CN111293192A - Method for controlling water vapor in vacuum chamber when preparing TCO film of solar cell - Google Patents
Method for controlling water vapor in vacuum chamber when preparing TCO film of solar cell Download PDFInfo
- Publication number
- CN111293192A CN111293192A CN202010116023.4A CN202010116023A CN111293192A CN 111293192 A CN111293192 A CN 111293192A CN 202010116023 A CN202010116023 A CN 202010116023A CN 111293192 A CN111293192 A CN 111293192A
- Authority
- CN
- China
- Prior art keywords
- chamber
- water vapor
- tco film
- preparing
- solar cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 71
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 65
- 230000007704 transition Effects 0.000 claims abstract description 39
- 238000006243 chemical reaction Methods 0.000 claims description 29
- 238000005259 measurement Methods 0.000 claims description 5
- 238000002360 preparation method Methods 0.000 abstract description 9
- 238000009833 condensation Methods 0.000 abstract description 4
- 230000005494 condensation Effects 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 239000007789 gas Substances 0.000 description 35
- 230000001276 controlling effect Effects 0.000 description 14
- 238000005240 physical vapour deposition Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000003507 refrigerant Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/138—Manufacture of transparent electrodes, e.g. transparent conductive oxides [TCO] or indium tin oxide [ITO] electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
- H10F77/244—Electrodes made of transparent conductive layers, e.g. transparent conductive oxide [TCO] layers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical Vapour Deposition (AREA)
Abstract
Description
技术领域technical field
本发明属于太阳能电池制造技术领域,涉及一种制备太阳能电池TCO膜时控制真空腔体水蒸气的方法。The invention belongs to the technical field of solar cell manufacturing, and relates to a method for controlling water vapor in a vacuum cavity when preparing a TCO film of a solar cell.
背景技术Background technique
近年来,太阳能电池生产技术不断进步,生产成本不断降低,转换效率不断提高,光伏发电的应用日益广泛并成为电力供应的重要能源。在追逐效率的道路上,硅异质结电池技术作为未来的高效技术路线,引起大家的广泛关注。In recent years, the production technology of solar cells has been continuously improved, the production cost has been continuously reduced, and the conversion efficiency has been continuously improved. The application of photovoltaic power generation has become increasingly widespread and has become an important energy source for power supply. On the road of chasing efficiency, silicon heterojunction cell technology, as the future high-efficiency technology route, has attracted widespread attention.
由于电池结构中,为了提高电池的电流收集、降低串联电阻、提高电池性能,引入了TCO材料作为电池的电极材料。这就要求TCO具有更高的导电性和光透过性。在制备TCO的时候,一般都是用PVD或者RPD设备,在制备工艺时,除了常用的氩气、氧气、氢气外,还经常需要通入水蒸气,合适的水蒸气量对TCO膜的电性能和光学性能都有明显提升,对电池的转换效率有明显的提升。但是由于水蒸气的量需求量很少,过多的水蒸气反而对TCO膜造成不利的影响,对真空设备也会造成不利影响,所以精确控制真空腔室内水蒸气的量非常重要。目前传统的做法主要是通过MFC控制气体的量,但是MFC的流量精度在低流量下精确度很低,水蒸气的流量更是难以精确控制。Due to the battery structure, in order to improve the current collection of the battery, reduce the series resistance, and improve the battery performance, TCO material is introduced as the electrode material of the battery. This requires TCO to have higher conductivity and light transmittance. In the preparation of TCO, PVD or RPD equipment is generally used. In the preparation process, in addition to the commonly used argon, oxygen, and hydrogen, water vapor is often introduced. The appropriate amount of water vapor affects the electrical properties of the TCO film. The optical performance has been significantly improved, and the conversion efficiency of the battery has been significantly improved. However, since the amount of water vapor required is very small, too much water vapor will adversely affect the TCO film and the vacuum equipment, so it is very important to accurately control the amount of water vapor in the vacuum chamber. At present, the traditional method is mainly to control the amount of gas through MFC, but the flow accuracy of MFC is very low at low flow rates, and the flow rate of water vapor is even more difficult to accurately control.
目前的PVD或者RPD设备,一般情况,为了控制工艺气体中,增加水蒸气的工艺管路,增加一路气体流量控制器MFC,通过气体流量控制器,控制水蒸气的量,但是由于MFC的精度有限,在1sccm以下的流量很难精确控制,但是TCO工艺中需要的水量的最佳值往往在1sccm以下,所以传统的做法不能很好的控制水蒸气的量,进而使得工艺没有达到最佳,而且由于MFC的流量不能精确控制,导致工艺波动较大。The current PVD or RPD equipment, in general, in order to control the process gas, increase the process pipeline of water vapor, add a gas flow controller MFC, and control the amount of water vapor through the gas flow controller, but due to the limited accuracy of MFC , it is difficult to precisely control the flow rate below 1 sccm, but the optimal value of the amount of water required in the TCO process is often below 1 sccm, so the traditional method cannot control the amount of water vapor well, which makes the process less than optimal, and Because the flow rate of the MFC cannot be precisely controlled, the process fluctuates greatly.
发明内容SUMMARY OF THE INVENTION
本发明的目的是针对上述问题,提供一种制备太阳能电池TCO膜时控制真空腔体水蒸气的方法。The purpose of the present invention is to solve the above problems, and provide a method for controlling water vapor in a vacuum cavity when preparing a TCO film of a solar cell.
为达到上述目的,本发明采用了下列技术方案:To achieve the above object, the present invention has adopted the following technical solutions:
一种制备太阳能电池TCO膜时控制真空腔体水蒸气的方法,在制备TCO膜设备的过渡腔室和/或工艺腔室中安装有低温冷凝泵,通过间歇性的开启或关闭低温冷凝泵,从而调节过渡腔室和/或工艺腔室中的水蒸气量。A method for controlling water vapor in a vacuum chamber when preparing a solar cell TCO film. A low temperature condensate pump is installed in a transition chamber and/or a process chamber of a device for preparing a TCO film. Thereby the amount of water vapor in the transition chamber and/or the process chamber is adjusted.
在上述的制备太阳能电池TCO膜时控制真空腔体水蒸气的方法中,在过渡腔室和/或工艺腔室安装有残余气体分析仪,残余气体分析仪连接低温冷凝泵,当残余气体分析仪检测到过渡腔室和/或工艺腔室中的水蒸气量大于设定值时,开启低温冷凝泵,当残余气体分析仪检测到过渡腔室和/或工艺腔室中的水蒸气量小于设定值时,关闭低温冷凝泵。In the above-mentioned method for controlling water vapor in a vacuum chamber when preparing a solar cell TCO film, a residual gas analyzer is installed in the transition chamber and/or the process chamber, and the residual gas analyzer is connected to a cryogenic condensate pump. When it is detected that the amount of water vapor in the transition chamber and/or the process chamber is greater than the set value, the cryogenic condensate pump is turned on, and when the residual gas analyzer detects that the amount of water vapor in the transition chamber and/or the process chamber is less than the set value When the value is set, the cryogenic condensate pump is turned off.
在上述的制备太阳能电池TCO膜时控制真空腔体水蒸气的方法中,残余气体分析仪通过变频控制器连接低温冷凝泵,残余气体分析仪检测到的信号传递给变频控制器,通过变频控制器调节低温冷凝泵的频率。In the above-mentioned method for controlling water vapor in a vacuum chamber when preparing a solar cell TCO film, the residual gas analyzer is connected to a low temperature condensing pump through a frequency conversion controller, and the signal detected by the residual gas analyzer is transmitted to the frequency conversion controller, and the frequency conversion controller Adjust the frequency of the cryogenic condensate pump.
在上述的制备太阳能电池TCO膜时控制真空腔体水蒸气的方法中,所述的制备TCO膜设备为PVD设备或RPD设备。In the above-mentioned method for controlling water vapor in a vacuum chamber when preparing a TCO film of a solar cell, the equipment for preparing the TCO film is a PVD equipment or an RPD equipment.
在上述的制备太阳能电池TCO膜时控制真空腔体水蒸气的方法中,所述的残余气体分析仪的测量范围在10-7-10-1Pa之间。In the above-mentioned method for controlling water vapor in a vacuum chamber when preparing a TCO film of a solar cell, the measurement range of the residual gas analyzer is between 10 -7 -10 -1 Pa.
在上述的制备太阳能电池TCO膜时控制真空腔体水蒸气的方法中,在工艺腔室两侧分别连接有一个过渡腔室,两个过渡腔室分别连接进片腔室和出片腔室。In the above-mentioned method for controlling water vapor in a vacuum chamber when preparing a solar cell TCO film, a transition chamber is respectively connected to both sides of the process chamber, and the two transition chambers are respectively connected to the wafer inlet chamber and the wafer outlet chamber.
本申请中的PVD设备为物理气相沉积设备,RPD设备为等离子体沉积设备,均可采用市售产品。TCO膜为透明导电膜。The PVD equipment in this application is a physical vapor deposition equipment, and the RPD equipment is a plasma deposition equipment, both of which are commercially available products. The TCO film is a transparent conductive film.
与现有的技术相比,本发明的优点在于:Compared with the prior art, the advantages of the present invention are:
1、本发明能精确控制水蒸气量,工艺稳定,从而提高TCO膜的制备效率和质量。1. The present invention can accurately control the amount of water vapor, and the process is stable, thereby improving the preparation efficiency and quality of the TCO film.
2、本发明中使用的低温冷凝泵,主要是通过低温吸附水蒸气,同时带有变频功能,可以调节吸附水汽的量,达到精确控制真空腔室水分子的含量。2. The cryogenic condensing pump used in the present invention mainly absorbs water vapor at low temperature and has a frequency conversion function, which can adjust the amount of adsorbed water vapor to precisely control the content of water molecules in the vacuum chamber.
本发明的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本发明的研究和实践而为本领域的技术人员所理解。Other advantages, objects, and features of the present invention will appear in part from the description that follows, and in part will be appreciated by those skilled in the art from the study and practice of the invention.
附图说明Description of drawings
图1实施例1的原理图。FIG. 1 is a schematic diagram of
图2实施例2的原理图。FIG. 2 is a schematic diagram of
图3实施例3的原理图。FIG. 3 is a schematic diagram of
图中:过渡腔室1、工艺腔室2、低温冷凝泵3、残余气体分析仪4、变频控制器5、进片腔室6、出片腔室7、缓冲腔室8。In the figure:
具体实施方式Detailed ways
下面结合附图对本发明进行进一步说明。The present invention will be further described below with reference to the accompanying drawings.
实施例1Example 1
如图1所示,一种制备太阳能电池TCO膜时控制真空腔体水蒸气的方法,在制备TCO膜设备的过渡腔室1和工艺腔室2中安装有低温冷凝泵3,通过间歇性的开启或关闭低温冷凝泵,从而调节过渡腔室1和/或工艺腔室2中的水蒸气量。制备TCO膜设备为PVD设备或RPD设备。As shown in Figure 1, a method for controlling water vapor in a vacuum chamber when preparing a TCO film of a solar cell, a low
具体的说,在过渡腔室和工艺腔室安装有残余气体分析仪4,残余气体分析仪的测量范围在10-7-10-1Pa之间。残余气体分析仪连接低温冷凝泵,当残余气体分析仪检测到过渡腔室和/或工艺腔室中的水蒸气量大于设定值时,开启低温冷凝泵,当残余气体分析仪检测到过渡腔室和/或工艺腔室中的水蒸气量小于设定值时,关闭低温冷凝泵。Specifically, a
低温冷凝泵的主要作用是通过零下120℃的低温冷媒,冲入盘在腔体壁的冷凝管中,来控制冷凝管的温度,水分子接触到零下120摄氏度的冷凝管后,迅速凝结并附着在管上,从而达到减少空气中水分子的目的,控制过渡腔室和/或工艺腔室中的真空度,提高抽真空的速率。The main function of the low-temperature condensing pump is to control the temperature of the condensing pipe through the low-temperature refrigerant at minus 120 degrees Celsius, which is flushed into the condensing pipe on the wall of the cavity. On the tube, so as to achieve the purpose of reducing water molecules in the air, control the degree of vacuum in the transition chamber and/or the process chamber, and increase the rate of vacuuming.
残余气体分析仪通过变频控制器5连接低温冷凝泵,残余气体分析仪检测到的信号传递给变频控制器,通过变频控制器调节低温冷凝泵的频率。通过变频,控制冷凝泵的温度和功率,进而精确调节冷凝泵的凝结水分子的能力。残余气体分析仪把测试数据传递给变频控制器,变频控制器通过对数据的分析,自动调整低温冷凝泵自身功率,进而达到控制水分子含量的目的。The residual gas analyzer is connected to the cryogenic condensate pump through the
在本实施例中,在工艺腔室2两侧分别连接有一个过渡腔室1,两个过渡腔室分别连接进片腔室6和出片腔室7。进片腔室6、出片腔室7与工艺腔室2之间还分别设有缓冲腔室8。In this embodiment, a
需要说明的是,真空腔体中水分子含量最佳范围值是通过人为给定,也即根据TCO膜的工艺确定,本领域技术人员可以自行制定该水分子含量的范围值,并作为变频控制器和低温冷凝泵的控制依据。It should be noted that the optimal range value of the water molecule content in the vacuum chamber is artificially given, that is, determined according to the process of the TCO membrane. Those skilled in the art can formulate the range value of the water molecule content by themselves, and use it as the frequency conversion control. Control basis for the boiler and cryogenic condensate pump.
实施例2Example 2
如图2所示,一种制备太阳能电池TCO膜时控制真空腔体水蒸气的方法,在制备TCO膜设备的过渡腔室1中安装有低温冷凝泵3,通过间歇性的开启或关闭低温冷凝泵,从而调节过渡腔室1和/或工艺腔室2中的水蒸气量。制备TCO膜设备为PVD设备或RPD设备。As shown in Figure 2, a method for controlling water vapor in a vacuum chamber when preparing a solar cell TCO film, a low
具体的说,在过渡腔室安装有残余气体分析仪4,残余气体分析仪的测量范围在10-7-10-1Pa之间。残余气体分析仪连接低温冷凝泵,当残余气体分析仪检测到过渡腔室和/或工艺腔室中的水蒸气量大于设定值时,开启低温冷凝泵,当残余气体分析仪检测到过渡腔室和/或工艺腔室中的水蒸气量小于设定值时,关闭低温冷凝泵。Specifically, a
低温冷凝泵的主要作用是通过零下120℃的低温冷媒,冲入盘在腔体壁的冷凝管中,来控制冷凝管的温度,水分子接触到零下120摄氏度的冷凝管后,迅速凝结并附着在管上,从而达到减少空气中水分子的目的,控制过渡腔室和/或工艺腔室中的真空度,提高抽真空的速率。The main function of the low-temperature condensing pump is to control the temperature of the condensing pipe through the low-temperature refrigerant at minus 120 degrees Celsius, which is flushed into the condensing pipe on the wall of the cavity. On the tube, so as to achieve the purpose of reducing water molecules in the air, control the degree of vacuum in the transition chamber and/or the process chamber, and increase the rate of vacuuming.
残余气体分析仪通过变频控制器5连接低温冷凝泵,残余气体分析仪检测到的信号传递给变频控制器,通过变频控制器调节低温冷凝泵的频率。通过变频,控制冷凝泵的温度和功率,进而精确调节冷凝泵的凝结水分子的能力。残余气体分析仪把测试数据传递给变频控制器,变频控制器通过对数据的分析,自动调整低温冷凝泵自身功率,进而达到控制水分子含量的目的。The residual gas analyzer is connected to the cryogenic condensate pump through the
在本实施例中,在工艺腔室2两侧分别连接有一个过渡腔室1,两个过渡腔室分别连接进片腔室6和出片腔室7。进片腔室6、出片腔室7与工艺腔室2之间还分别设有缓冲腔室8。In this embodiment, a
需要说明的是,真空腔体中水分子含量最佳范围值是通过人为给定,也即根据TCO膜的工艺确定,本领域技术人员可以自行制定该水分子含量的范围值,并作为变频控制器和低温冷凝泵的控制依据。It should be noted that the optimal range value of the water molecule content in the vacuum chamber is artificially given, that is, determined according to the process of the TCO membrane. Those skilled in the art can formulate the range value of the water molecule content by themselves, and use it as the frequency conversion control. Control basis for the boiler and cryogenic condensate pump.
实施例3Example 3
如图3所示,一种制备太阳能电池TCO膜时控制真空腔体水蒸气的方法,在制备TCO膜设备的工艺腔室2中安装有低温冷凝泵3,通过间歇性的开启或关闭低温冷凝泵,从而调节过渡腔室1和/或工艺腔室2中的水蒸气量。制备TCO膜设备为PVD设备或RPD设备。As shown in Figure 3, a method for controlling water vapor in a vacuum chamber when preparing a TCO film of a solar cell, a low
具体的说,在工艺腔室安装有残余气体分析仪4,残余气体分析仪的测量范围在10-7-10-1Pa之间。残余气体分析仪连接低温冷凝泵,当残余气体分析仪检测到过渡腔室和/或工艺腔室中的水蒸气量大于设定值时,开启低温冷凝泵,当残余气体分析仪检测到过渡腔室和/或工艺腔室中的水蒸气量小于设定值时,关闭低温冷凝泵。Specifically, a
低温冷凝泵的主要作用是通过零下120℃的低温冷媒,冲入盘在腔体壁的冷凝管中,来控制冷凝管的温度,水分子接触到零下120摄氏度的冷凝管后,迅速凝结并附着在管上,从而达到减少空气中水分子的目的,控制过渡腔室和/或工艺腔室中的真空度,提高抽真空的速率。The main function of the low-temperature condensing pump is to control the temperature of the condensing pipe through the low-temperature refrigerant at minus 120 degrees Celsius, which is flushed into the condensing pipe on the wall of the cavity. On the tube, so as to achieve the purpose of reducing water molecules in the air, control the degree of vacuum in the transition chamber and/or the process chamber, and increase the rate of vacuuming.
残余气体分析仪通过变频控制器5连接低温冷凝泵,残余气体分析仪检测到的信号传递给变频控制器,通过变频控制器调节低温冷凝泵的频率。通过变频,控制冷凝泵的温度和功率,进而精确调节冷凝泵的凝结水分子的能力。残余气体分析仪把测试数据传递给变频控制器,变频控制器通过对数据的分析,自动调整低温冷凝泵自身功率,进而达到控制水分子含量的目的。The residual gas analyzer is connected to the cryogenic condensate pump through the
在本实施例中,在工艺腔室2两侧分别连接有一个过渡腔室1,两个过渡腔室分别连接进片腔室6和出片腔室7。进片腔室6、出片腔室7与工艺腔室2之间还分别设有缓冲腔室8。In this embodiment, a
需要说明的是,真空腔体中水分子含量最佳范围值是通过人为给定,也即根据TCO膜的工艺确定,本领域技术人员可以自行制定该水分子含量的范围值,并作为变频控制器和低温冷凝泵的控制依据。It should be noted that the optimal range value of the water molecule content in the vacuum chamber is artificially given, that is, determined according to the process of the TCO membrane. Those skilled in the art can formulate the range value of the water molecule content by themselves, and use it as the frequency conversion control. Control basis for the boiler and cryogenic condensate pump.
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神。The specific embodiments described herein are merely illustrative of the spirit of the invention. Those skilled in the art to which the present invention pertains can make various modifications or additions to the described specific embodiments or substitute in similar manners, but will not deviate from the spirit of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010116023.4A CN111293192A (en) | 2020-02-25 | 2020-02-25 | Method for controlling water vapor in vacuum chamber when preparing TCO film of solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010116023.4A CN111293192A (en) | 2020-02-25 | 2020-02-25 | Method for controlling water vapor in vacuum chamber when preparing TCO film of solar cell |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111293192A true CN111293192A (en) | 2020-06-16 |
Family
ID=71020504
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010116023.4A Pending CN111293192A (en) | 2020-02-25 | 2020-02-25 | Method for controlling water vapor in vacuum chamber when preparing TCO film of solar cell |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111293192A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114318293A (en) * | 2021-12-29 | 2022-04-12 | 苏州迈为科技股份有限公司 | A method for controlling film-forming atmosphere of a battery sheet, a film-forming system and a film-forming method |
CN115274935A (en) * | 2022-08-09 | 2022-11-01 | 中威新能源(成都)有限公司 | TCO coating method, TCO coating equipment, solar cell and preparation method thereof |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101090992A (en) * | 2005-09-14 | 2007-12-19 | 松下电器产业株式会社 | Protective film manufacturing method and manufacturing device thereof |
US20120067065A1 (en) * | 2010-09-21 | 2012-03-22 | Sumitomo Heavy Industries, Ltd. | Cryopump system and method for controlling the cryopump system |
CN104120397A (en) * | 2014-07-31 | 2014-10-29 | 深圳市豪威薄膜技术有限公司 | Method and system for depositing indium tin oxide at low temperature |
CN104480441A (en) * | 2014-12-05 | 2015-04-01 | 中国科学院电工研究所 | Method for preparing hydrogen-containing zinc aluminum oxide transparent conducting film by using metal alloy target |
CN108048796A (en) * | 2017-12-14 | 2018-05-18 | 君泰创新(北京)科技有限公司 | The preparation method of ito thin film |
CN108224394A (en) * | 2017-12-29 | 2018-06-29 | 南京师范大学 | A kind of micro steam generating device and method |
CN108649105A (en) * | 2018-07-02 | 2018-10-12 | 北京铂阳顶荣光伏科技有限公司 | A kind of method for manufacturing solar battery |
CN110015729A (en) * | 2019-03-26 | 2019-07-16 | 西安交通大学 | Temperature control and water vapor condensation device and method for plasma treated water |
CN110310999A (en) * | 2019-07-22 | 2019-10-08 | 江苏爱康能源研究院有限公司 | Gradient stacked TCO conductive film heterojunction battery structure and its preparation method |
-
2020
- 2020-02-25 CN CN202010116023.4A patent/CN111293192A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101090992A (en) * | 2005-09-14 | 2007-12-19 | 松下电器产业株式会社 | Protective film manufacturing method and manufacturing device thereof |
US20120067065A1 (en) * | 2010-09-21 | 2012-03-22 | Sumitomo Heavy Industries, Ltd. | Cryopump system and method for controlling the cryopump system |
CN104120397A (en) * | 2014-07-31 | 2014-10-29 | 深圳市豪威薄膜技术有限公司 | Method and system for depositing indium tin oxide at low temperature |
CN104480441A (en) * | 2014-12-05 | 2015-04-01 | 中国科学院电工研究所 | Method for preparing hydrogen-containing zinc aluminum oxide transparent conducting film by using metal alloy target |
CN108048796A (en) * | 2017-12-14 | 2018-05-18 | 君泰创新(北京)科技有限公司 | The preparation method of ito thin film |
CN108224394A (en) * | 2017-12-29 | 2018-06-29 | 南京师范大学 | A kind of micro steam generating device and method |
CN108649105A (en) * | 2018-07-02 | 2018-10-12 | 北京铂阳顶荣光伏科技有限公司 | A kind of method for manufacturing solar battery |
CN110015729A (en) * | 2019-03-26 | 2019-07-16 | 西安交通大学 | Temperature control and water vapor condensation device and method for plasma treated water |
CN110310999A (en) * | 2019-07-22 | 2019-10-08 | 江苏爱康能源研究院有限公司 | Gradient stacked TCO conductive film heterojunction battery structure and its preparation method |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114318293A (en) * | 2021-12-29 | 2022-04-12 | 苏州迈为科技股份有限公司 | A method for controlling film-forming atmosphere of a battery sheet, a film-forming system and a film-forming method |
CN115274935A (en) * | 2022-08-09 | 2022-11-01 | 中威新能源(成都)有限公司 | TCO coating method, TCO coating equipment, solar cell and preparation method thereof |
CN115274935B (en) * | 2022-08-09 | 2024-03-29 | 中威新能源(成都)有限公司 | TCO coating method, TCO coating equipment, solar cell and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN2906505Y (en) | Solar silicon wafer sintering furnace | |
CN201590408U (en) | Diffusion furnace pressure automatic balance structure | |
CN111293192A (en) | Method for controlling water vapor in vacuum chamber when preparing TCO film of solar cell | |
CN207967023U (en) | A kind of electrode mechanism of tubular type PECVD | |
CN101431127B (en) | A kind of preparation method of flexible amorphous silicon thin film solar cell | |
CN115172808A (en) | High-efficiency fuel cell gas distribution control system and method | |
CN107579259A (en) | A kind of preparation method of graphene modified carbon felt | |
WO2021103054A1 (en) | Multi-parallel carbon dioxide heat pump control method based on target load control | |
CN103296742A (en) | Solar energy-hydrogen energy hybrid power driving device capable of achieving automatic control | |
CN105070782A (en) | Low-pressure diffusion technique in solar cell silicon wafer production process | |
CN104032283B (en) | A kind of control device of large-area flat-plate PECVD device reaction chamber pressure | |
CN105821379A (en) | Method for preparing single-phase transparent conductive cuprous oxide film | |
CN206902250U (en) | A kind of heat preservation of aluminium electrolytic cell regulation and afterheat utilizing system | |
CN106024964A (en) | N-type back junction double-sided solar cell manufacturing method | |
CN211530083U (en) | Fuel cell heat balance 'gas-liquid' three-phase heat exchange system | |
CN118263475A (en) | Method for activating membrane electrode of proton exchange membrane fuel cell | |
CN108010988A (en) | A kind of low voltage control crystal silicon chip phosphorus diffusion system | |
CN109244193B (en) | Solar cell preparation process and process control system | |
CN201838663U (en) | Proton exchange membrane fuel cell test platform temperature control system | |
CN111640967A (en) | Air inlet system of molten carbonate fuel cell stack and working method thereof | |
CN110739370A (en) | System for flexible CIGS solar cell slice selenium source hydrogenation reinforcing selenium reaction activity | |
CN116895715A (en) | Solar cell boron diffusion control method, device and system | |
CN102903617B (en) | Based on the direct epitaxial growth method of Graphene CVD of GaN substrate and the device of manufacture | |
CN201655827U (en) | Device for manufacturing CIGS optical absorbing layer in non-vacuum way | |
CN101562215A (en) | Preparation method for improving efficiency of monolocular precipitation microcrystal silicon-based thin film solar cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200616 |