CN111308222A - Capacitor bank inductance estimation method based on parameter correction - Google Patents
Capacitor bank inductance estimation method based on parameter correction Download PDFInfo
- Publication number
- CN111308222A CN111308222A CN202010143199.9A CN202010143199A CN111308222A CN 111308222 A CN111308222 A CN 111308222A CN 202010143199 A CN202010143199 A CN 202010143199A CN 111308222 A CN111308222 A CN 111308222A
- Authority
- CN
- China
- Prior art keywords
- capacitor
- inductance
- capacitor bank
- experiments
- connecting plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R27/00—Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
- G01R27/02—Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
- G01R27/26—Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
- G01R27/2611—Measuring inductance
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Resistance Or Impedance (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种电感估算方法,具体涉及一种适用于脉冲功率装置单元回路电容器组的电感估算方法,该方法是基于带状线电感计算公式的一种参数修正方法。The invention relates to an inductance estimation method, in particular to an inductance estimation method suitable for a circuit capacitor bank of a pulse power device unit, which is a parameter correction method based on a stripline inductance calculation formula.
背景技术Background technique
脉冲功率装置单元回路是指由并排放置的两个相同规格电容器以及将其相连的导体板、触发开关等组成的基本充放电回路。在进行Marx发生器及LTD驱动源设计时,需要对单元回路的电容、电感等关键参数进行估算,以确定基本单元及装置整体的电脉冲输出波形参数。目前在脉冲功率装置中所采用的电容器大部分为长方体形结构,在进行回路电感估算时往往将其等效为带状线,且认为等效导体层位于电容器中间,即“中间层假设”。然而在工程实践中发现,这样简单的等效针对不同电容器型号及不同间距,均存在不同程度的误差,最高可达20%以上,不利于装置运行参数的准确估计。The circuit of the pulse power device unit refers to the basic charging and discharging circuit composed of two capacitors of the same specification placed side by side, and the conductor plates and trigger switches that connect them. When designing the Marx generator and the LTD drive source, it is necessary to estimate the key parameters such as the capacitance and inductance of the unit loop to determine the electrical pulse output waveform parameters of the basic unit and the whole device. Most of the capacitors currently used in pulsed power devices have a cuboid structure, which is often equivalent to a stripline when estimating the loop inductance, and the equivalent conductor layer is considered to be in the middle of the capacitor, that is, the "intermediate layer assumption". However, in engineering practice, it is found that such a simple equivalence has different degrees of error for different capacitor models and different spacings, up to more than 20%, which is not conducive to the accurate estimation of device operating parameters.
发明内容SUMMARY OF THE INVENTION
为了解决现有的电容器组电感估算方法误差较大的技术问题,本发明提供了一种基于参数修正的电容器组电感估算方法。In order to solve the technical problem of large error in the existing capacitor bank inductance estimation method, the present invention provides a capacitor bank inductance estimation method based on parameter correction.
本发明的发明构思是:The inventive concept of the present invention is:
本发明在基于带状线电感计算的公式的基础上,通过搭建单元回路的充放电实验装置,同时运用Maxwell电磁场仿真方法,获取电容器组电感的实测数据,进而与原始公式计算结果进行对比拟合,得到适用于该种规格电容器的修正系数。On the basis of the formula based on the calculation of stripline inductance, the invention obtains the measured data of the inductance of the capacitor bank by constructing the charging and discharging experimental device of the unit loop, and simultaneously uses the Maxwell electromagnetic field simulation method to obtain the measured data of the inductance of the capacitor bank, and then compare and fit with the calculation result of the original formula. , get the correction factor suitable for the capacitor of this specification.
本发明的技术方案是:The technical scheme of the present invention is:
基于参数修正的电容器组电感估算方法,其特殊之处在于,包括以下步骤:The special feature of the capacitor bank inductance estimation method based on parameter correction is that it includes the following steps:
步骤1:搭建单元回路充放电实验装置Step 1: Build a unit circuit charging and discharging experimental device
所述单元回路充放电实验装置的等效电路包括第一电容器、第二电容器、正充电电源、负充电电源、触发电极开关、测量端连接板、充电端连接板和罗氏线圈;The equivalent circuit of the unit loop charging and discharging experimental device includes a first capacitor, a second capacitor, a positive charging power source, a negative charging power source, a trigger electrode switch, a measuring end connecting plate, a charging end connecting plate and a Rogowski coil;
第一电容器的一端通过正充电支路保护电阻与正充电电源的输出相连,第一电容器的另一端通过测量端连接板、放电回路等效电阻与第二电容器的一端相连,第二电容器的另一端通过负充电支路保护电阻与负充电电源的输出相连;触发电极开关通过充电端连接板设置在正充电电源与负充电电源之间;罗氏线圈环绕在测量端连接板外;One end of the first capacitor is connected to the output of the positive charging power supply through the protection resistor of the positive charging branch, the other end of the first capacitor is connected to one end of the second capacitor through the measuring terminal connecting plate and the equivalent resistance of the discharge loop, and the other end of the second capacitor is connected to the output of the positive charging power supply. One end is connected to the output of the negative charging power supply through the protection resistor of the negative charging branch; the trigger electrode switch is set between the positive charging power supply and the negative charging power supply through the connecting plate of the charging end; the Rogowski coil is surrounded by the connecting plate of the measuring end;
第一电容器和第二电容器相对并排设置构成电容器组,第一电容器和第二电容器之间设置有多个绝缘材料制成的隔板,通过改变所述隔板的数量,可控制第一电容器和第二电容器之间的间距在5mm~30mm变化;The first capacitor and the second capacitor are arranged side by side to form a capacitor bank, and a plurality of separators made of insulating materials are arranged between the first capacitor and the second capacitor. By changing the number of the separators, the first capacitor and the second capacitor can be controlled. The spacing between the second capacitors varies from 5mm to 30mm;
步骤2:向电容器组充电Step 2: Charge the Capacitor Bank
向第一电容器和第二电容器施加充电电压,从0开始逐渐提升充电电压至触发电极开关的间隙放电导通;Apply a charging voltage to the first capacitor and the second capacitor, and gradually increase the charging voltage from 0 until the gap of the trigger electrode switch is discharged and turned on;
步骤3:获取电容器组的实测电感LC Step 3: Obtain the measured inductance L C of the capacitor bank
将第一电容器与第二电容器之间的间距从5mm逐级调至30mm,分别开展至少四组不同间距下的实验,每组实验测试N个电流波形作为数据样本,计算每组实验的电容器组电感平均值作为该组实验的实测电感LC;N≥10;单组实验的电容器组实测电感LC的获取方法为:Adjust the distance between the first capacitor and the second capacitor from 5mm to 30mm step by step, and carry out at least four sets of experiments with different distances. Each set of experiments tests N current waveforms as data samples, and calculates the capacitor bank of each set of experiments. The average value of inductance is taken as the measured inductance LC of this group of experiments; N≥10; the method of obtaining the measured inductance LC of the capacitor bank of a single group of experiments is:
3.1)采用Maxwell仿真计算充电端连接板的回路电感LA、测量端连接板的回路电感LB,估算触发电极开关处的火花通道电感LD≈14x,单位nH;x为火花通道距离,单位cm;3.1) Use Maxwell simulation to calculate the loop inductance LA of the connecting board at the charging end and the loop inductance LB of the connecting board at the measuring end, and estimate the spark channel inductance L D ≈ 14x at the trigger electrode switch, unit nH; x is the distance of the spark channel, unit cm;
3.2)用罗氏线圈和示波器测量N次,测出单元回路的N个电流波形,分别读取电流振荡周期以及前两个波峰峰值和时间点,从而推算出N次测试得到的单元回路的总回路电感分别为Lm1,Lm2,...,LmN;3.2) Use Rogowski coil and oscilloscope to measure N times, measure N current waveforms of the unit circuit, read the current oscillation period and the first two peaks and time points respectively, so as to calculate the total circuit of the unit circuit obtained by N times of testing The inductances are L m1 , L m2 ,..., L mN ;
3.3)计算当前组实验的电容器组的电感分别为:3.3) Calculate the inductance of the capacitor bank of the current group of experiments:
LC1=Lm1-(LA+LB+LD),L C1 =L m1 -(L A +L B +L D ),
LC2=Lm2-(LA+LB+LD),L C2 =L m2 -(L A +L B +L D ),
……
LCN=LmN-(LA+LB+LD);L CN =L mN -(L A +L B +L D );
3.4)计算当前组实验的实测电感LC:3.4) Calculate the measured inductance L C of the current group of experiments:
步骤4:计算电容器组电感的等效计算值Lf Step 4: Calculate the equivalent calculated value L f of the capacitor bank inductance
根据带状传输线电感的理论计算公式:并令 According to the theoretical calculation formula of strip transmission line inductance: and order
其中:l为带状线长度,w为带状线宽度,d为带状线内侧间距,μ0为真空磁导率;Where: l is the length of the stripline, w is the width of the stripline, d is the inner spacing of the stripline, and μ 0 is the vacuum permeability;
在上述公式中,假设将电容器组等效为位于中间层的平板,则d=h+j,其中h为单个电容器的高,j为两个电容器之间的间距;按上述公式计算得到步骤3中所述至少四组不同间距下电容器组电感的等效计算值为Lf;In the above formula, it is assumed that the capacitor bank is equivalent to a flat plate located in the middle layer, then d=h+j, where h is the height of a single capacitor, and j is the distance between two capacitors; Step 3 is calculated according to the above formula The equivalent calculated value of the capacitor bank inductance under at least four groups of different spacings is L f ;
步骤5:获取电容器厚度的修正系数αStep 5: Obtain the correction factor α for the thickness of the capacitor
根据步骤3中所述至少四组实验得到的实测电感LC与步骤4得到的相应的电容器组电感的等效计算值Lf进行对比拟合,经过试凑,得到第一电容器和第二电容器的电感估算误差绝对值在设计精度要求以内时,电容器厚度的修正系数α;Comparing and fitting the measured inductance L C obtained by at least four sets of experiments described in step 3 and the equivalent calculated value L f of the corresponding capacitor bank inductance obtained in
步骤6:计算修正后的电容器组电感L′f Step 6: Calculate the corrected capacitor bank inductance L' f
将d=αh+j带入所述带状传输线电感的理论计算公式,求解修正后的电容器组电感L′f。Bring d=αh+j into the theoretical calculation formula of the strip transmission line inductance, and solve the modified capacitor bank inductance L′ f .
进一步地,步骤1中所述的触发电极开关包括两枚相对间距安装的M3螺钉,将每个M3螺钉的钉头打磨后通过螺母相对间隔固定在充电端连接板上即构成触发电极开关。Further, the trigger electrode switch described in
进一步地,步骤2中,将其中一个充电电源的输出设为恒定,进而缓慢提升另一充电电源的输出,直至触发电极开关放电导通。Further, in step 2, the output of one of the charging power sources is set to be constant, and then the output of the other charging power source is slowly increased until the trigger electrode switch is discharged and turned on.
进一步地,步骤3中共开展6组实验,6组实验对应的两电容间的间距分别为5mm、10mm、15mm、20mm、25mm和30mm。Further, in step 3, a total of 6 groups of experiments are carried out, and the distances between the two capacitors corresponding to the 6 groups of experiments are respectively 5mm, 10mm, 15mm, 20mm, 25mm and 30mm.
进一步地,步骤3中N=20。Further, in step 3, N=20.
进一步地,步骤1中所述的测量端连接板、充电端连接板的材料均为304不锈钢,厚度均为1mm。Further, the materials of the measuring end connecting plate and the charging end connecting plate described in
进一步地,步骤1中所述的测量端连接板、充电端连接板上均设置有长条腰形孔。Further, the measuring end connecting plate and the charging end connecting plate described in
本发明的有益效果:Beneficial effects of the present invention:
本发明设计搭建了单元回路的充放电实验装置,利用罗氏线圈和示波器获取回路放电的电流波形,根据波形推算出该规格电容器在特定间距条件下的回路总电感。另一方面,在Maxwell环境中通过电磁场仿真获得连接导体板电感,并根据经验公式计算得到电极处火花通道电感,用回路总电感扣除导体板电感与火花通道电感,即得到电容器组电感的实测值。通过对同种规格电容器在不同间距条件下的实测值与基于带状线电感计算公式的计算值进行对比拟合,从而得到原始计算公式的修正系数。利用该方法,针对几种典型容量规格的电容器,给出了其具体修正参数值,经修正后的计算公式估算精度显著提升。The invention designs and builds a charging and discharging experimental device for a unit loop, uses a Rogowski coil and an oscilloscope to obtain the current waveform of the loop discharge, and calculates the total loop inductance of the capacitor of this specification under a specific spacing condition according to the waveform. On the other hand, in the Maxwell environment, the inductance of the connecting conductor plate is obtained through the electromagnetic field simulation, and the spark channel inductance at the electrode is calculated according to the empirical formula, and the conductor plate inductance and the spark channel inductance are deducted from the total loop inductance to obtain the measured value of the capacitor bank inductance. . By comparing and fitting the measured values of capacitors of the same specification under different spacing conditions with the calculated values based on the stripline inductance calculation formula, the correction coefficient of the original calculation formula is obtained. Using this method, for several capacitors with typical capacity specifications, the specific correction parameter values are given, and the estimation accuracy of the revised calculation formula is significantly improved.
附图说明Description of drawings
图1是本发明的单元回路充放电实验装置的等效电路图。FIG. 1 is an equivalent circuit diagram of the unit loop charging and discharging experimental device of the present invention.
图2是本发明提供的电感估算方法与原始方法的精度对比(60nF)。Fig. 2 is the accuracy comparison (60nF) of the inductance estimation method provided by the present invention and the original method.
图1中,1.正充电电源,2.负充电电源,3.触发电极开关,4.第一电容器(充正电),5.第二电容器(充负电),6.放电回路等效电阻,7.罗氏线圈,8.测量端连接板,9.充电端连接板,10.正充电支路保护电阻,11-负充电支路保护电阻。In Figure 1, 1. Positive charging power supply, 2. Negative charging power supply, 3. Trigger electrode switch, 4. First capacitor (positively charged), 5. Second capacitor (negatively charged), 6. Equivalent resistance of discharge circuit , 7. Rogowski coil, 8. Measuring terminal connection board, 9. Charging terminal connection board, 10. Positive charging branch protection resistance, 11-negative charging branch protection resistance.
具体实施方式Detailed ways
下面结合附图和实施例对本发明做进一步说明。The present invention will be further described below with reference to the accompanying drawings and embodiments.
本实施例以基本构造均为长方形绝缘材料壳体,壳体内部为金属薄膜层叠卷绕形式,采用绝缘油密封,标称电容值为60nF,尺寸参数均分别为l(长)=255mm,w(宽)=154mm,h(高)=62mm的两只电容器(分别记为第一电容器4和第二电容器5)构成的电容器组为例作为被估算对象,说明本发明的实施过程。In this embodiment, the basic structure is a rectangular insulating material shell, and the inside of the shell is in the form of laminated winding of metal films, sealed with insulating oil, the nominal capacitance value is 60nF, and the size parameters are l(length)=255mm, w (width)=154mm, h (height)=62mm The capacitor bank constituted by two capacitors (respectively denoted as the
参照图1-2,本实施例的实施过程如下:1-2, the implementation process of this embodiment is as follows:
步骤1:搭建单元回路充放电实验装置Step 1: Build a unit circuit charging and discharging experimental device
组装单元回路充放电实验装置,连接充电线缆和电流测量线缆;单元回路充放电实验装置的等效电路如图1所示,包括第一电容器4、第二电容器5、正充电电源1、负充电电源2、触发电极开关3、测量端连接板8、充电端连接板9(共有两段,其中一段固定不动,另一段可通过腰形孔调节长度)和罗氏线圈7;第一电容器4的一端通过正充电支路保护电阻10与正充电电源1的输出相连,第一电容器4的另一端通过测量端连接板8、放电回路等效电阻6与第二电容器5的一端相连,第二电容器5的另一端通过负充电支路保护电阻11与负充电电源2的输出相连;触发电极开关3通过充电端连接板9设置在正充电电源1与负充电电源2之间;罗氏线圈7环绕在测量端连接板8(共有两段,其中一段固定不动,另一段可通过腰形孔调节长度)外。Assemble the unit loop charge and discharge experimental device, connect the charging cable and the current measurement cable; the equivalent circuit of the unit loop charge and discharge experimental device is shown in Figure 1, including the
其中:in:
第一电容器4和第二电容器5相对并排设置构成电容器组,实验装置中还设计了用于固定第一电容器4和第二电容器5的支架以及用于调节第一电容器4和第二电容器5之间间距的多个隔板,支架和隔板的材料均为尼龙(或者其他绝缘材料),单个隔板的厚度为5mm(厚度也可为其他值)。隔板设置在第一电容器4与第二电容器5之间,初始时第一电容器4和第二电容器5之间的间距为5mm,通过改变第一电容器4和第二电容器5之间隔板的数量,可以控制第一电容器4和第二电容器5之间的间距从5mm~30mm变化。The
正充电电源1和负充电电源2分别为±100kV直流电源,正充电电源1用于给第一电容器4充正电,负充电电源2用于给第二电容器5充负电;实验时一般将其中一个充电电源的输出设为恒定,进而缓慢提升另一充电电源的输出,直至触发电极开关3放电导通。The positive
触发电极开关3包括两枚相对间距安装的M3螺钉,将每个M3螺钉的钉头打磨后通过螺母分别固定在充电端连接板9的两段上即构成触发电极开关3。触发电极开关3的电极间隙约1mm左右,从而电极的击穿电压小于10kV。在其他实施例中,触发电极开关3也可采用现有的其他结构形式。The trigger electrode switch 3 includes two M3 screws installed at opposite intervals. After grinding the nail head of each M3 screw, it is fixed on the two sections of the charging end connecting plate 9 by nuts to constitute the trigger electrode switch 3 . The electrode gap of the trigger electrode switch 3 is about 1 mm, so that the breakdown voltage of the electrode is less than 10 kV. In other embodiments, the trigger electrode switch 3 may also adopt other existing structural forms.
罗氏线圈7是一种利用电磁感应原理测量瞬态电流的电子器件,该器件环绕在测量端连接板8之外,示波器通过罗氏线圈7采集单元回路的电流波形信号;根据电流波形信号的波形特征,可以用解析的方法推算出单元回路的总电感值。The Rogowski coil 7 is an electronic device that uses the principle of electromagnetic induction to measure transient current. The device surrounds the measuring end connecting plate 8. The oscilloscope collects the current waveform signal of the unit loop through the Rogowski coil 7; according to the waveform characteristics of the current waveform signal , the total inductance value of the unit loop can be calculated analytically.
测量端连接板8、充电端连接板9的材料均为304不锈钢,厚度均为1mm,测量端连接板8、充电端连接板9上均设置有长条腰形孔,从而具有一定范围的长度调节能力,使连接板长度能随着第一电容器4和第二电容器5之间间距变化而做相应调节。The measuring end connecting plate 8 and the charging end connecting plate 9 are all made of 304 stainless steel with a thickness of 1 mm. The measuring end connecting plate 8 and the charging end connecting plate 9 are provided with long waist-shaped holes, so that they have a certain range of lengths. The adjustment capability enables the length of the connecting plate to be adjusted accordingly as the distance between the
步骤2:向电容器组充电Step 2: Charge the Capacitor Bank
向第一电容器4和第二电容器5施加充电电压,电压不宜太高,触发电极开关3的放电间隙约1mm,击穿电压约3kV,从0开始逐渐提升充电电压至触发电极开关3的间隙放电导通;Apply charging voltage to the
步骤3:获取电容器组的实测电感LC Step 3: Obtain the measured inductance L C of the capacitor bank
将第一电容器4与第二电容器5之间的间距从5mm逐级调至30mm,分别开展至少4组实验,本实施例开展了6组实验(6组实验对应的两电容器间距分别为5mm、10mm、15mm、20mm、25mm和30mm,在其他实施例中,也可选取其他间距值),每组实验测试20个电流波形作为数据样本,计算该组实验的电容器组电感平均值作为该组实验的实测电感LC;各组实验实测电感LC的获取方法一致,以下仅以第一电容器4与第二电容器5之间的间距为5mm为例,说明实测电感LC的获取方法:The distance between the
3.1)采用Maxwell仿真计算充电端连接板9的回路电感LA、测量端连接板8的回路电感LB,估算触发电极开关3处的火花通道电感LD≈14x(nH),其中x为火花通道距离(单位cm);3.1) Use Maxwell simulation to calculate the loop inductance LA of the connecting plate 9 at the charging end and the loop inductance LB of the connecting plate 8 at the measuring end, and estimate the spark channel inductance L D ≈ 14x(nH) at the trigger electrode switch 3 , where x is the spark Channel distance (unit cm);
3.2)用罗氏线圈和示波器测出单元回路的20个电流波形,分别读取电流振荡周期以及前两个波峰峰值和时间点,从而推算出20次测试得到的单元回路的总回路电感分别为Lm1,Lm2,...,Lm20;3.2) Use Rogowski coil and oscilloscope to measure 20 current waveforms of the unit loop, read the current oscillation period and the first two peaks and time points respectively, so as to calculate the total loop inductance of the unit loop obtained by 20 tests is L respectively m1 ,L m2 ,...,L m20 ;
3.3)计算当前组实验的电容器组的电感分别为:3.3) Calculate the inductance of the capacitor bank of the current group of experiments:
LC1=Lm1-(LA+LB+LD),L C1 =L m1 -(L A +L B +L D ),
LC2=Lm2-(LA+LB+LD),L C2 =L m2 -(L A +L B +L D ),
……
LC20=Lm20-(LA+LB+LD);L C20 =L m20 -(L A +L B +L D );
3.4)计算当前组实验的实测电感LC:3.4) Calculate the measured inductance L C of the current group of experiments:
步骤4:计算电容器组电感的等效计算值Lf Step 4: Calculate the equivalent calculated value L f of the capacitor bank inductance
根据带状传输线电感的理论计算公式:并令 其中l为带状线长度,w为带状线宽度,d为带状线内侧间距,μ0为真空磁导率。According to the theoretical calculation formula of strip transmission line inductance: and order Where l is the length of the stripline, w is the width of the stripline, d is the distance between the inner sides of the stripline, and μ 0 is the vacuum permeability.
在上述公式中,假设将电容器组等效为位于中间层的平板(“中间层假设”),则d=h+j,其中h为单个电容器的高,j为两个电容器之间的间距。按上述公式计算得到电容器组电感的等效计算值为Lf(6组实验对应的两电容器间距中,每个间距只计算一次)。In the above formula, assuming that the capacitor bank is equivalent to a flat plate in the middle layer ("interlayer hypothesis"), then d=h+j, where h is the height of a single capacitor and j is the spacing between the two capacitors. According to the above formula, the equivalent calculated value of the capacitor bank inductance is L f (in the distance between the two capacitors corresponding to the 6 groups of experiments, each distance is only calculated once).
步骤5:获取电容器厚度的修正系数αStep 5: Obtain the correction factor α for the thickness of the capacitor
考虑到第一电容器4和第二电容器5的内部结构为多层金属薄带的卷绕体,不同规格电容器的尺寸参数及卷绕方式可能各不相同,因此电容器电感估算的“中间层假设”并不具有普遍适用性。因而这里对电容器厚度进行系数修正,认为等效平板间距为两个电容器之间的间距与修正后的电容器厚度之和,即d=αh+j,其中α为修正系数。根据上述6组实验的LC和与其对应的Lf值进行对比拟合,经过试凑,得知对于60nF电容器,α=0.93时,可将电感估算误差绝对值控制在2%以内,较修正前公式的计算精度有了大幅提升,如图2所示,证明了本发明所提供方法能够有效提高电感估算精度。Considering that the internal structures of the
步骤6:计算修正后的电容器组电感L′f Step 6: Calculate the corrected capacitor bank inductance L' f
将d=αh+j,α=0.93带入带状传输线电感的理论计算公式,求解修正后的电容器组电感L′f。Bring d=αh+j, α=0.93 into the theoretical calculation formula of the strip transmission line inductance, and solve the corrected inductance L′ f of the capacitor bank.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010143199.9A CN111308222B (en) | 2020-03-04 | 2020-03-04 | Capacitor bank inductance estimation method based on parameter correction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010143199.9A CN111308222B (en) | 2020-03-04 | 2020-03-04 | Capacitor bank inductance estimation method based on parameter correction |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111308222A true CN111308222A (en) | 2020-06-19 |
CN111308222B CN111308222B (en) | 2022-04-01 |
Family
ID=71149602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010143199.9A Active CN111308222B (en) | 2020-03-04 | 2020-03-04 | Capacitor bank inductance estimation method based on parameter correction |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111308222B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1276103A (en) * | 1997-10-15 | 2000-12-06 | 摩托罗拉公司 | Dual band voltage controlled oscillator |
CN102714465A (en) * | 2009-06-29 | 2012-10-03 | 理想能量转换器有限公司 | Power transfer devices, methods, and systems with crowbar switch shunting energy-transfer reactance |
CN103792433A (en) * | 2014-02-21 | 2014-05-14 | 国家电网公司 | Measuring method using spark coefficient for correcting low-amplitude value impact resistance of tower grounding device |
JP2014222994A (en) * | 2013-05-14 | 2014-11-27 | 東光株式会社 | Wireless power transmission device |
CN105652160A (en) * | 2014-11-14 | 2016-06-08 | 武陟县电业总公司 | Method for calculating lightning stroke impact characteristics of electric power equipment lightning protection grounding body |
-
2020
- 2020-03-04 CN CN202010143199.9A patent/CN111308222B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1276103A (en) * | 1997-10-15 | 2000-12-06 | 摩托罗拉公司 | Dual band voltage controlled oscillator |
CN102714465A (en) * | 2009-06-29 | 2012-10-03 | 理想能量转换器有限公司 | Power transfer devices, methods, and systems with crowbar switch shunting energy-transfer reactance |
JP2014222994A (en) * | 2013-05-14 | 2014-11-27 | 東光株式会社 | Wireless power transmission device |
CN103792433A (en) * | 2014-02-21 | 2014-05-14 | 国家电网公司 | Measuring method using spark coefficient for correcting low-amplitude value impact resistance of tower grounding device |
CN105652160A (en) * | 2014-11-14 | 2016-06-08 | 武陟县电业总公司 | Method for calculating lightning stroke impact characteristics of electric power equipment lightning protection grounding body |
Also Published As
Publication number | Publication date |
---|---|
CN111308222B (en) | 2022-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104181490B (en) | A kind of big current temporary state characteristic detection device of electronic current mutual inductor | |
CN103135086A (en) | Calibration device and calibration and verification method for direct current electric field measuring apparatus | |
US20050122122A1 (en) | Voltage sensor and dielectric material | |
CN109342798B (en) | A method for obtaining insulation polarization and depolarization current of electrical equipment | |
CN111308222A (en) | Capacitor bank inductance estimation method based on parameter correction | |
Wang et al. | Study on DC surface flashover at the clear edge of metallized polypropylene films | |
Kumar et al. | Comparison of planar transformer architectures and estimation of parasitics for high voltage low power DC-DC converter | |
Zherlitsyn et al. | Capacitor units with air insulation for linear transformers | |
CN111579909B (en) | Method for measuring stable relaxation polarizability and electric field characteristic of nonlinear insulating dielectric medium | |
CN208384063U (en) | A kind of insulator edge flashing discharge energy measuring device | |
Li et al. | Influence of wave propagation process on measurement of corona current | |
Konstantinidi et al. | Dea self-discharge characterization for low duty cycle applications | |
Wang et al. | Measurement method of transient overvoltage distribution in transformer windings | |
CN110515021B (en) | Correction method for space charge test under action of arbitrary voltage waveform | |
CN114864245B (en) | A method for suppressing noise of electronic voltage transformer based on electrostatic charge escape | |
Buchhagen et al. | Compensation of the first natural frequency of inductive medium voltage transformers | |
Pătru et al. | Applications of Voltage Pulse Generator to Achieve Current Pulses of High Amplitude | |
CN110672891A (en) | Square wave generator for calibrating voltage divider | |
CN110967656A (en) | A high-precision sweep frequency Rogowski coil mutual inductance coefficient calibration system and method | |
CN104267252B (en) | A kind of decoupling method of use capacitance sensor measuring transformer coil transient voltage | |
Pan et al. | The influence of sample configuration on pd frequency at DC voltage | |
Zhu et al. | Transient Overvoltage Calculation of Dry-type Air-core Reactor with Complex Topology | |
Pătru et al. | Achievement of Current Pulses of High Amplitude Using a Voltage Pulse Generator | |
Boonseng et al. | A low cost approach to design the Tesla transformer for testing of insulating materials | |
CN213275832U (en) | A GIS-to-ground capacitance measuring circuit, device and measuring instrument |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |