CN111298139B - Targeted nanomedicine for overcoming drug resistance caused by tumor hypoxia based on MRI guidance and its preparation method and application - Google Patents
Targeted nanomedicine for overcoming drug resistance caused by tumor hypoxia based on MRI guidance and its preparation method and application Download PDFInfo
- Publication number
- CN111298139B CN111298139B CN201911227246.1A CN201911227246A CN111298139B CN 111298139 B CN111298139 B CN 111298139B CN 201911227246 A CN201911227246 A CN 201911227246A CN 111298139 B CN111298139 B CN 111298139B
- Authority
- CN
- China
- Prior art keywords
- sed
- nanoparticles
- plz4
- cells
- targeted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 206010028980 Neoplasm Diseases 0.000 title claims abstract description 66
- 238000002360 preparation method Methods 0.000 title claims abstract description 55
- 206010021143 Hypoxia Diseases 0.000 title claims abstract description 46
- 230000007954 hypoxia Effects 0.000 title claims abstract description 28
- 206010059866 Drug resistance Diseases 0.000 title claims abstract description 21
- 239000002105 nanoparticle Substances 0.000 claims abstract description 257
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 claims abstract description 90
- 229940079593 drug Drugs 0.000 claims abstract description 55
- 239000003814 drug Substances 0.000 claims abstract description 55
- 238000000502 dialysis Methods 0.000 claims abstract description 26
- 230000008685 targeting Effects 0.000 claims abstract description 25
- 238000003756 stirring Methods 0.000 claims abstract description 16
- 239000002246 antineoplastic agent Substances 0.000 claims abstract description 14
- 229940041181 antineoplastic drug Drugs 0.000 claims abstract description 14
- 238000003384 imaging method Methods 0.000 claims abstract description 13
- 239000003960 organic solvent Substances 0.000 claims abstract description 12
- 239000002872 contrast media Substances 0.000 claims abstract description 9
- 239000004094 surface-active agent Substances 0.000 claims abstract description 7
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims abstract description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 40
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 15
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 15
- 238000013421 nuclear magnetic resonance imaging Methods 0.000 claims description 6
- 229920000136 polysorbate Polymers 0.000 claims description 6
- 239000002616 MRI contrast agent Substances 0.000 claims description 4
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 2
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 claims description 2
- 230000000259 anti-tumor effect Effects 0.000 abstract description 8
- 229930192392 Mitomycin Natural products 0.000 abstract description 7
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 abstract description 7
- 229960004857 mitomycin Drugs 0.000 abstract description 7
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 abstract description 6
- KMSKQZKKOZQFFG-HSUXVGOQSA-N Pirarubicin Chemical compound O([C@H]1[C@@H](N)C[C@@H](O[C@H]1C)O[C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1CCCCO1 KMSKQZKKOZQFFG-HSUXVGOQSA-N 0.000 abstract description 5
- 229960001221 pirarubicin Drugs 0.000 abstract description 5
- 229960004679 doxorubicin Drugs 0.000 abstract description 3
- 230000001225 therapeutic effect Effects 0.000 abstract description 3
- 210000004027 cell Anatomy 0.000 description 151
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 110
- 206010005003 Bladder cancer Diseases 0.000 description 108
- 201000005112 urinary bladder cancer Diseases 0.000 description 106
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 71
- 230000000694 effects Effects 0.000 description 32
- 239000000243 solution Substances 0.000 description 27
- 239000007864 aqueous solution Substances 0.000 description 26
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 21
- 239000002953 phosphate buffered saline Substances 0.000 description 21
- 210000001519 tissue Anatomy 0.000 description 20
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 18
- 230000001146 hypoxic effect Effects 0.000 description 18
- 238000010521 absorption reaction Methods 0.000 description 15
- SZVJSHCCFOBDDC-UHFFFAOYSA-N ferrosoferric oxide Chemical compound O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 15
- 238000011282 treatment Methods 0.000 description 15
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 14
- 238000000338 in vitro Methods 0.000 description 14
- 239000002609 medium Substances 0.000 description 13
- 108090000765 processed proteins & peptides Proteins 0.000 description 13
- 239000012071 phase Substances 0.000 description 12
- 229910052760 oxygen Inorganic materials 0.000 description 11
- 102000004196 processed proteins & peptides Human genes 0.000 description 11
- 239000003642 reactive oxygen metabolite Substances 0.000 description 11
- 206010006187 Breast cancer Diseases 0.000 description 10
- 208000026310 Breast neoplasm Diseases 0.000 description 10
- 230000006907 apoptotic process Effects 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 239000001301 oxygen Substances 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- 229920001184 polypeptide Polymers 0.000 description 10
- 210000005068 bladder tissue Anatomy 0.000 description 9
- 201000007270 liver cancer Diseases 0.000 description 9
- 208000014018 liver neoplasm Diseases 0.000 description 9
- 239000012528 membrane Substances 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 9
- 239000000872 buffer Substances 0.000 description 8
- 239000006185 dispersion Substances 0.000 description 8
- 210000002919 epithelial cell Anatomy 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 8
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 8
- 229920000053 polysorbate 80 Polymers 0.000 description 8
- 108010047852 Integrin alphaVbeta3 Proteins 0.000 description 7
- 201000011510 cancer Diseases 0.000 description 7
- 230000012010 growth Effects 0.000 description 7
- 238000011534 incubation Methods 0.000 description 7
- 238000002595 magnetic resonance imaging Methods 0.000 description 7
- 239000006228 supernatant Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 6
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 230000003834 intracellular effect Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000002270 dispersing agent Substances 0.000 description 5
- 238000001802 infusion Methods 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 229940065287 selenium compound Drugs 0.000 description 5
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- MWWSFMDVAYGXBV-RUELKSSGSA-N Doxorubicin hydrochloride Chemical compound Cl.O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 MWWSFMDVAYGXBV-RUELKSSGSA-N 0.000 description 4
- 230000018199 S phase Effects 0.000 description 4
- 239000007853 buffer solution Substances 0.000 description 4
- 238000002512 chemotherapy Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229960002918 doxorubicin hydrochloride Drugs 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 4
- 230000002209 hydrophobic effect Effects 0.000 description 4
- 230000001939 inductive effect Effects 0.000 description 4
- 231100000053 low toxicity Toxicity 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000010412 perfusion Effects 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 239000011669 selenium Substances 0.000 description 4
- 150000003343 selenium compounds Chemical class 0.000 description 4
- 230000004083 survival effect Effects 0.000 description 4
- 231100000331 toxic Toxicity 0.000 description 4
- 230000002588 toxic effect Effects 0.000 description 4
- 210000004881 tumor cell Anatomy 0.000 description 4
- 210000002700 urine Anatomy 0.000 description 4
- 230000035899 viability Effects 0.000 description 4
- -1 aromatic selenium compounds Chemical class 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 210000000170 cell membrane Anatomy 0.000 description 3
- 230000030570 cellular localization Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229940121657 clinical drug Drugs 0.000 description 3
- 230000018044 dehydration Effects 0.000 description 3
- 238000006297 dehydration reaction Methods 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 210000003712 lysosome Anatomy 0.000 description 3
- 230000001868 lysosomic effect Effects 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229910052711 selenium Inorganic materials 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000035519 G0 Phase Effects 0.000 description 2
- 230000010190 G1 phase Effects 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 108060003951 Immunoglobulin Proteins 0.000 description 2
- 102000043136 MAP kinase family Human genes 0.000 description 2
- 108091054455 MAP kinase family Proteins 0.000 description 2
- OVBPIULPVIDEAO-UHFFFAOYSA-N N-Pteroyl-L-glutaminsaeure Natural products C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 2
- 102000013090 Thioredoxin-Disulfide Reductase Human genes 0.000 description 2
- 108010079911 Thioredoxin-disulfide reductase Proteins 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 230000001640 apoptogenic effect Effects 0.000 description 2
- 230000005775 apoptotic pathway Effects 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 210000003443 bladder cell Anatomy 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000022131 cell cycle Effects 0.000 description 2
- 239000013592 cell lysate Substances 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000005754 cellular signaling Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 2
- 229960000975 daunorubicin Drugs 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 231100000673 dose–response relationship Toxicity 0.000 description 2
- 238000000684 flow cytometry Methods 0.000 description 2
- 229960000304 folic acid Drugs 0.000 description 2
- 235000019152 folic acid Nutrition 0.000 description 2
- 239000011724 folic acid Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010166 immunofluorescence Methods 0.000 description 2
- 102000018358 immunoglobulin Human genes 0.000 description 2
- 230000005918 in vitro anti-tumor Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 108010044426 integrins Proteins 0.000 description 2
- 102000006495 integrins Human genes 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 238000011034 membrane dialysis Methods 0.000 description 2
- 239000000693 micelle Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 239000008363 phosphate buffer Substances 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- XJMOSONTPMZWPB-UHFFFAOYSA-M propidium iodide Chemical compound [I-].[I-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CCC[N+](C)(CC)CC)=C1C1=CC=CC=C1 XJMOSONTPMZWPB-UHFFFAOYSA-M 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 238000001959 radiotherapy Methods 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- 229940126586 small molecule drug Drugs 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- VSWSDTLXDWESGZ-AWEZNQCLSA-N (2s)-3-[4-(4-hydroxyphenoxy)phenyl]-2-(iodoamino)propanoic acid Chemical compound C1=CC(C[C@@H](C(=O)O)NI)=CC=C1OC1=CC=C(O)C=C1 VSWSDTLXDWESGZ-AWEZNQCLSA-N 0.000 description 1
- ONALOACLIWHNGJ-VPVMAENOSA-N 2-[bis[2-[bis(carboxymethyl)amino]ethyl]amino]acetic acid;gadolinium;(2r,3r,4r,5s)-6-(methylamino)hexane-1,2,3,4,5-pentol Chemical compound [Gd].CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO.CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO.OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O ONALOACLIWHNGJ-VPVMAENOSA-N 0.000 description 1
- MSWZFWKMSRAUBD-GASJEMHNSA-N 2-amino-2-deoxy-D-galactopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@H](O)[C@@H]1O MSWZFWKMSRAUBD-GASJEMHNSA-N 0.000 description 1
- AOJJSUZBOXZQNB-VTZDEGQISA-N 4'-epidoxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-VTZDEGQISA-N 0.000 description 1
- 102000000412 Annexin Human genes 0.000 description 1
- 108050008874 Annexin Proteins 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- DLGOEMSEDOSKAD-UHFFFAOYSA-N Carmustine Chemical compound ClCCNC(=O)N(N=O)CCCl DLGOEMSEDOSKAD-UHFFFAOYSA-N 0.000 description 1
- 102000020313 Cell-Penetrating Peptides Human genes 0.000 description 1
- 108010051109 Cell-Penetrating Peptides Proteins 0.000 description 1
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 1
- 108010069514 Cyclic Peptides Proteins 0.000 description 1
- 102000001189 Cyclic Peptides Human genes 0.000 description 1
- MGAWEOHYNIMOQJ-ACZMJKKPSA-N Cys-Gln-Asp Chemical compound C(CC(=O)N)[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)O)NC(=O)[C@H](CS)N MGAWEOHYNIMOQJ-ACZMJKKPSA-N 0.000 description 1
- 230000005778 DNA damage Effects 0.000 description 1
- 231100000277 DNA damage Toxicity 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- DYEFUKCXAQOFHX-UHFFFAOYSA-N Ebselen Chemical compound [se]1C2=CC=CC=C2C(=O)N1C1=CC=CC=C1 DYEFUKCXAQOFHX-UHFFFAOYSA-N 0.000 description 1
- HTIJFSOGRVMCQR-UHFFFAOYSA-N Epirubicin Natural products COc1cccc2C(=O)c3c(O)c4CC(O)(CC(OC5CC(N)C(=O)C(C)O5)c4c(O)c3C(=O)c12)C(=O)CO HTIJFSOGRVMCQR-UHFFFAOYSA-N 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 230000004668 G2/M phase Effects 0.000 description 1
- 102000006587 Glutathione peroxidase Human genes 0.000 description 1
- 108700016172 Glutathione peroxidases Proteins 0.000 description 1
- MXXXVOYFNVJHMA-IUCAKERBSA-N Gly-Arg-Met Chemical compound CSCC[C@@H](C(=O)O)NC(=O)[C@H](CCCN=C(N)N)NC(=O)CN MXXXVOYFNVJHMA-IUCAKERBSA-N 0.000 description 1
- QVDGHDFFYHKJPN-QWRGUYRKSA-N Gly-Phe-Cys Chemical compound NCC(=O)N[C@@H](Cc1ccccc1)C(=O)N[C@@H](CS)C(O)=O QVDGHDFFYHKJPN-QWRGUYRKSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 102100034256 Mucin-1 Human genes 0.000 description 1
- 108010008707 Mucin-1 Proteins 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 206010029113 Neovascularisation Diseases 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 102000004338 Transferrin Human genes 0.000 description 1
- 108090000901 Transferrin Proteins 0.000 description 1
- 206010046555 Urinary retention Diseases 0.000 description 1
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 1
- 238000006993 Weiss annulation reaction Methods 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- 229960002932 anastrozole Drugs 0.000 description 1
- YBBLVLTVTVSKRW-UHFFFAOYSA-N anastrozole Chemical compound N#CC(C)(C)C1=CC(C(C)(C#N)C)=CC(CN2N=CN=C2)=C1 YBBLVLTVTVSKRW-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 108010047857 aspartylglycine Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- YAYRGNWWLMLWJE-UHFFFAOYSA-L carboplatin Chemical compound O=C1O[Pt](N)(N)OC(=O)C11CCC1 YAYRGNWWLMLWJE-UHFFFAOYSA-L 0.000 description 1
- 229960004562 carboplatin Drugs 0.000 description 1
- 229960005243 carmustine Drugs 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000004624 confocal microscopy Methods 0.000 description 1
- 238000011254 conventional chemotherapy Methods 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 108010045325 cyclic arginine-glycine-aspartic acid peptide Proteins 0.000 description 1
- 238000002484 cyclic voltammetry Methods 0.000 description 1
- 238000009799 cystectomy Methods 0.000 description 1
- 238000002574 cystoscopy Methods 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- XIMIGUBYDJDCKI-UHFFFAOYSA-N diselenium Chemical compound [Se]=[Se] XIMIGUBYDJDCKI-UHFFFAOYSA-N 0.000 description 1
- 238000007323 disproportionation reaction Methods 0.000 description 1
- 229950010033 ebselen Drugs 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229960001904 epirubicin Drugs 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 238000011354 first-line chemotherapy Methods 0.000 description 1
- 238000002189 fluorescence spectrum Methods 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- MKXKFYHWDHIYRV-UHFFFAOYSA-N flutamide Chemical compound CC(C)C(=O)NC1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 MKXKFYHWDHIYRV-UHFFFAOYSA-N 0.000 description 1
- 229960002074 flutamide Drugs 0.000 description 1
- ZHNUHDYFZUAESO-UHFFFAOYSA-N formamide Substances NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 1
- 229960004421 formestane Drugs 0.000 description 1
- OSVMTWJCGUFAOD-KZQROQTASA-N formestane Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CCC2=C1O OSVMTWJCGUFAOD-KZQROQTASA-N 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 238000009169 immunotherapy Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 231100001231 less toxic Toxicity 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 108010005942 methionylglycine Proteins 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 239000008385 outer phase Substances 0.000 description 1
- DWAFYCQODLXJNR-BNTLRKBRSA-L oxaliplatin Chemical compound O1C(=O)C(=O)O[Pt]11N[C@@H]2CCCC[C@H]2N1 DWAFYCQODLXJNR-BNTLRKBRSA-L 0.000 description 1
- 229960001756 oxaliplatin Drugs 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000002271 resection Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- BUOKUWQCVSZNCF-UHFFFAOYSA-N selenadiazole Chemical class C1=C[se]N=N1 BUOKUWQCVSZNCF-UHFFFAOYSA-N 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000008279 sol Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000011521 systemic chemotherapy Methods 0.000 description 1
- 229960001603 tamoxifen Drugs 0.000 description 1
- 229960001674 tegafur Drugs 0.000 description 1
- WFWLQNSHRPWKFK-ZCFIWIBFSA-N tegafur Chemical compound O=C1NC(=O)C(F)=CN1[C@@H]1OCCC1 WFWLQNSHRPWKFK-ZCFIWIBFSA-N 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 229960005026 toremifene Drugs 0.000 description 1
- XFCLJVABOIYOMF-QPLCGJKRSA-N toremifene Chemical compound C1=CC(OCCN(C)C)=CC=C1C(\C=1C=CC=CC=1)=C(\CCCl)C1=CC=CC=C1 XFCLJVABOIYOMF-QPLCGJKRSA-N 0.000 description 1
- 239000012581 transferrin Substances 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 238000002371 ultraviolet--visible spectrum Methods 0.000 description 1
- 210000003708 urethra Anatomy 0.000 description 1
- 208000029584 urinary system neoplasm Diseases 0.000 description 1
- 229960003048 vinblastine Drugs 0.000 description 1
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 1
- 229960004528 vincristine Drugs 0.000 description 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 1
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/06—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
- A61K49/18—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
- A61K49/1818—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
- A61K49/1821—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
- A61K49/1824—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
- A61K49/1827—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
- A61K49/1851—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule
- A61K49/1857—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. PLGA
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7028—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
- A61K31/7034—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
- A61K31/704—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/06—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
- A61K49/08—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
- A61K49/10—Organic compounds
- A61K49/12—Macromolecular compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/513—Organic macromolecular compounds; Dendrimers
- A61K9/5146—Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
- A61K9/5153—Polyesters, e.g. poly(lactide-co-glycolide)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/513—Organic macromolecular compounds; Dendrimers
- A61K9/5169—Proteins, e.g. albumin, gelatin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Nanotechnology (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Radiology & Medical Imaging (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Optics & Photonics (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Immunology (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
本发明公开了一种基于核磁成像引导的克服肿瘤乏氧引起耐药性的靶向纳米药物及其制备方法和应用,属于生物医药技术领域。所述的靶向纳米药物的制备方法,包括以下步骤:S1.分别将PLGA、核磁成像造影剂和抗肿瘤药物分散于有机溶剂中,然后加入表面活性剂,经搅拌、透析后得到溶液A;S2.利用NHS和EDC活化溶液A的羧基,得到活化后的溶液A;S3.向上述活化后的溶液A中加入靶向分子,经搅拌、透析后即得基于核磁成像引导的克服肿瘤乏氧引起耐药性的靶向纳米药物。本发明所述的靶向纳米药物PLZ4@SeD纳米粒子在细胞乏氧条件下的治疗效果优于临床用药多柔比星、丝裂霉素和吡柔比星等。
The invention discloses a targeted nanomedicine for overcoming drug resistance caused by tumor hypoxia based on nuclear magnetic imaging guidance, a preparation method and application thereof, and belongs to the technical field of biomedicine. The preparation method of the targeted nanomedicine includes the following steps: S1. Dispersing PLGA, a nuclear magnetic imaging contrast agent and an antitumor drug in an organic solvent respectively, then adding a surfactant, and stirring and dialysis to obtain a solution A; S2. Use NHS and EDC to activate the carboxyl group of solution A to obtain an activated solution A; S3. Add targeting molecules to the above activated solution A, and after stirring and dialysis, MRI-guided anti-tumor hypoxia can be obtained Targeted nanomedicines causing drug resistance. The targeted nanomedicine PLZ4@SeD nanoparticle of the present invention has better therapeutic effect than clinical medicines such as doxorubicin, mitomycin and pirarubicin under the condition of hypoxia.
Description
技术领域technical field
本发明属于生物医药技术领域,具体涉及一种基于核磁成像引导的克服肿瘤乏氧引起耐药性的靶向纳米药物及其制备方法和应用。The invention belongs to the technical field of biomedicine, and in particular relates to a targeted nanomedicine for overcoming drug resistance caused by tumor hypoxia based on nuclear magnetic imaging guidance, and a preparation method and application thereof.
背景技术Background technique
膀胱癌(BCa)是我国发病率最高的泌尿系统肿瘤,据统计,全球2018年新发病例近55万例。在膀胱癌的常规治疗方案中,在进行非肌层浸润性BCa(NMIBC)的经尿道膀胱肿瘤电切术(TURBT)和肌层浸润性BCa(MIBC)的根治性全膀胱切除术之余,药物的治疗是TUR术后的膀胱灌注治疗、全身化疗和局部介入化疗等的重要组成部分,然而,在抗BCa药物使用过程中,灌注用药敏感性差、功能不稳定、费用高、毒副作用大等问题依然存在。近三十年来,抗晚期BCa的药物治疗效果无显著提高,特别是针对一线化疗后进展的患者,尚缺乏有效的药物治疗;以昂贵的PD-1/L1抑制剂为代表的免疫治疗是否优于常规化疗,特别是生存获益方面仍有待未来数据的证实。因此,寻找高效、低毒、稳定、价廉的抗BCa药物,具有十分重要的临床价值和现实意义。Bladder cancer (BCa) is the urinary system tumor with the highest incidence in my country. According to statistics, there were nearly 550,000 new cases worldwide in 2018. In the conventional treatment regimen for bladder cancer, in addition to transurethral resection of bladder tumor (TURBT) for non-muscle-invasive BCa (NMIBC) and radical total cystectomy for muscle-invasive BCa (MIBC), Drug treatment is an important part of intravesical infusion therapy, systemic chemotherapy and local interventional chemotherapy after TUR. However, in the process of using anti-BCa drugs, infusion drugs have poor sensitivity, unstable function, high cost, and large toxic and side effects. The problem still exists. In the past three decades, the effect of anti-advanced BCa drug treatment has not been significantly improved, especially for patients who progressed after first-line chemotherapy, there is still no effective drug treatment; whether immunotherapy represented by expensive PD-1/L1 inhibitors is effective? The survival benefit of conventional chemotherapy, in particular, remains to be confirmed by future data. Therefore, it is of great clinical value and practical significance to find anti-BCa drugs with high efficiency, low toxicity, stability and low price.
在生物体中,硒是谷胱甘肽过氧化物酶(GSH-Px)、碘化甲腺氨酸及哺乳动物硫氧还蛋白还原酶(TrxR)的重要活性中心。自40余年前人们首次发现硒与肿瘤患病率的负相关性以来,硒化合物在抗肿瘤价值已被大量的研究所验证,其潜在的抗肿瘤机制包括调节抑癌基因的生长抑制效应、抗氧化性、DNA损伤和凋亡途径等。与无机硒化合物相比,有机硒化合物具有吸收率高、生物活性强、毒性低等特点。目前,研究者合成了大量具有生物活性的有机硒化合物,包括芳香硒化合物、二硒醚、硒氰等,其中抗氧化性药物依布硒啉和抗肿瘤药物硒唑呋喃已分别进入三期和一期临床研究。In organisms, selenium is an important active center of glutathione peroxidase (GSH-Px), iodothyronine and mammalian thioredoxin reductase (TrxR). Since the negative correlation between selenium and tumor prevalence was first discovered more than 40 years ago, the anti-tumor value of selenium compounds has been verified by a large number of studies. Oxidative, DNA damage and apoptosis pathways. Compared with inorganic selenium compounds, organic selenium compounds have the characteristics of high absorption rate, strong biological activity and low toxicity. At present, researchers have synthesized a large number of organic selenium compounds with biological activity, including aromatic selenium compounds, diselenide, selenocyanide, etc. Among them, the antioxidant drug ebselen and the antitumor drug selenazofuran have entered the third phase and Phase I clinical study.
本课题组在前期的研究中合成了一种硒杂环化合物:有机硒1b(SeD-1b),分子式为C20H14ON4Se,是一类硒二唑衍生物,为深黄色固体。SeD-1b易溶于DMSO等有机溶剂,几乎不溶于水。前期的研究结果表明,SeD-1b具有显著的抗膀胱癌高选择性和活性,且其在尿液环境中具有高稳定性,其通过ROS介导的p53-AKT/MAPK信号途径诱发BCa细胞凋亡,且对正常膀胱上皮细胞毒性低,相较于传统抗BCa药物表现出显著的优越性。然而,虽然SeD-1b明显优于传统的抗BCa药物,但也存在以下不足:1、SeD-1b为化学小分子药物,通常以自由扩散的方式分散吸附到膀胱癌部位,然而由于小分子药物代谢寿命短,导致SeD-1b的靶向性较差;2、由于膀胱特殊的结构,到达肿瘤部位的药物容易被尿液稀释清除;3、虽然SeD-1b在尿液环境中具备一定的稳定性,但溶解性仍需提高;4、虽然SeD-1b本身具有荧光,但发光能力较弱,并不能作为诊断的定位剂,也不具有将其应用于强化影像学检查的识别能力,从而不能服务于BCa的疗效监测,减少患者经受膀胱镜检查的痛苦。以上不足限制了SeD-1b在抗肿瘤方面的应用。In the previous research, our group synthesized a selenium heterocyclic compound:
肿瘤微环境(TME)是指在肿瘤的发生、生长和转移过程中,肿瘤所在组织的结构、功能、代谢以及肿瘤内在环境的其他相关理化指标,如pH偏低(<7)、氧分压较低(<1.3%)、H2O2高表达等。肿瘤内部的乏氧微环境使得癌细胞对放射性治疗和化学药物治疗均有耐受性,显著降低了放疗和化疗的治疗效果。目前针对肿瘤独特乏氧微环境的临床研究表明,80%膀胱癌患者肿瘤部位呈乏氧状态,且膀胱肿瘤内的乏氧微环境是影响化疗效果与患者预后的主要因素之一。为了改善肿瘤内部的乏氧环境,现有技术往往采取向肿瘤组织递送氧气,如高压氧舱等的方法增加肿瘤内部的乏氧环境。Tumor microenvironment (TME) refers to the structure, function, metabolism of the tumor tissue and other related physicochemical indicators of the internal environment of the tumor during the occurrence, growth and metastasis of tumors, such as low pH (<7), partial pressure of oxygen Low (<1.3%), high H 2 O 2 expression, etc. The hypoxic microenvironment inside the tumor makes cancer cells resistant to both radiotherapy and chemotherapy, significantly reducing the therapeutic effect of radiotherapy and chemotherapy. The current clinical research on the unique hypoxic microenvironment of tumors shows that 80% of bladder cancer patients are in a hypoxic state, and the hypoxic microenvironment in bladder tumors is one of the main factors affecting the effect of chemotherapy and the prognosis of patients. In order to improve the hypoxic environment inside the tumor, the existing technology often adopts the method of delivering oxygen to the tumor tissue, such as hyperbaric oxygen chamber, to increase the hypoxic environment inside the tumor.
然而,目前尚未见有既能克服肿瘤乏氧引起的耐药性问题,又能实时监测肿瘤治疗过程的靶向纳米药物。However, there is no targeted nanomedicine that can not only overcome the drug resistance problem caused by tumor hypoxia, but also monitor the tumor treatment process in real time.
发明内容SUMMARY OF THE INVENTION
本申请的首要目的在于提供一种基于核磁成像引导的克服肿瘤乏氧引起耐药性的靶向纳米药物的制备方法。The primary purpose of this application is to provide a method for preparing a targeted nanomedicine based on the guidance of nuclear magnetic resonance imaging to overcome the drug resistance caused by tumor hypoxia.
本申请的另一目的在于提供一种基于核磁成像引导的克服肿瘤乏氧引起耐药性的靶向纳米药物。Another object of the present application is to provide a targeted nanomedicine that can overcome the drug resistance caused by tumor hypoxia based on the guidance of nuclear magnetic resonance imaging.
本申请的再一目的在于提供上述基于核磁成像引导的克服肿瘤乏氧引起耐药性的靶向纳米药物在抗肿瘤中的应用。Another object of the present application is to provide the application of the above-mentioned targeted nanomedicine based on nuclear magnetic imaging guidance for overcoming the drug resistance caused by tumor hypoxia in anti-tumor.
本发明的上述目的通过以下技术方案实现:The above-mentioned purpose of the present invention is achieved through the following technical solutions:
一种基于核磁成像引导的克服肿瘤乏氧引起耐药性的靶向纳米药物的制备方法,包括以下步骤:A preparation method of a targeted nanomedicine for overcoming drug resistance caused by tumor hypoxia based on nuclear magnetic imaging guidance, comprising the following steps:
S1.分别将PLGA、核磁成像造影剂和抗肿瘤药物分散于有机溶剂中,然后加入表面活性剂,经搅拌、透析后得到溶液A;S1. Disperse PLGA, MRI contrast agent and antitumor drug in an organic solvent respectively, then add a surfactant, and obtain solution A after stirring and dialysis;
S2.利用NHS和EDC活化溶液A的羧基,得到活化后的溶液A;S2. Use NHS and EDC to activate the carboxyl group of solution A to obtain activated solution A;
S3.向上述活化后的溶液A中加入靶向分子,经搅拌、透析后即得基于核磁成像引导的克服肿瘤乏氧引起耐药性的靶向纳米药物。S3. Add targeting molecules to the activated solution A, and after stirring and dialysis, a targeted nanomedicine based on the guidance of nuclear magnetic resonance imaging to overcome the drug resistance caused by tumor hypoxia is obtained.
步骤S1中,所述的PLGA的尺寸为100~140nm;优选为120nm。In step S1, the size of the PLGA is 100-140 nm; preferably 120 nm.
步骤S1中,所述的核磁成像造影剂为Fe3O4纳米粒子和钆喷酸葡胺注射液中的至少一种;优选为Fe3O4纳米粒子。In step S1, the nuclear magnetic imaging contrast agent is at least one of Fe 3 O 4 nanoparticles and gadopentetate meglumine injection; preferably Fe 3 O 4 nanoparticles.
所述的Fe3O4纳米粒子的粒径为5~200nm;优选为5~50nm;更优选为10nm。The particle size of the Fe 3 O 4 nanoparticles is 5-200 nm; preferably 5-50 nm; more preferably 10 nm.
步骤S1中,所述的抗肿瘤药物为柔红霉素、阿霉素、去甲氧柔红霉素、表阿霉素、长春花碱、长春新碱、三苯氧胺、福美司坦、阿那曲唑、氟他胺、5-氟尿嘧啶、甲氨蝶呤、顺铂、卡铂、奥沙利铂、卡莫司汀、托瑞米芬、替加氟和硒二唑衍生物(SeD-1b)中的至少一种;优选为硒二唑衍生物(SeD-1b)。In step S1, the antitumor drugs are daunorubicin, doxorubicin, daunorubicin, epirubicin, vinblastine, vincristine, tamoxifen, formestane, and anastrozole , flutamide, 5-fluorouracil, methotrexate, cisplatin, carboplatin, oxaliplatin, carmustine, toremifene, tegafur and selenodiazole derivatives (SeD-1b) At least one of ; preferably a selenodiazole derivative (SeD-1b).
所述的SeD-1b是本课题组根据前期研究成果合成的抗肿瘤药物,其制备方法见申请号为201610127128.3。一方面,由于SeD-1b具有疏水性质,使其能够进入聚合物纳米粒子疏水的空腔中,实现聚合物载体对抗肿瘤药物的负载。另一方面,由于SeD-1b具有显著的抗膀胱癌高选择性和活性,而且其在尿液环境中具有高稳定性,能够通过ROS介导的p53-AKT/MAPK信号途径诱发BCa细胞凋亡,且对正常膀胱上皮细胞毒性低。因此,将SeD-1b与PLGA聚合物纳米粒子结合能够保证其良好的抗肿瘤活性,高效抑制肿瘤生长。The SeD-1b is an anti-tumor drug synthesized by our research group based on the previous research results, and the preparation method is shown in the application number 201610127128.3. On the one hand, due to the hydrophobic nature of SeD-1b, it can enter the hydrophobic cavity of polymer nanoparticles and realize the loading of antitumor drugs on polymer carriers. On the other hand, SeD-1b can induce BCa cell apoptosis through ROS-mediated p53-AKT/MAPK signaling pathway due to its remarkable anti-bladder cancer selectivity and activity, and its high stability in the urine environment. , and low toxicity to normal bladder epithelial cells. Therefore, combining SeD-1b with PLGA polymer nanoparticles can ensure its good antitumor activity and efficiently inhibit tumor growth.
步骤S1中,所述的溶液A中PLGA、核磁成像造影剂和抗肿瘤药物按摩尔比(1~40):(1~10):(1~10)配比;优选按摩尔比(20~40):(1~2):(1~2)配比;更优选按摩尔比20:1.6:1配比。In step S1, the PLGA, the MRI contrast agent and the antitumor drug in the solution A are in a molar ratio of (1-40):(1-10):(1-10); preferably a molar ratio of (20- 40):(1~2):(1~2) ratio; more preferably, the molar ratio is 20:1.6:1.
步骤S1中,所述的有机溶剂为丙酮、乙腈和二氯甲烷中的至少一种。In step S1, the organic solvent is at least one of acetone, acetonitrile and dichloromethane.
步骤S1中,所述的表面活性剂为吐温水溶液;所述的吐温水溶液中,吐温的浓度为1~10mM;优选为2~8mM;更优选为3.5mM。In step S1, the surfactant is an aqueous solution of Tween; in the aqueous solution of Tween, the concentration of Tween is 1-10 mM; preferably 2-8 mM; more preferably 3.5 mM.
所述的吐温为吐温-80、吐温-81和吐温-20中的至少一种;优选为吐温-80。The Tween is at least one of Tween-80, Tween-81 and Tween-20; preferably Tween-80.
步骤S1中,所述的有机溶剂通过逐滴滴加的方式滴入表面活性剂中。In step S1, the organic solvent is dropped into the surfactant by dropwise addition.
所述的逐滴滴加的速度为每滴间隔为1~20秒;优选为10~15秒。The speed of the dropwise addition is that the interval between each drop is 1-20 seconds; preferably, it is 10-15 seconds.
步骤S1中,所述的搅拌转速为200~800r/min,搅拌时间为8~24小时;优选为12小时。In step S1, the stirring speed is 200-800 r/min, and the stirring time is 8-24 hours; preferably 12 hours.
步骤S1中,所述的透析为透析膜透析。In step S1, the dialysis is dialysis membrane dialysis.
所述的透析膜当量为300~10000kDa;优选为3000~10000kDa;更优选为10000kDa。The equivalent weight of the dialysis membrane is 300-10000kDa; preferably 3000-10000kDa; more preferably 10000kDa.
步骤S1中,所述的有机溶剂与表面活性剂的质量之比为1:4.5~9;优选为1:9。In step S1, the mass ratio of the organic solvent to the surfactant is 1:4.5-9; preferably 1:9.
步骤S2中,所述的N-羟基琥珀酰亚胺(NHS)和1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)与PLGA的用量按NHS:EDC:PLGA=摩尔比1:1:1~40配比;优选按NHS:EDC:PLGA=摩尔比1:1:20~40配比;更优选为按NHS:EDC:PLGA=摩尔比1:1:20配比。In step S2, the consumption of described N-hydroxysuccinimide (NHS) and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and PLGA is according to NHS :EDC:PLGA=molar ratio of 1:1:1~40; preferably by NHS:EDC:PLGA=molar ratio of 1:1:20~40; more preferably by NHS:EDC:PLGA=molar ratio of 1 :1:20 ratio.
步骤S2中,所述的溶液A进行活化时,需要搅拌操作;所述的搅拌操作是指在常温下进行搅拌;所述的搅拌条件为:200~800r/min,2~8小时;优选为3小时。In step S2, when the solution A is activated, a stirring operation is required; the stirring operation refers to stirring at normal temperature; the stirring conditions are: 200-800 r/min, 2-8 hours; preferably 3 hours.
步骤S3中,所述的靶向分子为环形RGD多肽(cRGD)、叶酸(FA)、转铁蛋白、可活化细胞穿膜肽(ACPP)、MUC-1附膜蛋白、半乳糖胺、新生血管靶向肽、粒细胞巨噬细胞刺激因子和PLZ4中的至少一种;优选为PLZ4。In step S3, the targeting molecules are cyclic RGD polypeptide (cRGD), folic acid (FA), transferrin, activatable cell penetrating peptide (ACPP), MUC-1 annexin, galactosamine, neovascularization At least one of targeting peptide, granulocyte macrophage stimulating factor and PLZ4; preferably PLZ4.
步骤S3中,所述的靶向分子的加入量为0.0625~40mg/mL;优选为20mg/mL。In step S3, the added amount of the targeting molecule is 0.0625-40 mg/mL; preferably 20 mg/mL.
步骤S3中,所述的活化后的溶液A与靶向分子的质量比为1~3:1;优选为1.5:1。In step S3, the mass ratio of the activated solution A to the target molecule is 1-3:1; preferably 1.5:1.
步骤S3中,所述的搅拌条件为:200~800rpm,搅拌时间为8~24小时;优选为12小时。In step S3, the stirring conditions are: 200-800 rpm, and the stirring time is 8-24 hours; preferably 12 hours.
步骤S3中,所述的透析为透析膜透析。In step S3, the dialysis is dialysis membrane dialysis.
所述的透析膜当量为300~10000kDa;优选为3000~10000kDa;更优选为10000kDa。The equivalent weight of the dialysis membrane is 300-10000kDa; preferably 3000-10000kDa; more preferably 10000kDa.
当本发明所述的核磁成像造影剂为Fe3O4纳米粒子、抗肿瘤药物为SeD-1b、靶向分子为PLZ4时,所述溶液A为PLGA@SeD/Fe3O4纳米粒子水溶液,最终得到的基于核磁成像引导的克服肿瘤乏氧引起耐药性的靶向纳米药物为靶向纳米药物PLZ4@SeD纳米粒子。When the nuclear magnetic imaging contrast agent of the present invention is Fe 3 O 4 nanoparticles, the anti-tumor drug is SeD-1b, and the targeting molecule is PLZ4, the solution A is PLGA@SeD/Fe 3 O 4 nanoparticle aqueous solution, The finally obtained targeted nanomedicine based on MRI-guided overcoming the drug resistance caused by tumor hypoxia is the targeted nanomedicine PLZ4@SeD nanoparticles.
步骤S1~S3中,所述的操作均可在常温下进行。所述的常温为15~35℃;更优选为20~30℃。In steps S1 to S3, the operations described above can be performed at normal temperature. The normal temperature is 15-35°C; more preferably 20-30°C.
一种基于核磁成像引导的克服肿瘤乏氧引起耐药性的靶向纳米药物,由上述制备方法制备得到。A targeted nanomedicine for overcoming the drug resistance caused by tumor hypoxia based on the guidance of nuclear magnetic imaging is prepared by the above preparation method.
所述的靶向纳米药物需要置于1~25℃下以溶胶形态保存。The targeted nanomedicine needs to be stored in a sol form at 1-25°C.
上述基于核磁成像引导的克服肿瘤乏氧引起耐药性的靶向纳米药物在制备抗肿瘤药物中的应用。The application of the above-mentioned targeted nanomedicine based on the guidance of nuclear magnetic resonance imaging to overcome the drug resistance caused by tumor hypoxia in the preparation of antitumor drugs.
所述的肿瘤为膀胱癌、乳腺癌和肝癌中的至少一种。The tumor is at least one of bladder cancer, breast cancer and liver cancer.
本发明的机理为:The mechanism of the present invention is:
1.PLGA具有良好的生物相容性,是通过美国FDA验证的临床药用辅料;其不仅可以通过高分子链连接上不同的靶向分子,起到空间稳定作用;而且可以通过本身所带的电荷起到静电稳定作用,能有效提高各种纳米粒子的稳定性和分散性。1. PLGA has good biocompatibility and is a clinical pharmaceutical excipient verified by the US FDA; it can not only connect different target molecules through the polymer chain, and play a steric stabilization role; The charge plays a role in electrostatic stabilization, which can effectively improve the stability and dispersibility of various nanoparticles.
2.靶向多肽PLZ4是一种具有膀胱癌细胞特异性的环肽,具有靶向膀胱癌细胞的能力;PLZ4有氨基,可与活化后的PLGA的羧基发生脱水缩合反应,形成酰胺键。2. Targeting polypeptide PLZ4 is a cyclic peptide specific to bladder cancer cells and has the ability to target bladder cancer cells; PLZ4 has an amino group, which can undergo dehydration condensation reaction with the carboxyl group of activated PLGA to form an amide bond.
3.SeD-1b通过内吞的方式进入细胞后能有效地上调细胞内活性氧(ROS)的产生量,以激活细胞凋亡通路p53蛋白磷酸化,从而进一步诱导膀胱肿瘤细胞凋亡,抑制肿瘤细胞的增殖。3. SeD-1b can effectively up-regulate the production of intracellular reactive oxygen species (ROS) after entering cells through endocytosis to activate the phosphorylation of p53 protein in the apoptosis pathway, thereby further inducing bladder tumor cell apoptosis and inhibiting tumors. proliferation of cells.
4.四氧化三铁纳米粒子(Fe3O4纳米粒子)具有超顺磁性,能够降低T2弛豫,是一种理想的核磁共振成像(MRI)造影剂;另外,Fe3O4纳米粒子可通过Fenton反应以及Haber-Weiss反应催化H2O2产生O2,进而改善肿瘤内部的乏氧微环境;此外,Fe3O4纳米粒子具有良好的生物相容性,对正常的细胞与组织几乎无毒。由此可见,Fe3O4纳米粒子既是一种良好的造影剂,也是一种良好的催化剂。Fe3O4纳米粒子通过疏水作用进入PLGA聚合物纳米粒子亲脂性的核壳内,实现聚合物载体对核磁成像药物的负载。同时,Fe3O4纳米粒子也称为T2阴性对比剂,具有很好的超顺磁性,被广泛认为是磁共振成像(MRI)的理想造影剂,也是目前最灵敏的MR造影剂之一,其可显著缩短T2弛豫时间,使得T2加权图像变暗;另外,Fe3O4纳米粒子具有Fenton反应的性质,可催化降解H2O2。4. Ferric oxide nanoparticles (Fe 3 O 4 nanoparticles) have superparamagnetic properties and can reduce T2 relaxation, making them an ideal contrast agent for nuclear magnetic resonance imaging (MRI); in addition, Fe 3 O 4 nanoparticles can The Fenton reaction and the Haber-Weiss reaction catalyze H 2 O 2 to generate O 2 , thereby improving the hypoxic microenvironment inside the tumor; in addition, Fe 3 O 4 nanoparticles have good biocompatibility and are almost suitable for normal cells and tissues. Nontoxic. It can be seen that Fe 3 O 4 nanoparticles are not only a good contrast agent, but also a good catalyst. Fe 3 O 4 nanoparticles enter into the lipophilic core-shell of PLGA polymer nanoparticles through hydrophobic interaction to realize the loading of NMR imaging drugs by polymer carriers. At the same time, Fe3O4 nanoparticles, also known as T2 negative contrast agents, have good superparamagnetic properties and are widely considered to be ideal contrast agents for magnetic resonance imaging (MRI) and one of the most sensitive MR contrast agents at present. It can significantly shorten the T2 relaxation time and darken the T2-weighted image; in addition, Fe 3 O 4 nanoparticles have the properties of Fenton reaction, which can catalyze the degradation of H 2 O 2 .
5.利用水包油的方法,以丙酮为内在的油相,水为连续的外相,将疏水的SeD-1b、Fe3O4纳米粒子分散在丙酮中后包裹于PLGA中,最终分散在水中,得到PLGA包裹SeD-1b和Fe3O4纳米粒子的结构。5. Using the oil-in-water method, with acetone as the inner oil phase and water as the continuous outer phase, the hydrophobic SeD-1b and Fe 3 O 4 nanoparticles were dispersed in acetone and then wrapped in PLGA, and finally dispersed in water , the structure of PLGA-wrapped SeD -1b and Fe3O4 nanoparticles was obtained.
6.靶向纳米药物的核磁引导的膀胱癌治疗是通过利用PLZ4的靶向能力,使PLGA包裹的SeD-1b到达肿瘤区域,在PLGA胶束的限域效应的基础上,增强Fe3O4纳米粒子的催化H2O2的能力,提供大量的O2,改善肿瘤区域的乏氧环境,降低肿瘤乏氧引起的耐药性,进以提高SeD-1b的诱导肿瘤细胞凋亡的能力,从而抑制肿瘤细胞的增殖。6. NMR-guided bladder cancer therapy targeting nanodrugs is to use the targeting ability of PLZ4 to enable PLGA-encapsulated SeD-1b to reach the tumor area, and enhance Fe 3 O 4 on the basis of the confinement effect of PLGA micelles The ability of nanoparticles to catalyze H 2 O 2 can provide a large amount of O 2 , improve the hypoxic environment in the tumor area, reduce the drug resistance caused by tumor hypoxia, and further improve the ability of SeD-1b to induce tumor cell apoptosis, thereby inhibiting the proliferation of tumor cells.
与现有技术相比,本发明具有以下有益效果及优点:Compared with the prior art, the present invention has the following beneficial effects and advantages:
(1)本发明所述的靶向纳米药物PLZ4@SeD纳米粒子在细胞乏氧条件下的治疗效果优于临床用药多柔比星、丝裂霉素和吡柔比星等。(1) The therapeutic effect of the targeted nano-drug PLZ4@SeD nanoparticles of the present invention is better than that of clinical drugs such as doxorubicin, mitomycin and pirarubicin under the condition of hypoxia.
(2)本发明中,Fe3O4纳米粒子具有催化H2O2产生O2的能力,经PLGA包封后,整体的催化能力由于PLGA胶束内形成的限域效应得到显著增强,其改善肿瘤部位乏氧的微环境的能力提高,降低了肿瘤乏氧所导致的耐药性,最终提高肿瘤治疗的效果。(2) In the present invention, Fe 3 O 4 nanoparticles have the ability to catalyze H 2 O 2 to generate O 2. After being encapsulated by PLGA, the overall catalytic ability is significantly enhanced due to the confinement effect formed in the PLGA micelles. The ability to improve the hypoxic microenvironment of the tumor site is improved, the drug resistance caused by tumor hypoxia is reduced, and the effect of tumor treatment is finally improved.
(3)PLZ4对于膀胱癌的选择性优于其他多肽,PLZ4的引入,使纳米粒子的靶向性更好,毒副作用更低。PLGA的生物相容性更好,合成方法简单,且更廉价易得。SeD-1b相对膀胱癌灌注临床用药丝裂霉素而言,安全性更高,毒副作用更小。(3) The selectivity of PLZ4 for bladder cancer is better than that of other peptides. The introduction of PLZ4 makes the nanoparticles have better targeting and lower toxic and side effects. The biocompatibility of PLGA is better, the synthesis method is simple, and it is cheaper and easier to obtain. Compared with the clinical drug mitomycin for bladder cancer infusion, SeD-1b has higher safety and less toxic and side effects.
(4)通过本发明所述方法制备得到的靶向纳米药物PLZ4@SeD纳米粒子不仅克服了肿瘤乏氧引起的耐药性问题,还可以实现对肿瘤治疗过程的实时监测,最终达到高效、低毒、稳定、价廉的治疗癌症的目的。(4) The targeted nano-drug PLZ4@SeD nanoparticles prepared by the method of the present invention not only overcomes the drug resistance problem caused by tumor hypoxia, but also realizes real-time monitoring of the tumor treatment process, and finally achieves high efficiency and low Toxic, stable and inexpensive treatment of cancer.
附图说明Description of drawings
图1为实施例1制备得到的靶向纳米药物PLZ4@SeD纳米粒子的表征结果图;其中,A图为PLZ4@SeD纳米粒子的透射电镜照片和粒径测量结果图;B图分别为PLGA纳米粒子、Fe3O4纳米粒子、PLGA@SeD纳米粒子、活化后的PLGA@SeD/Fe3O4纳米粒子、PLZ4@SeD纳米粒子的电位测量结果图;C图分别为PLGA纳米粒子、SeD-1b、PLZ4@SeD纳米粒子的紫外吸收-可见吸收光谱图;D图分别为Fe3O4纳米粒子、PLGA纳米粒子、SeD-1b、PLZ4@SeD纳米粒子的荧光光谱图;E图为PLZ4@SeD纳米粒子的体外MRI成像图及其T2弛豫率图;F图分别为PLZ4@SeD纳米粒子、PLZ4@SeD/Fe3O4纳米粒子、SeD-1b、PLGA的红外光谱图。Fig. 1 is a graph showing the characterization results of the targeted nanomedicine PLZ4@SeD nanoparticles prepared in Example 1; wherein, Fig. A is the TEM photo and particle size measurement results of PLZ4@SeD nanoparticles; Fig. B is the PLGA nanoparticle Potential measurement results of particles, Fe 3 O 4 nanoparticles, PLGA@SeD nanoparticles, activated PLGA@SeD/Fe 3 O 4 nanoparticles, and PLZ4@SeD nanoparticles; Figure C shows PLGA nanoparticles, SeD- 1b, UV-Vis absorption spectra of PLZ4@SeD nanoparticles; D is the fluorescence spectra of Fe 3 O 4 nanoparticles, PLGA nanoparticles, SeD-1b, PLZ4@SeD nanoparticles; E is PLZ4@ The in vitro MRI images of SeD nanoparticles and their T 2 relaxation rate maps; Figure F shows the infrared spectra of PLZ4@SeD nanoparticles, PLZ4@SeD/Fe 3 O 4 nanoparticles, SeD-1b, and PLGA, respectively.
图2为实施例2所述的靶向纳米药物PLZ4@SeD纳米粒子在不同条件下的稳定性曲线图;其中,A图为靶向纳米药物PLZ4@SeD纳米粒子分别在pH均为5.6的磷酸盐缓冲液(PBS)和DMEM培养基中的稳定性曲线图;B图为靶向纳米药物PLZ4@SeD纳米粒子分别在pH均为7.4的磷酸盐缓冲液(PBS)和DMEM培养基中的稳定性曲线图。Figure 2 is a graph showing the stability of the targeted nano-drug PLZ4@SeD nanoparticles described in Example 2 under different conditions; wherein, Figure A shows the targeted nano-drug PLZ4@SeD nanoparticles at pH 5.6, respectively, in phosphoric acid Stability curves in salt buffered saline (PBS) and DMEM medium; Figure B shows the stability of targeted nanomedicine PLZ4@SeD nanoparticles in phosphate buffered saline (PBS) and DMEM medium with pH 7.4, respectively Sex graph.
图3为向不同癌细胞中加入Fe3O4纳米粒子后的细胞存活率结果图。Figure 3 is a graph showing the results of cell viability after adding Fe 3 O 4 nanoparticles to different cancer cells.
图4为向不同癌细胞中分别加入SeD-1b、PLGA@SeD纳米粒子、PLGA@SeD/Fe3O4纳米粒子和PLZ4@SeD纳米粒子后各药物对各细胞的半抑制浓度结果图。Figure 4 shows the results of the half-inhibitory concentration of each drug on each cell after adding SeD-1b, PLGA@SeD nanoparticles, PLGA@SeD/Fe 3 O 4 nanoparticles and PLZ4@SeD nanoparticles to different cancer cells, respectively.
图5为乏氧条件下,不同药物对膀胱癌EJ细胞的半抑制浓度结果图。Figure 5 is a graph showing the results of the half-inhibitory concentration of different drugs on bladder cancer EJ cells under hypoxia.
图6为多肽PLZ4对应的受体整合素αvβ3在离体人正常膀胱组织与膀胱癌组织中表达的免疫荧光效果图。Figure 6 is a graph showing the immunofluorescence effect of the receptor integrin αvβ3 corresponding to the polypeptide PLZ4 expressed in the isolated human normal bladder tissue and bladder cancer tissue.
图7为膀胱癌EJ细胞、正常膀胱细胞SV-HUC-1对PLZ4@SeD纳米粒子的选择性吸收结果图;其中,A图为不同时间条件下,膀胱癌EJ细胞中的纳米药物PLZ4@SeD纳米粒子的荧光强度结果图;B图为不同时间条件下,正常膀胱上皮细胞SV-HUC-1中的纳米药物PLZ4@SeD纳米粒子的荧光强度结果图。Figure 7 shows the results of selective absorption of PLZ4@SeD nanoparticles by bladder cancer EJ cells and normal bladder cells SV-HUC-1; among them, Figure A shows the nanomedicine PLZ4@SeD in bladder cancer EJ cells under different time conditions Fluorescence intensity results of nanoparticles; Figure B shows the fluorescence intensity results of nanomedicine PLZ4@SeD nanoparticles in normal bladder epithelial cells SV-HUC-1 under different time conditions.
图8为靶向纳米药物PLZ4@SeD纳米粒子体外催化H2O2的性能图;其中,A图为PLGA纳米粒子、SeD-1b、Fe3O4纳米粒子、PLZ4@SeD纳米粒子分别与H2O2作用的效果图;B图为15分钟内,PLZ4@SeD纳米粒子、Fe3O4纳米粒子、PLGA纳米粒子分别与H2O2作用后氧气的产生量结果图;C图为15分钟内,不同浓度的H2O2溶液分别与PLZ4@SeD纳米粒子混合后氧气产生量结果图;D图为PLZ4@SeD纳米粒子在氩气保护下的循环伏安结果图。Figure 8 is a graph showing the performance of the targeted nanomedicine PLZ4@SeD nanoparticles in catalyzing H 2 O 2 in vitro; in which, Figure A shows the PLGA nanoparticles, SeD-1b, Fe 3 O 4 nanoparticles, and PLZ4@SeD nanoparticles with H 2
图9为乏氧条件下,不同浓度条件下的Fe3O4纳米粒子、SeD-1b、PLZ4@SeD纳米粒子对膀胱癌EJ细胞的存活率影响结果图;其中,A图为在乏氧环境下,不同浓度条件下的Fe3O4纳米粒子、SeD-1b、PLZ4@SeD纳米粒子分别对膀胱癌EJ细胞的存活率影响结果图;B图为在乏氧环境和过氧化氢条件下,不同浓度条件下的Fe3O4纳米粒子、SeD-1b、PLZ4@SeD纳米粒子分别对膀胱癌EJ细胞的存活率影响结果图。Figure 9 is a graph showing the effect of Fe 3 O 4 nanoparticles, SeD-1b, and PLZ4@SeD nanoparticles on the viability of bladder cancer EJ cells under different concentrations under hypoxic conditions; among them, picture A is in a hypoxic environment The results of the effect of Fe 3 O 4 nanoparticles, SeD-1b, and PLZ4@SeD nanoparticles on the viability of bladder cancer EJ cells under different concentrations of Fe 3
图10为膀胱癌EJ细胞内靶向纳米药物PLZ4@SeD纳米粒子的含量结果图;其中,A图为不同时间条件下,膀胱癌EJ细胞对于靶向纳米药物PLZ4@SeD纳米粒子的吸收量结果图;B图为8h时,膀胱癌EJ细胞对不同终浓度的靶向纳米药物PLZ4@SeD纳米粒子的吸收量结果图。Figure 10 shows the results of the content of targeted nano-drug PLZ4@SeD nanoparticles in bladder cancer EJ cells; among them, Figure A shows the absorption results of bladder cancer EJ cells for targeted nano-drug PLZ4@SeD nanoparticles under different time conditions Figure; Figure B shows the results of the absorption of the targeted nanodrug PLZ4@SeD nanoparticles at different final concentrations by bladder cancer EJ cells at 8h.
图11为不同时间条件下靶向纳米药物PLZ4@SeD纳米粒子在膀胱癌EJ细胞内的胞内定位图。Figure 11 shows the intracellular localization of the targeted nanodrug PLZ4@SeD nanoparticles in bladder cancer EJ cells under different time conditions.
图12为靶向纳米药物PLZ4@SeD纳米粒子作用于膀胱癌EJ细胞后的细胞活性氧水平随时间的变化结果图;其中,A图为DHE探针检测不同浓度的靶向纳米药物PLZ4@SeD纳米粒子孵育膀胱癌EJ细胞后产生的活性氧随时间变化结果图;B图为不同浓度的靶向纳米药物PLZ4@SeD纳米粒子孵育膀胱癌EJ细胞后产生的活性氧变化趋势图。Figure 12 is a graph showing the change of cellular reactive oxygen species level with time after the targeted nanodrug PLZ4@SeD nanoparticles acted on bladder cancer EJ cells; in which, Figure A is the DHE probe to detect different concentrations of the targeted nanodrug PLZ4@SeD Figure B shows the change trend of reactive oxygen species generated after incubation of bladder cancer EJ cells with nanoparticles; Figure B shows the trend of reactive oxygen species generated after incubation of bladder cancer EJ cells with different concentrations of targeted nanodrug PLZ4@SeD nanoparticles.
图13为不同浓度的靶向纳米药物PLZ4@SeD纳米粒子作用于膀胱癌EJ细胞后,膀胱癌EJ细胞的细胞周期图;其中,A图为不同浓度的PLZ4@SeD纳米粒子对膀胱癌EJ细胞周期的影响结果图;B图为不同浓度的纳米粒子PLZ4@SeD纳米粒子对膀胱癌EJ细胞周期分布的影响结果图。Figure 13 is the cell cycle diagram of bladder cancer EJ cells after different concentrations of targeted nano-drug PLZ4@SeD nanoparticles act on bladder cancer EJ cells; among them, Figure A shows the effect of different concentrations of PLZ4@SeD nanoparticles on bladder cancer EJ cells The results of the effect of cycle; Figure B is the effect of different concentrations of nanoparticles PLZ4@SeD nanoparticles on the distribution of bladder cancer EJ cell cycle.
图14为封闭组与未封闭组的膀胱癌EJ细胞肿瘤球的激光共聚焦结果图。Fig. 14 is a graph showing the confocal laser results of bladder cancer EJ cell tumor spheres in the sealed group and the unsealed group.
图15为靶向纳米药物PLZ4@SeD纳米粒子的含膀胱癌瘤体的人源离体膀胱组织灌注效果图;其中,A图为药物灌注前的含膀胱癌瘤体的人源离体膀胱组织图;B图为药物灌注后的含膀胱癌瘤体的人源离体膀胱组织解剖图;C图为B图放大4倍后的膀胱局部图;D图为纳米药物PLZ4@SeD纳米粒子灌注后,含膀胱癌瘤体的人源离体膀胱的组织轴面MRI结果图;E图为靶向纳米药物PLZ4@SeD纳米粒子作用于离体膀胱后,不同膀胱区域对应的R2 *值结果图;F图为靶向纳米药物PLZ4@SeD纳米粒子作用于离体膀胱后,不同膀胱区域对应的T2值结果图。Figure 15 is a diagram showing the effect of the targeted nanodrug PLZ4@SeD nanoparticles perfusion of human in vitro bladder tissue containing bladder cancer tumor; wherein, Figure A is the human in vitro bladder tissue containing bladder cancer tumor before drug perfusion Figure; B is the anatomical view of the isolated human bladder tissue containing bladder cancer tumor after drug infusion; C is the partial view of the bladder after 4 times magnification of B; D is the nano-drug PLZ4@SeD nanoparticle after infusion , the tissue axial MRI results of human isolated bladder containing bladder cancer tumor; E is the result of R 2 * values corresponding to different bladder regions after the targeted nano-drug PLZ4@SeD nanoparticles acted on the isolated bladder ; Figure F shows the results of T 2 values corresponding to different bladder regions after the targeted nano-drug PLZ4@SeD nanoparticles acted on the isolated bladder.
图16为以不同的有机溶剂作为分散剂时制备得到的靶向纳米药物的粒径测量结果图。Figure 16 is a graph showing the particle size measurement results of the targeted nanomedicines prepared when different organic solvents are used as dispersants.
具体实施方式Detailed ways
下面结合实施例和附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。The present invention will be described in further detail below with reference to the embodiments and accompanying drawings, but the embodiments of the present invention are not limited thereto.
实施例中所用试剂如无特殊说明均可从市场常规购得。The reagents used in the examples can be routinely purchased from the market unless otherwise specified.
本发明实施例中的膀胱癌EJ细胞、膀胱癌J82细胞、膀胱癌T921细胞、乳腺癌MCF-7细胞、肝癌细胞HepG2和正常膀胱上皮细胞SV-HUC-1等细胞均从美国模式培养物集存库ATCC购买。The bladder cancer EJ cells, bladder cancer J82 cells, bladder cancer T921 cells, breast cancer MCF-7 cells, liver cancer cells HepG2, and normal bladder epithelial cells SV-HUC-1 in the examples of the present invention are all collected from American model culture collections. Inventory ATCC purchases.
本实施例中所用的丙酮、乙腈、二氯甲烷均购自天津津东天正精细化学试剂厂;Fe3O4纳米粒子购自Sigma公司;PLGA购自美国Sigma公司;DMEM培养基购自美国Gibco公司;马尔文激光粒度仪购自英国Malvern公司;MTT购自Sigma公司;多功能荧光酶标仪型号ELX800,购自美国Bio-Tek公司;BSA购于广州捷倍斯生物科技有限公司(GBCBIO公司);整合素αvβ3抗体购于Cell Signaling Technology公司;整合素羊抗小鼠免疫球蛋白购自CellSignaling Technology公司;Hoechst购于德国Merck公司;细胞裂解液购于碧云天公司;溶氧仪型号JPBJ-608,购于中国雷磁公司;流式细胞仪型号CytoFLEX S,购于美国BeckmanCoulter公司;碘化丙啶购于Sigma公司;激光共聚焦显微镜购于Leica公司;PLZ4购自吉尔生化(上海)有限公司。Acetone, acetonitrile and dichloromethane used in this example were purchased from Tianjin Jindong Tianzheng Fine Chemical Reagent Factory; Fe 3 O 4 nanoparticles were purchased from Sigma Company; PLGA was purchased from Sigma Company of the United States; DMEM medium was purchased from Gibco Company of the United States Company; Malvern laser particle size analyzer was purchased from Malvern Company, UK; MTT was purchased from Sigma Company; Multifunctional fluorescence microplate reader model ELX800 was purchased from Bio-Tek Company of the United States; BSA was purchased from Guangzhou Jabes Biotechnology Co., Ltd. (GBCBIO Company ); integrin αvβ3 antibody was purchased from Cell Signaling Technology; integrin goat anti-mouse immunoglobulin was purchased from Cell Signaling Technology; Hoechst was purchased from Merck, Germany; cell lysate was purchased from Biyuntian; 608, purchased from China Leica Company; flow cytometer model CytoFLEX S, purchased from Beckman Coulter Company of the United States; propidium iodide purchased from Sigma Company; laser confocal microscope purchased from Leica Company; PLZ4 purchased from Gill Biochemical (Shanghai) Co., Ltd. company.
实施例1:靶向纳米药物的制备Example 1: Preparation of targeted nanomedicine
(1)原料的制备:(1) Preparation of raw materials:
1)制备3.5mM吐温-80:称取5g吐温-80,用1L二次水配成浓度为3.5mM的吐温-80水溶液。1) Preparation of 3.5 mM Tween-80: Weigh 5 g of Tween-80, and use 1 L of secondary water to prepare an aqueous solution of Tween-80 with a concentration of 3.5 mM.
2)制备1.05mM Fe3O4纳米粒子-丙酮分散液:称取0.2436g Fe3O4纳米粒子分散于1L丙酮中即得。2) Preparation of 1.05mM Fe 3 O 4 nanoparticles-acetone dispersion: Weigh 0.2436g Fe 3 O 4 nanoparticles and disperse them in 1L of acetone.
3)制备20mM PLGA-丙酮分散液:称取PLGA(乳酸LA:乙醇酸GA=50:50,Mn=13000)20g,分散于1L丙酮中即得。3) Preparation of 20 mM PLGA-acetone dispersion: Weigh 20 g of PLGA (lactic acid LA: glycolic acid GA=50:50, Mn=13000) and disperse it in 1 L of acetone.
4)制备0.65mM SeD-1b溶液:称取SeD-1b 24.375mg(SeD-1b依据专利“201610127128.3”中的实施例1制备得到),溶于10mL二甲基亚砜中即得。4) Preparation of 0.65 mM SeD-1b solution: Weigh 24.375 mg of SeD-1b (SeD-1b is prepared according to Example 1 in the patent "201610127128.3") and dissolve it in 10 mL of dimethyl sulfoxide.
5)制备20mg/mL PLZ4溶液:称取多肽PLZ4粉末20g,溶于1L pH为7.4、浓度为0.01M的磷酸盐缓冲液(PBS)中即得。5) Preparation of 20 mg/mL PLZ4 solution: Weigh 20 g of polypeptide PLZ4 powder and dissolve it in 1 L of phosphate buffered saline (PBS) with a pH of 7.4 and a concentration of 0.01 M.
(2)制备靶向纳米药物PLZ4@SeD纳米粒子(2) Preparation of targeted nanomedicine PLZ4@SeD nanoparticles
1)PLGA纳米粒子水溶液的制备1) Preparation of PLGA nanoparticle aqueous solution
取上述20mM PLGA-丙酮分散液1mL用丙酮定容至3mL后,以10秒/滴的速度逐滴滴入10mL上述3.5mM吐温-80水溶液中,800rpm搅拌12小时,于透析膜当量为10000kDa的透析袋中透析12小时后,透析后得到PLGA聚合物纳米粒子水溶液。Take 1 mL of the above-mentioned 20 mM PLGA-acetone dispersion to 3 mL with acetone, drop it into 10 mL of the above-mentioned 3.5 mM Tween-80 aqueous solution dropwise at a rate of 10 seconds/drop, stir at 800 rpm for 12 hours, and the dialysis membrane equivalent is 10000 kDa After dialysis in the dialysis bag for 12 hours, the PLGA polymer nanoparticle aqueous solution was obtained after dialysis.
2)PLGA@Fe3O4纳米粒子的制备 2 ) Preparation of PLGA@ Fe3O4 nanoparticles
取上述20mM PLGA-丙酮分散液1mL与1mL上述1.05mM Fe3O4纳米粒子-丙酮分散液混合,然后用丙酮定容至3mL,再将定容后的混合液以10秒/滴的速度逐滴滴入10mL上述3.5mM吐温-80水溶液中,800rpm搅拌过夜,于透析膜当量为10000kDa的透析袋中透析12小时后即得PLGA@Fe3O4纳米粒子水溶液;其中,所得的PLGA@Fe3O4纳米粒子水溶液中,Fe3O4的浓度为0.08mM。Take 1mL of the above 20mM PLGA-acetone dispersion and mix it with 1mL of the above 1.05mM Fe 3 O 4 nanoparticle-acetone dispersion, then dilute to 3mL with acetone, and then add the mixed solution to the volume at a rate of 10 seconds/drop. Dropwise into 10 mL of the above-mentioned 3.5 mM Tween-80 aqueous solution, stirred at 800 rpm overnight, and dialyzed in a dialysis bag with a dialysis membrane equivalent of 10000 kDa for 12 hours to obtain a PLGA@Fe 3 O 4 nanoparticle aqueous solution; wherein, the obtained PLGA@ In the Fe 3 O 4 nanoparticle aqueous solution, the concentration of Fe 3 O 4 was 0.08 mM.
3)PLGA@SeD纳米粒子的制备3) Preparation of PLGA@SeD nanoparticles
取上述20mM PLGA-丙酮分散液1mL和200μL上述0.65mM SeD-1b溶液用丙酮定容至3mL,然后将定容后的混合液以10秒/滴的速度逐滴滴入10mL上述3.5mM吐温-80水溶液中,800rpm搅拌12小时,于透析膜当量为8000kDa的透析袋中透析12小时后即得PLGA@SeD纳米粒子水溶液;其中,所得的PLGA@SeD纳米粒子水溶液中,SeD-1b的浓度为10μM。Take 1 mL of the above-mentioned 20 mM PLGA-acetone dispersion and 200 μL of the above-mentioned 0.65 mM SeD-1b solution to 3 mL with acetone, and then drop the mixture after the constant volume dropwise into 10 mL of the above-mentioned 3.5 mM Tween at a rate of 10 seconds/drop. -80 aqueous solution, stirred at 800 rpm for 12 hours, and dialyzed in a dialysis bag with a dialysis membrane equivalent of 8000 kDa for 12 hours to obtain a PLGA@SeD nanoparticle aqueous solution; wherein, in the obtained PLGA@SeD nanoparticle aqueous solution, the concentration of SeD-1b to 10 μM.
4)PLGA@SeD/Fe3O4纳米粒子的制备 4 ) Preparation of PLGA@SeD/ Fe3O4 nanoparticles
分别取上述20mM PLGA-丙酮分散液1mL、1.05mM Fe3O4纳米粒子-丙酮分散液1mL和0.65mM SeD-1b溶液200μL用丙酮定容至3mL,然后将定容后的混合液以10秒/滴的速度逐滴滴入10mL上述3.5mM吐温-80水溶液中,800rpm搅拌12小时,于透析膜当量为8000kDa的透析袋中透析12小时后即得PLGA@SeD/Fe3O4纳米粒子水溶液;其中,所得的PLGA@SeD/Fe3O4纳米粒子水溶液中Fe3O4、SeD-1b的浓度分别为0.08mM、10μM。Take 1 mL of the above-mentioned 20 mM PLGA-acetone dispersion, 1 mL of 1.05 mM Fe 3 O 4 nanoparticle-acetone dispersion and 200 μL of 0.65 mM SeD-1b solution, respectively, and adjust the volume to 3 mL with acetone, and then adjust the volume of the mixture to 3 mL for 10 seconds. PLGA@SeD/Fe 3 O 4 nanoparticles were obtained after 12 hours of dialysis in a dialysis bag with a dialysis membrane equivalent of 8000 kDa after 10 mL of the above-mentioned 3.5 mM Tween-80 aqueous solution was added dropwise at a rate of 1 drop/drop. aqueous solution; wherein, the concentrations of Fe 3 O 4 and SeD-1b in the obtained PLGA@SeD/Fe 3 O 4 nanoparticle aqueous solution were 0.08 mM and 10 μM, respectively.
5)PLGA@SeD/Fe3O4纳米粒子的活化5) Activation of PLGA@ SeD / Fe3O4 nanoparticles
向步骤4)制备得到的PLGA@SeD/Fe3O4纳米粒子中分别加入20mg 1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)和12mg N-羟基琥珀酰亚胺(NHS)粉末,于25℃,800rpm搅拌3小时得到活化后的PLGA@SeD/Fe3O4纳米粒子水溶液。To the PLGA@SeD/Fe 3 O 4 nanoparticles prepared in step 4), 20 mg of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and 12 mg of N -Hydroxysuccinimide (NHS) powder, stirred at 25 °C, 800 rpm for 3 hours to obtain an activated PLGA@SeD/Fe 3 O 4 nanoparticle aqueous solution.
6)靶向纳米药物PLZ4@SeD纳米粒子的制备6) Preparation of targeted nanomedicine PLZ4@SeD nanoparticles
取上述20mg/mL PLZ4溶液1mL,将其加入到19mL上述活化后的PLGA@SeD/Fe3O4纳米粒子水溶液中,800rpm搅拌12小时,于透析膜当量为10000kDa的透析膜中透析12小时,即得靶向纳米药物PLZ4@SeD纳米粒子,于4℃冰箱保存。Take 1 mL of the above-mentioned 20 mg/mL PLZ4 solution, add it to 19 mL of the above-mentioned activated PLGA@SeD/Fe 3 O 4 nanoparticle aqueous solution, stir at 800 rpm for 12 hours, and dialyze for 12 hours in a dialysis membrane with a dialysis membrane equivalent of 10000 kDa, The targeted nano-drug PLZ4@SeD nanoparticles were obtained and stored in a refrigerator at 4°C.
(3)相关测试及结果(3) Relevant tests and results
将制备得到的靶向纳米药物PLZ4@SeD纳米粒子进行如下检测,结果如图1所示:The prepared targeted nanomedicine PLZ4@SeD nanoparticles were tested as follows, and the results are shown in Figure 1:
1)利用Hitachi H-7650型透射电子显微镜表征PLZ4@SeD纳米粒子的形貌图,结果如图1中的A图所示。1) The morphology of PLZ4@SeD nanoparticles was characterized by Hitachi H-7650 transmission electron microscope, and the results are shown in Figure A in Figure 1.
从图1中的A图可以看出,PLZ4@SeD纳米粒子具有良好的分散性,且粒径约为120nm,与电镜结果相符,说明PLZ4@SeD纳米粒子为分散性良好、粒径约为120nm的球状纳米颗粒。From Figure A in Figure 1, it can be seen that the PLZ4@SeD nanoparticles have good dispersibility and the particle size is about 120 nm, which is consistent with the electron microscope results, indicating that the PLZ4@SeD nanoparticles have good dispersibility and the particle size is about 120 nm. spherical nanoparticles.
2)利用Nano-ZS(Malvern Insruments Limited)分别表征PLGA纳米粒子、Fe3O4纳米粒子、PLGA@SeD纳米粒子、活化后的PLGA@SeD/Fe3O4纳米粒子、PLZ4@SeD纳米粒子水溶液的电位变化情况如图1中的B图所示。2) Using Nano-ZS (Malvern Instruments Limited) to characterize PLGA nanoparticles, Fe 3 O 4 nanoparticles, PLGA@SeD nanoparticles, activated PLGA@SeD/Fe 3 O 4 nanoparticles, and PLZ4@SeD nanoparticles aqueous solutions, respectively The change of the potential is shown in Figure B in Figure 1.
从图1中的B图可知,Fe3O4纳米粒子、活化后的PLGA@SeD/Fe3O4纳米粒子和PLZ4@SeD纳米粒子为正电位,PLGA纳米粒子、PLGA@SeD纳米粒子为负电位。与PLGA纳米粒子和PLGA@SeD纳米粒子相比,PLZ4@SeD纳米粒子的表面正电位较高;Fe3O4纳米粒子的表面正电位较活化后的PLGA@SeD/Fe3O4纳米粒子和PLZ4@SeD纳米粒子更高,而活化后的PLGA@SeD/Fe3O4纳米粒子和PLZ4@SeD纳米粒子的表面正电位相差不大,说明由于Fe3O4纳米粒子具有较强的表面正电位,能逆转PLGA纳米粒子的表面负电位;而PLGA@SeD纳米粒子的表面负电位强于PLGA的表面负电位,说明被PLGA包封后的SeD-1b具有负电位;PLZ4@SeD纳米粒子的表面正电位比活化后的PLGA@SeD/Fe3O4纳米粒子的表面正电位要低,说明多肽PLZ4具有一定的负电位,由于细胞膜表面存在大量的蛋白,使细胞膜表面为负电位,而PLZ4@SeD纳米粒子的表面正电位有利于其与负电位的细胞膜结合,更有利于癌细胞对靶向纳米药物的吸收。From Figure B in Figure 1, it can be seen that Fe 3 O 4 nanoparticles, activated PLGA@SeD/Fe 3 O 4 nanoparticles and PLZ4@SeD nanoparticles have positive potentials, while PLGA nanoparticles and PLGA@SeD nanoparticles have negative potentials potential. Compared with PLGA nanoparticles and PLGA@SeD nanoparticles, the surface potential of PLZ4@SeD nanoparticles is higher; the surface potential of Fe 3 O 4 nanoparticles is higher than that of activated PLGA@SeD/Fe 3 O 4 nanoparticles and The PLZ4@SeD nanoparticles are higher, while the surface positive potentials of the activated PLGA@SeD/Fe 3 O 4 nanoparticles and PLZ4@SeD nanoparticles are not much different, indicating that the Fe 3 O 4 nanoparticles have strong surface positive potentials. It can reverse the negative surface potential of PLGA nanoparticles; while the negative surface potential of PLGA@SeD nanoparticles is stronger than that of PLGA, indicating that the SeD-1b encapsulated by PLGA has a negative potential; the negative potential of PLZ4@SeD nanoparticles The positive surface potential of the activated PLGA@SeD/Fe 3 O 4 nanoparticles is lower than that of the activated PLGA@SeD/Fe 3
3)分别用荧光光谱仪(Thermo Scientific Lumina)分析得到的PLGA纳米粒子、SeD-1b、PLGA@SeD纳米粒子的光学性质,结果如图1中的C图所示。3) The optical properties of the obtained PLGA nanoparticles, SeD-1b, and PLGA@SeD nanoparticles were analyzed by a fluorescence spectrometer (Thermo Scientific Lumina), and the results are shown in panel C in Figure 1.
由图1中的C图可知,PLGA@SeD纳米粒子与单独的SeD-1b的激发波长一样,均为623nm,说明SeD-1b被成功负载进PLGA纳米体系中,并保留了其自身的光学性质。It can be seen from Figure C in Figure 1 that the excitation wavelength of PLGA@SeD nanoparticles is the same as that of SeD-1b alone, which is 623 nm, indicating that SeD-1b is successfully loaded into the PLGA nanosystem and retains its own optical properties. .
4)分别用紫外-可见吸收光谱仪(UH4150)分析制备得到的Fe3O4纳米粒子、PLGA聚合物纳米粒子、SeD-1b、PLZ4@SeD纳米粒子的光学性质,结果如图1中的D图所示。4) The optical properties of the prepared Fe 3 O 4 nanoparticles, PLGA polymer nanoparticles, SeD-1b, and PLZ4@SeD nanoparticles were analyzed by UV-Vis absorption spectrometer (UH4150), respectively, and the results are shown in Figure D in Figure 1. shown.
从图1中的D图可以看出,PLZ4@SeD纳米粒子与单独的SeD-1b的吸收波长相同,均为400nm,表明SeD-1b被成功负载进入PLZ4@SeD纳米粒子纳米体系中,并保留了其自身的光学性质。It can be seen from the D diagram in Fig. 1 that the absorption wavelengths of PLZ4@SeD nanoparticles and SeD-1b alone are the same, both at 400 nm, indicating that SeD-1b was successfully loaded into the PLZ4@SeD nanoparticles nanosystem and retained its own optical properties.
5)图1中的E图为利用SGNA HOR120N磁共振成像仪表征PLZ4@SeD纳米粒子的1/T2信号结果图。5) Panel E in Figure 1 is the result of 1/T 2 signal characterization of PLZ4@SeD nanoparticles using the SGNA HOR120N magnetic resonance imaging instrument.
从图1中的E图可见,PLZ4@SeD纳米粒子的1/T2信号随着铁浓度的升高而提高,呈剂量依赖性,说明PLZ4@SeD纳米粒子具有降低T2弛豫率的作用,即具有增强T2造影效果的能力。From E in Figure 1, it can be seen that the 1/T 2 signal of PLZ4@SeD nanoparticles increases with the increase of iron concentration in a dose-dependent manner, indicating that PLZ4@SeD nanoparticles have the effect of reducing the T 2 relaxation rate , that is, it has the ability to enhance the effect of T2 contrast.
6)利用傅里叶变换红外光谱仪分别表征PLZ4@SeD纳米粒子、SeD-1b、PLGA聚合物纳米粒子的化学结构结果如图1中的F图所示。6) The chemical structures of PLZ4@SeD nanoparticles, SeD-1b, and PLGA polymer nanoparticles were characterized by Fourier transform infrared spectrometer. The results are shown in Figure F in Figure 1.
由图1中的F图可知,3258cm-1以及1590cm-1处出现了峰,皆为酰胺键,即PLZ4与PLGA通过脱水缩合作用形成酰胺键,说明靶向多肽PLZ4已成功连接到活化后的PLGA@SeD/Fe3O4纳米粒子上。It can be seen from Figure F in Figure 1 that peaks appear at 3258cm -1 and 1590cm -1 , both of which are amide bonds, that is, PLZ4 and PLGA form amide bonds through dehydration condensation, indicating that the targeting polypeptide PLZ4 has been successfully connected to the activated peptide. PLGA@SeD/Fe 3 O 4 nanoparticles.
实施例2:靶向纳米药物的体外稳定性探究Example 2: In vitro stability study of targeted nanomedicines
本实施例所用靶向纳米药物PLZ4@SeD纳米粒子的制备方法与本申请实施例1所述的制备方法相同。The preparation method of the targeted nanomedicine PLZ4@SeD nanoparticles used in this example is the same as the preparation method described in Example 1 of this application.
分别按照以下方法制备用于检测纳米药物PLZ4@SeD纳米粒子粒径的混合液:The mixed solutions for detecting the particle size of nanomedicine PLZ4@SeD nanoparticles were prepared according to the following methods:
A1组:1mL透析后的PLZ4@SeD纳米粒子水溶液与pH=5.6、0.01M的磷酸盐缓冲液按体积比1:2混合而成;Group A1: 1 mL of dialyzed PLZ4@SeD nanoparticle aqueous solution was mixed with pH=5.6, 0.01M phosphate buffer at a volume ratio of 1:2;
A2组:1mL透析后的PLZ4@SeD纳米粒子水溶液与用盐酸调成酸性的pH=5.6的DMEM培养基按体积比2:1混合而成;Group A2: 1 mL of dialyzed PLZ4@SeD nanoparticle aqueous solution was mixed with DMEM medium with pH=5.6 adjusted with hydrochloric acid in a volume ratio of 2:1;
B1组:1mL透析后的PLZ4@SeD纳米粒子水溶液与pH=7.4、0.01M的磷酸盐缓冲液按体积比2:1混合而成;Group B1: 1 mL of dialyzed PLZ4@SeD nanoparticle aqueous solution was mixed with pH=7.4, 0.01M phosphate buffer at a volume ratio of 2:1;
B2组:1mL透析后的PLZ4@SeD纳米粒子水溶液与pH=7.4的DMEM培养基按体积比2:1混合而成。Group B2: 1 mL of dialyzed PLZ4@SeD nanoparticle aqueous solution was mixed with pH=7.4 DMEM medium at a volume ratio of 2:1.
用马尔文激光粒度仪(Zetasizer Nano-ZS)对A1、A2、B1、B2组的混合液分别在0h、1h、2h、4h、8h、12h、24h、36h、48h、60h、72h、96h、144h的时间点进行纳米药物粒径检测,并分析PLZ4@SeD纳米粒子的稳定性,结果如图2所示。Using Malvern laser particle size analyzer (Zetasizer Nano-ZS), the mixed solutions of A1, A2, B1, B2 groups were analyzed at 0h, 1h, 2h, 4h, 8h, 12h, 24h, 36h, 48h, 60h, 72h, 96h, At the time point of 144 h, the particle size of the nano-drugs was detected, and the stability of the PLZ4@SeD nanoparticles was analyzed. The results are shown in Figure 2.
从图2可知,PLZ4@SeD纳米粒子在酸性条件下的稳定性曲线与在中性条件下的稳定性曲线趋势相近,说明所制备的PLZ4@SeD纳米粒子在酸性溶液内亦不易被降解,所载药物的药效持续时间较长。It can be seen from Figure 2 that the stability curve of PLZ4@SeD nanoparticles under acidic conditions is similar to the stability curve under neutral conditions, indicating that the prepared PLZ4@SeD nanoparticles are not easily degraded in acidic solution. The drug-loaded effect lasts longer.
实施例3:靶向纳米药物的体外抗肿瘤活性的比较Example 3: Comparison of in vitro antitumor activity of targeted nanomedicines
本实施例所用靶向纳米药物PLZ4@SeD纳米粒子的制备方法与本申请实施例1所述的制备方法相同。The preparation method of the targeted nanomedicine PLZ4@SeD nanoparticles used in this example is the same as the preparation method described in Example 1 of this application.
取处于对数期生长的密度均为2×104个细胞/mL的膀胱癌EJ细胞、膀胱癌J82细胞、膀胱癌T921细胞、乳腺癌MCF-7细胞、肝癌细胞HepG2,分别将以上细胞接种于96孔板中,每孔100μL;待细胞贴壁后,向第一组分别含有膀胱癌EJ细胞、膀胱癌J82细胞、膀胱癌T921细胞、乳腺癌MCF-7细胞、肝癌细胞HepG2的孔中加入100μL用DMEM培养基稀释的Fe3O4纳米粒子,使其终浓度为0.08mmol/L。以不加Fe3O4纳米粒子的膀胱癌EJ细胞、膀胱癌J82细胞、膀胱癌T921细胞、乳腺癌MCF-7细胞和肝癌细胞HepG2作为对照,48小时后向每孔加入30μL浓度为5mg/mL的3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐(MTT)在37℃避光孵育3小时后,弃去含有MTT的上清液,每孔加入150μL二甲基亚砜(DMSO),37℃恒温震荡15分钟,在波长为570nm的条件下,利用多功能荧光酶标仪分别测试Fe3O4纳米粒子对以上5种细胞存活率的影响,结果如图3所示。Take bladder cancer EJ cells, bladder cancer J82 cells, bladder cancer T921 cells, breast cancer MCF-7 cells, and liver cancer cells HepG2 with a growth density of 2×10 4 cells/mL in logarithmic phase, and inoculate the above cells respectively. In a 96-well plate, 100 μL per well; after the cells adhered, the cells in the first group were added to the wells containing bladder cancer EJ cells, bladder cancer J82 cells, bladder cancer T921 cells, breast cancer MCF-7 cells, and liver cancer cells HepG2 respectively. Add 100 μL of Fe 3 O 4 nanoparticles diluted in DMEM medium to a final concentration of 0.08 mmol/L. Taking bladder cancer EJ cells, bladder cancer J82 cells, bladder cancer T921 cells, breast cancer MCF-7 cells and liver cancer cells HepG2 without Fe 3 O 4 nanoparticles as controls, 48 hours later, 30 μL of 5 mg/well was added to each well. mL of 3-(4,5-dimethylthiazole-2)-2,5-diphenyltetrazolium bromide (MTT) was incubated at 37°C for 3 hours in the dark, and the MTT-containing supernatant was discarded , add 150 μL of dimethyl sulfoxide (DMSO) to each well, shake at constant temperature at 37°C for 15 minutes, and use a multifunctional fluorescence microplate reader to test the viability of Fe 3 O 4 nanoparticles on the above five kinds of cells under the condition of wavelength of 570 nm. The results are shown in Figure 3.
从图3可以看出,Fe3O4纳米粒子对以上5种肿瘤细胞几乎没有毒性,5种细胞的存活率均接近100%。It can be seen from Figure 3 that Fe 3 O 4 nanoparticles have almost no toxicity to the above five types of tumor cells, and the survival rates of the five types of cells are all close to 100%.
另外,分别向第二组含有100μL、密度为2×104个细胞/mL的贴壁生长的膀胱癌EJ细胞、膀胱癌J82细胞、膀胱癌T921细胞、乳腺癌MCF-7细胞和肝癌细胞HepG2的各孔中以20μM为最高浓度,按10μM、5μM、2.5μM、1.25μM的梯度浓度加入100μL经DMEM稀释的用二甲基亚砜溶解的SeD-1b;分别向第三组含有密度为2×104个细胞/mL的贴壁生长的膀胱癌EJ细胞、膀胱癌J82细胞、膀胱癌T921细胞、乳腺癌MCF-7细胞、肝癌细胞HepG2的各孔中以20μM为最高浓度按梯度浓度加入100μL经DMEM稀释的PLGA@SeD纳米粒子,浓度梯度同第二组;分别向第四组含有密度为2×104个细胞/mL的贴壁生长的膀胱癌EJ细胞、膀胱癌J82细胞、膀胱癌T921细胞、乳腺癌MCF-7细胞、肝癌细胞HepG2的各孔中以20μM为最高浓度按梯度浓度加入100μL经DMEM稀释的PLGA@SeD/Fe3O4纳米粒子,浓度梯度同第二组;分别向第五组含有密度为2×104个细胞/mL的贴壁生长的膀胱癌EJ细胞、膀胱癌J82细胞、膀胱癌T921细胞、乳腺癌MCF-7细胞、肝癌细胞HepG2的各孔中以20μM为最高浓度按梯度浓度加入100μL经DMEM稀释的PLZ4@SeD纳米粒子,浓度梯度同第二组;以不加SeD-1b、PLGA@SeD纳米粒子、PLGA@SeD/Fe3O4纳米粒子和PLZ4@SeD纳米粒子的含有贴壁生长的膀胱癌EJ细胞、膀胱癌J82细胞、膀胱癌T921细胞、乳腺癌MCF-7细胞和肝癌细胞HepG2作为对照,48小时后向以上各孔中加入30μL 5mg/mL的3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐(MTT)在37℃避光孵育3小时后,弃去含有MTT的上清液,每孔加入150μL二甲基亚砜(DMSO),37℃恒温震荡15分钟,在波长为570nm的条件下,利用多功能荧光酶标仪分别测试经上述各浓度的SeD-1b、PLGA@SeD纳米粒子、PLGA@SeD/Fe3O4纳米粒子和PLZ4@SeD纳米粒子处理后的细胞的吸收值,并求出回归曲线,代入曲线分别求得SeD-1b、PLGA@SeD纳米粒子、PLGA@SeD/Fe3O4纳米粒子和PLZ4@SeD纳米粒子对不同细胞的半抑制浓度,结果如图4所示。In addition, the second group contained 100 μL of adherently grown bladder cancer EJ cells, bladder cancer J82 cells, bladder cancer T921 cells, breast cancer MCF-7 cells and liver cancer cells HepG2 cells at a density of 2 x 104 cells/mL, respectively. With 20 μM as the highest concentration in each well of 20 μM, 100 μL of SeD-1b diluted in DMEM was added in gradient concentrations of 10 μM, 5 μM, 2.5 μM, and 1.25 μM in dimethyl sulfoxide; ×10 4 cells/mL of adherent-growing bladder cancer EJ cells, bladder cancer J82 cells, bladder cancer T921 cells, breast cancer MCF-7 cells, and hepatoma cells HepG2 were added to each well at the highest concentration of 20 μM in a
从图4可知,相对SeD-1b而言,PLZ4@SeD纳米粒子对不同细胞的半抑制浓度均有了显著的下降,且PLZ4@SeD纳米粒子对膀胱癌EJ细胞的毒性更强。It can be seen from Figure 4 that compared with SeD-1b, the half-inhibitory concentrations of PLZ4@SeD nanoparticles on different cells were significantly decreased, and PLZ4@SeD nanoparticles were more toxic to bladder cancer EJ cells.
此外,向第四组含有100μL、密度为2×104个细胞/mL贴壁生长的膀胱癌EJ细胞的各孔中以20μM为最高浓度按10μM、5μM、2.5μM、1.25μM的梯度浓度分别加入体积均为100μL经DMEM培养基稀释的临床药物:盐酸阿霉素、丝裂霉素、吡柔比星和靶向纳米药物PLZ4@SeD纳米粒子;以不加盐酸阿霉素、丝裂霉素、吡柔比星和PLZ4@SeD纳米粒子的含有100μL、密度为2×104个细胞/mL贴壁生长的膀胱癌EJ细胞作为对照,在气体组成为5%二氧化碳、1%氧气、94%氮气的乏氧条件下48小时后向以上各孔中加入30μL5mg/mL的3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐(MTT)在37℃避光孵育3小时后,弃去含有MTT的上清液,每孔加入150μL DMSO,37℃恒温震荡15分钟,在波长为570nm的条件下,利用多功能荧光酶标仪分别测试在上述乏氧条件下,经上述不同浓度的盐酸阿霉素、丝裂霉素、吡柔比星和PLZ4@SeD纳米粒子处理后的膀胱癌EJ细胞的吸收值,并求出回归曲线,代入曲线分别求得各药物对膀胱癌EJ细胞半抑制浓度的影响,结果如图5所示。In addition, to each well of the fourth group containing 100 μL of adherent-growing bladder cancer EJ cells at a density of 2×10 4 cells/mL, 20 μM was the highest concentration in a gradient concentration of 10 μM, 5 μM, 2.5 μM, and 1.25 μM, respectively. Clinical drugs diluted in DMEM medium were added in a volume of 100 μL: doxorubicin hydrochloride, mitomycin, pirarubicin and targeted nano-drug PLZ4@SeD nanoparticles; without doxorubicin hydrochloride, mitomycin Adherent-grown bladder cancer EJ cells containing 100 μL, 2×10 4 cells/mL, and PLZ4@SeD nanoparticles were used as controls in a gas composition of 5% carbon dioxide, 1% oxygen, 94 30 μL of 5 mg/mL 3-(4,5-dimethylthiazole-2)-2,5-diphenyltetrazolium bromide (MTT) was added to the above wells after 48 hours under hypoxic conditions of % nitrogen. After incubating in the dark at 37°C for 3 hours, discard the supernatant containing MTT, add 150 μL DMSO to each well, and shake at 37°C for 15 minutes. Under the above hypoxic conditions, the absorption values of bladder cancer EJ cells treated with the above different concentrations of doxorubicin hydrochloride, mitomycin, pirarubicin and PLZ4@SeD nanoparticles were obtained, and the regression curve was obtained and substituted into the curve The effect of each drug on the half-inhibitory concentration of bladder cancer EJ cells was obtained, and the results are shown in FIG. 5 .
从图5可看出,在乏氧条件下,靶向纳米药物PLZ4@SeD纳米粒子的IC50较盐酸阿霉素、丝裂霉素、吡柔比星的半抑制浓度更低,说明本发明制备得到的靶向纳米药物PLZ4@SeD纳米粒子的药效更强。It can be seen from Figure 5 that under hypoxic conditions, the IC 50 of the targeted nanomedicine PLZ4@SeD nanoparticles is lower than the half-inhibitory concentrations of doxorubicin hydrochloride, mitomycin, and pirarubicin, indicating the present invention The prepared targeted nano-drug PLZ4@SeD nanoparticles have stronger efficacy.
实施例4:靶向纳米药物的免疫荧光效果评价Example 4: Evaluation of immunofluorescence effect of targeted nanomedicines
本实施例所用靶向纳米药物PLZ4@SeD纳米粒子的制备方法与本申请实施例1所述的制备方法相同。The preparation method of the targeted nanomedicine PLZ4@SeD nanoparticles used in this example is the same as the preparation method described in Example 1 of this application.
将离体人源含正常膀胱上皮细胞SV-HUC-1的正常膀胱组织与含膀胱癌EJ细胞的肌层浸润性膀胱癌组织脱水处理:用OCT冷冻在-80℃包埋后,8μm连续切片,所得冷冻切片置于-20℃保存;将切片置于避光湿盒内复温复水,甩干多余水分,然后用牛血清白蛋白溶液(5%BSA)室温封闭30分钟,再甩干,直接滴加50μL稀释倍数为1:1000的整合素αvβ3第一抗体,其中,整合素αvβ3是PLZ4靶向到细胞的靶点。于4℃过夜,随后于室温下放置半小时回温,并用PBS清洗3次以洗去多余未与切片上组织结合的整合素αvβ3第一抗体,再向每张切片上的组织滴加50μL按照1:1500稀释的整合素羊抗小鼠免疫球蛋白,并于室温下孵育2小时,孵育时间结束后,向每张切片上的组织滴加50μL 1μg/mL Hochest,室温孵育30分钟,孵育结束后,使用荧光显微镜拍照并分析正常组织与肿瘤组织中蛋白的表达情况,结果如图6。Dehydration of the isolated human normal bladder tissue containing normal bladder epithelial cells SV-HUC-1 and muscle-invasive bladder cancer tissue containing bladder cancer EJ cells: frozen at -80℃ with OCT, 8μm serial sections , the obtained frozen sections were stored at -20 °C; the sections were placed in a dark and humid box to rewarm and rehydrate, and the excess water was dried, and then sealed with bovine serum albumin solution (5% BSA) at room temperature for 30 minutes, and then dried, directly 50 μL of integrin αvβ3 primary antibody at a dilution of 1:1000 was added dropwise, wherein integrin αvβ3 is the target of PLZ4 targeting cells. overnight at 4°C, then placed at room temperature for half an hour to warm up, and washed three times with PBS to remove excess integrin αvβ3 primary antibody that is not bound to the tissue on the slice, and then drop 50 μL of the tissue on each slice according to 1:1500 diluted integrin goat anti-mouse immunoglobulin was incubated at room temperature for 2 hours. After the incubation time, 50 μL of 1 μg/mL Hochest was added dropwise to the tissue on each slice, and incubated at room temperature for 30 minutes. After that, the fluorescence microscope was used to take pictures and analyze the protein expression in normal tissue and tumor tissue. The results are shown in Figure 6.
从图6可以看出,膀胱癌组织区域的整合素αvβ3表达量显著高于正常膀胱组织的整合素αvβ3表达量。由此推知,整合素αvβ3在肌层浸润性膀胱癌组织中的高表达有利于靶向纳米药物PLZ4@SeD纳米粒子中的PLZ4对膀胱癌细胞的主动靶向。It can be seen from Figure 6 that the expression level of integrin αvβ3 in bladder cancer tissue area is significantly higher than that in normal bladder tissue. It is inferred that the high expression of integrin αvβ3 in muscle-invasive bladder cancer tissue is conducive to the active targeting of PLZ4 in the targeted nanomedicine PLZ4@SeD nanoparticles to bladder cancer cells.
实施例5:靶向纳米药物的体外选择性吸收效果比较Example 5: Comparison of in vitro selective absorption effects of targeted nanomedicines
本实施例中活化后的PLGA@SeD/Fe3O4纳米粒子水溶液的制备方法与实施例1中所述的活化后的PLGA@SeD/Fe3O4纳米粒子水溶液的制备方法相同。The preparation method of the activated PLGA@SeD/Fe 3 O 4 nanoparticle aqueous solution in this example is the same as the preparation method of the activated PLGA@SeD/Fe 3 O 4 nanoparticle aqueous solution described in Example 1.
称取PLZ4粉末2.5mg,分别用PBS缓冲液(pH7.4、0.01M)配成0.3125mg/mL、0.625mg/mL、1.250mg/mL、2.500mg/mL PLZ4溶液,备用;各取1mL活化后的PLGA@SeD/Fe3O4纳米粒子水溶液分别与上述不同浓度的PLZ4溶液按体积比4:1混合,室温下搅拌12h后,分别用当量为8000kDa的透析膜透析12小时,经DMEM培养基稀释后即得靶向浓度分别为0.0625mg/mL、0.125mg/mL、0.25mg/mL、0.5mg/mL的靶向纳米药物PLZ4@SeD纳米粒子。Weigh 2.5 mg of PLZ4 powder, and prepare 0.3125 mg/mL, 0.625 mg/mL, 1.250 mg/mL, 2.500 mg/mL PLZ4 solution with PBS buffer (pH 7.4, 0.01 M), respectively, for standby use; take 1 mL each for activation The resulting PLGA@SeD/Fe 3 O 4 nanoparticle aqueous solution was mixed with the above PLZ4 solutions of different concentrations in a volume ratio of 4:1, stirred at room temperature for 12 h, dialyzed with an equivalent 8000 kDa dialysis membrane for 12 h, and cultured in DMEM. After base dilution, the targeted nanomedicine PLZ4@SeD nanoparticles with targeted concentrations of 0.0625 mg/mL, 0.125 mg/mL, 0.25 mg/mL, and 0.5 mg/mL were obtained, respectively.
取对数生长的膀胱癌EJ细胞、正常膀胱上皮细胞SV-HUC-1分别以8×104个细胞/mL的密度接种于96孔板,每孔100μL;待细胞贴壁后,分别在不同的时间点:2h、4h、8h加入100μL上述不同靶向浓度的靶向纳米药物PLZ4@SeD纳米粒子,同时分别以不加靶向纳米药物PLZ4@SeD纳米粒子的膀胱癌EJ细胞和正常膀胱上皮细胞SV-HUC-1作为对照组;用4℃的PBS洗涤2~3次至洗去癌细胞表面多余的靶向纳米药物PLZ4@SeD纳米粒子,加入100μL/孔细胞裂解液,37℃恒温震荡15分钟充分破碎细胞,利用多功能荧光酶标仪测试激发波长为400nm、发射波长为623nm的荧光值,结果如图7所示。The logarithmic growth of bladder cancer EJ cells and normal bladder epithelial cells SV-HUC-1 were seeded in 96-well plates at a density of 8×10 4 cells/mL, 100 μL per well; Time points: 2h, 4h, and 8h, adding 100 μL of the above-mentioned targeted nanodrug PLZ4@SeD nanoparticles with different targeted concentrations, and at the same time, the bladder cancer EJ cells and normal bladder epithelium without the targeted nanodrug PLZ4@SeD nanoparticles were added respectively. Cell SV-HUC-1 was used as a control group; washed with PBS at 4°C for 2 to 3 times to remove the excess targeted nano-drug PLZ4@SeD nanoparticles on the surface of cancer cells, added 100 μL/well of cell lysate, and shaken at 37°C After 15 minutes, the cells were fully disrupted, and the fluorescence value with an excitation wavelength of 400 nm and an emission wavelength of 623 nm was measured by a multifunctional fluorescent microplate reader. The results are shown in Figure 7.
从图7中的A图可见,随着纳米药物PLZ4@SeD纳米粒子中靶向多肽PLZ4浓度的升高,检测的荧光强度也上升,也就是说膀胱癌EJ细胞对于PLZ4@SeD纳米粒子的吸收随着纳米药物PLZ4@SeD纳米粒子中靶向多肽PLZ4浓度的提高而增强;而且随着时间的推移,荧光强度也变强,由此可见,膀胱癌EJ细胞对于纳米药物PLZ4@SeD纳米粒子的吸收还具有时间依赖的特点。It can be seen from panel A in Figure 7 that as the concentration of the targeting polypeptide PLZ4 in the nanomedicine PLZ4@SeD nanoparticles increases, the detected fluorescence intensity also increases, that is to say, the absorption of PLZ4@SeD nanoparticles by bladder cancer EJ cells With the increase of the concentration of the targeting polypeptide PLZ4 in the nanomedicine PLZ4@SeD nanoparticles; and the fluorescence intensity also became stronger with the passage of time. It can be seen that the effect of bladder cancer EJ cells on the nanomedicine PLZ4@SeD nanoparticles Absorption is also time-dependent.
从图7中的B图可见,检测的正常膀胱上皮细胞SV-HUC-1中纳米药物PLZ4@SeD纳米粒子的荧光强度既没有随着纳米药物PLZ4@SeD纳米粒子中靶向多肽PLZ4浓度的提升有显著的提高,也没有随着时间的推移而增强,即正常膀胱细胞SV-HUC-1对于PLZ4@SeD纳米粒子的吸收没有膀胱癌EJ细胞那么显著。说明靶向纳米药物PLZ4@SeD具有选择性。It can be seen from panel B in Figure 7 that the fluorescence intensity of the nanodrug PLZ4@SeD nanoparticles in the detected normal bladder epithelial cells SV-HUC-1 did not increase with the concentration of the targeting polypeptide PLZ4 in the nanodrug PLZ4@SeD nanoparticles. There was a significant improvement and no enhancement over time, i.e., the uptake of PLZ4@SeD nanoparticles by normal bladder cells SV-HUC-1 was less pronounced than that of bladder cancer EJ cells. It shows that the targeted nanomedicine PLZ4@SeD has selectivity.
实施例6:靶向纳米药物的体外催化H2O2性能探究Example 6: In vitro catalytic H 2 O 2 performance of targeted nanomedicines
本实施例所用靶向纳米药物PLZ4@SeD纳米粒子的制备方法与本申请实施例1所述的制备方法相同;其体外催化H2O2性能结果如图8所示。The preparation method of the targeted nanomedicine PLZ4@SeD nanoparticles used in this example is the same as the preparation method described in Example 1 of this application; the results of its in vitro catalytic H 2 O 2 performance are shown in FIG. 8 .
用PBS缓冲液(pH7.4、0.01M)配制浓度为1.7M的H2O2。取5个分别盛有3.8mL、浓度为2mol/L的H2O2的石英皿,分别向其中加入200μL的PLGA纳米粒子(10.7mM)、SeD-1b(10μM)、Fe3O4纳米粒子(0.08mM)、PLZ4@SeD纳米粒子(16μM),同时分别以4mL的PBS缓冲液(pH7.4、0.01M)和1.7M的H2O2溶液作对照,反应10分钟后拍照,结果如图8中的A图所示。H2O2 at a concentration of 1.7M was prepared in PBS buffer (pH 7.4, 0.01M ) . Take 5 quartz dishes containing 3.8 mL of H 2 O 2 with a concentration of 2 mol/L, respectively, and add 200 μL of PLGA nanoparticles (10.7 mM), SeD-1b (10 μM), and Fe 3 O 4 nanoparticles to them. (0.08mM), PLZ4@SeD nanoparticles (16μM), and 4mL of PBS buffer (pH7.4, 0.01M) and 1.7M H 2 O 2 solution were used as controls, respectively. After 10 minutes of reaction, pictures were taken. The results are as follows As shown in Figure A in Figure 8.
从图8中的A图可以看出,PLZ4@SeD纳米粒子催化H2O2产生O2的能力显著强于Fe3O4纳米粒子,而PLGA纳米粒子、SeD-1b几乎不产生O2,由此可见,PLZ4@SeD纳米粒子能够高效地催化H2O2产生O2,进而能够改善膀胱癌细胞的乏氧环境。From Figure A in Figure 8, it can be seen that the ability of PLZ4@SeD nanoparticles to catalyze H 2 O 2 to generate O 2 is significantly stronger than that of Fe 3 O 4 nanoparticles, while PLGA nanoparticles and SeD-1b hardly generate O 2 , It can be seen that PLZ4@SeD nanoparticles can efficiently catalyze H 2 O 2 to generate O 2 , which in turn can improve the hypoxic environment of bladder cancer cells.
用PBS缓冲液(pH7.4、0.01M)配制1.7mol/L的H2O2,并对其进行除氧处理;取200μL的PLGA纳米粒子(1.5mg/mL)、Fe3O4纳米粒子(0.08mM)、PLZ4@SeD纳米粒子(16μM),分别与3.8mL 1.7M H2O2溶液充分混合后,立刻使用溶氧仪对溶液内的O2值连续测量15分钟,结果如图8中的B图所示。Prepare 1.7mol/L H 2 O 2 with PBS buffer (pH 7.4, 0.01M), and deoxidize it; take 200 μL of PLGA nanoparticles (1.5 mg/mL), Fe 3 O 4 nanoparticles (0.08mM), PLZ4@SeD nanoparticles (16μM), and 3.8mL of 1.7MH 2 O 2 solution were thoroughly mixed, and the O 2 value in the solution was measured continuously for 15 minutes using a dissolved oxygen meter. The results are shown in Figure 8 shown in Figure B.
从图8中的B图可以看出,在相同的时间内,PLZ4@SeD纳米粒子催化H2O2产生O2的速率显著高于PLGA纳米粒子和Fe3O4纳米粒子催化H2O2产生O2的速率,也就是说,PLZ4@SeD由于PLGA包裹Fe3O4产生的限域效应使得其催化H2O2产生O2的能力显著强于单独的Fe3O4纳米粒子。From panel B in Fig. 8 , it can be seen that the rate of PLZ4 @ SeD nanoparticles catalyzing H2O2 to produce O2 is significantly higher than that of PLGA nanoparticles and Fe3O4 nanoparticles catalyzing H2O2 in the same time period The rate of O generation, that is, the confinement effect of PLZ4@ SeD due to the PLGA - wrapped Fe3O4 makes its ability to catalyze the generation of O2 from H2O2 significantly stronger than that of Fe3O4 nanoparticles alone .
分别配制3.8mL浓度为1.0mM、0.8mM、0.6mM、0.4mM的H2O2溶液,向其中分别加入200μL 16μM PLZ4@SeD纳米粒子,立刻使用溶氧仪对溶液内的O2值进行连续测量15分钟,同时以水作对照,结果如图8中的C图所示。Prepare 3.8 mL of H 2 O 2 solutions with concentrations of 1.0 mM, 0.8 mM, 0.6 mM, and 0.4 mM, respectively, add 200 μL of 16 μM PLZ4@SeD nanoparticles to them, and immediately use a dissolved oxygen meter to measure the O 2 value in the solution. The measurement was performed for 15 minutes with water as a control, and the results are shown in panel C in FIG. 8 .
从图8中的C图可以看出,PLZ4@SeD纳米粒子催化H2O2产生O2的量与H2O2的浓度有关,以0.4~0.8mM的H2O2为例,H2O2浓度越大氧气产生量越多,说明PLZ4@SeD纳米粒子具有较强的催化H2O2产生O2能力。From Figure C in Figure 8, it can be seen that the amount of O 2 produced by PLZ4@SeD nanoparticles catalyzing H 2 O 2 is related to the concentration of H 2 O 2. Taking 0.4-0.8 mM H 2 O 2 as an example, H 2 The higher the concentration of O 2 , the more oxygen generated, indicating that the PLZ4@SeD nanoparticles have a strong ability to catalyze H 2 O 2 to generate O 2 .
配制pH为7.0、0.01M的PBS缓冲液,将配好的PBS缓冲液分成三组;空白组为:体积为2mL的PBS缓冲液;对照Ⅰ组为:体积为2mL的用PBS缓冲液配制浓度为1.0mM的H2O2溶液;变量Ⅱ组为:向2mL用PBS缓冲液配制的浓度为1.0mM的H2O2溶液中加入2mL浓度为16μM的PLZ4@SeD纳米粒子。分别用电化学工作站对三组溶液的氧化还原电势进行测量,在测量的过程中通入氩气进行保护,结果如图8中的D图所示。The PBS buffer solution with pH of 7.0 and 0.01M was prepared, and the prepared PBS buffer solution was divided into three groups; the blank group was: PBS buffer solution with a volume of 2 mL; the control group I was: PBS buffer solution with a volume of 2 mL was used to prepare the concentration 1.0 mM H 2 O 2 solution; variable II group: 2 mL of 16 μM PLZ4@SeD nanoparticles were added to 2 mL of 1.0 mM H 2 O 2 solution prepared in PBS buffer. The redox potentials of the three groups of solutions were measured with an electrochemical workstation respectively, and argon gas was introduced for protection during the measurement. The results are shown in Figure D in Figure 8 .
从图8中的D图可以得知,PBS缓冲液几乎没有氧化还原电势;H2O2由于自身可发生歧化反应,具有一定的氧化还原电势;而变量Ⅱ组由于加了靶向纳米药物PLZ4@SeD纳米粒子,其氧化还原电势显著高于空白组与对照Ⅰ组,且氧化还原电势曲线没有显著的鼓包,由此可见,PLZ4@SeD纳米粒子具有催化H2O2产生O2的能力。It can be seen from the D figure in Figure 8 that the PBS buffer has almost no redox potential; H 2 O 2 has a certain redox potential due to its own disproportionation reaction; while the variable II group is due to the addition of the targeted nanomedicine PLZ4 The redox potential of the @SeD nanoparticles was significantly higher than that of the blank group and the control group I, and the redox potential curve had no significant bulge. It can be seen that the PLZ4@SeD nanoparticles have the ability to catalyze H 2 O 2 to generate O 2 .
实施例7:靶向纳米药物的体外乏氧实验Example 7: In vitro hypoxia experiment of targeted nanomedicines
本实施例所用靶向纳米药物PLZ4@SeD纳米粒子的制备方法与本申请实施例1所述的制备方法相同。The preparation method of the targeted nanomedicine PLZ4@SeD nanoparticles used in this example is the same as the preparation method described in Example 1 of this application.
在由5%CO2、1%O2、94%N2组成的乏氧环境条件下培养膀胱癌EJ细胞,将处于对数生长期的密度为2×104个细胞/mL的膀胱癌EJ细胞接种于96孔板,每孔100μL;待细胞贴壁后,弃去上清培养基,以加入100μL含400μM H2O2的DMEM培养基作为处理组,以不加H2O2的DMEM培养基作为对照组;然后向对照组和处理组的孔中分别加入100μL不同浓度的Fe3O4纳米粒子、SeD-1b、PLZ4@SeD纳米粒子,使得Fe3O4纳米粒子、SeD-1b、PLZ4@SeD纳米粒子在所在组中的终浓度分别为40μΜ、20μΜ、10μΜ、5μΜ、2.5μΜ、1.25μΜ。加入48小时后每孔加入30μL浓度为5mg/mL的MTT避光孵育3小时后,弃去含有MTT的上清液,每孔加入150μL二甲基亚砜,室温恒温震荡15分钟,利用多功能荧光酶标仪测试波长为570nm处吸光值并计算存活率,体外的乏氧实验结果如图9所示。Bladder cancer EJ cells were cultured under hypoxic environmental conditions consisting of 5% CO 2 , 1% O 2 , 94% N 2 , and bladder cancer EJs in logarithmic growth phase at a density of 2×10 4 cells/mL were cultured The cells were seeded in 96-well plates, 100 μL per well; after the cells adhered, the supernatant medium was discarded, and 100 μL of DMEM medium containing 400 μM H 2 O 2 was added as the treatment group, and DMEM without H 2 O 2 was added as the treatment group. The medium was used as the control group; then 100 μL of Fe 3 O 4 nanoparticles, SeD-1b, and PLZ4@SeD nanoparticles were added to the wells of the control group and the treatment group, respectively, at different concentrations, so that Fe 3 O 4 nanoparticles, SeD-1b The final concentrations of , PLZ4@SeD nanoparticles in the groups were 40 μM, 20 μM, 10 μM, 5 μM, 2.5 μM, and 1.25 μM, respectively. 48 hours after the addition, 30 μL of MTT with a concentration of 5 mg/mL was added to each well and incubated in the dark for 3 hours. After the supernatant containing MTT was discarded, 150 μL of dimethyl sulfoxide was added to each well, and it was shaken at room temperature for 15 minutes. The fluorescence microplate reader tested the absorbance at the wavelength of 570 nm and calculated the survival rate. The results of the in vitro hypoxia experiment are shown in Figure 9.
通过图9中的A图和B图的体外乏氧实验可以看出,乏氧环境条件下,处理组膀胱癌EJ细胞的细胞存活率比对照组膀胱癌EJ细胞的存活率要低,说明乏氧环境下的膀胱癌EJ细胞对药物具有耐受性,而利用H2O2分解产生O2,改善了局部的乏氧环境后,药物药效得到了显著的提高。It can be seen from the in vitro hypoxia experiments of A and B in Figure 9 that under hypoxic conditions, the cell survival rate of bladder cancer EJ cells in the treatment group is lower than that in the control group, indicating that the lack of Bladder cancer EJ cells in oxygen environment are resistant to drugs, and the drug efficacy is significantly improved after the local hypoxic environment is improved by decomposing H 2 O 2 to generate O 2 .
实施例8:靶向纳米药物的体外吸收实验Example 8: In vitro absorption experiments of targeted nanomedicines
本实施例所用靶向纳米药物PLZ4@SeD纳米粒子的制备方法与本申请实施例1所述的制备方法相同。The preparation method of the targeted nanomedicine PLZ4@SeD nanoparticles used in this example is the same as the preparation method described in Example 1 of this application.
取处于对数期生长的膀胱癌EJ细胞,以8×104个细胞/mL的密度接种于直径为6厘米的培养皿中,每孔6mL,待细胞贴壁生长24小时后,加入PLZ4@SeD纳米粒子,使其浓度分别为2μM,分别孵育0h、1h、2h、4h、8h、12h,然后用4℃的PBS缓冲液洗涤2~3次,收集膀胱癌EJ细胞,1500rpm离心5分钟后,用流式细胞仪进行检测,最后应用软件Flow Jo分析细胞内药物的含量,结果如图10中的A图所示。Bladder cancer EJ cells in logarithmic phase growth were taken and seeded in a 6 cm diameter petri dish at a density of 8×10 4 cells/mL, 6 mL per well. After the cells had adhered and grown for 24 hours, PLZ4@ SeD nanoparticles at a concentration of 2 μM, respectively, incubated for 0 h, 1 h, 2 h, 4 h, 8 h, and 12 h, and then washed with PBS buffer at 4°C for 2 to 3 times to collect bladder cancer EJ cells. After centrifugation at 1500 rpm for 5 minutes , detected by flow cytometer, and finally analyzed the content of intracellular drug by software Flow Jo, and the result is shown in Figure A in Figure 10 .
根据图10中的A图的结果可知,当药物浓度保持一致时,膀胱癌EJ细胞对于靶向纳米药物PLZ4@SeD纳米粒子的吸收量随着时间的增加而提高。According to the results of Panel A in Figure 10, when the drug concentration remained the same, the uptake of the targeted nanodrug PLZ4@SeD nanoparticles by bladder cancer EJ cells increased with time.
另取上述处于对数期生长的膀胱癌EJ细胞,按上述相同方法和条件进行接种,待细胞贴壁生长24小时后,加入不同浓度的PLZ4@SeD纳米粒子,使其终浓度分别为0.25μM、0.5μM、1μM、2μM、4μM,同时以不加PLZ4@SeD纳米粒子的膀胱癌EJ细胞作对照;孵育8小时后,用4℃的PBS缓冲液洗涤2~3次后,收集膀胱癌EJ细胞,1500rpm离心5分钟后,用流式细胞仪进行检测,最后应用软件Flow Jo分析膀胱癌EJ细胞内靶向纳米药物PLZ4@SeD纳米粒子的含量,结果如图10中B图所示。In addition, the above-mentioned bladder cancer EJ cells growing in logarithmic phase were inoculated according to the same method and conditions as above. After the cells had adhered to the wall for 24 hours, different concentrations of PLZ4@SeD nanoparticles were added to make the final concentration of 0.25 μM respectively. , 0.5μM, 1μM, 2μM, 4μM, and bladder cancer EJ cells without PLZ4@SeD nanoparticles were used as control; after incubation for 8 hours, washed with 4 ℃ PBS buffer for 2 to 3 times, and collected bladder cancer EJ cells The cells were centrifuged at 1500 rpm for 5 minutes, and then detected by flow cytometry. Finally, the software Flow Jo was used to analyze the content of the targeted nano-drug PLZ4@SeD nanoparticles in bladder cancer EJ cells. The results are shown in Figure B in Figure 10.
从图10中的B图可以看出,在相同时间内,随着靶向纳米药物PLZ4@SeD纳米粒子浓度的提高,细胞吸收的靶向纳米药物PLZ4@SeD纳米粒子的量增加,呈剂量依赖效应。It can be seen from panel B in Figure 10 that, with the increase of the concentration of the targeted nanodrug PLZ4@SeD nanoparticles, the amount of the targeted nanodrug PLZ4@SeD nanoparticles absorbed by the cells increases in a dose-dependent manner at the same time. effect.
实施例9:靶向纳米药物的胞内定位实验Example 9: Intracellular localization experiments of targeted nanomedicines
本实施例所用靶向纳米药物PLZ4@SeD纳米粒子的制备方法与本申请实施例1所述的制备方法相同。The preparation method of the targeted nanomedicine PLZ4@SeD nanoparticles used in this example is the same as the preparation method described in Example 1 of this application.
取处于对数期生长的膀胱癌EJ细胞,以8×104个细胞/mL的密度接种于直径为2厘米的培养皿中,每孔2mL,待细胞贴壁生长24小时后,向其中一个培养皿中加入LysoTracker Red探针孵育2h,向另一个培养皿中加入Hoechst探针并孵育1小时,孵育完毕后,分别向上述两培养皿中加入PLZ4@SeD纳米粒子,使其终浓度为2.00μM,分别在孵育0小时、1小时、2小时、4小时、8小时、12小时后,去掉上清培养基,用4℃的PBS洗涤细胞2~3次,在荧光显微镜下观察细胞中的PLZ4@SeD纳米粒子的荧光信号。本实施例中,由于PLZ4@SeD纳米粒子负载了SeD-1b而在细胞中发出绿色荧光,因此可以通过绿色荧光和溶酶体(红色荧光)以及细胞核(蓝色荧光)的荧光重叠,进一步分析药物在细胞中的定位情况;结果如图11所示。Take bladder cancer EJ cells growing in logarithmic phase and inoculate them in a 2 cm diameter petri dish at a density of 8 × 10 4 cells/mL, with 2 mL per well. The LysoTracker Red probe was added to the petri dish and incubated for 2 h, the Hoechst probe was added to the other petri dish and incubated for 1 h. After incubation, PLZ4@SeD nanoparticles were added to the two petri dishes to make the final concentration 2.00 μM, after incubation for 0 hours, 1 hour, 2 hours, 4 hours, 8 hours, and 12 hours, remove the supernatant medium, wash the cells with PBS at 4°C for 2 to 3 times, and observe the cells under a fluorescence microscope. Fluorescence signal of PLZ4@SeD nanoparticles. In this example, since the PLZ4@SeD nanoparticles are loaded with SeD-1b and emit green fluorescence in cells, the green fluorescence can be further analyzed by overlapping the fluorescence of lysosome (red fluorescence) and nucleus (blue fluorescence). The localization of the drug in the cells; the results are shown in Figure 11.
从图11的胞内定位实验发现,膀胱癌EJ细胞内溶酶体发出绿色荧光,说明纳米靶向药物PLZ4@SeD纳米粒子定位于膀胱癌EJ细胞的溶酶体。From the intracellular localization experiment in Figure 11, it was found that the intracellular lysosomes of bladder cancer EJ cells emitted green fluorescence, indicating that the nano-targeted drug PLZ4@SeD nanoparticles were localized in the lysosomes of bladder cancer EJ cells.
实施例10:靶向纳米药物作用细胞后的细胞活性氧实验Example 10: Cellular reactive oxygen species experiment after targeting nanomedicine to cells
本实施例所用靶向纳米药物PLZ4@SeD纳米粒子的制备方法与本申请实施例1所述的制备方法相同。The preparation method of the targeted nanomedicine PLZ4@SeD nanoparticles used in this example is the same as the preparation method described in Example 1 of this application.
取处于对数期生长的膀胱癌EJ细胞,以2×105个细胞/mL的密度接种于不同的96孔板中,每孔100μL,待细胞贴壁后,每孔加入1μL 1mmol/L DHE探针避光培养30分钟;随后每孔分别加入100μL靶向纳米药物PLZ4@SeD纳米粒子作为处理组,使靶向纳米药物PLZ4@SeD纳米粒子的最终浓度分别为16μM、8μM、4μM,同时以不加靶向纳米药物PLZ4@SeD纳米粒子作为空白组,利用多功能荧光酶标仪于激发波长为360nm,发射波长为610nm处,每5分钟测量荧光吸收值,连续测量2小时,测量结果如图12所示。Bladder cancer EJ cells in log phase growth were taken and seeded in different 96-well plates at a density of 2×10 5 cells/mL, 100 μL per well. After the cells adhered, 1 μL of 1 mmol/L DHE was added to each well. The probes were incubated in the dark for 30 minutes; then, 100 μL of the targeted nanomedicine PLZ4@SeD nanoparticles were added to each well as the treatment group, so that the final concentrations of the targeted nanomedicine PLZ4@SeD nanoparticles were 16 μM, 8 μM, and 4 μM, respectively. Without targeting nano-drug PLZ4@SeD nanoparticles as blank group, the fluorescence absorption value was measured every 5 minutes at the excitation wavelength of 360 nm and the emission wavelength of 610 nm using a multifunctional fluorescence microplate reader for 2 hours continuously. The measurement results are as follows: Figure 12.
图12中A图的结果表明,膀胱癌EJ细胞的荧光强度随着靶向纳米药物PLZ4@SeD纳米粒子加入量的增加而增强;从图12中B图的结果可知,随着纳米药物PLZ4@SeD纳米粒子量的提高,膀胱癌EJ细胞内活性氧的水平在升高,细胞内活性氧含量随着药物浓度的增加而提高,说明了靶向纳米药物PLZ4@SeD纳米粒子的抗肿瘤活性是通过提高细胞内的活性氧水平而诱导细胞凋亡来实现的。The results of panel A in Figure 12 show that the fluorescence intensity of bladder cancer EJ cells increases with the increase in the amount of targeted nanodrug PLZ4@SeD nanoparticles; With the increase of the amount of SeD nanoparticles, the level of intracellular reactive oxygen species in bladder cancer EJ cells increased, and the intracellular reactive oxygen species content increased with the increase of drug concentration, indicating that the antitumor activity of the targeted nanodrug PLZ4@SeD nanoparticles is It does this by increasing the intracellular reactive oxygen species levels and inducing apoptosis.
实施例11:靶向纳米药物的体外抗肿瘤效果评价Example 11: Evaluation of in vitro antitumor effect of targeted nanomedicines
本实施例所用靶向纳米药物PLZ4@SeD纳米粒子的制备方法与本申请实施例1所述的制备方法相同。The preparation method of the targeted nanomedicine PLZ4@SeD nanoparticles used in this example is the same as the preparation method described in Example 1 of this application.
周期阻滞和细胞凋亡是抗肿瘤药物诱导细胞死亡的两种重要方式。因此,本发明利用流式细胞仪分析了靶向纳米药物引起膀胱癌EJ细胞死亡的方式。Cycle arrest and apoptosis are two important ways that antitumor drugs induce cell death. Therefore, the present invention uses flow cytometry to analyze the way in which the targeted nanomedicine causes the death of bladder cancer EJ cells.
取处于对数期生长的膀胱癌EJ细胞,以2×104个细胞/mL的密度接种于不同的直径为6cm的培养皿中,每个培养皿加入6mL细胞,待细胞贴壁后,向其中4个培养基中分别加入PLZ4@SeD纳米粒子作为处理组,使培养基中PLZ4@SeD纳米粒子的终浓度分别为1.0μM、0.5μM、0.25μM、0.125μM;以不加靶向纳米药物PLZ4@SeD纳米粒子的上述培养基作为对照组;分别将处理组与对照组的膀胱癌EJ细胞于37℃、5%CO2的培养箱中孵育72小时后收集细胞,加入1mL-20℃的体积分数为70%乙醇,并置于-20℃的环境中固定24小时后,以1500rpm的转速离心10分钟,随后用300μL碘化丙啶避光染色30分钟,染色结束后,再用300目(孔径40~50μm)尼龙网过滤,过滤后的样品用流式细胞仪进行检测,用Modfit软件分析细胞内DNA的含量,得出G0/G1期、S期、G2/M期以及凋亡峰Sub G1的比例,检测结果分别如图13所示。Bladder cancer EJ cells growing in logarithmic phase were taken and seeded in different culture dishes with a diameter of 6 cm at a density of 2 × 10 4 cells/mL, and 6 mL of cells were added to each culture dish. PLZ4@SeD nanoparticles were added to 4 of them as treatment groups, so that the final concentrations of PLZ4@SeD nanoparticles in the medium were 1.0 μM, 0.5 μM, 0.25 μM, and 0.125 μM, respectively; The above medium of PLZ4@SeD nanoparticles was used as the control group; bladder cancer EJ cells of the treatment group and the control group were incubated in a 37°C, 5% CO2 incubator for 72 hours, and then the cells were collected, and 1mL-20°C of The volume fraction was 70% ethanol, and placed at -20 °C for 24 hours, centrifuged at 1500 rpm for 10 minutes, and then stained with 300 μL propidium iodide in the dark for 30 minutes. (40-50μm pore size) Nylon mesh filter, the filtered samples are detected by flow cytometer, and the content of DNA in cells is analyzed by Modfit software, and the G0/G1 phase, S phase, G2/M phase and apoptosis peak are obtained. The ratio of Sub G1 and the detection results are shown in Figure 13, respectively.
从图13中的A图的结果可以看出,对照组的凋亡峰Sub-G1的比例为0.57%,而处理组的凋亡峰的比例从药物浓度为0.25μmol/L的5.76%逐渐上升到药物浓度为1.0μmol/L的18.23%,表明靶向纳米药物PLZ4@SeD纳米粒子发挥显著抗肿瘤活性是通过诱导凋亡的方式来实现的。It can be seen from the results of Panel A in Figure 13 that the ratio of the apoptotic peak Sub-G1 in the control group was 0.57%, while the ratio of the apoptotic peak in the treatment group gradually increased from 5.76% when the drug concentration was 0.25 μmol/L The drug concentration was 18.23% of 1.0 μmol/L, indicating that the targeted nano-drug PLZ4@SeD nanoparticles exerted significant anti-tumor activity by inducing apoptosis.
从图13中的B图的结果也可以看出,细胞的S期的比例也有所提高,G2/M以及G0/G1期的比例有所降低,这是由于细胞凋亡时DNA被剪切,作为DNA合成期的S期无法进入到下一阶段,故造成了S期的比例增加,这种现象表明,靶向纳米药物PLZ4@SeD纳米粒子是通过诱导凋亡的方式发挥其抗肿瘤活性的。It can also be seen from the results of Panel B in Figure 13 that the proportion of cells in S phase has also increased, and the proportions of G2/M and G0/G1 phases have decreased. This is due to the cleavage of DNA during apoptosis. The S phase, which is the DNA synthesis phase, cannot enter the next phase, so the proportion of S phase increases. This phenomenon indicates that the targeted nanodrug PLZ4@SeD nanoparticles exert their antitumor activity by inducing apoptosis. .
实施例12:靶向纳米药物的体外肿瘤球实验Example 12: In vitro tumor sphere experiments targeting nanomedicines
本实施例所用靶向纳米药物PLZ4@SeD纳米粒子的制备方法与本申请实施例1所述的制备方法相同。The preparation method of the targeted nanomedicine PLZ4@SeD nanoparticles used in this example is the same as the preparation method described in Example 1 of this application.
取处于对数期生长的膀胱癌EJ细胞,以2×106个细胞/mL的密度接种于超低吸附六孔板中,每孔2mL。在超净工作台中每0.5小时摇一次,每次沿同一方向摇10分钟,3小时后每隔2小时摇一次,每次沿同一方向摇10分钟,12小时后每隔12小时摇一次,每次沿同一方向摇10分钟,一周后观察是否形成直径为100μm的肿瘤球,若已形成符合条件的肿瘤球,则向上述形成的肿瘤球中加入50μL浓度为20mg/mL的以pH=7.4、0.01M的PBS配制的PLZ4溶液,使PLZ4的终浓度为0.5mg/mL,以上述组为封闭组,以未加PLZ4的肿瘤球为未封闭组,对封闭组和未封闭组同时置于37℃、5%CO2培养箱中3小时后,分别向以上两组中加入终浓度为PLZ4@SeD纳米粒子,使其终浓度为2μM,孵育4小时,孵育结束后使用激光共聚焦显微镜观察结果,如图14。Bladder cancer EJ cells in log phase growth were taken and seeded in ultra-low adsorption six-well plates at a density of 2×10 6 cells/mL, with 2 mL per well. Shake every 0.5 hours in the ultra-clean workbench, shake in the same direction for 10 minutes each time, shake every 2 hours after 3 hours, shake in the same direction for 10 minutes each time, and shake every 12 hours after 12 hours, every time Shake in the same direction for 10 minutes each time, and observe whether tumor spheres with a diameter of 100 μm are formed after one week. The PLZ4 solution prepared with 0.01M PBS, the final concentration of PLZ4 was 0.5 mg/mL, the above group was taken as the blocking group, the tumor spheres without PLZ4 were taken as the unblocked group, and the blocked and unblocked groups were placed in 37 After 3 hours in a 5% CO2 incubator at ℃, PLZ4@SeD nanoparticles were added to the above two groups at a final concentration of 2 μM, and incubated for 4 hours. After the incubation, the results were observed by confocal microscopy. , as shown in Figure 14.
根据图14的激光共聚焦结果得知,封闭组的肿瘤球使用靶向多肽PLZ4封闭后,其荧光显著小于未封闭组,靶向纳米药物PLZ4@SeD纳米粒子进入封闭组的肿瘤球内的量少于未封闭组,说明PLZ4@SeD纳米粒子具有选择性。According to the laser confocal results in Figure 14, after the tumor spheres in the blocked group were blocked with the targeting polypeptide PLZ4, their fluorescence was significantly lower than that in the unblocked group, and the amount of the targeted nanodrug PLZ4@SeD nanoparticles entering the tumor spheres in the blocked group less than that in the unblocked group, indicating the selectivity of PLZ4@SeD nanoparticles.
实施例13:靶向纳米药物的离体膀胱灌注效果评价Example 13: Evaluation of in vitro bladder perfusion effect of targeted nanomedicines
本实施例所用靶向纳米药物PLZ4@SeD纳米粒子的制备方法与本申请实施例1所述的制备方法相同。The preparation method of the targeted nanomedicine PLZ4@SeD nanoparticles used in this example is the same as the preparation method described in Example 1 of this application.
用生理盐水将纳米药物PLZ4@SeD纳米粒子稀释至1mM;取含正常膀胱上皮细胞SV-HUC-1和膀胱癌EJ细胞的人源离体膀胱组织,将上述含膀胱癌瘤体的人源离体膀胱组织外周擦净后,挤压出膀胱组织内部的残留尿液和血水,使用生理盐水洗涤2~3次,直至无血水为止。通过尿道灌注100mL上述浓度为1mM的靶向纳米药物PLZ4@SeD纳米粒子,使药物在膀胱内充分扩散,在37℃的条件下置于DMEM培养基中静置8小时后,使用核磁共振成像仪观察灌注前后膀胱内药物分布情况,结果如图15所示。The nano-drug PLZ4@SeD nanoparticles were diluted to 1 mM with normal saline; the human-derived isolated bladder tissue containing normal bladder epithelial cells SV-HUC-1 and bladder cancer EJ cells was taken, and the above-mentioned human-derived isolated bladder cancer-containing tumor was collected. After wiping the periphery of the body bladder tissue, squeeze out the residual urine and blood in the bladder tissue, and wash with normal saline for 2 to 3 times until there is no blood. 100 mL of the above-mentioned targeted nano-drug PLZ4@SeD nanoparticles with a concentration of 1 mM was perfused through the urethra to allow the drug to fully diffuse in the bladder. The distribution of drugs in the bladder before and after perfusion was observed, and the results are shown in Figure 15.
从图15中的A~C图可知,该离体膀胱内的肿瘤大小约为5cm×4cm;It can be seen from the pictures A to C in FIG. 15 that the tumor size in the isolated bladder is about 5cm×4cm;
从图15中的D图的核磁共振成像(MRI)结果可以得知,肿瘤部分吸收药物区域显著大于正常组织部分药物吸收区域,即靶向纳米药物PLZ4@SeD纳米粒子进入肿瘤部分的量明显多于进入正常组织的量,由此可推知,MRI中的R2*值理论上应当随着药物浓度的增加而增大,T2值则应当随着药物浓度的增加而减小。From the magnetic resonance imaging (MRI) results of the D image in Figure 15, it can be seen that the drug absorption area of the tumor part is significantly larger than that of the normal tissue part, that is, the amount of the targeted nanodrug PLZ4@SeD nanoparticles entering the tumor part is significantly larger According to the amount of entering normal tissues, it can be inferred that the R 2 * value in MRI should theoretically increase with the increase of drug concentration, and the T 2 value should decrease with the increase of drug concentration.
从图15中的E图和F图可以看出,药物趋势、肿瘤边缘、正常组织边缘、肿瘤内部区域、正常组织内部区域对应的R2*值和T2值形成的趋势与理论趋势一致,肿瘤内部区域与正常组织内部区域的T2值相等,R2*值也几乎相等。而肿瘤边缘的R2*值大于正常组织边缘的R2*值,T2值小于正常组织边缘的T2值,说明靶向纳米药物PLZ4@SeD纳米粒子是有选择性地进入膀胱肿瘤区域的。From Figure E and F in Figure 15, it can be seen that the trends formed by the drug trend, the tumor margin, the normal tissue margin, the tumor inner region, and the R 2 * value and T 2 value corresponding to the normal tissue inner region are consistent with the theoretical trend. The T2 values of the tumor interior area and the normal tissue interior area were equal, and the R2* values were also almost equal. The R 2 * value of the tumor edge was greater than the R 2 * value of the normal tissue edge, and the T 2 value was smaller than the T 2 value of the normal tissue edge, indicating that the targeted nanomedicine PLZ4@SeD nanoparticles selectively entered the bladder tumor area. .
实施例14:不同有机溶剂作为分散剂制备的靶向纳米药物的尺寸评价Example 14: Size evaluation of targeted nanomedicines prepared with different organic solvents as dispersants
本实施例制备得到的靶向纳米药物的制备方法与本申请实施例1所述的制备方法除用于分散PLGA和Fe3O4的有机溶剂种类不同外,其余条件均一致;其中,用于分散PLGA和Fe3O4的有机溶剂分别为丙酮、乙腈、二氯甲烷。用Nano-ZS(Malvern Insruments Limited)分别对所得到的靶向纳米药物的尺寸进行表征,结果如图16所示。The preparation method of the targeted nanomedicine prepared in this example is the same as the preparation method described in Example 1 of this application except that the types of organic solvents used to disperse PLGA and Fe 3 O 4 are different; The organic solvents for dispersing PLGA and Fe 3 O 4 are acetone, acetonitrile, and dichloromethane, respectively. The sizes of the obtained targeted nanomedicines were characterized by Nano-ZS (Malvern Instruments Limited), and the results are shown in Figure 16 .
从图16可以看出,用丙酮作为分散剂得到的靶向纳米药物尺寸约为120nm,而用乙腈、二氯甲烷作为分散剂得到的靶向纳米药物尺寸分别为220nm、210nm,说明在相同条件下,以丙酮作为分散剂所得到的靶向纳米药物的尺寸更小,效果更好。It can be seen from Figure 16 that the size of the targeted nanomedicine obtained by using acetone as a dispersant is about 120 nm, while the size of the targeted nanomedicine obtained by using acetonitrile and dichloromethane as a dispersing agent is 220 nm and 210 nm, respectively, indicating that under the same conditions The size of the targeted nanomedicine obtained by using acetone as a dispersant is smaller and the effect is better.
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiments are preferred embodiments of the present invention, but the embodiments of the present invention are not limited by the above-mentioned embodiments, and any other changes, modifications, substitutions, combinations, The simplification should be equivalent replacement manners, which are all included in the protection scope of the present invention.
序列表sequence listing
<110> 暨南大学<110> Jinan University
<120> 基于核磁成像引导的克服肿瘤乏氧引起耐药性的靶向纳米药物及其制备方法和应用<120> Targeted nano-drugs based on MRI-guided overcoming drug resistance caused by hypoxia in tumors and their preparation methods and applications
<160> 1<160> 1
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 9<211> 9
<212> PRT<212> PRT
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<223> 靶向多肽PLZ4<223> Targeting polypeptide PLZ4
<400> 1<400> 1
Cys Gln Asp Gly Arg Met Gly Phe CysCys Gln Asp Gly Arg Met Gly Phe Cys
1 51 5
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911227246.1A CN111298139B (en) | 2019-12-04 | 2019-12-04 | Targeted nanomedicine for overcoming drug resistance caused by tumor hypoxia based on MRI guidance and its preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911227246.1A CN111298139B (en) | 2019-12-04 | 2019-12-04 | Targeted nanomedicine for overcoming drug resistance caused by tumor hypoxia based on MRI guidance and its preparation method and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111298139A CN111298139A (en) | 2020-06-19 |
CN111298139B true CN111298139B (en) | 2022-07-12 |
Family
ID=71152557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911227246.1A Active CN111298139B (en) | 2019-12-04 | 2019-12-04 | Targeted nanomedicine for overcoming drug resistance caused by tumor hypoxia based on MRI guidance and its preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111298139B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113975403B (en) * | 2021-11-03 | 2023-11-17 | 江苏护理职业学院 | Transferrin and antibody combined superparamagnetic iron oxide nanoparticle as well as preparation method and application thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108404142A (en) * | 2018-02-06 | 2018-08-17 | 暨南大学 | A kind of magnetic resonance imaging nano-carrier, nano medicament carrying system and preparation method thereof |
-
2019
- 2019-12-04 CN CN201911227246.1A patent/CN111298139B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108404142A (en) * | 2018-02-06 | 2018-08-17 | 暨南大学 | A kind of magnetic resonance imaging nano-carrier, nano medicament carrying system and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
"携量子点靶向高分子微泡造影剂制备及体外细胞实验研究";郝兰等;《重庆医科大学学报》;20131231;第38卷(第1期);摘要,第25页右栏 * |
Also Published As
Publication number | Publication date |
---|---|
CN111298139A (en) | 2020-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Han et al. | Duplex metal co-doped carbon quantum dots-based drug delivery system with intelligent adjustable size as adjuvant for synergistic cancer therapy | |
US20140170073A1 (en) | Nanoparticulate probe for in vivo monitoring of tissue oxygenation | |
Zhou et al. | Oxygenated theranostic nanoplatforms with intracellular agglomeration behavior for improving the treatment efficacy of hypoxic tumors | |
CN108114290A (en) | Preparation method that is a kind of while loading chemicals and the excretion body of nano material | |
CN108404142B (en) | Magnetic resonance imaging nanocarrier, nanometer drug delivery system and preparation method thereof | |
CN110743012A (en) | Preparation method and application of a glucose oxidase-modified mesoporous manganese dioxide pharmaceutical composition | |
Yang et al. | Construction of pH/glutathione responsive chitosan nanoparticles by a self-assembly/self-crosslinking method for photodynamic therapy | |
Fang et al. | Biomimetic smart nanoplatform for dual imaging-guided synergistic cancer therapy | |
Zhao et al. | Multifunctional magnetic nanoparticles for simultaneous cancer near-infrared imaging and targeting photodynamic therapy | |
Lee et al. | Development of a controlled-release drug delivery system by encapsulating oxaliplatin into SPIO/MWNT nanoparticles for effective colon cancer therapy and magnetic resonance imaging | |
Yu et al. | Mesoporous titanium dioxide nanocarrier with magnetic-targeting and high loading efficiency for dual-modal imaging and photodynamic therapy | |
CN113521298B (en) | A tannic acid/iron complex-coated responsive dendrimer drug-loading material | |
Sulek et al. | Peptide functionalized superparamagnetic iron oxide nanoparticles as MRI contrast agents | |
CN105999283A (en) | Preparation method for adriamycin-loaded polyethyleneimine-hyaluronic acid-modified hectorite-coated gold nanoparticles | |
CN110448692A (en) | A kind of nanocomposite, preparation method and the application in HIFU synergist | |
Wei et al. | A tumor-associated bacteria-responsive magnetic exosome as a clearable T1 contrast agent for targeted imaging of tumors | |
CN111298139B (en) | Targeted nanomedicine for overcoming drug resistance caused by tumor hypoxia based on MRI guidance and its preparation method and application | |
CN110559454B (en) | Nano composite medicine for diagnosing and treating Alzheimer's disease | |
Duan et al. | Compartmentalized nano-MOFs as Co-delivery systems for enhanced antitumor therapy | |
Ge et al. | Transferrin receptors/magnetic resonance dual-targeted nanoplatform for precise chemo-photodynamic synergistic cancer therapy | |
CN104815341A (en) | Targeted polymer micelle magnetic nanoparticle, and preparation method and application thereof | |
CN104147608B (en) | Lithium amide soapstone nano particles modified by polyethylene glycol-folic acid as well as preparation and application of lithium amide soapstone nano particles | |
CN107007550B (en) | Redox-responsive amphiphilic copolymer and preparation method and application thereof | |
CN118059068A (en) | Berberine magnetic nanoparticle for treating oral squamous cell carcinoma | |
Xu et al. | Lipid droplet formation and dynamics: tracking by time-resolved fluorescence imaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |