CN111291107B - A progressive immersive visual data analysis method based on virtual reality technology - Google Patents
A progressive immersive visual data analysis method based on virtual reality technology Download PDFInfo
- Publication number
- CN111291107B CN111291107B CN202010046556.XA CN202010046556A CN111291107B CN 111291107 B CN111291107 B CN 111291107B CN 202010046556 A CN202010046556 A CN 202010046556A CN 111291107 B CN111291107 B CN 111291107B
- Authority
- CN
- China
- Prior art keywords
- data
- progressive
- virtual reality
- mining
- sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/26—Visual data mining; Browsing structured data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Databases & Information Systems (AREA)
- Human Computer Interaction (AREA)
- Data Mining & Analysis (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
技术领域technical field
本发明涉及可视化数据挖掘分析领域,特别涉及一种基于虚拟现实技术的渐进沉浸式视觉数据分析方法。The invention relates to the field of visual data mining and analysis, in particular to a progressively immersive visual data analysis method based on virtual reality technology.
背景技术Background technique
近年来,随着计算机连续处理数据的能力的提高,许多海量数据的处理时间大大减少,但是当处理许多经典数据分析系统时,由于需要的海量数据量以及所涉及算法的复杂性仍然会给数据分析人员带来延迟。基于增量可视化,有许多新兴的渐进式视觉分析系统,它们的目的是通过利用渐进式分析算法的执行提供的部分中间结果来减轻等待时间。渐进式视觉分析的基本思想是可以将分析算法设计为在执行过程中产生有意义的部分结果,然后可以将渐进结果与交互式可视化相结合,允许用户立即浏览部分结果,在计算出新结果后立即检查它们,并执行新的探索性分析,而无需等待先前的分析完成,建议避免强制性的等待时间。这种方法与传统的预计算和加速方法形成了鲜明的对比,传统的预计算和加速方法都假定必须先完成分析,然后才能将结果用于视觉交互。渐进式分析系统允许用户与数据挖掘算法进行交互,方法是通过在发现算法结果后立即呈现算法结果,或者提供将其引导到所需数据或结果上的可能性。总而言之,渐进式可视化分析有望通过消除用户执行交互和计算分析之间的时间间隔来加快用户的分析速度。In recent years, with the improvement of the ability of computers to continuously process data, the processing time of many massive data has been greatly reduced. Analysts bring delays. Based on incremental visualization, there are many emerging progressive visual analysis systems that aim to alleviate latency by exploiting partial intermediate results provided by the execution of progressive analysis algorithms. The basic idea of progressive visual analysis is that the analysis algorithm can be designed to produce meaningful partial results during execution, and then the progressive results can be combined with interactive visualization, allowing users to browse partial results immediately, after calculating new results Check them immediately, and perform new exploratory analyzes without waiting for previous analyzes to complete, which is recommended to avoid mandatory waiting times. This approach stands in stark contrast to traditional precomputation and acceleration methods, which assume that the analysis must be done before the results can be used for visual interaction. Progressive analysis systems allow users to interact with data mining algorithms by presenting the algorithm results as soon as they are discovered, or by providing the possibility to direct them to desired data or results. Altogether, progressive visual analytics promises to speed up the analysis for users by eliminating the time lag between when the user performs the interaction and when the analysis is computed.
沉浸式分析也是一个新兴的研究领域,其目的是探索“新兴的用户界面技术的适用性和发展,以创造更多引人入胜的身临其境的体验以及无缝工作流以进行数据分析应用”,即研究增强现实的使用(AR)和虚拟现实(VR)设备,以身临其境的方式可视化和分析数据。我们还可以定义使用引人注目的物化分析工具来支持数据理解和决策。其目标是消除人员,数据及其用于分析的工具之间的障碍。同时,它旨在支持各地和每个人的数据理解和决策,无论是单独工作还是协同工作,沉浸式分析系统通常建立在现有的虚拟/增强现实环境之上。在渐进式沉浸式视觉分析领域,虚拟/增强现实环境通过多个输入设备控制计算并跟踪多种人类分析行为,从而提供了丰富的多模式交互机会。Immersive analytics is also an emerging research field that aims to explore "the applicability and development of emerging user interface technologies to create more engaging and immersive experiences and seamless workflows for data analytics applications", Namely researching the use of Augmented Reality (AR) and Virtual Reality (VR) devices to visualize and analyze data in an immersive way. We can also define the use of compelling materialized analysis tools to support data understanding and decision making. Its goal is to remove barriers between people, data, and the tools they use to analyze it. At the same time, it is designed to support data understanding and decision-making everywhere and for everyone, whether working alone or collaboratively. Immersive analytics systems are often built on top of existing virtual/augmented reality environments. In the field of progressive immersive visual analytics, virtual/augmented reality environments control computing and track multiple human analytics behaviors through multiple input devices, thus providing rich opportunities for multimodal interaction.
GSP算法是一种序列模式挖掘算法,序列模式挖掘就是从一个数据序列(DataSequence)集合S中找出所有满足用户指定最小支持度的序列。每个这样的序列称为一个频繁序列,或者序列模式。GSP算法核心思想是:在每一次扫描(pass)数据库时,利用上一次扫描时产生的大序列生成候选序列,并在扫描的同时计算它们的支持度(support),满足支持度的候选序列作为下次扫描的大序列。第1次扫描时,长度为1的频繁序列模式作为初始的种子集序列。另外GSP算法利用Hash树来存储候选序列,减小了需要扫描的序列数量,同时对数据序列的表示方法进行转换,这样就可以有效地发现一个侯选项是否是数据序列的子序列。The GSP algorithm is a sequential pattern mining algorithm. Sequential pattern mining is to find all sequences that meet the minimum support specified by the user from a data sequence (DataSequence) set S. Each such sequence is called a frequent sequence, or sequential pattern. The core idea of the GSP algorithm is: each time the database is scanned (pass), the candidate sequence is generated by using the large sequence generated in the previous scan, and their support is calculated while scanning, and the candidate sequence that satisfies the support is used as Large sequence for next scan. In the first scan, the frequent sequence pattern with a length of 1 is used as the initial seed set sequence. In addition, the GSP algorithm uses the Hash tree to store candidate sequences, which reduces the number of sequences to be scanned, and at the same time converts the representation method of the data sequence, so that it can effectively find out whether a candidate is a subsequence of the data sequence.
发明内容Contents of the invention
本发明的主要目的在于克服现有技术的缺点与不足,提供一种基于虚拟现实技术的渐进沉浸式视觉数据分析方法,该方法根据虚拟现实技术的特点,渐进沉浸式视觉分析系统能实现数据的可视化分析以及交互,与传统的渐进式视觉分析系统相比,沉浸式交互环境给予数据分析人员更好的数据分析环境和更棒的交互沉浸式体验,有利于数据分析人员进行快速的数据分析和挖掘。The main purpose of the present invention is to overcome the shortcomings and deficiencies of the prior art, and provide a progressively immersive visual data analysis method based on virtual reality technology. According to the characteristics of virtual reality technology, the progressively immersive visual analysis system can realize data analysis. Visual analysis and interaction. Compared with the traditional progressive visual analysis system, the immersive interactive environment gives data analysts a better data analysis environment and a better interactive immersive experience, which is beneficial for data analysts to perform rapid data analysis and dig.
本发明的目的通过以下的技术方案实现:The purpose of the present invention is achieved through the following technical solutions:
一种基于虚拟现实技术的渐进沉浸式视觉数据分析方法,包括以下步骤:A progressive immersive visual data analysis method based on virtual reality technology, comprising the following steps:
S1、利用WebSocket进行客户端-服务器端之间消息的通信,利用发送的消息选择对应的数据库和操作;S1. Use WebSocket to communicate messages between the client and the server, and use the sent messages to select the corresponding database and operation;
S2、运行GSP渐进式序列模式挖掘算法,得到定制内容的数据,通过WebSocket将数据传送到客户端;S2. Run the GSP progressive sequence pattern mining algorithm to obtain the data of customized content, and transmit the data to the client through WebSocket;
S3、使用HTC VIVE设备实现虚拟现实沉浸式环境,根据挖掘数据的属性构建坐标系;S3. Use the HTC VIVE device to realize the virtual reality immersive environment, and construct the coordinate system according to the attributes of the mining data;
S4、使用Unity的prefab进行数据的实例化,数据呈现在坐标系中,使用Handler手柄进行数据的操作和交互;S4. Use Unity's prefab to instantiate the data, the data is presented in the coordinate system, and the Handler handle is used to operate and interact with the data;
步骤S1中,所述WebSocket,实现客户端和服务器端之间全双工通信:在创建socket后,能够通过onopen、onmessage、onclose和onerror四个事件对socket进行响应;通过协议好的地址进行open连接操作,能够通过send()方法向服务器发送数据,能够通过onmessage事件接收服务器返回的数据,数据传输完毕之后,WebSocket进行close事件关闭连接,如果出现连接、处理、接收、发送数据失败的时候触发onerror事件。In step S1, the WebSocket realizes full-duplex communication between the client and the server: after the socket is created, it can respond to the socket through four events: onopen, onmessage, onclose and onerror; open the socket through a good address of the protocol The connection operation can send data to the server through the send() method, and can receive the data returned by the server through the onmessage event. After the data transmission is completed, the WebSocket will perform a close event to close the connection. It will be triggered when the connection, processing, receiving, and sending data fail. onerror event.
步骤S2中,所述GSP渐进式序列模式挖掘算法,能够将分析算法设计为在执行数据挖掘过程中产生有意义的部分结果,能够将部分渐进结果给予用户立即浏览部分内容的可视化结果,并同时执行剩余的数据挖掘分析。In step S2, the GSP progressive sequential pattern mining algorithm can design the analysis algorithm to generate meaningful partial results during the execution of data mining, and can give the partial progressive results to the user to immediately browse the visual results of partial content, and at the same time Perform the remaining data mining analysis.
步骤S2中,所述GSP渐进式序列模式挖掘算法,是在每一次扫描数据库时,利用上一次扫描时产生的大序列生成候选序列,并在扫描的同时计算它们的支持度(support),满足支持度的候选序列作为下次扫描的大序列。In step S2, the GSP progressive sequence pattern mining algorithm is to use the large sequence generated during the previous scan to generate candidate sequences each time the database is scanned, and calculate their support (support) while scanning, satisfying The candidate sequence of the support degree is used as the large sequence for the next scan.
步骤S3中,所述挖掘数据的属性包括基于模式数据的大小(size)、支持度(support)和数量(number)。In step S3, the attributes of the mining data include the size (size), support (support) and number (number) of the pattern-based data.
步骤S4中,所述使用Unity的prefab进行数据的可视化,具体为:首先创建object和prefab,然后将挖掘数据导入到Unity并且进行prefab的实例化,能够将数据可视化,经过世界坐标和Camera坐标的转换以及规模转换,然后通过VR设备,将数据显示在VR环境的坐标系中进行交互。In step S4, the use of Unity's prefab for data visualization is specifically: firstly create an object and a prefab, then import the mining data into Unity and instantiate the prefab, the data can be visualized, and the world coordinates and Camera coordinates Transformation and scale conversion, and then through the VR device, the data is displayed in the coordinate system of the VR environment for interaction.
本发明与现有技术相比,具有如下优点和有益效果:Compared with the prior art, the present invention has the following advantages and beneficial effects:
1、本发明从渐进式算法和基于虚拟现实技术的沉浸式交互两个方面对挖掘数据的可视化分析提出了有效的解决方案。1. The present invention proposes an effective solution for visual analysis of mining data from two aspects of progressive algorithm and immersive interaction based on virtual reality technology.
2、本发明提供沉浸式交互环境相比于传统交互方式给予数据分析人员更好的数据分析环境和更棒的交互体验,有利于数据分析人员进行快速的数据分析和挖掘。2. Compared with traditional interactive methods, the present invention provides an immersive interactive environment to provide data analysts with a better data analysis environment and better interactive experience, which is beneficial for data analysts to perform rapid data analysis and mining.
3、本发明使用Unity工具非常适合跨平台开发,并且提供大量的插件便于开发,其中使用的VRTK是高效的交互插件,可帮助在Unity中快速轻松地构建VR解决方案,其目的是通过加快从原型构思到构建完整解决方案的创建过程,帮助用户提高生产率。3. The present invention uses the Unity tool to be very suitable for cross-platform development, and provides a large number of plug-ins for easy development, wherein the VRTK used is an efficient interactive plug-in, which can help to quickly and easily build VR solutions in Unity. The creation process from prototyping ideas to building a complete solution helps users increase productivity.
附图说明Description of drawings
图1为渐进式视觉分析算法和传统非渐进式视觉分析算法的对比图。Figure 1 is a comparison diagram between progressive visual analysis algorithms and traditional non-progressive visual analysis algorithms.
图2为GSP序列模式挖掘算法的一个实例以及GSP算法的实现伪代码图。Figure 2 is an example of the GSP sequential pattern mining algorithm and a pseudo-code diagram of the GSP algorithm.
图3为本发明所述种基于虚拟现实技术的渐进沉浸式视觉数据分析系统和传统的渐进式视觉分析系统的对比流程图。Fig. 3 is a comparison flow chart of the progressive immersive visual data analysis system based on virtual reality technology of the present invention and the traditional progressive visual analysis system.
图4为基于虚拟现实技术的渐进沉浸式视觉数据分析系统和传统的渐进式视觉分析系统进行交互数据显示方式的对比图。Fig. 4 is a comparison diagram of interactive data display methods between the progressive immersive visual data analysis system based on virtual reality technology and the traditional progressive visual analysis system.
图5为本发明所述一种基于虚拟现实技术的渐进沉浸式视觉数据分析方法的流程图。FIG. 5 is a flowchart of a progressively immersive visual data analysis method based on virtual reality technology according to the present invention.
具体实施方式Detailed ways
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。The present invention will be further described in detail below in conjunction with the embodiments and the accompanying drawings, but the embodiments of the present invention are not limited thereto.
如图5所示,一种基于虚拟现实技术的渐进沉浸式视觉数据分析方法,包含以下步骤:当客户端通过WebSocket发送消息到服务器端,选择相关的数据库运行GSP渐进式序列模式挖掘算法,把挖掘到的数据信息通过WebSocket传送到Unity客户端,通过虚拟现实技术实现挖掘数据的可视化呈现。其中运行GSP渐进式序列模式挖掘算法期间,我们可以对数据进行相关的交互操作以及对算法进行转向操作,得到我们所需要的可视化数据。As shown in Figure 5, a progressive immersive visual data analysis method based on virtual reality technology includes the following steps: when the client sends a message to the server through WebSocket, select the relevant database to run the GSP progressive sequential pattern mining algorithm, and The mined data information is transmitted to the Unity client through WebSocket, and the visual presentation of the mined data is realized through virtual reality technology. During the running of the GSP progressive sequential pattern mining algorithm, we can perform relevant interactive operations on the data and steering operations on the algorithm to obtain the visualized data we need.
如图1所示,渐进式视觉分析算法和传统非渐进式视觉分析算法的对比:As shown in Figure 1, the comparison between the progressive visual analysis algorithm and the traditional non-progressive visual analysis algorithm:
首先,数据分析人员选择需要分析的数据库,选择数据属性的参数进行挖掘,对于渐进式视觉分析算法的系统,它们的目的是通过利用渐进式分析算法的执行提供的部分中间结果来减轻等待时间,系统是可以将分析算法设计为在执行过程中产生有意义的部分结果,然后可以将渐进结果与交互式可视化相结合,允许数据分析人员立即浏览部分结果,在计算出新结果后立即检查它们,并执行新的探索性分析,而无需等待先前的分析完成,建议避免强制性的等待时间。这种方法与传统的预计算和加速方法形成了鲜明的对比,传统的预计算和加速方法都假定必须先完成分析,然后才能得到结果。First, the data analyst selects the database to be analyzed, and selects the parameters of the data attributes for mining. For systems with progressive visual analysis algorithms, their purpose is to reduce waiting time by utilizing partial intermediate results provided by the execution of progressive analysis algorithms, The system is that analysis algorithms can be designed to produce meaningful partial results during execution, and progressive results can then be combined with interactive visualizations, allowing data analysts to browse partial results immediately, inspecting new results as soon as they are calculated, and perform new exploratory analyzes without waiting for previous analyzes to complete, which is recommended to avoid mandatory waiting times. This approach stands in stark contrast to traditional precomputation and acceleration methods, which assume that the analysis must be done before results can be obtained.
如图2所示,在步骤S2中关于GSP序列模式挖掘算法实例以及伪代码细化步骤如下:As shown in Figure 2, in step S2, the refinement steps of the GSP sequence pattern mining algorithm example and pseudo-code are as follows:
2.1)一个序列是指将与对象有关的所有事件按时间戳增序排列,就得到对象的一个序列s。序列数据库包含一个或多个序列数据的数据集,如图2中的S1和S2所示。序列的支持度是指序列s的支持度指包含s的所有数据序列(与单个数据对象(图2中的A/B/C)相关联的事件的有序列表)所占的比例,若序列s的支持度大于或等于minsup,则称s是一个序列模式(频繁序列)。序列模式挖掘是指给定序列数据集Dataset和用户指定的最小支持度minsup,找出支持度大于或等于minsup的所有序列。2.1) A sequence refers to arranging all the events related to the object in increasing order of time stamp to obtain a sequence s of the object. A sequence database contains one or more datasets of sequence data, as shown by S1 and S2 in Figure 2. The support degree of a sequence refers to the proportion of all data sequences containing s (an ordered list of events associated with a single data object (A/B/C in Figure 2)) of the sequence s, if the sequence If the support of s is greater than or equal to minsup, then s is said to be a sequence pattern (frequent sequence). Sequence pattern mining refers to finding all sequences whose support is greater than or equal to minsup given a sequence dataset Dataset and the minimum support minsup specified by the user.
2.2)GSP序列模式挖掘算法的思想就是:1、长度为1的序列模式C1,作为初始的种子集候选k-频繁序列模式;2、根据长度为k的种子集Ck,通过连接操作和剪切操作生成长度为k+1的候选序列模式Ck+1,然后扫描数据库,计算每个候选序列模式的支持度,产生长度为k+1的序列模式Fk+1并作为新的种子集。3、重复第二步,直到没有新的序列模式或新的候选序列模式产生为止。2.2) The idea of the GSP sequence pattern mining algorithm is: 1. The sequence pattern C1 with a length of 1 is used as the initial seed set candidate k-frequent sequence pattern; 2. According to the seed set Ck with a length of k, through the connection operation and cutting The operation generates a candidate sequence pattern Ck+1 of length k+1, then scans the database, calculates the support of each candidate sequence pattern, and generates a sequence pattern Fk+1 of length k+1 as a new seed set. 3. Repeat the second step until no new sequence pattern or new candidate sequence pattern is generated.
其中,Ck表示候选k-频繁序列模式,Fk表示k-频繁序列模式,UkFk表示所有k-频繁序列模式的并集。Among them, Ck represents the candidate k-frequent sequential pattern, Fk represents the k-frequent sequential pattern, and UkFk represents the union of all k-frequent sequential patterns.
如图3所示为本发明所述种基于虚拟现实技术的渐进沉浸式视觉数据分析系统和传统的渐进式视觉分析系统的对比流程图。首先前面的几个步骤是相同的,客户端发送利用WebSocket技术,实现客户端和服务器端之间全双工通信。通过WebSocket的消息事件选择要进行挖掘分析的数据库,之后会运行GSP序列模式挖掘算法得到我们想要的模式数据,在挖掘分析过程中,用户分析人员可以进行算法的转向以及改变挖掘模式数据的属性要求以得到不同的数据结果。表1为WebSocket中四个消息事件的具体解释。As shown in FIG. 3 , it is a comparison flow chart of the progressive immersive visual data analysis system based on virtual reality technology of the present invention and the traditional progressive visual analysis system. First of all, the previous steps are the same. The client sends using WebSocket technology to realize full-duplex communication between the client and the server. Select the database to be mined and analyzed through WebSocket message events, and then run the GSP sequence pattern mining algorithm to obtain the pattern data we want. During the mining and analysis process, user analysts can turn the algorithm and change the attributes of the mining pattern data required to obtain different data results. Table 1 is the specific explanation of the four message events in WebSocket.
表1Table 1
在后面的步骤中,传统的渐进式视觉分析系统是将挖掘得到的模式数据呈现在传统的网页上,数据分析人员使用鼠标进行交互的操作。我们提出的基于虚拟现实技术的渐进沉浸式视觉数据分析系统是将通过WebSocket传送过来的模式数据进行可视化,通过HMD和VR设备构建虚拟现实的环境,将数据可视化在我们定义的世界坐标系中,细化步骤如下:In the following steps, the traditional progressive visual analysis system presents the mined pattern data on a traditional web page, and data analysts use the mouse to perform interactive operations. The progressive immersive visual data analysis system we proposed based on virtual reality technology visualizes the pattern data transmitted through WebSocket, builds a virtual reality environment through HMD and VR equipment, and visualizes the data in the world coordinate system we defined. The refinement steps are as follows:
3.1)为了使数据可视化,我们需要点来表示数据。有很多方法可以做到这一点,但是更直接的方法之一是在Unity的内置3D assets上使用Sphere,并将其转换为所谓的“prefab”,它本质上是一个模板对象,它可以被克隆和复制。根据需要进行修改。3.1) In order to visualize the data, we need points to represent the data. There are many ways to do this, but one of the more straightforward ways is to use a Sphere on Unity's built-in 3D assets and convert it into a so-called "prefab", which is essentially a template object that can be cloned and copy. Modify as needed.
3.2)创建prefab,我们需要将Unity中自定义的Sphere转换为prefab,以便我们可以根据需要为可视化创建其副本。通过在“Project”窗口中“Assets”下右键单击并在打开的菜单中选择“Creat”窗口中的“prefab”,来创建prefab对象。3.2) To create a prefab, we need to convert the custom Sphere in Unity to a prefab so that we can create a copy of it for visualization as needed. Create a prefab object by right-clicking under Assets in the Project window and selecting "prefab" in the "Creat" window in the menu that opens.
3.3)将挖掘数据通过WebSocket传递过来,然后进行实例化prefab,我们需要将我们制作的预制prefab与脚本关联起来,然后指导脚本实例化(进行克隆)。首先我们需要让脚本知道将要放置的预制件,为此,我们需要在脚本内声明一个公共GameObject变量,将我们创建的prefab预制件从“Project”窗口拖到该字段。3.3) Pass the mining data through WebSocket, and then instantiate the prefab. We need to associate the prefab we made with the script, and then guide the script to instantiate (clone). First we need to let the script know which prefab will be placed, to do this we need to declare a public GameObject variable inside the script, drag the prefab we created from the "Project" window into this field.
3.4)然后使用Instantiate方法进行实例化和位置坐标的转换,不断实例化传递过来的挖掘模式数据,通过ToSingle方法读取模式数据的属性值,并且将属性值赋予坐标值,然后经过Transform方法将世界坐标系转换为我们构建的坐标系值,最终得到可视化的坐标数据。3.4) Then use the Instantiate method to instantiate and convert the position coordinates, continuously instantiate the passed mining pattern data, read the attribute value of the pattern data through the ToSingle method, and assign the attribute value to the coordinate value, and then transform the world through the Transform method The coordinate system is converted to the coordinate system value we constructed, and finally the visualized coordinate data is obtained.
如图4所示,通过Handler手柄进行交互任务,例如改变挖掘模式数据的属性大小,对挖掘算法进行转向操作以及查看分析已挖掘得到的可视化数据等。其中主要使用到VRTK去实现,细化步骤如下:As shown in Figure 4, interactive tasks are performed through the Handler handle, such as changing the attribute size of the mining mode data, performing steering operations on the mining algorithm, and viewing and analyzing the visualized data that has been mined. Among them, VRTK is mainly used to realize, and the refinement steps are as follows:
4.1)导入SteamVR和VRTK包。新建一个场景,删掉自带的Camera,新建一个Plane。新建一个空物体,重命名为VRTK_SDK Manager,添加组件VRTK_SDK Manager。创建空物体为VRTK_SDK Manager的子物体,重命名为VRTK_SDK Setup,添加组件VRTK_SDK Setup。4.1) Import SteamVR and VRTK packages. Create a new scene, delete the built-in Camera, and create a new Plane. Create a new empty object, rename it to VRTK_SDK Manager, and add the component VRTK_SDK Manager. Create an empty object as a sub-object of VRTK_SDK Manager, rename it to VRTK_SDK Setup, and add the component VRTK_SDK Setup.
4.2)添加预制体Camera_Rig作为VRTK_SDK Setup的子物体。选中VRTK_SDKManager,选中Setups中点击“+”,将VRTK_SDK Setup拖动到“None(VRTK_SDK Setup)”的位置。新建空物体,重命名为VRTK_Scripts。在VRTK_Scripts下创建两个空物体,分别重命名为LeftController(用来配置左手柄)、RightController(右手柄)。4.2) Add the prefab Camera_Rig as a child object of VRTK_SDK Setup. Select VRTK_SDKManager, select Setups and click "+", and drag VRTK_SDK Setup to the position of "None(VRTK_SDK Setup)". Create a new empty object and rename it to VRTK_Scripts. Create two empty objects under VRTK_Scripts and rename them as LeftController (for configuring the left handle) and RightController (right handle).
4.3)选中LeftController和RightController,分别设置左指针和右指针。然后再手柄上添加VRTK的自带的部分脚本,可以控制Handler手柄和物体的交互,当我们需要自定义功能的时候,我们就要开始自己写脚本或者继承已有的VRTK自带脚本进行功能扩展,使用到的部分脚本功能如表2所示。4.3) Select LeftController and RightController, set the left pointer and right pointer respectively. Then add some scripts that come with VRTK on the handle, which can control the interaction between the Handler handle and the object. When we need custom functions, we have to start writing scripts or inherit the existing VRTK scripts to expand functions. , some of the script functions used are shown in Table 2.
表2Table 2
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiment is a preferred embodiment of the present invention, but the embodiment of the present invention is not limited by the above-mentioned embodiment, and any other changes, modifications, substitutions, combinations, Simplifications should be equivalent replacement methods, and all are included in the protection scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010046556.XA CN111291107B (en) | 2020-01-16 | 2020-01-16 | A progressive immersive visual data analysis method based on virtual reality technology |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010046556.XA CN111291107B (en) | 2020-01-16 | 2020-01-16 | A progressive immersive visual data analysis method based on virtual reality technology |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111291107A CN111291107A (en) | 2020-06-16 |
CN111291107B true CN111291107B (en) | 2023-06-16 |
Family
ID=71026403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010046556.XA Expired - Fee Related CN111291107B (en) | 2020-01-16 | 2020-01-16 | A progressive immersive visual data analysis method based on virtual reality technology |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111291107B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104504159A (en) * | 2015-01-19 | 2015-04-08 | 齐鲁工业大学 | Application of multi-supporting-degree positive and negative sequence modes in clients' purchasing behavior analysis |
CN105868314A (en) * | 2016-03-25 | 2016-08-17 | 齐鲁工业大学 | Multi-support-degree weighted negative sequence pattern data mining method |
CN110262655A (en) * | 2019-05-21 | 2019-09-20 | 佛山科学技术学院 | A kind of collecting method and equipment of virtual reality fusion emulation experiment |
-
2020
- 2020-01-16 CN CN202010046556.XA patent/CN111291107B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104504159A (en) * | 2015-01-19 | 2015-04-08 | 齐鲁工业大学 | Application of multi-supporting-degree positive and negative sequence modes in clients' purchasing behavior analysis |
CN105868314A (en) * | 2016-03-25 | 2016-08-17 | 齐鲁工业大学 | Multi-support-degree weighted negative sequence pattern data mining method |
CN110262655A (en) * | 2019-05-21 | 2019-09-20 | 佛山科学技术学院 | A kind of collecting method and equipment of virtual reality fusion emulation experiment |
Also Published As
Publication number | Publication date |
---|---|
CN111291107A (en) | 2020-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12079626B2 (en) | Methods and systems for creating applications using scene trees | |
US10713258B2 (en) | Systems and methods for visualizing and manipulating graph databases | |
EP1175661B1 (en) | Computer method and apparatus for creating visible graphics by using a graph algebra | |
CN104298496B (en) | data analysis type software development framework system | |
CN1996392A (en) | Figure reconstruction method in 3D scanning system | |
US20140331179A1 (en) | Automated Presentation of Visualized Data | |
US12210822B2 (en) | Document tracking through version hash linked graphs | |
US20140184592A1 (en) | Creating, editing, and querying parametric models, e.g., using nested bounding volumes | |
CN113010612A (en) | Visual construction method, query method and device for graph data | |
Liu et al. | Interactive extended reality techniques in information visualization | |
US10304225B2 (en) | Chart-type agnostic scene graph for defining a chart | |
Deng et al. | CrossGAI: A cross-device generative AI framework for collaborative fashion design | |
US11086498B2 (en) | Server-side chart layout for interactive web application charts | |
US20110161410A1 (en) | Massive-scale interactive visualization of data spaces | |
US20180190000A1 (en) | Morphing chart animations in a browser | |
Kim et al. | Virtual Geographic World: The Web-based 3D CIS | |
Steed et al. | Web-based visual analytics for extreme scale climate science | |
CN111291107B (en) | A progressive immersive visual data analysis method based on virtual reality technology | |
US8379028B1 (en) | Rigweb | |
Moraes et al. | Collaborative information visualization using a multi-projection system and mobile devices | |
CN114896646B (en) | Remote online browsing collaboration system for CAD (computer aided design) and BIM (building information modeling) files | |
JP2022115747A (en) | Content creation system and method | |
Johnson | Palpable Visualizations: Techniques for Creatively Designing Discernible and Accessible Visualizations Grounded in the Physical World | |
Cheng | The Underlying Technology Stack of Web 3.0 | |
Wang et al. | Implementation of Art Design Optimization Algorithm Based on Big Data and CAD Technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20230616 |