CN111273368B - Geomagnetic sensor circuit, circuit board and electronic equipment - Google Patents
Geomagnetic sensor circuit, circuit board and electronic equipment Download PDFInfo
- Publication number
- CN111273368B CN111273368B CN202010071888.3A CN202010071888A CN111273368B CN 111273368 B CN111273368 B CN 111273368B CN 202010071888 A CN202010071888 A CN 202010071888A CN 111273368 B CN111273368 B CN 111273368B
- Authority
- CN
- China
- Prior art keywords
- magnetic
- signal
- sensor
- geomagnetic sensor
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000012360 testing method Methods 0.000 claims description 10
- 239000003990 capacitor Substances 0.000 claims description 9
- 239000000758 substrate Substances 0.000 claims description 5
- 230000009471 action Effects 0.000 claims description 2
- 238000007599 discharging Methods 0.000 claims 1
- 229920006395 saturated elastomer Polymers 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 8
- 238000000034 method Methods 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 16
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 230000003190 augmentative effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- OPXJEFFTWKGCMW-UHFFFAOYSA-N copper nickel Chemical compound [Ni].[Ni].[Cu] OPXJEFFTWKGCMW-UHFFFAOYSA-N 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000004984 smart glass Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/40—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for measuring magnetic field characteristics of the earth
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- Physics & Mathematics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Measuring Magnetic Variables (AREA)
Abstract
Description
技术领域technical field
本申请涉及电子技术领域,特别涉及一种地磁传感器电路、电路板及电子设备。The present application relates to the field of electronic technology, in particular to a geomagnetic sensor circuit, a circuit board and electronic equipment.
背景技术Background technique
地磁传感器在电子设备中的运用越来越广泛,根据地磁传感器可以检测地球磁场,以及实现指示方向的功能。在电子设备如智能手机中,地磁传感器的应用非常丰富。Geomagnetic sensors are more and more widely used in electronic equipment. According to the geomagnetic sensor, the earth's magnetic field can be detected and the function of indicating the direction can be realized. In electronic devices such as smartphones, the application of geomagnetic sensors is very rich.
发明内容Contents of the invention
本申请实施例提供一种地磁传感器电路、电路板及电子设备,可以提高地磁传感器电路的量程。Embodiments of the present application provide a geomagnetic sensor circuit, a circuit board, and electronic equipment, which can increase the measuring range of the geomagnetic sensor circuit.
本申请实施例还提供一种地磁传感器电路,其包括:The embodiment of the present application also provides a geomagnetic sensor circuit, which includes:
第一磁力传感器,用于获取第一磁力信号;a first magnetic sensor, configured to acquire a first magnetic signal;
第二磁力传感器,用于获取第二磁力信号,所述第二磁力传感器获取的磁力信号范围大于所述第一磁力传感器获取的磁力信号范围;The second magnetic sensor is used to obtain a second magnetic signal, and the range of the magnetic signal obtained by the second magnetic sensor is larger than the range of the magnetic signal obtained by the first magnetic sensor;
放大器,所述第一磁力传感器和所述第二磁力传感器均与所述放大器的输入端连接,所述放大器用于将输入所述放大器的信号放大;An amplifier, the first magnetic sensor and the second magnetic sensor are both connected to the input of the amplifier, and the amplifier is used to amplify the signal input to the amplifier;
模数转换器,所述模数转换器的输入端与所述放大器的输出端连接,所述模数转换器用于获取所述放大器放大后的信号,并将所述放大后的信号转换成数字信号;以及An analog-to-digital converter, the input of the analog-to-digital converter is connected to the output of the amplifier, and the analog-to-digital converter is used to obtain the amplified signal of the amplifier and convert the amplified signal into a digital signal; and
接口单元,与所述模数转换器的输出端连接,所述接口单元用于获取所述模数转换器转换后的所述数字信号,并将所述数字信号传输出去。The interface unit is connected to the output end of the analog-to-digital converter, and the interface unit is used to obtain the digital signal converted by the analog-to-digital converter and transmit the digital signal.
本申请实施例还提供一种电路板,其包括:The embodiment of the present application also provides a circuit board, which includes:
基板;Substrate;
地磁传感器电路,设置于所述基板上,所述地磁传感器电路为上述所述的地磁传感器电路。A geomagnetic sensor circuit is arranged on the substrate, and the geomagnetic sensor circuit is the above-mentioned geomagnetic sensor circuit.
本申请实施例还提供一种电子设备,其包括:The embodiment of the present application also provides an electronic device, which includes:
壳体;case;
电路板,安装于所述壳体内,所述电路板为上述所述的电路板。A circuit board is installed in the housing, and the circuit board is the above-mentioned circuit board.
本申请实施例中,第一磁力传感器可以用于测量小量程的磁力信号,第二磁力传感器可以用于测量大量程的磁力信号,本申请实施例中的地磁传感器电路既可以支持小量程高精度的测量,又可以支持大量程的测量,可以适用更多的场景,同时通过放大器可以将第一磁力传感器和第二磁力传感器获取的磁力信号放大,以便后续的模块可以获取更准确的数据。In the embodiment of the present application, the first magnetic sensor can be used to measure a small-range magnetic signal, and the second magnetic sensor can be used to measure a large-range magnetic signal. The geomagnetic sensor circuit in the embodiment of the present application can support both small-range and high-precision It can also support large-scale measurement, and can be applied to more scenarios. At the same time, the magnetic signals obtained by the first magnetic sensor and the second magnetic sensor can be amplified through the amplifier, so that subsequent modules can obtain more accurate data.
附图说明Description of drawings
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。In order to more clearly illustrate the technical solutions in the embodiments of the present application, the following briefly introduces the drawings that need to be used in the description of the embodiments.
图1为本申请实施例提供的地磁传感器电路的第一种结构示意图。FIG. 1 is a schematic diagram of a first structure of a geomagnetic sensor circuit provided in an embodiment of the present application.
图2为本申请实施例提供的地磁传感器电路的第二种结构示意图。FIG. 2 is a schematic diagram of a second structure of a geomagnetic sensor circuit provided in an embodiment of the present application.
图3为本申请实施例提供的地磁传感器电路的第三种结构示意图。FIG. 3 is a schematic diagram of a third structure of a geomagnetic sensor circuit provided in an embodiment of the present application.
图4为本申请实施例提供的地磁传感器电路的第四种结构示意图。FIG. 4 is a schematic diagram of a fourth structure of a geomagnetic sensor circuit provided in an embodiment of the present application.
图5为本申请实施例提供的地磁传感器电路的电路示意图。FIG. 5 is a schematic circuit diagram of a geomagnetic sensor circuit provided in an embodiment of the present application.
图6为本申请实施例提供的电路板的结构示意图。FIG. 6 is a schematic structural diagram of a circuit board provided by an embodiment of the present application.
图7为本申请实施例提供的电子设备的结构示意图。FIG. 7 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
图8为图7所示电子设备的另一面示意图。FIG. 8 is a schematic diagram of another side of the electronic device shown in FIG. 7 .
具体实施方式detailed description
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本申请的保护范围。The technical solutions in the embodiments of the present application will be clearly and completely described below in conjunction with the drawings in the embodiments of the present application. Apparently, the described embodiments are only some of the embodiments of this application, not all of them. Based on the embodiments in this application, all other embodiments obtained by those skilled in the art without making creative efforts belong to the protection scope of this application.
本申请实施例提供一种地磁传感器电路、电路板及电子设备。下面对地磁传感器电路进行详细说明。Embodiments of the present application provide a geomagnetic sensor circuit, a circuit board, and electronic equipment. The geomagnetic sensor circuit is described in detail below.
请参阅图1,图1为本申请实施例提供的地磁传感器电路的第一种结构示意图。地磁传感器电路100包括第一磁力传感器122、第二磁力传感器124、放大器140、模数转换器160和接口单元180。Please refer to FIG. 1 . FIG. 1 is a schematic diagram of a first structure of a geomagnetic sensor circuit provided in an embodiment of the present application. The
第一磁力传感器122用于获取第一磁力信号,第二磁力传感器124用于获取第二磁力信号,第二磁力传感器124获取的磁力信号范围大于第一磁力传感器122获取的磁力信号范围。The first
放大器140可以为缓冲放大器或前置放大器,第一磁力传感器122和第二磁力传感器124均与放大器140的输入端连接,放大器140用于将输入放大器140的信号放大。例如,可以放大第一磁力信号和/或第二磁力信号。放大器(Pre Amplifier)140可以为固定倍数的放大器,如71倍。放大器140还可以为可调倍率放大器,可以根据需要将输入放大器140的不同信号进行不同倍率的放大。示例性地,可调倍率放大器可以在0倍-100倍之间调节。The
模数转换器(A/D Converter)160的输入端与放大器140的输出端连接,模数转换器160用于获取放大器140放大后的信号,并将放大后的信号转换成数字信号。An input terminal of an analog-to-digital converter (A/D Converter) 160 is connected to an output terminal of the
接口单元180与模数转换器160的输出端连接,接口单元180用于获取模数转换器160转换后的数字信号,并将数字信号传输出去。The
第一磁力传感器122可以用于测量小量程的磁力信号,第二磁力传感器124可以用于测量大量程的磁力信号,地磁传感器电路100既可以支持小量程高精度的测量,又可以支持大量程的测量,可以适用更多的场景,同时通过放大器140可以将第一磁力传感器122和第二磁力传感器124获取的磁力信号放大,以便后续的模块可以获取更准确的数据。The first
请参阅图2,图2为本申请实施例提供的地磁传感器电路的第二种结构示意图。地磁传感器电路100还包括温度传感器132(Temperature Sensor),温度传感器132用于获取地磁传感器电路100的温度信息,温度传感器132与接口单元180连接。接口单元180可以用于获取温度传感器132的温度信息,并将温度信息与数字信号关联后传输出去。在其他一些实施例中,接口单元180还可以用于获取温度传感器132的温度信息,并根据温度信息调节数字信号,以及将调节后的数字信号传输出去。Please refer to FIG. 2 . FIG. 2 is a schematic diagram of a second structure of a geomagnetic sensor circuit provided in an embodiment of the present application. The
温度传感器132采集的温度信息可以用于校正地磁传感器电路100的结果。不同温度下得到的磁力信号会进行不同的校正。例如,当温度信息高于预设温度信息时,磁力信号会对应调小;当温度信息低于预设温度信息时,磁力信号会对应调大。温度传感器132采集的温度信息可以用于后端对磁力信号进行校正,也可以在地磁传感器电路100内(如接口单元180)进行校正,校正完成后再传输给后端。The temperature information collected by the
温度传感器132本身也可以用于校正得到的地磁传感器电路100的温度信息。可以根据地磁传感器电路100的环境温度校正得到的地磁传感器电路100的温度信息。例如,当环境温度高于地磁传感器电路100的温度信息时,可以对应调低得到的地磁传感器电路100的温度信息。当环境温度低于地磁传感器电路100的温度信息时,可以对应调高得到的地磁传感器电路100的温度信息。还可以根据地磁传感器电路100的历史温度校正得到的地磁传感器电路100的温度信息。还可以根据地磁传感器电路100的当前温度信息的温度曲线校正得到的地磁传感器电路100的温度信息。例如,当温度曲线为上升曲线时,可以对应调低得到的地磁传感器电路100的温度信息。当温度曲线为下降曲线时,可以对应调高得到的地磁传感器电路100的温度信息。通过上述方法可以将获取的温度信息的精度控制在0.1摄氏度以内,提高了测试精度。The
第二磁力传感器124的线圈面积可以大于第一磁力传感器122的线圈面积,以实现第二磁力传感器124获取的磁力信号范围大于第一磁力传感器122获取的磁力信号范围。The coil area of the second
第二磁力传感器124的线圈数量小于第一磁力传感器122的线圈数量,以实现第二磁力传感器124获取的磁力信号范围大于第一磁力传感器122获取的磁力信号范围。The number of coils of the second
第二磁力传感器124的线圈面积可以大于第一磁力传感器122的线圈面积,同时,第二磁力传感器124的线圈数量小于第一磁力传感器122的线圈数量,以实现第二磁力传感器124获取的磁力信号范围大于第一磁力传感器122获取的磁力信号范围。The coil area of the second
需要说明的是,第二磁力传感器124对于大的磁通量变化也可以测量,第二磁力传感器124获取的磁力信号范围大于第一磁力传感器122获取的磁力信号范围,但是测量精度会小于第一磁力传感的测量精度。It should be noted that the second
请参阅图3,图3为本申请实施例提供的地磁传感器电路的第三种结构示意图。地磁传感器电路100还可以包括第三磁力传感器126,第三磁力传感器126获取第三磁力信号,第三磁力信号用于与第一磁力信号配合计算磁力信号。第三磁力信号获取的磁力信号范围与第一磁力传感器122获取的磁力信号范围相同。第三磁力信号可以和第一磁力信号配合实现高精度检测,当第一磁力信号和第三磁力信号数值差超过阀值时会重新检测,当第一磁力信号和第三磁力信号数值差在阀值范围内时可以求均值输出或乘以对应的权重输出。例如,第一磁力信号的权重为0.6,第三磁力信号的权重为0.4。Please refer to FIG. 3 . FIG. 3 is a schematic diagram of a third structure of a geomagnetic sensor circuit provided in an embodiment of the present application. The
可以理解的,第一磁力传感器122、第二磁力传感器124和第三磁力传感器126都可以检测X\Y\Z三个方向的磁力信号,也可以理解为,第一磁力信号、第二磁力信号和第三磁力信号均包括X\Y\Z三个方向的磁力信号。It can be understood that the first
接口单元180可以包括I2C接口或I3C接口。地磁传感器电路100通过接口单元180与其他器件电性连接,并将地磁传感器电路100获取的磁力信号传输给其他器件。例如,地磁传感器电路100通过接口单元180与处理器电性连接,并将磁力信号传输给处理器,处理器得到磁力信号后,可以对应调整应用程序,如调整指南针,游戏,导航等应用程序。其中,I3C接口的传输速度更高,功耗上支持多种工作模式,更省电。在一些实施例中,接口单元180可以为串行接口(Serial Data Interface)。The
地磁传感器电路100还可以包括复位线圈134(Reset coils),复位线圈134用于使磁传感器元件在强磁场作用下恢复正常工作状态,驱动复位线圈134产生的磁场使传感器元件恢复原来的性能,这样可以有效提高测试精度。The
地磁传感器电路100还可以包括测试线圈136(Test Coils),测试线圈136用于产生参考磁场,以测试传感器元件,以便进行简单的诊断。The
地磁传感器电路100还可以包括片上电压调节器138(Voltage Regulator),片上电压调节器138为内部电路供电。The
地磁传感器电路100还可以包括复位单元142(Power-on Reset),复位单元142用于当芯片通电时,通过电源电压斜坡用于产生信号以复位和初始化设备寄存器。The
地磁传感器电路100还可以包括片上时钟发生器144(Clock Generator),时钟发生器用于产生时钟信号并提供给内部电路。The
地磁传感器电路100还可以包括下电控制146(Power Down Control),用于控制电压。The
可以理解的,地磁传感器电路包括地磁传感器芯片,具体请参阅图4,图4为本申请实施例提供的地磁传感器电路的第四种结构示意图。地磁传感器芯片190包括第一磁力传感器122、第二磁力传感器124、第二磁力传感器124、放大器140、模数转换器160和接口单元180。也可以理解为,地磁传感器芯片190,地磁传感器芯片190包括第一磁力传感器122、第二磁力传感器124、第二磁力传感器124、放大器140、模数转换器160和接口单元180集成在地磁传感器芯片190内。It can be understood that the geomagnetic sensor circuit includes a geomagnetic sensor chip. Please refer to FIG. 4 for details. FIG. 4 is a fourth structural schematic diagram of the geomagnetic sensor circuit provided by the embodiment of the present application. The
当然,上述实施例中的地磁传感器电路100可以集成在一个地磁传感器芯片190中,集成化更高,体积可以做的很小,不占用空间,提高空间利用率,同时因为将地磁传感器电路100集成在一个地磁传感器芯片190中,稳定性更好,抗干扰能力也更强。Certainly, the
请结合图5,图5为本申请实施例提供的地磁传感器电路的电路示意图。地磁传感器电路100可以包括地磁传感器芯片190和周边匹配电路。具体的,地磁传感器芯片包括电源引脚(VDD)、第一复位引脚(VCAP)、第二复位引脚(VPP)、测试引脚(TEST)、空引脚(NC)、通信引脚(SDA、SCL)、接地引脚(VSA)。Please refer to FIG. 5 , which is a schematic circuit diagram of a geomagnetic sensor circuit provided in an embodiment of the present application. The
第二复位引脚可以连接串联电阻R2507,减少过冲影响。The second reset pin can be connected with a series resistor R2507 to reduce the effect of overshoot.
电源引脚连接上拉电阻R2515,同时接电容C2507(1uF)到地,用于稳定输入电压。The power supply pin is connected to the pull-up resistor R2515, and at the same time connects the capacitor C2507 (1uF) to the ground for stabilizing the input voltage.
第一复位引脚接电容C2505(4.7uF)到地,同时还连接第一电压端(VIO28-PMU)。第一复位引脚为地磁传感器器件复位供电脚,各向异性磁电阻效应(AnisotropicMagnetoresistive Sensor,AMR)技术器件很容易被外界磁场磁化,在芯片设计上通过电容对第一复位引脚放电进行复位(reset),消除外部磁场干扰的影响。reset电流为500~600mA,维持时间0.4uS.由于器件的reset会从电容端抽取电流,第一复位引脚端会出现一个电压降(即纹波)。地磁传感器电路100所选用的reset策略是检测到磁饱和后才reset。相关技术中,部分设备平台不具有感测器中枢(sensor hub),需要利用G-sensor协助,具体是:当检测到G-sensor有数据变动了,而地磁未动,则判断为地磁饱和,从而器件进行reset校准,但是G-sensor要一直打开。另一部分平台采用的是固定时间间隔做reset,每5sreset一次。本实施例中地磁传感器电路100所选用的reset策略是检测到磁饱和后才reset,准确性更高,同时可以兼容不同的平台,无论平台是否具有感测器中枢都可以通过检测到磁饱和后才reset。需要说明的是,当检测的磁通量大于最大量程的95%时就可以认为磁饱和。设备平台可以理解为电子设备300的芯片平台,如MTK平台、高通平台等。The first reset pin connects the capacitor C2505 (4.7uF) to the ground, and also connects to the first voltage terminal (VIO28-PMU). The first reset pin is the reset power supply pin of the geomagnetic sensor device. The Anisotropic Magnetoresistive Sensor (AMR) technology device is easily magnetized by the external magnetic field. In the chip design, the capacitor discharges the first reset pin to reset ( reset), to eliminate the influence of external magnetic field interference. The reset current is 500-600mA, and the maintenance time is 0.4uS. Since the reset of the device will draw current from the capacitor terminal, a voltage drop (that is, ripple) will appear at the first reset pin. The reset strategy selected by the
AMR技术可以理解为,当外部磁场与磁体内建磁场方向成零度角时,电阻是不会随着外加磁场变化而发生改变的;但当外部磁场与磁体的内建磁场有一定角度的时候,磁体内部磁化矢量会偏移,薄膜电阻降低,这种特性称为各向异性磁电阻效应。AMR technology can be understood as, when the external magnetic field and the built-in magnetic field of the magnet form a zero-degree angle, the resistance will not change with the change of the external magnetic field; but when the external magnetic field has a certain angle with the built-in magnetic field of the magnet, The magnetization vector inside the magnet will shift and the sheet resistance will decrease. This characteristic is called anisotropic magnetoresistance effect.
通信引脚(SDA、SCL)为I2C或I3C的通信引脚,NC引脚通过接高电平和地可以选择不同的I2C或I3C地址。The communication pins (SDA, SCL) are I2C or I3C communication pins, and the NC pin can select different I2C or I3C addresses by connecting high level and ground.
本申请实施例还提供一种电路板,具体请参阅图6,图6为本申请实施例提供的电路板的结构示意图。电路板200包括基板220和地磁传感器电路100。地磁传感器电路100可以为上述任一实施例中的地磁传感器电路100。The embodiment of the present application further provides a circuit board, please refer to FIG. 6 for details. FIG. 6 is a schematic structural diagram of the circuit board provided in the embodiment of the present application. The
地磁传感器电路100中电容(C2505、C2507)靠近地磁传感器芯片放置,当地磁传感器芯片离设备平台处理器较远,且接口单元(如I2C或I3C)走线较长或者靠近天线时,将接口单元的两条信号线(SDA、SCL)平行走线,同时在两条信号线两边加地线进行保护,避免临近层出现高速信号线等。首次使用地磁传感器芯片时,开始在两条信号线上串联0欧电阻,小批量过程验证测试(Pilot-run Verification Test,PVT)后取消,同时要注意防止地址冲突。Capacitors (C2505, C2507) in the
电路板200上还包括供电模块230,地磁传感器电路100包括电源引脚,电源引脚与供电模块230之间通过电源走线240连接,电路板200上还设有信号线250,电源走线240与信号线250间隔设置。具体的:The
1)当电源走线电流变化范围可达10mA时,与周围的信号线的安全间距在3mm以上;1) When the current variation range of the power supply wiring can reach 10mA, the safe distance from the surrounding signal lines should be more than 3mm;
2)当电源走线电流变化范围可达50mA时,与周围的信号线的安全间距在7mm以上;2) When the current variation range of the power supply wiring can reach 50mA, the safe distance from the surrounding signal lines should be more than 7mm;
3)当电源走线电流变化范围可达100mA时,与周围的信号线的安全间距在10mm以上;3) When the current variation range of the power supply wiring can reach 100mA, the safe distance from the surrounding signal lines should be more than 10mm;
4)当电源走线电流变化范围可达200mA时,与周围的信号线的安全间距在20mm以上。4) When the current variation range of the power supply wiring can reach 200mA, the safe distance from the surrounding signal lines should be more than 20mm.
地磁传感器电路100与其连接电源引脚的电容可以放置在屏蔽盖260内部(主屏蔽盖或者单独的四周封闭的小屏蔽盖,屏蔽盖可以采用洋白铜等材质),相比放在弓形屏蔽支架下方,可以防止设备进液之后地磁传感器电路100及其连接电源引脚的电容被腐蚀。The
电路板200上还设有预设磁性部件270,地磁传感器电路100与预设磁性部件270间隔设置。地磁传感器电路100尽量远离带磁性的器件,或者是避免使用带磁性的器件,预设磁性部件270可以包括具有硬铁材料的磁性器件如受话器、扬声器、磁性开关、转轴、摄像头模组、震动马达、TV天线、电感、霍尔开关等等。另外是含有软铁材料的器件如LCD、RF的屏蔽框、内存卡座、SIM卡座、各种连接器、转轴、电池、NFC天线和其它金属结构件等等。布局之前可以用探针对各个器件的磁场强度进行测量,寻找合适的位置。例如,地磁传感器电路100可以设置在电路板200的周边。地磁传感器电路100与其他磁性器件的距离具体可以为:The
1)与磁性开关器件的安全距离为20mm以上;1) The safety distance from the magnetic switch device is more than 20mm;
2)与扬声器的安全距离为10~20mm;2) The safe distance from the speaker is 10-20mm;
3)与振动马达的安全距离为10mm以上;3) The safe distance from the vibration motor is more than 10mm;
4)与摄像头模组的安全距离为10mm以上;4) The safe distance from the camera module is more than 10mm;
5)与内存卡座的安全距离为5mm以上;5) The safe distance from the memory card holder is more than 5mm;
6)与带磁性的屏蔽框的安全距离为10mm以上;6) The safe distance from the magnetic shielding frame is more than 10mm;
7)与受话器距离的安全距离为10mm以上;7) The safe distance from the receiver is more than 10mm;
8)与大电感的安全距离为5mm以上;8) The safe distance from the large inductance is more than 5mm;
9)转轴的安全距离为10mm以上;9) The safety distance of the rotating shaft is more than 10mm;
10)离NFC天线15mm以上;10) More than 15mm away from the NFC antenna;
11)离软磁材料如LCD框弯折边缘区5mm(若不能满足要求,LCD采用无磁性材料;11) 5mm away from the soft magnetic material such as the bending edge of the LCD frame (if the requirements cannot be met, the LCD should use non-magnetic materials;
12)远离开关电源10mm。12) 10mm away from switching power supply.
本实施例的地磁传感器电路100(改进后的地磁传感器电路)比现有技术中的地磁传感器电路(改进前的地磁传感器电路)具有明显的优势。本实施例的地磁传感器电路100中的地磁传感器芯片采用高集成工艺,集成化更强,体积更小。地磁传感器电路100中的第一磁力传感器、第二磁力传感器和第三磁力传感器用于测量磁场强度,第一磁力传感器和第三磁力传感器用于测量小量程,实现高精度,第二磁力传感器用于测量大量程,支持量程范围大。地磁传感器电路100增加温度补偿,精确到0.1度,温度补偿更准确。地磁传感器电路100内部封装屏蔽性好,抗干扰能力强,可靠性高。地磁传感器电路100支持低功耗模式,功耗更低。地磁传感器电路100兼容各设备平台。下面表一为示例性地举例。The
表一:角度数据Table 1: Angle data
改进后的地磁传感器X方向的标准差STDRV-X=0.140,改进前的地磁传感器X方向的标准差STDRV-X=0.171;改进后的地磁传感器Y方向的标准差STDRV-Y=0.152改进前的地磁传感器Y方向的标准差STDRV-Y=0.223;改进后的地磁传感器Z方向的标准差STDRV-Z=0.187改进前的地磁传感器Z方向的标准差STDRV-Z=0.264;改进后的地磁传感器角度精度也更高,改善后的地磁传感器性能有显著提升。The standard deviation of the improved geomagnetic sensor in the X direction STDRV-X=0.140, the standard deviation of the geomagnetic sensor in the X direction STDRV-X=0.171; the standard deviation of the improved geomagnetic sensor in the Y direction STDRV-Y=0.152 before improvement The standard deviation of the geomagnetic sensor in the Y direction STDRV-Y=0.223; the standard deviation of the improved geomagnetic sensor in the Z direction STDRV-Z=0.187 the standard deviation of the geomagnetic sensor in the Z direction STDRV-Z=0.264; the improved geomagnetic sensor angle The accuracy is also higher, and the performance of the improved geomagnetic sensor has been significantly improved.
需要说明的是,图中所示的电路板上仅示出了部分信号线和部分预设磁性部件。It should be noted that only part of the signal lines and part of the preset magnetic components are shown on the circuit board shown in the figure.
本申请实施例还提供一种电子设备,电子设备壳体以及电路板,电路板安装于壳体内,电路板可以为上述任一实施例中的电路板。The embodiment of the present application also provides an electronic device, a housing of the electronic device and a circuit board, the circuit board is installed in the housing, and the circuit board may be the circuit board in any of the foregoing embodiments.
电子设备可以是智能手机、平板电脑等移动终端,还可以是游戏设备、增强现实(Augmented Reality,AR)设备、虚拟现实(Virtual Reality,VR)设备、数据存储装置、音频播放装置、视频播放装置、可穿戴设备等具有显示装置的设备,其中可穿戴设备可以是智能手环、智能眼镜、智能手表、智能装饰等。下面以电子设备以手机为例进行说明。具体请参阅图7和图8,图7为本申请实施例提供的电子设备的结构示意图,图8为图7所示电子设备的另一面示意图。电子设备300还包括显示屏310、壳体320、主板330和电池340。The electronic device may be a mobile terminal such as a smart phone or a tablet computer, and may also be a game device, an augmented reality (Augmented Reality, AR) device, a virtual reality (Virtual Reality, VR) device, a data storage device, an audio playback device, or a video playback device. , wearable devices and other devices with display devices, wherein the wearable devices may be smart bracelets, smart glasses, smart watches, smart decorations, and the like. In the following, an electronic device such as a mobile phone is taken as an example for description. Please refer to FIG. 7 and FIG. 8 for details. FIG. 7 is a schematic structural diagram of an electronic device provided by an embodiment of the present application, and FIG. 8 is a schematic diagram of another side of the electronic device shown in FIG. 7 . The
其中,壳体320包括边框322和后盖324。显示屏310与后盖324位于电子设备300相对的两侧,电子设备300还包括中板,边框320围绕中板设置,其中,边框320可以与中板形成电子设备300的中框。中板和边框320在中板两侧各形成一个容纳腔,其中一个容纳腔容置显示屏310,另一个容纳腔容置主板330、电池340和电子设备300的其他电子元件或功能模块。Wherein, the
中板可以为薄板状或薄片状的结构,也可以为中空的框体结构。中框用于为电子设备300中的电子元件或功能组件提供支撑作用,以将电子设备300中的电子元件、功能组件安装到一起。电子设备300的摄像头组件、受话器、电路板、电池等功能组件都可以安装到中框或主板330上以进行固定。可以理解的,中框的材质可以包括金属或塑胶。The middle plate may be in the form of a thin plate or sheet, or may be a hollow frame structure. The middle frame is used to provide support for the electronic components or functional components in the
主板330可以安装在中框上。主板330上可以集成有麦克风、扬声器、耳机接口、摄像头组件、加速度传感器、陀螺仪以及处理器等功能组件中的一个或多个。同时,显示屏310可以电性连接至主板330,以通过主板330上的处理器对显示屏的显示进行控制。The
电池340可以安装在中框上。同时,电池340电连接至主板330,以实现电池340为电子设备300供电。其中,主板330上可以设置有电源管理电路。电源管理电路用于将电池340提供的电压分配到电子设备300中的各个电子元件。The
显示屏310形成电子设备300的显示面,用于显示图像、文本等信息。显示屏310可以为液晶显示屏(Liquid Crystal Display,LCD)或有机发光二极管显示屏(OrganicLight-Emitting Diode,OLED)等类型的显示屏。The
显示屏310可以为异形屏,显示屏310可以包括显示区域312以及非显示区域314。其中,显示区域312执行显示屏310的显示功能,用于显示图像、文本等信息。非显示区域314不显示信息,非显示区域314用于配合前置摄像模组382工作。例如,非显示区域314为高透光区域,前置摄像模组382可以透过非显示区域314获取外界的图像,如拍照、摄像等。在其他一些实施例中,显示屏可以为全面屏,即,显示屏的正面基本全部都是显示区域,显示屏的显示区域一致,前置摄像模组可以采用驱动机构从电子设备内移动到电子设备外进行摄像。显示屏的显示区域还可以包括主显示区域和副显示区域,副显示区域的透光率大于主显示区域的透光率,前置摄像模组对应副显示区域设置,如设置在副显示区域的下方,副显示区域可以配合主显示区域显示图像,当副显示区域不显示图像时,摄像模组可以透过副显示区域进行摄像,示例性地,图7所示的非显示区域可以替换为副显示区域。The
电子设备300还包括后置摄像模组384,后盖324对应后置摄像模组384设有透光区域,后置摄像模组384可以透过后盖324的透光区域获取外界的图像。The
可以理解的,本实施例中的主板可以为上述实施例中的电路板,上述实施例中的电路板也可以为电子设备中的其他电路板。It can be understood that the main board in this embodiment may be the circuit board in the above embodiment, and the circuit board in the above embodiment may also be other circuit boards in the electronic device.
在本申请的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上。In the description of the present application, the terms "first" and "second" are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as "first" or "second" may explicitly or implicitly include one or more of said features. In the description of this application, "plurality" means two or more.
以上对本申请实施例提供的地磁传感器电路、电路板及电子设备进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请。同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。The geomagnetic sensor circuit, circuit board and electronic equipment provided in the embodiments of the present application have been introduced in detail above. In this paper, specific examples are used to illustrate the principles and implementation methods of the present application, and the descriptions of the above embodiments are only used to help understand the present application. At the same time, for those skilled in the art, based on the idea of this application, there will be changes in the specific implementation and application scope. In summary, the content of this specification should not be construed as limiting the application.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010071888.3A CN111273368B (en) | 2020-01-21 | 2020-01-21 | Geomagnetic sensor circuit, circuit board and electronic equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010071888.3A CN111273368B (en) | 2020-01-21 | 2020-01-21 | Geomagnetic sensor circuit, circuit board and electronic equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111273368A CN111273368A (en) | 2020-06-12 |
CN111273368B true CN111273368B (en) | 2022-12-20 |
Family
ID=70999122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010071888.3A Expired - Fee Related CN111273368B (en) | 2020-01-21 | 2020-01-21 | Geomagnetic sensor circuit, circuit board and electronic equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111273368B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1120629A1 (en) * | 2000-01-25 | 2001-08-01 | Seiko Instruments Inc. | Electronic azimuth meter and electronic time piece using such an electronic azimuth meter |
CN103955001A (en) * | 2014-05-14 | 2014-07-30 | 三峡大学 | Invisible earphone detection device and method |
CN105259519A (en) * | 2014-07-10 | 2016-01-20 | 英飞凌科技股份有限公司 | Magnetic field sensor device |
CN105676303A (en) * | 2016-01-19 | 2016-06-15 | 南京理工大学 | Terrestrial magnetism data collector |
CN107632276A (en) * | 2017-09-07 | 2018-01-26 | 于盟盟 | A kind of magnetic field sensing system based on giant magnetostrictive thin film |
CN108981756A (en) * | 2017-05-30 | 2018-12-11 | 梅斯法国公司 | The temperature-compensating of field sensing unit and the field sensing unit for using temperature-compensating |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6766333B2 (en) * | 2015-10-06 | 2020-10-14 | 愛知製鋼株式会社 | Micromagnetic material detection sensor and foreign matter detection device |
-
2020
- 2020-01-21 CN CN202010071888.3A patent/CN111273368B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1120629A1 (en) * | 2000-01-25 | 2001-08-01 | Seiko Instruments Inc. | Electronic azimuth meter and electronic time piece using such an electronic azimuth meter |
CN103955001A (en) * | 2014-05-14 | 2014-07-30 | 三峡大学 | Invisible earphone detection device and method |
CN105259519A (en) * | 2014-07-10 | 2016-01-20 | 英飞凌科技股份有限公司 | Magnetic field sensor device |
CN105676303A (en) * | 2016-01-19 | 2016-06-15 | 南京理工大学 | Terrestrial magnetism data collector |
CN108981756A (en) * | 2017-05-30 | 2018-12-11 | 梅斯法国公司 | The temperature-compensating of field sensing unit and the field sensing unit for using temperature-compensating |
CN107632276A (en) * | 2017-09-07 | 2018-01-26 | 于盟盟 | A kind of magnetic field sensing system based on giant magnetostrictive thin film |
Also Published As
Publication number | Publication date |
---|---|
CN111273368A (en) | 2020-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3742578B1 (en) | Electronic device including wireless charging structure | |
CN108427166B (en) | Camera module and dual camera module | |
CN112639751B (en) | Method of identifying external electronic device based on power information, and electronic device and storage medium for supporting the same | |
CN109061481B (en) | Battery state of charge determining method and device and storage medium | |
US20160173977A1 (en) | Acoustic input module and electronic device including the same | |
US11231938B2 (en) | Parameter configuration method for a display device having a plurality of drivers for each connected component | |
CN114051717A (en) | Foldable electronic device for detecting folding angle and operation method thereof | |
CN111005715B (en) | Method and device for determining yield of gas well and storage medium | |
CN105979158B (en) | A kind of star sensor focal plane component | |
CN115529724B (en) | Circuit board structure, chip system and electronic equipment | |
US11889274B2 (en) | Electronic device for sensing temperature of speaker, and operation method thereof | |
US20210249761A1 (en) | Electronic device including plurality of antennas | |
US10058016B2 (en) | Compensation of magnetic interference | |
CN111273368B (en) | Geomagnetic sensor circuit, circuit board and electronic equipment | |
CN212783764U (en) | Electronic device | |
US8203364B2 (en) | Method of transmitting audio and video signals using one connector and electronic device using same | |
JPWO2006054435A1 (en) | Test equipment | |
CN114270801A (en) | Anti-shake circuit, method, apparatus and storage medium | |
CN111010469B (en) | Electronic equipment and temperature acquisition equipment | |
CN216696449U (en) | Current voltmeter | |
CN114678683A (en) | Electronic device | |
CN114936420A (en) | Method and device for simulating vibration envelope of automobile power assembly, terminal and storage medium | |
US9685916B2 (en) | Audio interface circuits and methods | |
CN206773418U (en) | A kind of intelligent watch | |
CN118463954B (en) | Compass calibration method and electronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20221220 |