CN111303157A - Naphthopyrazine derivative, preparation method thereof and electronic device - Google Patents
Naphthopyrazine derivative, preparation method thereof and electronic device Download PDFInfo
- Publication number
- CN111303157A CN111303157A CN202010231029.6A CN202010231029A CN111303157A CN 111303157 A CN111303157 A CN 111303157A CN 202010231029 A CN202010231029 A CN 202010231029A CN 111303157 A CN111303157 A CN 111303157A
- Authority
- CN
- China
- Prior art keywords
- group
- naphthopyrazine
- carbon atoms
- substituted
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- YUFRAQHYKKPYLH-UHFFFAOYSA-N benzo[f]quinoxaline Chemical class C1=CN=C2C3=CC=CC=C3C=CC2=N1 YUFRAQHYKKPYLH-UHFFFAOYSA-N 0.000 title claims abstract description 67
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- 230000000903 blocking effect Effects 0.000 claims abstract description 23
- 238000002347 injection Methods 0.000 claims abstract description 23
- 239000007924 injection Substances 0.000 claims abstract description 23
- 230000005525 hole transport Effects 0.000 claims abstract description 15
- 230000005669 field effect Effects 0.000 claims abstract description 7
- -1 dimethylfluorenyl group Chemical group 0.000 claims description 148
- 239000010410 layer Substances 0.000 claims description 128
- 125000004432 carbon atom Chemical group C* 0.000 claims description 98
- 125000006615 aromatic heterocyclic group Chemical group 0.000 claims description 35
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 claims description 29
- 125000000217 alkyl group Chemical group 0.000 claims description 20
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 20
- 239000012044 organic layer Substances 0.000 claims description 17
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 16
- 229910052731 fluorine Inorganic materials 0.000 claims description 11
- 125000001153 fluoro group Chemical group F* 0.000 claims description 11
- 229910052805 deuterium Inorganic materials 0.000 claims description 10
- 125000004431 deuterium atom Chemical group 0.000 claims description 10
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 10
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 9
- 125000003342 alkenyl group Chemical group 0.000 claims description 8
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 claims description 7
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims description 7
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 7
- 229910052801 chlorine Inorganic materials 0.000 claims description 7
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 7
- 229910052740 iodine Inorganic materials 0.000 claims description 7
- 125000004306 triazinyl group Chemical group 0.000 claims description 7
- 125000000304 alkynyl group Chemical group 0.000 claims description 6
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 claims description 6
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 claims description 6
- 125000004988 dibenzothienyl group Chemical group C1(=CC=CC=2SC3=C(C21)C=CC=C3)* 0.000 claims description 6
- 125000001644 phenoxazinyl group Chemical group C1(=CC=CC=2OC3=CC=CC=C3NC12)* 0.000 claims description 6
- 125000001624 naphthyl group Chemical group 0.000 claims description 5
- 125000004076 pyridyl group Chemical group 0.000 claims description 5
- 125000000714 pyrimidinyl group Chemical group 0.000 claims description 5
- 125000000641 acridinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3C=C12)* 0.000 claims description 4
- 125000006267 biphenyl group Chemical group 0.000 claims description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims 1
- 125000004429 atom Chemical group 0.000 claims 1
- 229910052739 hydrogen Inorganic materials 0.000 claims 1
- 239000001257 hydrogen Substances 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 49
- 238000006862 quantum yield reaction Methods 0.000 abstract description 7
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 48
- 150000001875 compounds Chemical class 0.000 description 44
- 239000010408 film Substances 0.000 description 36
- 238000000034 method Methods 0.000 description 32
- 125000001424 substituent group Chemical group 0.000 description 29
- 230000015572 biosynthetic process Effects 0.000 description 26
- 238000006243 chemical reaction Methods 0.000 description 26
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 22
- 238000010992 reflux Methods 0.000 description 19
- 239000000543 intermediate Substances 0.000 description 17
- 238000003786 synthesis reaction Methods 0.000 description 17
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 15
- 238000002156 mixing Methods 0.000 description 15
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 239000000741 silica gel Substances 0.000 description 12
- 229910002027 silica gel Inorganic materials 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- 238000001704 evaporation Methods 0.000 description 11
- 239000003208 petroleum Substances 0.000 description 11
- 125000003373 pyrazinyl group Chemical group 0.000 description 11
- 238000004440 column chromatography Methods 0.000 description 10
- 238000001816 cooling Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 239000003480 eluent Substances 0.000 description 10
- 230000008020 evaporation Effects 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 8
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 8
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 8
- 238000007740 vapor deposition Methods 0.000 description 8
- MCSXGCZMEPXKIW-UHFFFAOYSA-N 3-hydroxy-4-[(4-methyl-2-nitrophenyl)diazenyl]-N-(3-nitrophenyl)naphthalene-2-carboxamide Chemical compound Cc1ccc(N=Nc2c(O)c(cc3ccccc23)C(=O)Nc2cccc(c2)[N+]([O-])=O)c(c1)[N+]([O-])=O MCSXGCZMEPXKIW-UHFFFAOYSA-N 0.000 description 7
- AWXGSYPUMWKTBR-UHFFFAOYSA-N 4-carbazol-9-yl-n,n-bis(4-carbazol-9-ylphenyl)aniline Chemical compound C12=CC=CC=C2C2=CC=CC=C2N1C1=CC=C(N(C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=C1 AWXGSYPUMWKTBR-UHFFFAOYSA-N 0.000 description 7
- 101000837344 Homo sapiens T-cell leukemia translocation-altered gene protein Proteins 0.000 description 7
- 102100028692 T-cell leukemia translocation-altered gene protein Human genes 0.000 description 7
- 238000004528 spin coating Methods 0.000 description 7
- 239000010409 thin film Substances 0.000 description 7
- 229960000583 acetic acid Drugs 0.000 description 6
- 125000003118 aryl group Chemical group 0.000 description 6
- DKHNGUNXLDCATP-UHFFFAOYSA-N dipyrazino[2,3-f:2',3'-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile Chemical compound C12=NC(C#N)=C(C#N)N=C2C2=NC(C#N)=C(C#N)N=C2C2=C1N=C(C#N)C(C#N)=N2 DKHNGUNXLDCATP-UHFFFAOYSA-N 0.000 description 6
- 239000012362 glacial acetic acid Substances 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 239000005457 ice water Substances 0.000 description 6
- 230000000171 quenching effect Effects 0.000 description 6
- 238000000967 suction filtration Methods 0.000 description 6
- 239000012043 crude product Substances 0.000 description 5
- 125000005842 heteroatom Chemical group 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 5
- 239000002356 single layer Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- MXWZRRPNVLCHMY-UHFFFAOYSA-N 6-bromonaphthalene-1,2-dione Chemical compound O=C1C(=O)C=CC2=CC(Br)=CC=C21 MXWZRRPNVLCHMY-UHFFFAOYSA-N 0.000 description 4
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 239000004305 biphenyl Substances 0.000 description 4
- 235000010290 biphenyl Nutrition 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 4
- 125000003914 fluoranthenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC=C4C1=C23)* 0.000 description 4
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 4
- 125000001041 indolyl group Chemical group 0.000 description 4
- 238000004776 molecular orbital Methods 0.000 description 4
- 239000012074 organic phase Substances 0.000 description 4
- 125000001484 phenothiazinyl group Chemical group C1(=CC=CC=2SC3=CC=CC=C3NC12)* 0.000 description 4
- 125000001725 pyrenyl group Chemical group 0.000 description 4
- 238000010791 quenching Methods 0.000 description 4
- 125000005493 quinolyl group Chemical group 0.000 description 4
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 4
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 4
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 3
- FTHBTDDIVWLRLP-UHFFFAOYSA-N 5,6-diaminopyrazine-2,3-dicarbonitrile Chemical compound NC1=NC(C#N)=C(C#N)N=C1N FTHBTDDIVWLRLP-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 150000001454 anthracenes Chemical class 0.000 description 3
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 3
- 125000005874 benzothiadiazolyl group Chemical group 0.000 description 3
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 3
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 3
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 125000002541 furyl group Chemical group 0.000 description 3
- 125000001072 heteroaryl group Chemical group 0.000 description 3
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 3
- 125000005956 isoquinolyl group Chemical group 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- 125000004593 naphthyridinyl group Chemical group N1=C(C=CC2=CC=CN=C12)* 0.000 description 3
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 3
- UQPUONNXJVWHRM-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 UQPUONNXJVWHRM-UHFFFAOYSA-N 0.000 description 3
- 125000005561 phenanthryl group Chemical group 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 125000003226 pyrazolyl group Chemical group 0.000 description 3
- 125000000168 pyrrolyl group Chemical group 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 125000001544 thienyl group Chemical group 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- STTGYIUESPWXOW-UHFFFAOYSA-N 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline Chemical compound C=12C=CC3=C(C=4C=CC=CC=4)C=C(C)N=C3C2=NC(C)=CC=1C1=CC=CC=C1 STTGYIUESPWXOW-UHFFFAOYSA-N 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- QENGPZGAWFQWCZ-UHFFFAOYSA-N 3-Methylthiophene Chemical compound CC=1C=CSC=1 QENGPZGAWFQWCZ-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- HFACYLZERDEVSX-UHFFFAOYSA-N benzidine Chemical class C1=CC(N)=CC=C1C1=CC=C(N)C=C1 HFACYLZERDEVSX-UHFFFAOYSA-N 0.000 description 2
- 125000004618 benzofuryl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 2
- 125000003354 benzotriazolyl group Chemical group N1N=NC2=C1C=CC=C2* 0.000 description 2
- UFVXQDWNSAGPHN-UHFFFAOYSA-K bis[(2-methylquinolin-8-yl)oxy]-(4-phenylphenoxy)alumane Chemical compound [Al+3].C1=CC=C([O-])C2=NC(C)=CC=C21.C1=CC=C([O-])C2=NC(C)=CC=C21.C1=CC([O-])=CC=C1C1=CC=CC=C1 UFVXQDWNSAGPHN-UHFFFAOYSA-K 0.000 description 2
- XJHCXCQVJFPJIK-UHFFFAOYSA-M caesium fluoride Chemical compound [F-].[Cs+] XJHCXCQVJFPJIK-UHFFFAOYSA-M 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 125000004987 dibenzofuryl group Chemical group C1(=CC=CC=2OC3=C(C21)C=CC=C3)* 0.000 description 2
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 2
- UCLOAJGCFQIQQW-UHFFFAOYSA-N diphenylboron Chemical compound C=1C=CC=CC=1[B]C1=CC=CC=C1 UCLOAJGCFQIQQW-UHFFFAOYSA-N 0.000 description 2
- 238000001194 electroluminescence spectrum Methods 0.000 description 2
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 2
- 238000000921 elemental analysis Methods 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 150000002391 heterocyclic compounds Chemical class 0.000 description 2
- 125000002883 imidazolyl group Chemical group 0.000 description 2
- 125000003453 indazolyl group Chemical group N1N=C(C2=C1C=CC=C2)* 0.000 description 2
- 125000003406 indolizinyl group Chemical group C=1(C=CN2C=CC=CC12)* 0.000 description 2
- 125000005990 isobenzothienyl group Chemical group 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 125000000904 isoindolyl group Chemical group C=1(NC=C2C=CC=CC12)* 0.000 description 2
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 125000000842 isoxazolyl group Chemical group 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 2
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 150000002790 naphthalenes Chemical class 0.000 description 2
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 150000007978 oxazole derivatives Chemical class 0.000 description 2
- 125000002971 oxazolyl group Chemical group 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 125000003933 pentacenyl group Chemical group C1(=CC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C12)* 0.000 description 2
- 125000001792 phenanthrenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C=CC12)* 0.000 description 2
- 125000004934 phenanthridinyl group Chemical group C1(=CC=CC2=NC=C3C=CC=CC3=C12)* 0.000 description 2
- 125000004625 phenanthrolinyl group Chemical group N1=C(C=CC2=CC=C3C=CC=NC3=C12)* 0.000 description 2
- 125000001791 phenazinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3N=C12)* 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- IHZVARNFIMXWFZ-UHFFFAOYSA-N piperazine-2,3-diamine Chemical compound N1C(C(NCC1)N)N IHZVARNFIMXWFZ-UHFFFAOYSA-N 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 125000000561 purinyl group Chemical group N1=C(N=C2N=CNC2=C1)* 0.000 description 2
- 150000003220 pyrenes Chemical class 0.000 description 2
- 125000002098 pyridazinyl group Chemical group 0.000 description 2
- 150000004322 quinolinols Chemical class 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- MFRIHAYPQRLWNB-UHFFFAOYSA-N sodium tert-butoxide Chemical compound [Na+].CC(C)(C)[O-] MFRIHAYPQRLWNB-UHFFFAOYSA-N 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 125000001935 tetracenyl group Chemical group C1(=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C12)* 0.000 description 2
- 125000003831 tetrazolyl group Chemical group 0.000 description 2
- 125000005259 triarylamine group Chemical group 0.000 description 2
- 150000003918 triazines Chemical class 0.000 description 2
- 239000013638 trimer Substances 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- CYPYTURSJDMMMP-WVCUSYJESA-N (1e,4e)-1,5-diphenylpenta-1,4-dien-3-one;palladium Chemical compound [Pd].[Pd].C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1 CYPYTURSJDMMMP-WVCUSYJESA-N 0.000 description 1
- JGAVTCVHDMOQTJ-UHFFFAOYSA-N (4-carbazol-9-ylphenyl)boronic acid Chemical compound C1=CC(B(O)O)=CC=C1N1C2=CC=CC=C2C2=CC=CC=C21 JGAVTCVHDMOQTJ-UHFFFAOYSA-N 0.000 description 1
- UWRZIZXBOLBCON-VOTSOKGWSA-N (e)-2-phenylethenamine Chemical class N\C=C\C1=CC=CC=C1 UWRZIZXBOLBCON-VOTSOKGWSA-N 0.000 description 1
- ICPSWZFVWAPUKF-UHFFFAOYSA-N 1,1'-spirobi[fluorene] Chemical class C1=CC=C2C=C3C4(C=5C(C6=CC=CC=C6C=5)=CC=C4)C=CC=C3C2=C1 ICPSWZFVWAPUKF-UHFFFAOYSA-N 0.000 description 1
- 125000004502 1,2,3-oxadiazolyl group Chemical group 0.000 description 1
- 125000004511 1,2,3-thiadiazolyl group Chemical group 0.000 description 1
- 125000004529 1,2,3-triazinyl group Chemical group N1=NN=C(C=C1)* 0.000 description 1
- 125000001399 1,2,3-triazolyl group Chemical group N1N=NC(=C1)* 0.000 description 1
- 125000004504 1,2,4-oxadiazolyl group Chemical group 0.000 description 1
- 125000004514 1,2,4-thiadiazolyl group Chemical group 0.000 description 1
- 125000004530 1,2,4-triazinyl group Chemical group N1=NC(=NC=C1)* 0.000 description 1
- 125000001376 1,2,4-triazolyl group Chemical group N1N=C(N=C1)* 0.000 description 1
- 125000004506 1,2,5-oxadiazolyl group Chemical group 0.000 description 1
- 125000004517 1,2,5-thiadiazolyl group Chemical group 0.000 description 1
- 125000001781 1,3,4-oxadiazolyl group Chemical group 0.000 description 1
- 125000004520 1,3,4-thiadiazolyl group Chemical group 0.000 description 1
- 125000003363 1,3,5-triazinyl group Chemical group N1=C(N=CN=C1)* 0.000 description 1
- BBYJEAKHNVUYMN-UHFFFAOYSA-N 1-phenyl-2h-1,3,5-triazine Chemical compound C1N=CN=CN1C1=CC=CC=C1 BBYJEAKHNVUYMN-UHFFFAOYSA-N 0.000 description 1
- IVCGJOSPVGENCT-UHFFFAOYSA-N 1h-pyrrolo[2,3-f]quinoline Chemical class N1=CC=CC2=C(NC=C3)C3=CC=C21 IVCGJOSPVGENCT-UHFFFAOYSA-N 0.000 description 1
- RIKNNBBGYSDYAX-UHFFFAOYSA-N 2-[1-[2-(4-methyl-n-(4-methylphenyl)anilino)phenyl]cyclohexyl]-n,n-bis(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C(=CC=CC=1)C1(CCCCC1)C=1C(=CC=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 RIKNNBBGYSDYAX-UHFFFAOYSA-N 0.000 description 1
- GEQBRULPNIVQPP-UHFFFAOYSA-N 2-[3,5-bis(1-phenylbenzimidazol-2-yl)phenyl]-1-phenylbenzimidazole Chemical compound C1=CC=CC=C1N1C2=CC=CC=C2N=C1C1=CC(C=2N(C3=CC=CC=C3N=2)C=2C=CC=CC=2)=CC(C=2N(C3=CC=CC=C3N=2)C=2C=CC=CC=2)=C1 GEQBRULPNIVQPP-UHFFFAOYSA-N 0.000 description 1
- VOZBMWWMIQGZGM-UHFFFAOYSA-N 2-[4-(9,10-dinaphthalen-2-ylanthracen-2-yl)phenyl]-1-phenylbenzimidazole Chemical compound C1=CC=CC=C1N1C2=CC=CC=C2N=C1C1=CC=C(C=2C=C3C(C=4C=C5C=CC=CC5=CC=4)=C4C=CC=CC4=C(C=4C=C5C=CC=CC5=CC=4)C3=CC=2)C=C1 VOZBMWWMIQGZGM-UHFFFAOYSA-N 0.000 description 1
- 125000003229 2-methylhexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- NSMJMUQZRGZMQC-UHFFFAOYSA-N 2-naphthalen-1-yl-1H-imidazo[4,5-f][1,10]phenanthroline Chemical compound C12=CC=CN=C2C2=NC=CC=C2C2=C1NC(C=1C3=CC=CC=C3C=CC=1)=N2 NSMJMUQZRGZMQC-UHFFFAOYSA-N 0.000 description 1
- OGGKVJMNFFSDEV-UHFFFAOYSA-N 3-methyl-n-[4-[4-(n-(3-methylphenyl)anilino)phenyl]phenyl]-n-phenylaniline Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 OGGKVJMNFFSDEV-UHFFFAOYSA-N 0.000 description 1
- ZOKIJILZFXPFTO-UHFFFAOYSA-N 4-methyl-n-[4-[1-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]cyclohexyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C1(CCCCC1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 ZOKIJILZFXPFTO-UHFFFAOYSA-N 0.000 description 1
- SNFCXVRWFNAHQX-UHFFFAOYSA-N 9,9'-spirobi[fluorene] Chemical class C12=CC=CC=C2C2=CC=CC=C2C21C1=CC=CC=C1C1=CC=CC=C21 SNFCXVRWFNAHQX-UHFFFAOYSA-N 0.000 description 1
- MZYDBGLUVPLRKR-UHFFFAOYSA-N 9-(3-carbazol-9-ylphenyl)carbazole Chemical compound C12=CC=CC=C2C2=CC=CC=C2N1C1=CC(N2C3=CC=CC=C3C3=CC=CC=C32)=CC=C1 MZYDBGLUVPLRKR-UHFFFAOYSA-N 0.000 description 1
- QJZJIWYDCCBNTH-UHFFFAOYSA-N 9-[4-(9H-fluoren-1-yl)phenyl]carbazole Chemical compound C1=CC=CC=2C3=CC=CC=C3N(C1=2)C1=CC=C(C=C1)C1=CC=CC=2C3=CC=CC=C3CC1=2 QJZJIWYDCCBNTH-UHFFFAOYSA-N 0.000 description 1
- FOUNKDBOYUMWNP-UHFFFAOYSA-N 9-[4-[2-(4-carbazol-9-ylphenyl)-2-adamantyl]phenyl]carbazole Chemical compound C12=CC=CC=C2C2=CC=CC=C2N1C(C=C1)=CC=C1C1(C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C(C2)CC3CC1CC2C3 FOUNKDBOYUMWNP-UHFFFAOYSA-N 0.000 description 1
- FXKMXDQBHDTQII-UHFFFAOYSA-N 9-phenyl-3,6-bis(9-phenylcarbazol-3-yl)carbazole Chemical compound C1=CC=CC=C1N1C2=CC=C(C=3C=C4C5=CC(=CC=C5N(C=5C=CC=CC=5)C4=CC=3)C=3C=C4C5=CC=CC=C5N(C=5C=CC=CC=5)C4=CC=3)C=C2C2=CC=CC=C21 FXKMXDQBHDTQII-UHFFFAOYSA-N 0.000 description 1
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical group N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- INFXPBWIBMNSKF-UHFFFAOYSA-N CC1=NC2=C(C=CC=C2C=C1)O.CC1=NC2=C(C=CC=C2C=C1)O.[Al+3] Chemical compound CC1=NC2=C(C=CC=C2C=C1)O.CC1=NC2=C(C=CC=C2C=C1)O.[Al+3] INFXPBWIBMNSKF-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000846 In alloy Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N SnO2 Inorganic materials O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical class [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- FUHDUDFIRJUPIV-UHFFFAOYSA-N [4-[9-(4-carbazol-9-ylphenyl)fluoren-9-yl]phenyl]-triphenylsilane Chemical compound C1=CC=CC=C1[Si](C=1C=CC(=CC=1)C1(C2=CC=CC=C2C2=CC=CC=C21)C=1C=CC(=CC=1)N1C2=CC=CC=C2C2=CC=CC=C21)(C=1C=CC=CC=1)C1=CC=CC=C1 FUHDUDFIRJUPIV-UHFFFAOYSA-N 0.000 description 1
- JZXXUZWBECTQIC-UHFFFAOYSA-N [Li].C1=CC=CC2=NC(O)=CC=C21 Chemical compound [Li].C1=CC=CC2=NC(O)=CC=C21 JZXXUZWBECTQIC-UHFFFAOYSA-N 0.000 description 1
- JHYLKGDXMUDNEO-UHFFFAOYSA-N [Mg].[In] Chemical compound [Mg].[In] JHYLKGDXMUDNEO-UHFFFAOYSA-N 0.000 description 1
- KQDCFCNAAUGBMS-UHFFFAOYSA-N [Sb].BrC1=C(N(Br)Br)C=CC=C1 Chemical compound [Sb].BrC1=C(N(Br)Br)C=CC=C1 KQDCFCNAAUGBMS-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 1
- 125000002178 anthracenyl group Chemical group C1(=CC=CC2=CC3=CC=CC=C3C=C12)* 0.000 description 1
- 229940058303 antinematodal benzimidazole derivative Drugs 0.000 description 1
- 125000001204 arachidyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 125000002102 aryl alkyloxo group Chemical group 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 150000001556 benzimidazoles Chemical class 0.000 description 1
- 125000005605 benzo group Chemical group 0.000 description 1
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N benzo-alpha-pyrone Natural products C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 1
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- 125000000051 benzyloxy group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])O* 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 150000001638 boron Chemical class 0.000 description 1
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000000480 butynyl group Chemical group [*]C#CC([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 150000001716 carbazoles Chemical class 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 125000004623 carbolinyl group Chemical group 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- DOBRDRYODQBAMW-UHFFFAOYSA-N copper(i) cyanide Chemical compound [Cu+].N#[C-] DOBRDRYODQBAMW-UHFFFAOYSA-N 0.000 description 1
- 235000001671 coumarin Nutrition 0.000 description 1
- 125000000332 coumarinyl group Chemical class O1C(=O)C(=CC2=CC=CC=C12)* 0.000 description 1
- 125000006165 cyclic alkyl group Chemical group 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 125000003493 decenyl group Chemical group [H]C([*])=C([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005070 decynyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C#C* 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 150000001987 diarylethers Chemical class 0.000 description 1
- NHSGUGFMQAFHAX-UHFFFAOYSA-N diphenylphosphoryloxy(triphenyl)silane Chemical compound C=1C=CC=CC=1P(C=1C=CC=CC=1)(=O)O[Si](C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 NHSGUGFMQAFHAX-UHFFFAOYSA-N 0.000 description 1
- 125000005066 dodecenyl group Chemical group C(=CCCCCCCCCCC)* 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000002189 fluorescence spectrum Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- 125000006038 hexenyl group Chemical group 0.000 description 1
- 125000005980 hexynyl group Chemical group 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 125000001977 isobenzofuranyl group Chemical group C=1(OC=C2C=CC=CC12)* 0.000 description 1
- 125000001786 isothiazolyl group Chemical group 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- SJCKRGFTWFGHGZ-UHFFFAOYSA-N magnesium silver Chemical compound [Mg].[Ag] SJCKRGFTWFGHGZ-UHFFFAOYSA-N 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- ZTLUNQYQSIQSFK-UHFFFAOYSA-N n-[4-(4-aminophenyl)phenyl]naphthalen-1-amine Chemical compound C1=CC(N)=CC=C1C(C=C1)=CC=C1NC1=CC=CC2=CC=CC=C12 ZTLUNQYQSIQSFK-UHFFFAOYSA-N 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- NTNWKDHZTDQSST-UHFFFAOYSA-N naphthalene-1,2-diamine Chemical class C1=CC=CC2=C(N)C(N)=CC=C21 NTNWKDHZTDQSST-UHFFFAOYSA-N 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 125000005187 nonenyl group Chemical group C(=CCCCCCCC)* 0.000 description 1
- 125000005071 nonynyl group Chemical group C(#CCCCCCCC)* 0.000 description 1
- 125000005064 octadecenyl group Chemical group C(=CCCCCCCCCCCCCCCCC)* 0.000 description 1
- 125000004365 octenyl group Chemical group C(=CCCCCCC)* 0.000 description 1
- 125000005069 octynyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C#C* 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 150000004866 oxadiazoles Chemical class 0.000 description 1
- 125000001715 oxadiazolyl group Chemical group 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002255 pentenyl group Chemical group C(=CCCC)* 0.000 description 1
- 125000005981 pentynyl group Chemical group 0.000 description 1
- XEXYATIPBLUGSF-UHFFFAOYSA-N phenanthro[9,10-b]pyridine-2,3,4,5,6,7-hexacarbonitrile Chemical group N1=C(C#N)C(C#N)=C(C#N)C2=C(C(C#N)=C(C(C#N)=C3)C#N)C3=C(C=CC=C3)C3=C21 XEXYATIPBLUGSF-UHFFFAOYSA-N 0.000 description 1
- 150000005041 phenanthrolines Chemical class 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- 125000005936 piperidyl group Chemical group 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 125000001042 pteridinyl group Chemical group N1=C(N=CC2=NC=CN=C12)* 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 1
- LISFMEBWQUVKPJ-UHFFFAOYSA-N quinolin-2-ol Chemical class C1=CC=C2NC(=O)C=CC2=C1 LISFMEBWQUVKPJ-UHFFFAOYSA-N 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical class [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 150000003967 siloles Chemical class 0.000 description 1
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 229940042055 systemic antimycotics triazole derivative Drugs 0.000 description 1
- 125000005063 tetradecenyl group Chemical group C(=CCCCCCCCCCCCC)* 0.000 description 1
- 125000005247 tetrazinyl group Chemical group N1=NN=NC(=C1)* 0.000 description 1
- 150000004867 thiadiazoles Chemical class 0.000 description 1
- 125000001113 thiadiazolyl group Chemical group 0.000 description 1
- 150000007979 thiazole derivatives Chemical class 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- 125000005040 tridecenyl group Chemical group C(=CCCCCCCCCCCC)* 0.000 description 1
- 150000001651 triphenylamine derivatives Chemical class 0.000 description 1
- 125000006617 triphenylamine group Chemical group 0.000 description 1
- 125000005065 undecenyl group Chemical group C(=CCCCCCCCCC)* 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000003828 vacuum filtration Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 125000001834 xanthenyl group Chemical group C1=CC=CC=2OC3=CC=CC=C3C(C12)* 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D519/00—Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
- C07F7/02—Silicon compounds
- C07F7/08—Compounds having one or more C—Si linkages
- C07F7/0803—Compounds with Si-C or Si-Si linkages
- C07F7/081—Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
- C07F7/0812—Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/624—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
- H10K85/636—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6574—Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6576—Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1007—Non-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1011—Condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1014—Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
- C09K2211/1033—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
- C09K2211/1037—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1044—Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1044—Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
- C09K2211/1048—Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with oxygen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1044—Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
- C09K2211/1051—Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with sulfur
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1059—Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1074—Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1092—Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
The invention provides a naphthopyrazine derivative, a preparation method thereof and an electronic device, and relates to the technical field of organic photoelectric materials. The naphthopyrazine derivatives obtained by introducing the condensed ring structure of the naphthopyrazine derivatives have excellent film forming property and thermal stability and high fluorescence quantum yield, and can be used for preparing organic electroluminescent devices, organic field effect transistors and organic solar cells. In addition, the naphthopyrazine derivative of the present invention can be used as a material constituting a hole injection layer, a hole transport layer, a light emitting layer, an electron blocking layer, a hole blocking layer, or an electron transport layer, and can reduce a driving voltage, improve efficiency, luminance, and lifetime. The invention also provides a preparation method of the naphthopyrazine derivatives and an electronic device using the naphthopyrazine derivatives.
Description
Technical Field
The invention belongs to the technical field of organic photoelectric materials, and relates to a naphthopyrazine derivative, a preparation method thereof and an electronic device containing the naphthopyrazine derivative. More particularly, the present invention relates to naphthopyrazine derivatives suitable for electronic devices, particularly organic electroluminescent devices, organic field effect transistors, and organic solar cells, and electronic devices using the same.
Background
The organic electroluminescent device has a series of advantages of self-luminescence, low-voltage driving, full curing, wide viewing angle, simple composition and process and the like, and compared with a liquid crystal display, the organic electroluminescent device does not need a backlight source. Therefore, the organic electroluminescent device has wide application prospect.
Organic electroluminescent devices generally comprise an anode, a metal cathode and an organic layer sandwiched therebetween. The organic layer mainly comprises a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, an electron transport layer and an electron injection layer. In addition, a host-guest structure is often used for the light-emitting layer. That is, the light emitting material is doped in the host material at a certain concentration to avoid concentration quenching and triplet-triplet annihilation, improving the light emitting efficiency. Therefore, the host material is generally required to have a higher triplet energy level and, at the same time, a higher stability.
At present, research on organic electroluminescent materials has been widely conducted in academia and industry, and a large number of organic electroluminescent materials with excellent performance have been developed. In view of the above, the future direction of organic electroluminescent devices is to develop high efficiency, long lifetime, low cost white light devices and full color display devices, but many key issues still face for organic electroluminescent materials with deep red and near infrared colors. Therefore, designing and searching a stable and efficient compound as a novel material of an organic electroluminescent device to overcome the defects of the organic electroluminescent device in the practical application process is a key point in the research work of the organic electroluminescent device material and the future research and development trend.
Disclosure of Invention
The invention aims to provide a naphthopyrazine derivative. The naphthopyrazine derivative has the advantages of high thermal stability, good transmission performance, high fluorescence quantum yield and simple preparation method, and an organic light-emitting device prepared from the naphthopyrazine derivative has the advantages of high light-emitting efficiency, long service life, long light-emitting wavelength and low driving voltage, and is an organic electroluminescent material with excellent performance.
The adopted naphthopyrazine compounds have special condensed ring structures, and the selected and used naphthopyrazine structures have proper singlet states, triplet states, molecular orbital energy levels, strong electron withdrawing capability and excellent fluorescence quantum yield, but the research and development team finds that the independent use of the naphthopyrazine structures as parent nuclei also exposes the defect of irreconcilability, on one hand, the planar linear structures formed by the naphthopyrazine structures are easy to generate film forming aggregation or local crystallization, so that triplet state quenching is caused; on the other hand, the parapyrazine structure has high molecular polarity and intermolecular force due to the presence of the heteroatom, so that molecules are attracted and attached to each other between planes where the parapyrazine is located and are difficult to separate, the actual average molecular weight of the molecules during evaporation is larger than the molecular weight of a single molecule, and further higher preparation temperature is required during film formation by evaporation, and higher evaporation temperature has a risk of influencing the stability and the photoelectric property of the molecules. Therefore, through repeated molecular form design and experimental verification, naphthalene is connected into the pyrazine molecular structure in an asymmetric mode, an entrance is provided for separating the adsorption effect between the planes of the pyrazine structure, the polarity of molecules at one end where the naphthalene or the similar derivatives are located is small, the intermolecular attraction effect of the surface where the pyrazine is located can be uncovered through the tangential effect, the actual molecular weight during molecular evaporation is reduced, the naphthalene derivatives are further introduced, the plane form is unfolded, the film forming state of the material is well regulated through increasing the matching of branched chains, the triplet quenching effect is greatly reduced, the material has high thermal stability, chemical stability and carrier transport property, the singlet state, the triplet state, the molecular orbital energy level, the strong electron pulling capacity and the excellent fluorescence quantum yield which are suitable for the pyrazine structure are well utilized, thereby greatly improving the stability of the pyrazine structure in the vapor deposition preparation process.
Another object of the present invention is to provide an electronic device using the naphthopyrazine derivatives, which has advantages of high efficiency, high durability and long lifetime.
Namely, the present invention is as follows.
[1] A naphthopyrazine derivative is represented by the following general formula (I):
wherein,
L1,L2,L3each independently represents a single bond, a carbonyl group, an aromatic hydrocarbon group having 6 to 18 carbon atoms, or an aromatic heterocyclic group having 5 to 18 carbon atoms;
m is an integer of 0-4, p and q are integers of 0-1, and m, p and q are not 0 at the same time;
Ar1~Ar6Each independently represents a hydrogen atom, a cyano group or optionally substituted by one or more R1Substituted, aromatic hydrocarbon radical having 6 to 30 carbon atoms or optionally substituted by one or more R1A substituted aromatic heterocyclic group having 5 to 30 carbon atoms;
R1represents a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, NO2、N(R2)2、OR2、SR2、C(=O)R2、P(=O)R2、Si(R2)3A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 20 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 20 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 40 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 5 to 40 carbon atoms;
R2represents a hydrogen atom, a deuterium atom, a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 5 to 30 carbon atoms.
[2] The naphthopyrazine derivative according to [1] which is represented by the following general formula (1) or (2):
[3]according to [1]The naphthopyrazine derivatives are shown in the specification, wherein Ar is1~Ar6Each independently selected from a hydrogen atom, a cyano group or the following group:
wherein the dotted line represents and L1、L2、L3Or a bond of an N-bond,
R1have the meaning as defined for the general formula (I).
[4] The naphthopyrazine derivative according to any one of [1] to [3], wherein,
L1to L3Each independently represents a single bond, a carbonyl group, a phenyl group or a triazinyl group;
R1and R2Each independently represents a cyano group, a phenyl group, a naphthyl group, a dimethylfluorenyl group, a dibenzothienyl group, a dibenzofuranyl group, a triazinyl group, a pyrimidinyl group, a pyridyl group, a biphenyl group, a terphenyl group, a quaterphenyl group, a pentabiphenyl group, a dianilino group, a trianilino group, a benzothienocarbazolyl group, a benzofurocarbazolyl group, a benzofluorenocarbazolyl group, a benzanthryl group, a spirobifluorenyl group, a carbazolyl group, an N-phenylcarbazolyl group, an indenocarbazolyl group, a benzimidazolyl group, a diphenyl-oxadiazolyl group, a diphenylboryl group, a triphenylphosphinoxy group, a diphenylphosphinyloxy group, a triphenylsilyl group, a tetraphenylsilyl group, an acridinyl group, a phenoxazinyl group, a.
[5] The naphthopyrazine derivative according to any one of [1] to [4], wherein the naphthopyrazine derivative represented by the general formula (I) is selected from the group consisting of:
[6] the preparation method of the naphthopyrazine derivative shown in the general formula I comprises the following steps:
[7] an electronic device comprising the naphthopyrazine derivative according to any one of [1] to [5 ].
[87] The electronic device according to [7], wherein the electronic device is an organic electroluminescent device, an organic field effect transistor, or an organic solar cell;
wherein the organic electroluminescent device comprises: a first electrode, a second electrode provided so as to face the first electrode, and at least one organic layer interposed between the first electrode and the second electrode, wherein the at least one organic layer contains the naphthopyrazine derivative according to any one of [1] to [5 ].
[9] The electronic device according to [8], wherein the at least one organic layer is a hole injection layer, a hole transport layer, a light emitting layer, an electron blocking layer, a hole blocking layer, or an electron transport layer.
ADVANTAGEOUS EFFECTS OF INVENTION
The naphthopyrazine derivative has good film-forming property, thermal stability and higher fluorescence quantum yield by introducing a naphthopyrazine condensed ring structure, can be used for preparing electronic devices such as organic electroluminescent devices, organic field effect transistors and organic solar cells, particularly used as a constituent material of a hole injection layer, a hole transmission layer, a light-emitting layer, an electron blocking layer, a hole blocking layer or an electron transmission layer in the organic electroluminescent devices, can show the advantages of high luminous efficiency, long service life, long luminous wavelength and low driving voltage, and is obviously superior to the existing organic electroluminescent devices.
In addition, the preparation method of the naphthopyrazine derivative is simple, raw materials are easy to obtain, and the development requirement of industrialization can be met.
The naphthopyrazine derivative has good application effect in electronic devices such as organic electroluminescent devices, organic field effect transistors and organic solar cells, and has wide industrial prospect.
The naphthopyrazine derivatives have high electron injection and moving rates. Therefore, with the organic electroluminescent device having an electron injection layer and/or an electron transport layer prepared using the naphthopyrazine-based derivative of the present invention, the electron transport efficiency from the electron transport layer to the light emitting layer is improved, thereby improving the light emitting efficiency. And, the driving voltage is reduced, thereby enhancing durability of the resulting organic electroluminescent device.
The naphthopyrazine derivative has excellent hole blocking capacity and excellent electron transport performance, and is stable in a thin film state. Therefore, the organic electroluminescent device having a hole blocking layer prepared using the naphthopyrazine-based derivative of the present invention has high luminous efficiency, a reduced driving voltage, and improved current resistance, so that the maximum luminous brightness of the organic electroluminescent device is increased.
The naphthopyrazine derivative has excellent light-emitting characteristics, can be used as a light-emitting layer host material or doped into an organic light-emitting host material to be used as a guest light-emitting material, has a wide doping proportion range, and can reduce concentration quenching and triplet-triplet annihilation. Therefore, the organic electroluminescent device having a light emitting layer prepared using the naphthopyrazine-based derivative of the present invention has high luminous efficiency, a reduced driving voltage, and improved current resistance, so that the maximum luminous brightness of the organic electroluminescent device is increased.
The selected and used pyrazine structure has proper singlet state, triplet state, molecular orbital energy level, strong electron withdrawing capability and excellent fluorescence quantum yield, the stability and the luminous efficiency of the device are improved, the driving voltage of the device is reduced, but the defect that the independent use of the pyrazine structure as a mother nucleus is exposed and cannot be regulated is found in experiments except the idea that on one hand, film forming aggregation or local crystallization is easily generated due to the fact that the pyrazine structure forms a planar linear structure, and triplet state quenching is caused; on the other hand, the parapyrazine structure has high molecular polarity and intermolecular force due to the presence of the heteroatom, so that molecules are attracted and attached to each other between planes where the parapyrazine is located and are difficult to separate, the actual average molecular weight of the molecules during evaporation is larger than the molecular weight of a single molecule, and further higher preparation temperature is required during film formation by evaporation, and higher evaporation temperature has a risk of influencing the stability and the photoelectric property of the molecules. Therefore, through repeated molecular form design and experimental verification, naphthalene is connected into the pyrazine molecular structure in an asymmetric mode, an entrance is provided for separating the adsorption effect between the planes of the pyrazine structure, the polarity of molecules at one end where the naphthalene or the similar derivatives are located is small, the intermolecular attraction effect of the surface where the pyrazine is located can be uncovered through the tangential effect, the actual molecular weight during molecular evaporation is reduced, the naphthalene derivatives are further introduced, the plane form is unfolded, the film forming state of the material is well regulated through increasing the matching of branched chains, the triplet quenching effect is greatly reduced, the material has high thermal stability, chemical stability and carrier transport property, the singlet state, the triplet state, the molecular orbital energy level, the strong electron pulling capacity and the excellent fluorescence quantum yield which are suitable for the pyrazine structure are well utilized, thereby greatly improving the stability of the pyrazine structure in the vapor deposition preparation process.
The naphthopyrazine derivative can be used as a constituent material of a hole injection layer, a hole transport layer, a light emitting layer, an electron blocking layer, a hole blocking layer or an electron transport layer of an organic electroluminescent device. With the organic electroluminescent device of the present invention, excitons generated in the light emitting layer can be confined, and the possibility of recombination of holes and electrons can be further increased to obtain high luminous efficiency.
Drawings
FIG. 1 is a fluorescence spectrum (PL) of the compounds of examples 1 and 4 of the present invention (compounds 2 to 114 and 1 to 101) in a toluene solution.
FIG. 2 shows organic electroluminescence spectra of examples 7 and 10 of the present invention.
FIG. 3 is a view showing the structure of organic electroluminescent devices of examples 7 to 12.
Description of the reference numerals
1-a substrate; 2-an anode; 3-a hole injection layer; 4-a hole transport layer; 5-an electron blocking layer;
6-a light emitting layer; 7-a hole blocking layer; 8-an electron transport layer; 9-electron injection layer; 10-cathode.
Detailed Description
Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.
The naphthopyrazine derivative of the present invention is a novel compound having a naphthopyrazine ring structure, and is represented by the following general formula (I).
Specifically, the naphthopyrazine derivatives have the following general formula (1) or (2):
in the above general formulae (I) and (1) and (2),
L1to L3Each independently represents a single bond, a carbonyl group, an aromatic hydrocarbon group having 6 to 18 carbon atoms, or an aromatic heterocyclic group having 5 to 18 carbon atoms;
Ar1~Ar6Each independently represents a hydrogen atom, a cyano group or optionally substituted by one or more R1Substituted, aromatic hydrocarbon radical having 6 to 30 carbon atoms or optionally substituted by one or more R1A substituted aromatic heterocyclic group having 5 to 30 carbon atoms;
R1represents a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, NO2、N(R2)2、OR2、SR2、C(=O)R2、P(=O)R2、Si(R2)3A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 20 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 20 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 40 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 5 to 40 carbon atoms.
R2Represents a hydrogen atom, a deuterium atom, a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 5 to 30 carbon atoms.
<L1To L3>
L1、L2And L3Each independently represents a single bond, a carbonyl group, an aromatic hydrocarbon group having 6 to 18 carbon atoms, or an aromatic heterocyclic group having 5 to 18 carbon atoms.
In the present invention, the hetero atom in the aromatic heterocyclic group having 5 to 18 carbon atoms is preferably selected from N, O and/or S. In the present invention, the number of hetero atoms may be 1 to 5. An aromatic hydrocarbon group or aromatic heterocyclic group in the sense of the present invention means a system which does not necessarily contain only aryl or heteroaryl groups, but in which a plurality of aryl or heteroaryl groups may also be interrupted by non-aromatic units (preferably less than 10% of non-hydrogen atoms), which may be, for example, carbon atoms, nitrogen atoms, oxygen atoms or carbonyl groups. For example, systems of 9, 9' -spirobifluorenes, 9, 9-diarylfluorenes, triarylamines, diaryl ethers, etc., as well as systems in which two or more aryl groups are interrupted, for example by linear or cyclic alkyl groups or by silyl groups, are also intended to be considered aromatic hydrocarbon groups in the sense of the present invention. Furthermore, systems in which two or more aryl or heteroaryl groups are bonded directly to one another, such as biphenyl, terphenyl or quaterphenyl, are likewise intended to be regarded as aromatic hydrocarbon groups or aromatic heterocyclic groups.
From L1、L2And L3The aromatic hydrocarbon group having 6 to 18 carbon atoms or the aromatic heterocyclic group having 5 to 18 carbon atoms represented may be exemplified by: phenyl, naphthyl, anthracenyl, benzanthracenyl, phenanthrenyl, benzophenanthrenyl, pyrenyl, perylenyl, fluoranthenyl, benzofluoranthenyl, tetracenyl, pentacenyl, benzopyrenyl, biphenyl, idophenyl, terphenyl, quaterphenyl, pentabiphenyl, terphenyl, fluorenyl, spirobifluorenyl, dihydrophenanthrenyl, hydropyranyl, cis-or trans-indenofluorenyl, cis-or trans-monobenzindenofluorenyl, cis-or trans-dibenzoindenofluorenyl, trimeric indenyl, isotridecyl, spirotrimeric indenyl, spiroisotridecyl, furanyl, benzofuranyl, isobenzofuranyl, dibenzofuranyl, thienyl, benzothienyl, isobenzothienyl, dibenzothienyl, pyrrolyl, indolyl, isoindolyl, carbazolyl, indolocarbazolyl, indenocarbazolyl, pyridyl, quinolyl, isoquinolyl, acridinyl, perylenyl, anthryl, benzopyrenyl, terphenylenyl, terphenylindenyl, etc, Phenanthridinyl, benzo-5, 6-quinolinyl, benzo-6, 7-quinolinyl, benzo-7, 8-quinolinyl, phenothiazinyl, phenoxazinyl, pyrazolyl, indazolyl, imidazolyl, benzimidazolyl, naphthoimidazolyl, phenanthroimidazolyl, pyridoimidazolyl, pyrazinoimidazolyl, quinoxaloimidazolyl, oxazolyl, benzoxazolyl, naphthoxazolyl, anthraoxazolyl, phenanthroixazolyl, isoxazolyl, 1, 2-thiazolyl, 13-thiazolyl, benzothiazolyl, pyridazinyl, benzopyrazinyl, pyrimidinyl, benzopyrimidinyl, quinoxalinyl, 1, 5-diazanthryl, 2, 7-diazpyrenyl, 2, 3-diazpyrenyl, 1, 6-diazpyrenyl, 1, 8-diazpyrenyl, 4,5,9, 10-tetraazaperylenyl, pyrazinyl, phenazinyl, phenoxazinyl, phenothiazinyl, fluorescentryl, naphthyridinyl, azacarbazolyl, benzocarbazinyl, phenanthrolinyl, 1,2, 3-triazolyl, 1,2, 4-triazolyl, benzotriazolyl, 1,2, 3-oxadiazolyl, 1,2, 4-oxadiazolyl, 1,2, 5-oxadiazolyl, 1,3, 4-oxadiazolyl, 1,2, 3-thiadiazolyl, 1,2, 4-thiadiazolyl, 1,2, 5-thiadiazolyl, 1,3, 4-thiadiazolyl, 1,3, 5-triazinyl, 1,2, 4-triazinyl, 1,2, 3-triazinyl, tetrazolyl, 1,2,4, 5-tetrazinyl, 1,2,3, 4-tetrazinyl, 1,2,3, 5-tetrazinyl, purinyl, piperidyl, indolizinyl, benzothiadiazolyl, and the like.
In the present invention, preferably, L1、L2And L3Each independently represents a single bond, a carbonyl group, an aromatic hydrocarbon group having 6 to 12 carbon atoms, or an aromatic heterocyclic group having 5 to 12 carbon atoms. More preferably, L1、L2And L3Each independently represents a single bond, a carbonyl group, a phenyl group, a triazinyl group or a biphenyl group.
From L1、L2And L3The aromatic hydrocarbon group having 6 to 18 carbon atoms or the aromatic heterocyclic group having 5 to 18 carbon atoms represented may be unsubstituted, but may also have a substituent. The substituents may be exemplified by the following: a deuterium atom; a cyano group; a nitro group; a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom; an alkyl group having 1 to 6 carbon atoms, for example, a methyl group, an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group, an isobutyl group, a tert-butyl group, a n-pentyl group, an isopentyl group, a neopentyl group, or a n-hexyl group; alkoxy having 1 to 6 carbon atoms such as methoxy, ethoxy or propoxy; alkenyl, such as vinyl or allyl; aryloxy groups such as phenoxy or tolyloxy; arylalkoxy, such as benzyloxy or phenethyloxy; aromatic hydrocarbon radicals or condensed polycyclic aromatic radicals, e.g. phenyl, biphenyl, terphenyl, naphthyl, anthryl, phenanthryl, fluorenyl,Indenyl, pyrenyl, perylenyl, fluoranthenyl, benzo [9,10 ]]Phenanthryl or spirobifluorenyl; an aromatic heterocyclic group such as pyridyl, thienyl, furyl, pyrrolyl, quinolyl, isoquinolyl, benzofuryl, benzothienyl, indolyl, carbazolyl, benzoxazolyl, benzothiazolyl, quinoxalyl, benzimidazolyl, pyrazolyl, dibenzofuryl, dibenzothienyl, azafluorenyl, diazafluorenyl, carbolinyl, azaspirobifluorenyl or diazaspiro-bifluorenyl; arylethenyl, such as styryl or naphthylethenyl; and acyl groups such as acetyl or benzoyl and the like.
The alkyl group having 1 to 6 carbon atoms and the alkoxy group having 1 to 6 carbon atoms may be linear or branched. Any of the above substituents may be further substituted with the above exemplary substituents. The above substituents may be present independently of each other, but may be bonded to each other via a single bond, a substituted or unsubstituted methylene group, an oxygen atom, or a sulfur atom to form a ring.
<A1To A3>
(Ar1To Ar6)
Ar1~Ar6Each independently represents a hydrogen atom, a cyano group or optionally substituted by one or more R1Substituted, aromatic hydrocarbon radical having 6 to 30 carbon atoms or optionally substituted by one or more R1A substituted aromatic heterocyclic group having 5 to 30 carbon atoms.
From Ar1~Ar6The aromatic hydrocarbon group having 6 to 30 carbon atoms or the aromatic heterocyclic group having 5 to 30 carbon atoms represented may be exemplified by: phenyl, naphthyl, anthryl, benzanthryl, phenanthryl, benzophenanthryl, pyrenyl, perylenyl, fluoranthenyl, benzofluoranthenyl, tetracenyl, pentacenyl, benzopyrenyl, biphenyl, idophenyl, terphenyl, quaterphenyl, pentabiphenylTerphenyl, fluorenyl, spirobifluorenyl, phenanthrenyl, pyrenyl, tetrahydropyrenyl, cis-or trans-indenofluorenyl, cis-or trans-monobenzoindenofluorenyl, cis-or trans-dibenzoindenofluorenyl, dianilinyl, trianilino, triindenyl, isotridendenyl, spiroisotridendenyl, furyl, benzofuryl, isobenzofuryl, dibenzofuryl, thienyl, benzothienyl, isobenzothienyl, dibenzothienyl, benzothienocarbazolyl, pyrrolyl, indolyl, isoindolyl, carbazolyl, indolocarbazolyl, indenocarbazolyl, pyridyl, bipyridyl, terpyridyl, quinolyl, isoquinolyl, acridinyl, phenanthridinyl, benzo-5, 6-quinolyl, benzo-6, 7-quinolyl, benzo-7, 8-quinolyl, Phenothiazinyl, phenoxazinyl, pyrazolyl, indazolyl, imidazolyl, benzimidazolyl, naphthoimidazolyl, phenanthroimidazolyl, pyridoimidazolyl, pyrazinoimidazolyl, quinoxalinylimidazolyl, oxazolyl, benzoxazolyl, benzooxadiazolyl, naphthooxazolyl, anthraoxazolyl, phenanthrooxazolyl, isoxazolyl, thiazolyl, isothiazolyl, benzothiazolyl, benzothiadiazolyl, pyridazinyl, benzopyrazinyl, pyrimidinyl, benzopyrimidinyl, quinoxalinyl, quinazolinyl, azafluorenyl, diazenanthranyl, diazpyrenyl, tetraazaperylenyl, naphthyridinyl, pyrazinyl, phenazinyl, phenoxazinyl, phenothiazinyl, fluoresceinyl, naphthyridinyl, azacarbazolyl, benzocarbazinyl, phenanthrolinyl, triazolyl, benzotriazolyl, oxadiazolyl, thiadiazolyl, triazinyl, tetrazolyl, tetrazinyl, Purinyl, pteridinyl, indolizinyl, benzothiadiazolyl, pyridodipyrrolyl, pyridotriazolyl, xanthenyl, benzofurocarbazolyl, benzofluorenocarbazolyl, N-phenylcarbazolyl, diphenyl-benzimidazolyl, diphenyl-oxadiazolyl, diphenyl boron, triphenylphosphinoxy, diphenylphosphinyloxy, triphenylsilicon, tetraphenylsilyl, and the like.
In the present invention, preferably, Ar1、Ar2、Ar3、Ar4、Ar5And Ar6Each independently selected from a hydrogen atom, a cyano group orGroup (b):
wherein the dotted line represents and L1、L2And L3Or a N-bonded bond, R1Have the meaning as defined for the general formula (I).
From Ar1~Ar6The aromatic hydrocarbon group having 6 to 30 carbon atoms or the aromatic heterocyclic group having 5 to 30 carbon atoms represented may be unsubstituted, but may also have a substituent. Preferably, from Ar1~Ar6The aromatic hydrocarbon group having 6 to 30 carbon atoms or the aromatic heterocyclic group having 5 to 30 carbon atoms represented by1Substituted, aromatic hydrocarbon radicals having 5 to 30 carbon atoms or substituted by one or more R1A substituted aromatic heterocyclic group having 5 to 30 carbon atoms.
(R1)
R1Represents a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, NO2、N(R2)、OR2、SR2、C(=O)R2、P(=O)R2、Si(R2)3Substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted alkenyl group having 2 to 20 carbon atoms, substituted or unsubstituted alkynyl group having 2 to 20 carbon atoms, substituted or unsubstituted aromatic hydrocarbon group having 6 to 40 carbon atoms, or substituted or unsubstituted aromatic heterocyclic ring having 5 to 40 carbon atomsAnd (4) a base.
From R1The alkyl group having 1 to 20 carbon atoms represented may be exemplified by: methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, n-heptyl, 2-methylhexyl, n-octyl, isooctyl, tert-octyl, 2-ethylhexyl, 3-methylheptyl, n-nonyl, n-decyl, hexadecyl, octadecyl, eicosyl, cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2, 3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2, 3-dimethylcyclohexyl, 3,4, 5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, cyclooctyl and the like. The alkyl group having 1 to 20 carbon atoms may be linear, branched or cyclic.
From R1The alkyl group having 1 to 20 carbon atoms represented may be unsubstituted, but may also have a substituent. Preferably, from R1Alkyl having 1 to 20 carbon atoms represented by one or more of the following R2And (4) substitution. In addition, one or more non-adjacent CH in the alkyl group2The group can be represented by R2C=CR2、C≡C、Si(R2)3、C=O、C=NR2、P(=O)R2、SO、SO2、NR2O, S or CONR2And wherein one or more hydrogen atoms may be replaced with deuterium atom, fluorine atom, chlorine atom, bromine atom, iodine atom, cyano group, nitro group.
From R1The alkenyl group having 2 to 20 carbon atoms represented may be exemplified by: vinyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, dodecenyl, tridecenyl, tetradecenyl, pentadecenyl, hexadecenyl, heptadecenyl, octadecenyl, nonadecenyl, eicosenyl, 2-ethylhexenyl, allyl, cyclohexenyl and the like. The alkenyl group having 2 to 20 carbon atoms may be linear, branched or cyclic.
From R1The alkenyl group having 2 to 20 carbon atoms represented may be unsubstituted or may have a substituent. The substituents may beBy way of illustration with R1The alkyl group having 1 to 20 carbon atoms represented by (b) may have the same substituent as that represented by the substituent(s). The substituents may take the same pattern as that of the exemplary substituents.
From R1The alkynyl group having 2 to 20 carbon atoms represented may be exemplified by: ethynyl, isopropynyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, decynyl and the like.
From R1The alkynyl group having 2 to 20 carbon atoms represented may be unsubstituted or may have a substituent. The substituents can be exemplified by the group consisting of R1The alkyl group having 1 to 20 carbon atoms represented by (b) may have the same substituent as that represented by the substituent(s). The substituents may take the same pattern as that of the exemplary substituents.
From R1The aromatic hydrocarbon group having 6 to 40 carbon atoms or the aromatic heterocyclic group having 5 to 40 carbon atoms represented by the above formula may be exemplified by the group consisting of Ar1~Ar6The aromatic hydrocarbon group having 6 to 30 carbon atoms or the aromatic heterocyclic group having 5 to 30 carbon atoms represented by the above formula represent the same groups.
From R1The aromatic hydrocarbon group having 6 to 40 carbon atoms or the aromatic heterocyclic group having 5 to 40 carbon atoms represented may be unsubstituted or may have a substituent. The substituents can be exemplified by the group consisting of R1The alkyl group having 1 to 20 carbon atoms represented by (b) may have the same substituent as that represented by the substituent(s). The substituents may take the same pattern as that of the exemplary substituents. In addition, two adjacent R1Substituents or two adjacent R2The substituents optionally may form a mono-or polycyclic aliphatic, aromatic or heteroaromatic ring system, which may be substituted by one or more R2Substitution; where two or more substituents R1May be connected to each other and may form a ring.
Preferably represented by R1The aromatic hydrocarbon group having 6 to 40 carbon atoms or the aromatic heterocyclic group having 5 to 40 carbon atoms represented by (a) may be exemplified by: phenyl, biphenylTerphenyl group, quaterphenyl group, pentabiphenyl group, benzothienocarbazolyl group, benzofurocarbazolyl group, benzofluorenocarbazolyl group, benzanthracenyl group, benzophenanthryl group, fluorenyl group, spirobifluorenyl group, triazinyl group, dibenzofuranyl group, dibenzothienyl group, carbazolyl group, N-phenylcarbazolyl group, indenocarbazolyl group, benzimidazolyl group, diphenyl-oxadiazolyl group, diphenyl boron group, triphenylphosphoxy group, diphenylphosphinyloxy group, triphenylsilyl group, tetraphenylsilyl group and the like. The aromatic hydrocarbon group having 6 to 40 carbon atoms or the aromatic heterocyclic group having 5 to 40 carbon atoms may be substituted with one or more R2And (4) substitution.
(R2)
R2Represents a hydrogen atom, a deuterium atom, a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 5 to 30 carbon atoms.
From R2The alkyl group having 1 to 20 carbon atoms represented by R can be enumerated by1The alkyl groups represented by the formulae having 1 to 20 carbon atoms represent the same groups.
From R2The aromatic hydrocarbon group having 6 to 30 carbon atoms or the substituted or unsubstituted aromatic heterocyclic group having 5 to 30 carbon atoms represented by the formula R1The same groups as those shown for the aromatic hydrocarbon group having 6 to 30 carbon atoms or the substituted or unsubstituted aromatic heterocyclic group having 5 to 30 carbon atoms.
From R2The alkyl group having 1 to 20 carbon atoms, the aromatic hydrocarbon group having 6 to 30 carbon atoms, or the substituted or unsubstituted aromatic heterocyclic group having 5 to 30 carbon atoms represented may be unsubstituted, or may also have a substituent. The substituents may be exemplified by: a deuterium atom; a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom; cyano, and the like.
< production method >
The naphthopyrazine derivative of the present invention can be produced, for example, by the following method:
the obtained compound can be purified by, for example, purification by column chromatography, adsorption purification using silica gel, activated carbon, activated clay, or the like, recrystallization or crystallization using a solvent, sublimation purification, or the like. Identification of compounds can be carried out by mass spectrometry, elemental analysis.
< electronic device >
Various electronic devices containing the naphthopyrazine derivatives of the invention can be produced using the naphthopyrazine derivatives according to the invention for producing organic materials which can be configured in particular in the form of layers. In particular, the naphthopyrazine derivatives can be used for organic electroluminescent devices, organic solar cells, organic diodes, and particularly organic field effect transistors. Particularly in the case of an organic electroluminescent device or a solar cell, the assembly may have a plug structure (the device has one or more p-doped hole transport layers and/or one or more n-doped electron transport layers) or an inverted structure (from the light emitting layer, the upper electrode and the hole transport layer are located on the same side while the substrate is on the opposite side), without being limited to these structures. The injection layer, the transport layer, the light-emitting layer, the barrier layer, and the like can be fabricated, for example, by forming a layer containing or consisting of the naphthopyrazine derivative according to the present invention between electrodes. However, the use of the naphthopyrazine derivatives according to the present invention is not limited to the above exemplary embodiments.
< organic electroluminescent device >
The organic electroluminescent device of the present invention comprises: the organic light-emitting device includes a first electrode, a second electrode provided so as to face the first electrode, and at least one organic layer interposed between the first electrode and the second electrode, wherein the at least one organic layer includes the naphthopyrazine derivative of the present invention.
Fig. 3 is a view showing the configuration of an organic electroluminescent device of the present invention. As shown in fig. 3, in the organic electroluminescent device of the present invention, for example, an anode 2, a hole injection layer 3, a hole transport layer 4, an electron blocking layer 5, a light emitting layer 6, a hole blocking layer 7, an electron transport layer 8, an electron injection layer 9, and a cathode 10 are sequentially disposed on a substrate 1.
The organic electroluminescent device of the present invention is not limited to such a structure, and for example, some organic layers may be omitted in the multi-layer structure. For example, it may be a configuration in which the hole injection layer 3 between the anode 2 and the hole transport layer 4, the hole blocking layer 7 between the light emitting layer 6 and the electron transport layer 8, and the electron injection layer 9 between the electron transport layer 8 and the cathode 10 are omitted, and the anode 2, the hole transport layer 4, the light emitting layer 6, the electron transport layer 8, and the cathode 10 are sequentially provided on the substrate 1.
The organic electroluminescent device according to the present invention may be manufactured by materials and methods well known in the art, except that the above organic layer contains the compound represented by the above general formula (I). In addition, in the case where the organic electroluminescent device includes a plurality of organic layers, the organic layers may be formed of the same substance or different substances.
For example, the organic electroluminescent device according to the present invention may be manufactured by sequentially laminating a first electrode, an organic layer, and a second electrode on a substrate. At this time, the following can be made: an anode is formed by depositing metal, a metal oxide having conductivity, or an alloy thereof on a substrate by a PVD (physical vapor deposition) method such as a sputtering method or an electron beam evaporation method, an organic layer including a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer is formed on the anode, and a substance which can be used as a cathode is deposited on the organic layer. However, the production method is not limited thereto.
In one example, the first electrode is an anode and the second electrode is a cathode, or the first electrode is a cathode and the second electrode is an anode.
The anode of the organic electroluminescent device of the present invention may be made of a known electrode material. For example, using electrode materials having a large work function, such as vanadium, chromium, copper, zinc,Metals such as gold or alloys thereof; metal oxides such as zinc oxide, Indium Tin Oxide (ITO), Indium Zinc Oxide (IZO), and the like; such as ZnO, Al or SNO2A combination of a metal such as Sb and an oxide; poly (3-methylthiophene), poly [3,4- (ethylene-1, 2-dioxy) thiophene]And conductive polymers such as PEDOT, polypyrrole, and polyaniline. Among these, ITO is preferable.
As the hole injection layer of the organic electroluminescent device of the present invention, a known material having a hole injection property can be used. Examples thereof include: porphyrin compounds represented by copper phthalocyanine, naphthalenediamine derivatives, star-shaped triphenylamine derivatives, triphenylamine trimers such as arylamine compounds having a structure in which 3 or more triphenylamine structures are connected by a single bond or a divalent group containing no heteroatom in the molecule, tetramers, receptor-type heterocyclic compounds such as hexacyanoazatriphenylene, and coating-type polymer materials. These materials can be formed into a thin film by a known method such as a vapor deposition method, a spin coating method, and an ink jet method.
As the hole transport layer of the organic electroluminescent device of the present invention, it is preferable to use a compound containing the naphthopyrazine derivatives of the present invention. In addition, other known materials having a hole-transporting property can be used. Examples thereof include: a compound containing a m-carbazolylphenyl group; benzidine derivatives such as N, N ' -diphenyl-N, N ' -di (m-tolyl) benzidine (TPD), N ' -diphenyl-N, N ' - (1-naphthyl) -1,1' -biphenyl-4, 4' -diamine (NPB), N ' -tetrakisbiphenylylbenzidine, and the like; 1, 1-bis [ (di-4-tolylamino) phenyl ] cyclohexane (TAPC); various triphenylamine trimers and tetramers; 9,9 ', 9 "-triphenyl-9H, 9' H, 9" H-3,3 ': 6', 3 "-tricarbazole (Tris-PCz), and the like. These may be used as a single layer formed by separately forming a film or by mixing them with other materials to form a film, or may be used as a laminated structure of layers formed by separately forming a film, a laminated structure of layers formed by mixing films, or a laminated structure of layers formed by separately forming a film and layers formed by mixing films. These materials can be formed into a thin film by a known method such as a vapor deposition method, a spin coating method, and an ink jet method.
In addition, in the hole injection layer or the hole transport layer, a material obtained by further P-doping tribromoaniline antimony hexachloride, an axial olefin derivative, or the like to a material generally used in the layer, a polymer compound having a structure of a benzidine derivative such as TPD in a partial structure thereof, or the like may be used.
As the electron blocking layer of the organic electroluminescent device of the present invention, it is preferable to use a compound containing the naphthopyrazine derivatives of the present invention. In addition, other known compounds having an electron blocking effect may be used. For example, there may be mentioned: carbazole derivatives such as 4,4', 4 ″ -tris (N-carbazolyl) triphenylamine (TCTA), 9-bis [4- (carbazol-9-yl) phenyl ] fluorene, 1, 3-bis (carbazol-9-yl) benzene (mCP), and 2, 2-bis (4-carbazol-9-ylphenyl) adamantane (Ad-Cz); a compound having a triphenylsilyl and triarylamine structure represented by 9- [4- (carbazol-9-yl) phenyl ] -9- [4- (triphenylsilyl) phenyl ] -9H-fluorene; and compounds having an electron-blocking effect, such as monoamine compounds having a high electron-blocking property and various triphenylamine dimers. These may be used as a single layer formed by film formation alone or by mixing with other materials to form a film, or may be used as a laminated structure of layers formed by film formation alone, a laminated structure of layers formed by mixing into a film, or a laminated structure of layers formed by film formation alone and layers formed by mixing into a film. These materials can be formed into a thin film by a known method such as a vapor deposition method, a spin coating method, and an ink jet method.
As the light-emitting layer of the organic electroluminescent device of the present invention, it is preferable to use a compound containing the naphthopyrazine derivatives of the present invention. In addition to this, Alq can also be used3Various metal complexes such as metal complexes of a first hydroxyquinoline derivative, compounds having a pyrimidine ring structure, anthracene derivatives, bisstyrylbenzene derivatives, pyrene derivatives, oxazole derivatives, polyparaphenylene vinylene derivatives, and the like.
The light emitting layer may be composed of a host material and a dopant material.
As the host material, it is preferable to use a naphthopyrazine derivative containing the present invention. In addition to these, mCBP, mCP, thiazole derivatives, benzimidazole derivatives, polydialkylnaphthopyrazine derivatives, heterocyclic compounds having a partial structure in which an indole ring is a condensed ring, and the like can be used.
As the doping material, a material containing the naphthopyrazine derivative of the present invention is preferably used. Aromatic amine derivatives, styrylamine compounds, boron complexes, fluoranthene compounds, metal complexes, and the like can also be used. Examples thereof include pyrene derivatives, anthracene derivatives, quinacridones, coumarins, rubrenes, perylenes and their derivatives, benzodipyran derivatives, rhodamine derivatives, aminostyryl derivatives, spirobifluorene derivatives, and the like. These may be used as a single layer formed by film formation alone or by mixing with other materials to form a film, or may be used as a laminated structure of layers formed by film formation alone, a laminated structure of layers formed by mixing into a film, or a laminated structure of layers formed by film formation alone and layers formed by mixing into a film. These materials can be formed into a thin film by a known method such as a vapor deposition method, a spin coating method, and an ink jet method.
As the hole blocking layer of the organic electroluminescent device of the present invention, it is preferable to use a layer containing the naphthopyrazine derivatives of the present invention. In addition, the hole-blocking layer may be formed using another compound having a hole-blocking property. For example, a phenanthroline derivative such as 2,4, 6-tris (3-phenyl) -1,3, 5-triazine (T2T), 1,3, 5-tris (1-phenyl-1H-benzimidazol-2-yl) benzene (TPBi), Bathocuproine (BCP), a metal complex of a quinolyl derivative such as aluminum (III) bis (2-methyl-8-hydroxyquinoline) -4-phenylphenate (BAlq), and a compound having a hole-blocking effect such as various rare earth complexes, oxazole derivatives, triazole derivatives, and triazine derivatives can be used. These may be used as a single layer formed by separately forming a film or by mixing them with other materials to form a film, or may be used as a laminated structure of layers formed by separately forming a film, a laminated structure of layers formed by mixing films, or a laminated structure of layers formed by separately forming a film and layers formed by mixing films. These materials can be formed into a thin film by a known method such as a vapor deposition method, a spin coating method, and an ink jet method.
The above-described material having a hole-blocking property can also be used for formation of an electron transport layer described below. That is, by using the known material having a hole-blocking property, a layer which serves as both a hole-blocking layer and an electron-transporting layer can be formed.
As the electron transport layer of the organic electroluminescent device of the present invention, it is preferable to use a compound containing the naphthopyrazine derivatives of the present invention. In addition, the compound may be formed using other compounds having an electron-transporting property. For example, Alq can be used3Metal complexes of quinolinol derivatives including BAlq; various metal complexes; a triazole derivative; a triazine derivative; an oxadiazole derivative; a pyridine derivative; bis (10-hydroxybenzo [ H ]]Quinoline) beryllium (Be (bq)2) (ii) a Such as 2- [4- (9, 10-dinaphthalen-2-anthracen-2-yl) phenyl]Benzimidazole derivatives such as-1-phenyl-1H-benzimidazole (ZADN); a thiadiazole derivative; an anthracene derivative; a carbodiimide derivative; quinoxaline derivatives; pyridoindole derivatives; phenanthroline derivatives; silole derivatives and the like. These may be used as a single layer formed by separately forming a film or by mixing them with other materials to form a film, or may be used as a laminated structure of layers formed by separately forming a film, a laminated structure of layers formed by mixing films, or a laminated structure of layers formed by separately forming a film and layers formed by mixing films. These materials can be formed into a thin film by a known method such as a vapor deposition method, a spin coating method, and an ink jet method.
As the electron injection layer of the organic electroluminescent device of the present invention, a material known per se can be used. For example, alkali metal salts such as lithium fluoride and cesium fluoride; alkaline earth metal salts such as magnesium fluoride; metal complexes of quinolinol derivatives such as lithium quinolinol; and metal oxides such as alumina.
In the electron injection layer or the electron transport layer, a material obtained by further N-doping a metal such as cesium, a triarylphosphine oxide derivative, or the like can be used as a material generally used for the layer.
As the cathode of the organic electroluminescent device of the present invention, an electrode material having a low work function such as aluminum, magnesium, or an alloy having a low work function such as magnesium-silver alloy, magnesium-indium alloy, aluminum-magnesium alloy is preferably used as the electrode material.
As the substrate of the present invention, a substrate in a conventional organic light emitting device, such as glass or plastic, can be used. In the present invention, a glass substrate is selected.
Examples
The production of the compound represented by the above general formula (I) and the organic electroluminescent device comprising the same is specifically described in the following examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.
Example 1: synthesis of Compounds 2 to 114
(Synthesis of intermediate M1)
The synthetic route for intermediate M1 is shown below:
13.8g (47.8mmol) of 4-triphenylamine borate, 8.4g (79.6mmol) of anhydrous sodium carbonate, 9.3g (39.8mmol) of 6-bromo-1, 2-naphthoquinone, 470.8mg (4.8mmol) of tetrakis (triphenylphosphine palladium), and 100mL of a mixed solvent (toluene: water: ethanol ═ 5: 1: 1(V/V)) were sequentially added to a clean 250mL three-necked flask under nitrogen. The system was gradually warmed to reflux and reacted under reflux overnight. After the reaction is finished, stopping heating, and automatically cooling the reaction system to room temperature. The reaction solution was poured into about 200mL of water and extracted with dichloromethane. The organic phase was dried over anhydrous sodium sulfate, concentrated under reduced pressure, and further purified by column chromatography (350 mesh silica gel, eluent petroleum ether: dichloromethane ═ 2: 3(V/V)) to obtain 13.5g of a reddish brown solid in 84% yield. Ms (ei): m/z: 401.53[ M ]+]。Anal.calcd for C28H19NO2(%):C 83.77,H 4.77;found:C83.70,H 4.74。
(Synthesis of Compounds 2 to 114)
The synthetic routes for compounds 2-114 are shown below:
in the clean stateA250 mL single-neck flask was charged with 12.0g (30mmol) of intermediate M1, 4.8g (30mmol) of 5, 6-diamino-2, 3-dicyanopyrazine and 100mL of glacial acetic acid in that order, gradually warmed to reflux and reacted under reflux overnight. After the reaction is finished, stopping heating, and automatically cooling the system. The reaction solution was poured into 1L of ice water, collected by suction filtration, compressed and dried, and further purified by column chromatography (350 mesh silica gel, eluent petroleum ether: dichloromethane ═ 2: 3(V/V)) to obtain 12.9g of a dark green solid with a yield of 82%. Ms (ei): m/z: 525.62[ M ]+]。Anal.calcd for C34H19N7(%):C 77.70,H 3.64;found:C 77.60,H 3.60。
Example 2: synthesis of Compounds 1-114
(Synthesis of Compounds 1 to 114)
The synthetic routes for intermediates 1-114 are shown below:
12.0g (30mmol) of intermediate M1, 3.3g (30mmol) of 2, 3-diaminopiperazine and 100mL of glacial acetic acid were added in succession to a clean 250mL single-neck flask, gradually warmed to reflux and reacted overnight at reflux. After the reaction is finished, stopping heating, and automatically cooling the system. The reaction solution was poured into 1L of ice water, collected by suction filtration, compressed and dried, and further purified by column chromatography (350 mesh silica gel, eluent petroleum ether: dichloromethane ═ 2: 3(V/V)) to obtain 11.7g of a dark green solid, with a yield of 82%. Ms (ei): m/z: 475.62[ M ]+]。Anal.calcd for C32H21N5(%):C 80.82,H 4.45;found:C 80.60,H4.40。
Example 3: synthesis of Compounds 2-157
(Synthesis of intermediate M2)
The synthetic route for intermediate M2 is shown below:
in a clean 250mL three-neck flask under nitrogen13.8g (47.8mmol) of 4- (9H-carbazol-9-yl) phenylboronic acid, 8.4g (79.6mmol) of anhydrous sodium carbonate, 9.3g (39.8mmol) of 6-bromo-1, 2-naphthoquinone, 470.8mg (4.8mmol) of tetrakis (triphenylphosphine palladium), and 100mL of a mixed solvent (toluene: water: ethanol ═ 5: 1: 1(V/V)) were added in portions. The system was gradually warmed to reflux and reacted under reflux overnight. After the reaction is finished, stopping heating, and automatically cooling the reaction system to room temperature. The reaction solution was poured into about 200mL of water and extracted with dichloromethane. The organic phase was dried over anhydrous sodium sulfate, concentrated under reduced pressure, and further purified by column chromatography (350 mesh silica gel, eluent petroleum ether: dichloromethane ═ 2: 3(V/V)) to obtain 13.4g of a yellow solid in 84% yield. Ms (ei): m/z: 399.53[ M ]+]。Anal.calcd for C28H17NO2(%):C 84.19,H4.29;found:C 83.99,H 4.24。
(Synthesis of Compounds 2-157)
The synthetic route for compounds 2-157 is shown below:
12.0g (30mmol) of intermediate M2, 4.8g (30mmol) of 5, 6-diamino-2, 3-dicyanopyrazine and 100mL of glacial acetic acid were added in succession to a clean 250mL single-neck flask, gradually warmed to reflux and reacted overnight under reflux. After the reaction is finished, stopping heating, and automatically cooling the system. The reaction solution was poured into 1L of ice water, collected by suction filtration, compressed and dried, and further purified by column chromatography (350 mesh silica gel, eluent petroleum ether: dichloromethane 2: 3(V/V)) to obtain 12.9g of a red solid with a yield of 82%. Ms (ei): m/z: 523.62[ M ]+]。Anal.calcd for C34H17N7(%):C 78.00,H 3.27;found:C77.80,H 3.21。
Example 4: synthesis of Compounds 1-101
(Synthesis of intermediate M3)
The synthetic route for intermediate M3 is shown below:
5.4g (23.0mmol) of 6-bromo-1, 2-naphthoquinone, 4.9g (29.0mmol) of diphenylamine, 3.0g (29.0mmol) of sodium tert-butoxide, 0.1g (0.3mmol) of tri-tert-butylphosphine tetrafluoroborate and 0.27g (0.3mmol) of tris (dibenzylideneacetone) dipalladium were sequentially added to a 250mL two-necked flask, and after degassing the reaction system, 150mL of toluene was added under nitrogen protection, and the mixture was stirred and heated to reflux for 12 hours. After the reaction is completed, cooling the system to room temperature, carrying out vacuum filtration, washing filter residue with a large amount of dichloromethane, concentrating the filtrate to obtain a crude product, and adding petroleum ether: dichloromethane ═ 3: 2 (volume ratio) on silica gel column to obtain 6.0g red with 92% yield. MS (EI) M/z 325.43[ M ]+]。Anal.calcd for C22H15NO2(%):C 81.21,H 4.65;found:C 81.01,H 4.60。
(Synthesis of Compounds 1-101)
The synthetic routes for compounds 1-101 are shown below:
9.8g (30mmol) of intermediate M3, 3.3g (30mmol) of 2, 3-diaminopiperazine and 100mL of glacial acetic acid were added in succession to a clean 250mL single-neck flask, gradually warmed to reflux and reacted overnight at reflux. After the reaction is finished, stopping heating, and automatically cooling the system. The reaction solution was poured into 1L of ice water, collected by suction filtration, compressed and dried, and further purified by column chromatography (350 mesh silica gel, eluent petroleum ether: dichloromethane ═ 2: 3(V/V)) to obtain 9.8g of a deep red solid in a yield of 82%. Ms (ei): m/z: 399.52[ M ]+]。Anal.calcd for C26H17N5(%):C 78.18,H 4.29;found:C 78.05,H3.22。
Example 5: synthesis of Compounds 2-101
(Synthesis of Compounds 2 to 101)
The synthetic route for compounds 2-101 is shown below:
9.8g (30mmol) of intermediate M3, 4.8g (30mmol) of 5, 6-diamino-2, 3-dicyanopyrazine and 100mL of glacial acetic acid were added in succession to a clean 250mL single-neck flask, gradually warmed to reflux and reacted overnight under reflux. After the reaction is finished, stopping heating, and automatically cooling the system. The reaction solution was poured into 1L of ice water, collected by suction filtration, compressed and dried, and further purified by column chromatography (350 mesh silica gel, eluent petroleum ether: dichloromethane 2: 3(V/V)) to obtain 11.0g of a deep red solid in a yield of 82%. Ms (ei): m/z: 449.52[ M ]+]。Anal.calcd for C28H15N7(%):C 74.82,H 3.36;found:C 74.75,H 3.32。
Example 6: synthesis of Compounds 2-158
(Synthesis of intermediate M4)
The synthetic route for intermediate M4 is shown below:
to a clean 250mL three-necked flask, 27.6g (95.6mmol) of triphenylamine 4-borate, 8.4g (79.6mmol) of anhydrous sodium carbonate, 7.1g (39.8mmol) of 4.5-dichloro-2.3-diaminopyrazine, 470.8mg (4.8mmol) of tetrakis (triphenylphosphine palladium), and 100mL of a mixed solvent (toluene: water: ethanol ═ 5: 1: 1(V/V)) were sequentially added under nitrogen. The system was gradually warmed to reflux and reacted under reflux overnight. After the reaction is finished, stopping heating, and automatically cooling the reaction system to room temperature. The reaction solution was poured into about 200mL of water and extracted with dichloromethane. The organic phase was dried over anhydrous sodium sulfate, concentrated under reduced pressure, and further purified by column chromatography (350 mesh silica gel, eluent petroleum ether: dichloromethane ═ 3: 2(V/V)) to obtain 20.0g of a reddish brown solid in 84% yield. Ms (ei): m/z: 596.49[ M ]+]。Anal.calcd for C40H32N6(%):C 80.51,H5.41;found:C 80.31,H 5.35。
(Synthesis of intermediate M5)
The synthetic route for intermediate M5 is shown below:
17.9g (30.0mmol) of intermediate M5, 7.1g (30.0mmol) of 6-bromo-1, 2-naphthoquinone and 100mL of glacial acetic acid were sequentially added to a clean 250mL single-neck flask, gradually warmed to reflux and reacted under reflux overnight. After the reaction is finished, stopping heating, and automatically cooling the system. The reaction solution was poured into 1L of ice water, collected by suction filtration, compressed and dried, and further purified by column chromatography (350 mesh silica gel, eluent petroleum ether: dichloromethane ═ 2: 3(V/V)) to obtain 19.6g of a deep red solid in a yield of 82%. Ms (ei): m/z: 796.62[ M ]+]。Anal.calcd for C50H33BrN6(%):C75.28,H 4.17;found:C75.01,H 4.13。
(Synthesis of Compounds 2-158)
The synthetic route for compounds 2-158 is shown below:
in a100 mL two-necked flask, 3.9g (4.9mmol) of M5 and 0.5g (5.1mmol) of cuprous cyanide were dissolved in 40mL of N, N-dimethylformamide under nitrogen, stirred, and heated to 150 ℃ for reaction for 24 hours. After the reaction was completed, the reaction solution was poured into 50mL of saturated sodium hydroxide solution, and filtered under suction to obtain a crude product. The crude product was dissolved in 150mL of dichloromethane and washed 3 times with 60mL of water. The organic phase is dried by anhydrous sodium sulfate and then the solvent is removed by rotary drying to obtain a crude product. The crude product was purified with dichloromethane: petroleum ether is 3: 2 (volume ratio) of eluent on silica gel column to obtain 3.2g of deep red solid with 87% of yield. MS (EI) M/z 743.36[ M ]+]. Calculated value of elemental analysis C51H38N7(%): c82.35, H4.47; measured value: c82.11, H4.40.
Preparation of organic electroluminescent device (organic EL device)
Specifically, the ITO transparent conductive layer coated glass plate was sonicated in a commercial detergent to removeRinsing in ionized water, washing in acetone and ethanol for three times, baking in clean environment to completely remove water, washing with ultraviolet light and ozone, and bombarding the surface with low-energy cation beam. Placing ITO conductive glass into a vacuum chamber, and vacuumizing to less than 5 × 10-4Pa. Using ITO conductive glass as an anode, and sequentially evaporating a Hole Injection Layer (HIL), a hole transport layer (HIL), an Electron Blocking Layer (EBL), an organic light emitting layer (EML), an Electron Transport Layer (ETL) and a cathode on the ITO conductive glass; wherein, the evaporation rate of the organic material is 0.2nm/s, and the evaporation rate of the metal electrode is 0.5 nm/s.
The electroluminescence spectra were collected using a photon multichannel analyzer PMA-12(Hamamatsu C10027-01), which can be detected in the spectral region of 200 and 950 nm. The external quantum efficiency of the device was obtained by measuring the forward light intensity using an integrating sphere (Hamamatsu a 10094). All measurements were performed at room temperature in an atmospheric environment.
The method for forming each structural layer in the organic electroluminescent device of the present invention is not particularly limited, and conventional vacuum evaporation methods, spin coating methods, and the like may be used.
Examples 7 to 12
The following description of OLED1-6 will be made with reference to examples 7-12, wherein OLED1-6 uses the materials shown as compounds 2-114,1-114,2-157,1-101,2-101 and 2-158 in the present invention, and the structure of each OLED device and the thickness of each layer are as follows:
OLED-l:
ITO/HAT-CN(5nm)/NPB(60nm)/TCTA(5nm)/10wt%2-114:TPBi(20nm)/TPBi(50nm)/Liq(2nm)/Al(100nm)
OLED-2:
ITO/HAT-CN(5nm)/NPB(60nm)/TCTA(5nm)/20wt%1-114:TPBi(20nm)/TPBi(50nm)/Liq(2nm)/Al(100nm)
OLED-3:
ITO/HAT-CN(5nm)/NPB(60nm)/TCTA(5nm)/15wt%2-157:TPBi(20nm)/TPBi(50nm)/Liq(2nm)/Al(100nm)
OLED-4:
ITO/HAT-CN(5nm)/NPB(60nm)/TCTA(5nm)/12wt%1-101:TPBi(20nm)/TPBi(50nm)/Liq(2nm)/Al(100nm)
OLED-5:
ITO/HAT-CN(5nm)/NPB(60nm)/TCTA(5nm)/15wt%2-101:TPBi(20nm)/TPBi(50nm)/Liq(2nm)/Al(100nm)
OLED-6:
ITO/HAT-CN(5nm)/NPB(60nm)/TCTA(5nm)/20wt%2-158:TPBi(20nm)/TPBi(50nm)/Liq(2nm)/Al(100nm)
the examples relate to compounds having the following structure:
TABLE 1
Device numbering | Luminescent layer | Maximum external quantum efficiency (%) | Peak electroluminescence (nm) |
OLED1 | 10wt%2-114:TPBi | 8.05 | 820 |
OLED2 | 20wt%1-114:TPBi | 12.75 | 650 |
OLED3 | 15wt%2-157:TPBi | 10.97 | 625 |
OLED4 | 12wt%1-101:TPBi | 6.21 | 660 |
OLED5 | 15wt%2-101:TPBi | 3.54 | 825 |
OLED6 | 20wt%2-158:TPBi | 8.22 | 800 |
The light emission characteristics of the organic EL devices OLEDs 1 to 6 produced in examples 1 to 6 were measured when a direct current voltage was applied in the atmosphere at normal temperature. The measurement results are shown in table 1.
As can be seen from table 1, the naphthopyrazine derivative of the present invention has excellent light emitting characteristics, a stable structure, and high color purity by modifying and introducing other different chemical groups, and simultaneously, the preparation cost thereof is low. In addition, the deep red/near infrared organic electroluminescent device prepared by the naphthopyrazine derivatives has high luminous efficiency and excellent performance.
Industrial applicability
The organic electroluminescent compounds according to the present invention have excellent luminous efficiency and excellent color purity of materials. Therefore, the compound can be used for preparing a deep red/near infrared organic electroluminescent device with excellent performance.
The above description is only an embodiment of the present application, and does not limit the scope of the present application, and all equivalent molecular structures or equivalent transformations that are made by the contents of the specification and the drawings of the present application, or that are directly or indirectly applied to other related technical fields, are included in the scope of the present application.
Claims (9)
1. A naphthopyrazine derivative is characterized by being represented by the following general formula (I):
L1,L2,L3each independently represents a single bond, a carbonyl group, an aromatic hydrocarbon group having 6 to 18 carbon atoms, or an aromatic heterocyclic group having 5 to 18 carbon atoms;
m is an integer of 0-4, p and q are integers of 0-1, and m, p and q are not 0 at the same time;
Ar1~Ar6Each independently represents a hydrogen atom, a cyano group or optionally substituted by one or more R1Substituted, aromatic hydrocarbon radical having 6 to 30 carbon atoms or optionally substituted by one or more R1A substituted aromatic heterocyclic group having 5 to 30 carbon atoms;
R1represents a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, NO2、N(R2)2、OR2、SR2、C(=O)R2、P(=O)R2、Si(R2)3A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 20 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 20 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 40 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 5 to 40 carbon atoms;
R2represents a hydrogen atomDeuterium atom, fluorine atom, cyano group, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, or substituted or unsubstituted aromatic heterocyclic group having 5 to 30 carbon atoms.
4. The naphthopyrazine derivative according to any one of claims 1 to 4, wherein L1、L2And L3Each independently represents a single bond, a carbonyl group,Phenyl or triazinyl;
R1and R2Each independently represents a cyano group, a phenyl group, a naphthyl group, a dimethylfluorenyl group, a dibenzothienyl group, a dibenzofuranyl group, a triazinyl group, a pyrimidinyl group, a pyridyl group, a biphenyl group, a terphenyl group, a quaterphenyl group, a pentabiphenyl group, a dianilino group, a trianilino group, a benzothienocarbazolyl group, a benzofurocarbazolyl group, a benzofluorenocarbazolyl group, a benzanthryl group, a spirobifluorenyl group, a carbazolyl group, an N-phenylcarbazolyl group, an indenocarbazolyl group, a benzimidazolyl group, a diphenyl-oxadiazolyl group, a diphenylboryl group, a triphenylphosphinoxy group, a diphenylphosphinyloxy group, a triphenylsilyl group, a tetraphenylsilyl group, an acridinyl group, a phenoxazinyl group, a.
7. an electronic device comprising the naphthopyrazine derivative according to any one of claims 1 to 5.
8. The electronic device according to claim 7, wherein the electronic device is an organic electroluminescent device, an organic field effect transistor, or an organic solar cell;
wherein the organic electroluminescent device comprises: a first electrode, a second electrode provided so as to face the first electrode, and at least one organic layer interposed between the first electrode and the second electrode, wherein the at least one organic layer contains the naphthopyrazine derivative according to any one of claims 1 to 5.
9. The electronic device of claim 8, wherein the at least one organic layer is a hole injection layer, a hole transport layer, a light emitting layer, an electron blocking layer, a hole blocking layer, or an electron transport layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010231029.6A CN111303157A (en) | 2020-03-27 | 2020-03-27 | Naphthopyrazine derivative, preparation method thereof and electronic device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010231029.6A CN111303157A (en) | 2020-03-27 | 2020-03-27 | Naphthopyrazine derivative, preparation method thereof and electronic device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111303157A true CN111303157A (en) | 2020-06-19 |
Family
ID=71149771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010231029.6A Pending CN111303157A (en) | 2020-03-27 | 2020-03-27 | Naphthopyrazine derivative, preparation method thereof and electronic device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111303157A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113621386A (en) * | 2021-09-06 | 2021-11-09 | 国信宝威(北京)科技有限公司 | Discotic liquid crystal compound and application thereof |
CN115677618A (en) * | 2022-12-28 | 2023-02-03 | 中南大学 | Acenaphthothiazole derivative, preparation method thereof and electronic device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160066308A (en) * | 2014-12-02 | 2016-06-10 | (주)피엔에이치테크 | An electroluminescent compound and an electroluminescent device comprising the same |
CN109761822A (en) * | 2019-01-23 | 2019-05-17 | 苏州久显新材料有限公司 | Fluorene derivatives and electronic devices |
CN110835328A (en) * | 2019-11-18 | 2020-02-25 | 苏州久显新材料有限公司 | Spirobenzofluorenone derivatives and electronic devices |
-
2020
- 2020-03-27 CN CN202010231029.6A patent/CN111303157A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160066308A (en) * | 2014-12-02 | 2016-06-10 | (주)피엔에이치테크 | An electroluminescent compound and an electroluminescent device comprising the same |
CN109761822A (en) * | 2019-01-23 | 2019-05-17 | 苏州久显新材料有限公司 | Fluorene derivatives and electronic devices |
CN110835328A (en) * | 2019-11-18 | 2020-02-25 | 苏州久显新材料有限公司 | Spirobenzofluorenone derivatives and electronic devices |
Non-Patent Citations (1)
Title |
---|
DOMINIQUE MARIO GAMPE,等: "Stable and Easily Accessible Functional Dyes:Dihydrotetraazaanthracenes as Versatile Precursors for Higher Acenes", 《CHEM. EUR. J.》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113621386A (en) * | 2021-09-06 | 2021-11-09 | 国信宝威(北京)科技有限公司 | Discotic liquid crystal compound and application thereof |
CN113621386B (en) * | 2021-09-06 | 2023-05-26 | 国信宝威(北京)科技有限公司 | Discotic liquid crystal compound and application thereof |
CN115677618A (en) * | 2022-12-28 | 2023-02-03 | 中南大学 | Acenaphthothiazole derivative, preparation method thereof and electronic device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111647009B (en) | Boron-containing compound and electronic device thereof | |
CN110903311B (en) | Polycyclic organoboron derivatives and electronic devices | |
CN113233988A (en) | Fluorene derivative and electronic device | |
CN111057005A (en) | Fluorene derivative and electronic device | |
CN111056960A (en) | Fluorene derivative and electronic device | |
CN110981899B (en) | Polycyclic organoboron derivatives and electronic devices | |
CN111362951B (en) | Acenaphthene-aza-naphthalene derivative, preparation method thereof, infrared electronic device and infrared device | |
CN111647010A (en) | Polycyclic boron-containing compound and electronic device thereof | |
CN111056959A (en) | Fluorene derivative and electronic device | |
CN110835328A (en) | Spirobenzofluorenone derivatives and electronic devices | |
CN110950829A (en) | Spirobenzanthrone derivatives and electronic devices | |
CN111393436A (en) | Phenanthroazanaphthalene derivative, preparation method thereof and electronic device | |
CN110776496A (en) | 3, 4-diazaspiro fluorene derivative and synthesis method thereof, and electronic device containing 3, 4-diazaspiro fluorene derivative | |
CN111333657A (en) | Azainaphthalene derivative, preparation method thereof and electronic device | |
CN111635391A (en) | Fluorene compound and electronic device | |
CN110818635A (en) | Spirobenzofluorenone derivatives and electronic devices | |
CN111574519A (en) | Closed-loop triphenylamine compound and electronic device | |
CN111533736A (en) | Azainaphthalene derivatives, synthesis method thereof and electronic device thereof | |
CN111606906A (en) | Polycyclic nitrogen-containing compound and electronic device | |
CN111018783A (en) | Spirobenzanthrone derivatives and electronic devices | |
CN110746406A (en) | 3, 4-diazafluorenone derivatives, method for synthesizing the same, and electronic device containing the 3, 4-diazafluorenone derivatives | |
CN110627834A (en) | Phosphaphenanthridinone derivatives, synthesis method thereof, and electronic device containing the same | |
CN114195813A (en) | Boron-containing fused ring compound and electronic device | |
CN110950763A (en) | Spirobenzanthrone derivatives and electronic devices | |
CN111548348A (en) | Fluorenoazanaphthalene derivative, synthesis method thereof and electronic device thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20200619 |
|
WD01 | Invention patent application deemed withdrawn after publication |