on joint actuator | |
CN110032797A (en) | Unmanned plane UAV control law parameter adjustment method | |
CN108958275A (en) | A kind of hard and soft liquid coupled system attitude controller and motor-driven path combined optimization method | |
CN111624878B (en) | Integral sliding mode acquisition method and system for autonomous surface robot trajectory tracking | |
CN104085539B (en) | The attitude control method of imaging calibration | |
CN114779799B (en) | Attitude-orbit Tracking Control Method for Flexible Spacecraft Based on Extended Disturbance Observer | |
CN101694570A (en) | High-precision moment output control method for control moment gyro group | |
CN108958274B (en) | PSO-based attitude maneuver path planning method for rigid-flexible liquid coupling system | |
CN111309038B (en) | A configuration and configuration optimization method for hybrid actuators based on TU cooperative game manipulation law | |
CN115391924B (en) | Deep reinforcement learning design method for intelligent satellite in digital twin environment | |
CN102749846B (en) | Design method of double parallel configuration VSDGCMGs singularity avoidance steering law | |
CN110658838B (en) | Method and system for calculating three-axis maneuvering angular velocity of agile spacecraft in real time | |
CN109144085A (en) | Robust Hinf spacecraft based on Characteristic Structure Configuration is directed toward control method and system | |
CN110502025B (en) | Spacecraft attitude control method considering reactive flywheel characteristics and power limitation | |
CN108052115B (en) | An all-state restricted backstepping control method for quadrotor aircraft based on asymmetric time-invariant obstacle Lyapunov functions | |
CN116048123A (en) | Spacecraft attitude orbit control scheme design method and system based on model | |
CN114115305B (en) | A control system design method of a high-precision remote sensing small satellite with fast attitude and maneuvering | |
CN110550239A (en) | spacecraft distributed attitude ultra-agile maneuvering control method based on saturated back-stepping method | |
CN117891281B (en) | A second-order non-singular terminal sliding mode flight control method based on nested dual modes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |