[go: up one dir, main page]

CN111298774A - 一种重金属污染地下水的纳米修复材料的制备方法 - Google Patents

一种重金属污染地下水的纳米修复材料的制备方法 Download PDF

Info

Publication number
CN111298774A
CN111298774A CN201911256858.3A CN201911256858A CN111298774A CN 111298774 A CN111298774 A CN 111298774A CN 201911256858 A CN201911256858 A CN 201911256858A CN 111298774 A CN111298774 A CN 111298774A
Authority
CN
China
Prior art keywords
heavy metal
composite material
fe3o
carbon composite
graphene oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911256858.3A
Other languages
English (en)
Inventor
张永利
欧阳永中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan University
Original Assignee
Foshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan University filed Critical Foshan University
Priority to CN201911256858.3A priority Critical patent/CN111298774A/zh
Publication of CN111298774A publication Critical patent/CN111298774A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/286Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

本发明公开了一种重金属污染地下水的纳米修复材料的制备方法,将葡萄糖酸钠和铁盐,经过混合烘干、焙烧后得到Fe3O4/羧基碳复合材料,该复合材料对重金属具有高效的吸附性能,但吸附量较低,故将该材料与海藻酸钠混合,加入微量的氧化石墨烯,干磨均匀后,再加入壳聚糖在酸性条件下进行反应,在此过程中以氧化石墨烯为载体,Fe3O4/羧基碳复合材料上通过正、负电荷吸附壳聚糖和海藻酸钠,从而将复合材料的吸附量提升了20倍以上,最高可以达到3000mg/g以上。

Description

一种重金属污染地下水的纳米修复材料的制备方法
技术领域
本发明涉及污水处理材料技术领域,尤其涉及一种重金属污染地下水的纳米修复材料的制备方法。
背景技术
重金属的治理都是环保行业关注的焦点。重金属不能被生物降解,在水中易富集,造成水体污染,最终危害人体健康。除去水中的重金属离子的方法很多,传统的处理方法是采用化学沉淀法、薄膜过滤、离子交换法、蒸发回收法、吸附法和电解法等,但这些方法都存在一定的缺陷。化学沉淀法对试剂的消耗量大、易产生二次污染;蒸发回收法能耗太大;离子交换法和活性炭吸附法虽然效果较好,但成本太高。而传统的吸附剂对重金属的吸附效果欠佳。
中国发明专利CN107349900A公开了一种重金属吸附剂,该吸附剂包括由石墨烯和纳米氧化镁复合合成的复合物,对水中的铅离子具有非常好的吸附效果,吸附容量可以达到1000mg/g以上,但是对铜、铬等其它重金属离子的吸附效果要差很多。中国发明专利CN104941585A公开了一种富含羧基并可磁性回收的重金属吸附剂的制备方法,该方法制备的重金属吸附剂能够对铬离子、铜离子和镍离子进行高效吸附,在对重金属进行吸附后,可进行磁性回收,但是负载量不足200mg/g。故有必要研究一种重金属污染地下水的纳米修复材料的制备方法,可以低成本、高效的对重金属污染地下水进行处理。
发明内容
基于背景技术存在的技术问题,本发明提出了一种重金属污染地下水的纳米修复材料的制备方法。
本发明的技术方案如下:
一种重金属污染地下水的纳米修复材料的制备方法,包括以下步骤:
A、按比例将葡萄糖酸钠和铁盐溶解在水中,混合均匀,置于100-150℃烘箱中烘干水分,形成胶状体;
B、将步骤A制得的胶状体,置于马弗炉中进行250-400℃焙烧2-3.5h,反应结束后,去离子水清洗,50-60℃烘干,得到Fe3O4/羧基碳复合材料;
C、将Fe3O4/羧基碳复合材料与海藻酸钠混合,加入氧化石墨烯,采用干磨法进行研磨40-60min,加入壳聚糖和15-20%的醋酸溶液(V/V),600-800rpm高速搅拌20-30min;
D、然后50-60℃烘干,用去离子水洗至中性,再次50-60℃烘干,研磨并过80目筛,即可。
优选的,所述铁盐为三价铁盐或二价铁盐。
优选的,所述的步骤A中,所述的葡萄糖酸钠和铁盐的质量比为(2-8):1。
优选的,所述的步骤C中,Fe3O4/羧基碳复合材料、海藻酸钠、氧化石墨烯和壳聚糖的质量比为(6-10):1:(0.05-0.2):(0.5-2)。
优选的,所述的步骤C中,所述的醋酸溶液的加入量为Fe3O4/羧基碳复合材料的5-8倍。
本发明的有益之处在于:本发明的重金属污染地下水的纳米修复材料的主要原料为葡萄糖酸钠和铁盐,经过混合烘干、焙烧后得到Fe3O4/羧基碳复合材料,该复合材料对重金属具有高效的吸附性能,但吸附量较低,故将该材料与海藻酸钠混合,加入微量的氧化石墨烯,干磨均匀后,再加入壳聚糖在酸性条件下进行反应,在此过程中以氧化石墨烯为载体,Fe3O4/羧基碳复合材料上通过正、负电荷吸附壳聚糖和海藻酸钠,从而将复合材料的吸附量提升了20倍以上,最高可以达到3000mg/g以上。
具体实施方式
实施例1
一种重金属污染地下水的纳米修复材料的制备方法,包括以下步骤:
A、按比例将葡萄糖酸钠和硫酸亚铁溶解在水中,混合均匀,置于120℃烘箱中烘干水分,形成胶状体;
B、将步骤A制得的胶状体,置于马弗炉中进行350℃焙烧2.5h,反应结束后,去离子水清洗,55℃烘干,得到Fe3O4/羧基碳复合材料;
C、将Fe3O4/羧基碳复合材料与海藻酸钠混合,加入氧化石墨烯,采用干磨法进行研磨55min,加入壳聚糖和18%的醋酸溶液(V/V),750rpm高速搅拌25min;
D、然后58℃烘干,用去离子水洗至中性,再次58℃烘干,研磨并过80目筛,即可。
所述的步骤A中,所述的葡萄糖酸钠和铁盐的质量比为6:1。
所述的步骤C中,Fe3O4/羧基碳复合材料、海藻酸钠、氧化石墨烯和壳聚糖的质量比为8:1:0.15:1.2。
所述的步骤C中,所述的醋酸溶液的加入量为Fe3O4/羧基碳复合材料的7倍(质量比)。
实施例2
一种重金属污染地下水的纳米修复材料的制备方法,包括以下步骤:
A、按比例将葡萄糖酸钠和硫酸铁溶解在水中,混合均匀,置于150℃烘箱中烘干水分,形成胶状体;
B、将步骤A制得的胶状体,置于马弗炉中进行250℃焙烧3.5h,反应结束后,去离子水清洗,50℃烘干,得到Fe3O4/羧基碳复合材料;
C、将Fe3O4/羧基碳复合材料与海藻酸钠混合,加入氧化石墨烯,采用干磨法进行研磨60min,加入壳聚糖和15%的醋酸溶液(V/V),800rpm高速搅拌20min;
D、然后60℃烘干,用去离子水洗至中性,再次60℃烘干,研磨并过80目筛,即可。
所述的步骤A中,所述的葡萄糖酸钠和铁盐的质量比为2:1。
所述的步骤C中,Fe3O4/羧基碳复合材料、海藻酸钠、氧化石墨烯和壳聚糖的质量比为10:1:0.05:2。
所述的步骤C中,所述的醋酸溶液的加入量为Fe3O4/羧基碳复合材料的5倍(质量比)。
实施例3
一种重金属污染地下水的纳米修复材料的制备方法,包括以下步骤:
A、按比例将葡萄糖酸钠和硝酸铁溶解在水中,混合均匀,置于100℃烘箱中烘干水分,形成胶状体;
B、将步骤A制得的胶状体,置于马弗炉中进行400℃焙烧2h,反应结束后,去离子水清洗,60℃烘干,得到Fe3O4/羧基碳复合材料;
C、将Fe3O4/羧基碳复合材料与海藻酸钠混合,加入氧化石墨烯,采用干磨法进行研磨40min,加入壳聚糖和20%的醋酸溶液(V/V),600rpm高速搅拌30min;
D、然后50℃烘干,用去离子水洗至中性,再次50℃烘干,研磨并过80目筛,即可。
所述的步骤A中,所述的葡萄糖酸钠和铁盐的质量比为8:1。
所述的步骤C中,Fe3O4/羧基碳复合材料、海藻酸钠、氧化石墨烯和壳聚糖的质量比为6:1:0.2:0.5。
所述的步骤C中,所述的醋酸溶液的加入量为Fe3O4/羧基碳复合材料的8倍(质量比)。
对比例1
将实施例1中的步骤C和D取出,直接采用步骤B得到的Fe3O4/羧基碳复合材料。
对比例2
将实施例1中的氧化石墨烯去除,其余配比和制备方法不变。
以下为测试例:
取地下水1吨(该地下水中Cu2+的浓度为212ppm,Cr6+浓度为151ppm,Hg2+的浓度为78ppm,Ni2+的浓度为114ppm,Pb2+的浓度为249ppm,Cd2+的浓度为86ppm),分别加入1000g和100g的实施例1-3和对比例1-2的修复材料,用机械搅拌器进行搅拌,转速为200rmp,24h后将利用磁铁将修复材料与地下水分离,测试修复材料的负载量,具体测试数据见表1和表2。
表1:加入1000g修复材料后对各种重金属的负载量。
负载量g Cu<sup>2+</sup> Cr<sup>6+</sup> Hg<sup>2+</sup> Ni<sup>2+</sup> Pb<sup>2+</sup> Cd<sup>2+</sup>
实施例1 209.4 149.6 75.5 112.9 244.2 83.3
实施例2 208.6 149.3 74.8 111.8 241.8 81.9
实施例3 208.4 150.1 75.2 112.4 242.6 82.4
由以上测试数据可以知道,本发明的修复材料对各种重金属均有非常好的吸附效果。
表2:加入100g修复材料后对各种重金属的负载量。
负载量g Cu<sup>2+</sup> Cr<sup>6+</sup> Hg<sup>2+</sup> Ni<sup>2+</sup> Pb<sup>2+</sup> Cd<sup>2+</sup>
实施例1 118.4 60.3 21.2 33.5 69.5 32.1
对比例1 6.4 4.3 0.9 2.1 3.2 1.9
对比例2 42.8 25.9 7.0 10.4 24.6 9.7
本发明制备的修复材料相比于传统的吸附材料,其对重金属的负载量显著增加。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (5)

1.一种重金属污染地下水的纳米修复材料的制备方法,其特征在于,包括以下步骤:
A、按比例将葡萄糖酸钠和铁盐溶解在水中,混合均匀,置于100-150℃烘箱中烘干水分,形成胶状体;
B、将步骤A制得的胶状体,置于马弗炉中进行250-400℃焙烧2-3.5h,反应结束后,去离子水清洗,50-60℃烘干,得到Fe3O4/羧基碳复合材料;
C、将Fe3O4/羧基碳复合材料与海藻酸钠混合,加入氧化石墨烯,采用干磨法进行研磨40-60min,加入壳聚糖和15-20%的醋酸溶液(V/V),600-800rpm高速搅拌20-30min;
D、然后50-60℃烘干,用去离子水洗至中性,再次50-60℃烘干,研磨并过80目筛,即可。
2.如权利要求1所述的重金属污染地下水的纳米修复材料的制备方法,其特征在于,所述铁盐为三价铁盐或二价铁盐。
3.如权利要求1所述的重金属污染地下水的纳米修复材料的制备方法,其特征在于,所述的步骤A中,所述的葡萄糖酸钠和铁盐的质量比为(2-8):1。
4.如权利要求1所述的重金属污染地下水的纳米修复材料的制备方法,其特征在于,所述的步骤C中,Fe3O4/羧基碳复合材料、海藻酸钠、氧化石墨烯和壳聚糖的质量比为(6-10):1:(0.05-0.2):(0.5-2)。
5.如权利要求1所述的重金属污染地下水的纳米修复材料的制备方法,其特征在于,所述的步骤C中,所述的醋酸溶液的加入量为Fe3O4/羧基碳复合材料的5-8倍。
CN201911256858.3A 2019-12-10 2019-12-10 一种重金属污染地下水的纳米修复材料的制备方法 Pending CN111298774A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911256858.3A CN111298774A (zh) 2019-12-10 2019-12-10 一种重金属污染地下水的纳米修复材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911256858.3A CN111298774A (zh) 2019-12-10 2019-12-10 一种重金属污染地下水的纳米修复材料的制备方法

Publications (1)

Publication Number Publication Date
CN111298774A true CN111298774A (zh) 2020-06-19

Family

ID=71144864

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911256858.3A Pending CN111298774A (zh) 2019-12-10 2019-12-10 一种重金属污染地下水的纳米修复材料的制备方法

Country Status (1)

Country Link
CN (1) CN111298774A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102029144A (zh) * 2009-09-29 2011-04-27 淮海工学院 一种吸附废水中重金属离子和染料的吸附剂及其制备方法
CN103804828A (zh) * 2014-02-14 2014-05-21 江南大学 一种吸附重金属离子的复合水凝胶及制备方法
CN104941585A (zh) * 2015-05-27 2015-09-30 江苏大学 一种富含羧基并可磁性回收的重金属吸附剂的制备方法
WO2019223223A1 (zh) * 2018-05-22 2019-11-28 华南理工大学 一种同时去除阴阳离子重金属的铁修饰壳聚糖/蛭石复合材料及其制备与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102029144A (zh) * 2009-09-29 2011-04-27 淮海工学院 一种吸附废水中重金属离子和染料的吸附剂及其制备方法
CN103804828A (zh) * 2014-02-14 2014-05-21 江南大学 一种吸附重金属离子的复合水凝胶及制备方法
CN104941585A (zh) * 2015-05-27 2015-09-30 江苏大学 一种富含羧基并可磁性回收的重金属吸附剂的制备方法
WO2019223223A1 (zh) * 2018-05-22 2019-11-28 华南理工大学 一种同时去除阴阳离子重金属的铁修饰壳聚糖/蛭石复合材料及其制备与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张靖宇等: "石墨烯与天然高分子复合吸附材料的研究进展", 《印染》, vol. 45, no. 5, 1 March 2019 (2019-03-01), pages 52 *

Similar Documents

Publication Publication Date Title
JP2019193926A (ja) 磁性水熱炭の製造方法及びその応用
CN103127899B (zh) 一种除砷吸附剂-铁铜复合氧化物及其制备方法
CN110394160B (zh) 球状海藻酸钙@FeOOH脱硫剂的制备方法
CN106861615A (zh) 一种生物炭磁性Fe3S4复合纳米吸附剂及其制备方法与应用
CN103301819A (zh) 一种去除废水中重金属的纳米吸附剂的制备方法
CN107519846A (zh) 一种石墨烯/二氧化硅‑聚吡咯复合材料及其制备方法与应用
CN114887582B (zh) 一种回收废水中亚磷酸根离子的方法
CN105817196A (zh) 一种高铝粉煤灰重金属离子吸附剂及其制备方法
CN104190360A (zh) 一种氧化-负载铁改性活性炭水处理吸附剂及其制备方法
CN110252254A (zh) 一种对镉离子有强吸附作用的改性类水滑石及其应用
CN110801814A (zh) 一种磁性氨基核桃壳生物炭新型吸附剂的制备方法
CN104941585B (zh) 一种富含羧基并可磁性回收的重金属吸附剂的制备方法
CN104353407B (zh) 一种Fe-Mn体系吸附剂及其制备和应用方法
CN111410752B (zh) 一种水凝胶纳米复合材料及其制备方法与应用
CN111298774A (zh) 一种重金属污染地下水的纳米修复材料的制备方法
CN110422902B (zh) 一种高效处理锑废水的掺钛水钠锰矿的制备方法
CN111675278A (zh) 一种利用粘土原矿直接处理含六价铬废水的方法
CN112058212A (zh) 一种利用镍铁渣粉末吸附重金属的方法
CN115193404A (zh) 一种层状矿物微球材料、其合成方法与在铬污染土壤修复方面的应用
CN114735845A (zh) 一种改性锰矿渣循环利用处理重金属离子的方法
CN106423074A (zh) 一种磁性噻吩甲酰三氟丙酮TTA@Fe3O4吸附剂的制备方法及应用
CN102180537A (zh) 一种络合重金属复合纳米置换剂的制备方法及其应用
CN102923887B (zh) 一种处理重金属废水的方法
CN112169780A (zh) 一种用于吸附六价铬离子的明胶基水凝胶吸附剂及其制备方法
CN106315816A (zh) 一种处理含多种重金属离子废水的可渗透反应墙技术

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200619