CN111263295A - WLAN indoor positioning method and device - Google Patents
WLAN indoor positioning method and device Download PDFInfo
- Publication number
- CN111263295A CN111263295A CN202010043140.2A CN202010043140A CN111263295A CN 111263295 A CN111263295 A CN 111263295A CN 202010043140 A CN202010043140 A CN 202010043140A CN 111263295 A CN111263295 A CN 111263295A
- Authority
- CN
- China
- Prior art keywords
- target
- information data
- environmental information
- reference points
- signal strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
- H04W4/023—Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/04—Inference or reasoning models
- G06N5/048—Fuzzy inferencing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/30—Services specially adapted for particular environments, situations or purposes
- H04W4/33—Services specially adapted for particular environments, situations or purposes for indoor environments, e.g. buildings
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- Artificial Intelligence (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Automation & Control Theory (AREA)
- Fuzzy Systems (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
Description
技术领域technical field
本申请涉及室内定位技术领域,尤其涉及一种WLAN室内定位方法和装置。The present application relates to the technical field of indoor positioning, and in particular, to a WLAN indoor positioning method and device.
背景技术Background technique
随着无线网络的推广普及,基于位置的服务越来越受到人们的关注。目前已有的全球卫星定位系统通过接收器测量来自一个卫星信号的到达时间差估计位置,可以分析得到较高精度的位置信息。然而在室内和高楼密集的城市由于卫星信号存在严重的多径和非视距干扰,在室内难以实现定位功能。With the popularization of wireless networks, location-based services have attracted more and more attention. At present, the existing global satellite positioning system estimates the position by measuring the time difference of arrival from a satellite signal by the receiver, and can analyze the position information with higher precision. However, due to the serious multipath and non-line-of-sight interference of satellite signals in indoor and high-rise cities, it is difficult to achieve positioning function indoors.
目前,无线局域网(Wireless Local Area Network,WLAN)已经广泛分布于国内机场、火车站、图书馆、政府办公楼以及大型购物商场,在WLAN环境下,可以通过测量来自接入点(Access Point,AP)的信号强度值RSSI(Received Signal Strength Indicator,信号强度指示)获得相应的位置信息。但现有的室内定位方法多采用欧式距离进行搜索定位,存在速度慢和定位精度低的问题。At present, Wireless Local Area Network (WLAN) has been widely distributed in domestic airports, railway stations, libraries, government office buildings and large shopping malls. ) of the signal strength value RSSI (Received Signal Strength Indicator, signal strength indicator) to obtain the corresponding position information. However, the existing indoor positioning methods mostly use the Euclidean distance for search and positioning, which has the problems of slow speed and low positioning accuracy.
发明内容SUMMARY OF THE INVENTION
本申请提供了一种WLAN室内定位方法和装置,用于解决现有的室内定位方法采用欧氏距离进行搜索定位所存在的定位速度慢和定位精度低的技术问题。The present application provides a WLAN indoor positioning method and device, which are used to solve the technical problems of slow positioning speed and low positioning accuracy existing in the existing indoor positioning method using Euclidean distance for search and positioning.
有鉴于此,本申请第一方面提供了一种WLAN室内定位方法,包括:In view of this, a first aspect of the present application provides a WLAN indoor positioning method, including:
获取目标室内的第一环境信息数据,所述第一环境信息数据包括空间三维点云数据、目标对象的位置坐标、目标对象的方位角以及俯仰角;acquiring first environment information data in the target room, where the first environment information data includes spatial three-dimensional point cloud data, the position coordinates of the target object, the azimuth angle and the pitch angle of the target object;
对所述第一环境信息数据进行主成分分析,选取满足预置条件的累计贡献率对应的所述第一环境信息数据为第二环境信息数据;Perform principal component analysis on the first environmental information data, and select the first environmental information data corresponding to the cumulative contribution rate that satisfies the preset condition as the second environmental information data;
基于所述第二环境信息数据构建所述目标室内的环境,得到目标室内模型;Constructing the target indoor environment based on the second environment information data to obtain a target indoor model;
在所述目标室内模型中布置AP和设置参考点,获取所述目标室内模型中每个所述参考点的信号强度RSSI值;Arranging APs and setting reference points in the target indoor model, and acquiring the signal strength RSSI value of each of the reference points in the target indoor model;
基于每个所述参考点的信号强度RSSI值,根据模糊聚类算法对所述目标室内的环境进行区域划分,得到若干个子区域;Based on the RSSI value of the signal strength of each of the reference points, according to the fuzzy clustering algorithm, the environment in the target room is divided into regions to obtain several sub-regions;
将获取的所述子区域中的测试点的信号强度RSSI值输入到所述子区域对应的预置卷积神经网络模型,输出所述测试点的定位结果。The acquired signal strength RSSI value of the test point in the sub-area is input into the preset convolutional neural network model corresponding to the sub-area, and the positioning result of the test point is output.
优选地,所述对所述第一环境信息数据进行主成分分析,选取满足预置条件的累计贡献率对应的所述第一环境信息数据为第二环境信息数据,包括:Preferably, the performing principal component analysis on the first environmental information data, and selecting the first environmental information data corresponding to the cumulative contribution rate satisfying a preset condition as the second environmental information data, including:
基于所述第一环境信息数据计算相关系数,生成相关系数矩阵;Calculate a correlation coefficient based on the first environmental information data, and generate a correlation coefficient matrix;
对基于所述相关系数矩阵构建的特征方程进行求解,得到特征值;Solving the characteristic equation constructed based on the correlation coefficient matrix to obtain the characteristic value;
基于所述特征值计算贡献率;calculating a contribution rate based on the eigenvalue;
选取累计贡献率大于85%时对应的最少数量的特征值对应的所述第一环境信息数据为第二环境信息数据。The first environmental information data corresponding to the minimum number of characteristic values corresponding to the cumulative contribution rate greater than 85% is selected as the second environmental information data.
优选地,所述在所述目标室内模型中布置AP和设置参考点,获取所述目标室内模型中每个所述参考点的信号强度RSSI值,之前还包括:Preferably, before arranging APs and setting reference points in the target indoor model, and acquiring the RSSI value of the signal strength of each of the reference points in the target indoor model, the method further includes:
对所述目标室内模型进行坐标化处理。The coordinate processing is performed on the target indoor model.
优选地,所述在所述目标室内模型中布置AP和设置参考点,获取所述目标室内模型中每个所述参考点的信号强度RSSI值,包括:Preferably, arranging APs and setting reference points in the target indoor model, and acquiring the signal strength RSSI value of each of the reference points in the target indoor model, includes:
在所述目标室内模型中布置若干个AP和设置若干个参考点,所述参考点根据预置距离均匀分布;Arrange a number of APs and set a number of reference points in the target indoor model, and the reference points are evenly distributed according to a preset distance;
采集每个所述参考点的来自各个所述AP的信号强度RSSI值。The signal strength RSSI value from each of the APs for each of the reference points is collected.
优选地,所述在所述目标室内模型中布置若干个AP和设置若干个参考点,之后还包括:Preferably, the arrangement of several APs and the setting of several reference points in the target indoor model further includes:
在若干个所述参考点中选取目标参考点,以所述目标参考点为原点建立三维坐标系,基于所述三维坐标系得到每个所述参考点的位置坐标。A target reference point is selected from several of the reference points, a three-dimensional coordinate system is established with the target reference point as an origin, and the position coordinates of each of the reference points are obtained based on the three-dimensional coordinate system.
优选地,所述将获取的所述子区域中的测试点的信号强度RSSI值输入到所述子区域对应的预置卷积神经网络模型,输出所述测试点的定位结果,之前还包括:Preferably, inputting the acquired signal strength RSSI value of the test point in the sub-area into a preset convolutional neural network model corresponding to the sub-area, and outputting the positioning result of the test point, further comprising:
将每个所述子区域的所述参考点的位置坐标和所述参考点的信号强度RSSI值作为一个训练集;Taking the position coordinates of the reference point of each of the sub-regions and the RSSI value of the signal strength of the reference point as a training set;
每个所述训练集训练一个卷积神经网络模型,当所述卷积神经网络模型达到收敛条件时,得到若干个训练好的所述卷积神经网络模型,将训练好的所述卷积神经网络模型作为所述预置卷积神经网络模型。Each of the training sets trains a convolutional neural network model, and when the convolutional neural network model reaches the convergence condition, several trained convolutional neural network models are obtained, and the trained convolutional neural network models are The network model is used as the preset convolutional neural network model.
本申请第二方面提供了一种WLAN室内定位装置,包括:A second aspect of the present application provides a WLAN indoor positioning device, including:
第一获取模块,用于获取目标室内的第一环境信息数据,所述第一环境信息数据包括空间三维点云数据、目标对象的位置坐标、目标对象的方位角以及俯仰角;a first acquisition module, configured to acquire first environmental information data in the target room, where the first environmental information data includes spatial three-dimensional point cloud data, the position coordinates of the target object, the azimuth angle and the pitch angle of the target object;
主成分分析模块,用于对所述第一环境信息数据进行主成分分析,选取满足预置条件的累计贡献率对应的所述第一环境信息数据为第二环境信息数据;a principal component analysis module, configured to perform principal component analysis on the first environmental information data, and select the first environmental information data corresponding to the cumulative contribution rate satisfying a preset condition as the second environmental information data;
构建模块,用于基于所述第二环境信息数据构建所述目标室内的环境,得到目标室内模型;a building module for constructing the target indoor environment based on the second environment information data to obtain a target indoor model;
第二获取模块,用于在所述目标室内模型中布置AP和设置参考点,获取所述目标室内模型中每个所述参考点的信号强度RSSI值;a second acquisition module, configured to arrange APs and set reference points in the target indoor model, and acquire the RSSI value of the signal strength of each of the reference points in the target indoor model;
划分模块,用于基于每个所述参考点的信号强度RSSI值,根据模糊聚类算法对所述目标室内的环境进行区域划分,得到若干个子区域;a division module, configured to divide the environment in the target room according to the fuzzy clustering algorithm based on the RSSI value of the signal strength of each of the reference points to obtain several sub-areas;
定位模块,用于将获取的所述子区域中的测试点的信号强度RSSI值输入到所述子区域对应的预置卷积神经网络模型,输出所述测试点的定位结果。The positioning module is configured to input the acquired signal strength RSSI value of the test point in the sub-region into the preset convolutional neural network model corresponding to the sub-region, and output the positioning result of the test point.
优选地,还包括:Preferably, it also includes:
预处理模块,用于对所述目标室内模型进行坐标化处理。The preprocessing module is used for coordinate processing on the target indoor model.
优选地,所述第二获取模块包括:Preferably, the second acquisition module includes:
布置子模块,用于在所述目标室内模型中布置若干个AP和设置若干个参考点,所述参考点根据预置距离均匀分布;an arrangement sub-module for arranging a number of APs and setting a number of reference points in the target indoor model, and the reference points are evenly distributed according to a preset distance;
采集子模块,用于采集每个所述参考点的来自各个所述AP的信号强度RSSI值。A collection submodule, configured to collect the RSSI value of the signal strength from each of the APs of each of the reference points.
优选地,所述第二获取模块还包括:Preferably, the second acquisition module further includes:
选取子模块,用于在若干个所述参考点中选取目标参考点,以所述目标参考点为原点建立三维坐标系,基于所述三维坐标系得到每个所述参考点的位置坐标。The selection sub-module is used for selecting a target reference point from several of the reference points, establishing a three-dimensional coordinate system with the target reference point as an origin, and obtaining the position coordinates of each of the reference points based on the three-dimensional coordinate system.
从以上技术方案可以看出,本申请具有以下优点:As can be seen from the above technical solutions, the present application has the following advantages:
本申请提供了一种WLAN室内定位方法,包括:获取目标室内的第一环境信息数据,第一环境信息数据包括空间三维点云数据、目标对象的位置坐标、目标对象的方位角以及俯仰角;对第一环境信息数据进行主成分分析,选取满足预置条件的累计贡献率对应的第一环境信息数据为第二环境信息数据;基于第二环境信息数据构建目标室内的环境,得到目标室内模型;在目标室内模型中布置AP和设置参考点,获取目标室内模型中每个参考点的信号强度RSSI值;基于每个参考点的信号强度RSSI值,根据模糊聚类算法对目标室内的环境进行区域划分,得到若干个子区域;将获取的子区域中的测试点的信号强度RSSI值输入到子区域对应的预置卷积神经网络模型,输出测试点的定位结果。The present application provides a WLAN indoor positioning method, including: acquiring first environment information data in a target room, where the first environment information data includes spatial three-dimensional point cloud data, position coordinates of a target object, and azimuth and elevation angles of the target object; Perform principal component analysis on the first environmental information data, and select the first environmental information data corresponding to the cumulative contribution rate that satisfies the preset conditions as the second environmental information data; build the target indoor environment based on the second environmental information data, and obtain the target indoor model ; Arrange APs and set reference points in the target indoor model, and obtain the signal strength RSSI value of each reference point in the target indoor model; The area is divided to obtain several sub-areas; the obtained signal strength RSSI value of the test point in the sub-area is input into the preset convolutional neural network model corresponding to the sub-area, and the positioning result of the test point is output.
本申请中的WLAN室内定位方法,通过对获取的目标室内的第一环境信息数据进行主成分分析,选取满足预置条件的累计贡献率对应的第一环境信息数据为第二环境信息数据,保留了对于构建目标室内模型影响较大的第一环境信息数据,去掉了对于目标室内模型影响不大的第一环境信息数据,达到了一定的数据降维作用,在一定程度上提高了定位速度;基于第二环境信息数据构建目标室内模型,在目标室内模型中合理布置AP和设置参考点,通过获取参考点来自各个AP的信号强度RSSI值,并通过聚类算法对目标室内的环境进行区域划分,得到多个子区域,通过将子区域中的测试点的信号强度RSSI值输入到子区域对应的预置卷积神经网络模型,得到测试点的定位结果,在划分子区域的基础上进行小区域的精确定位,在提高了室内定位精度的同时也提高了定位速度,解决了现有的室内定位方法采用欧氏距离进行搜索定位所存在的定位速度慢和定位精度低的技术问题。The WLAN indoor positioning method in the present application performs principal component analysis on the acquired first environment information data in the target room, selects the first environment information data corresponding to the cumulative contribution rate satisfying the preset condition as the second environment information data, and retains The first environmental information data that has a great influence on the construction of the target indoor model is removed, and the first environmental information data that has little influence on the target indoor model is removed, which achieves a certain data dimensionality reduction effect and improves the positioning speed to a certain extent; Build a target indoor model based on the second environmental information data, arrange APs and set reference points reasonably in the target indoor model, obtain the RSSI value of the signal strength from each AP at the reference point, and divide the target indoor environment through a clustering algorithm. , to obtain multiple sub-regions, by inputting the RSSI value of the signal strength of the test point in the sub-region into the preset convolutional neural network model corresponding to the sub-region, the positioning result of the test point is obtained, and the small region is divided on the basis of the sub-region. The precise positioning improves the indoor positioning accuracy as well as the positioning speed, and solves the technical problems of slow positioning speed and low positioning accuracy existing in the existing indoor positioning method using Euclidean distance for search and positioning.
附图说明Description of drawings
图1为本申请实施例提供的一种WLAN室内定位方法的一个流程示意图;FIG. 1 is a schematic flowchart of a WLAN indoor positioning method provided by an embodiment of the present application;
图2为本申请实施例提供的一种WLAN室内定位方法的另一个流程示意图;FIG. 2 is another schematic flowchart of a WLAN indoor positioning method provided by an embodiment of the present application;
图3为本申请实施例提供的一种WLAN室内定位装置的一个结构示意图。FIG. 3 is a schematic structural diagram of a WLAN indoor positioning apparatus according to an embodiment of the present application.
具体实施方式Detailed ways
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。In order to make those skilled in the art better understand the solutions of the present application, the technical solutions in the embodiments of the present application will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present application. Obviously, the described embodiments are only It is a part of the embodiments of the present application, but not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present application.
为了便于理解,请参阅图1,本申请提供的一种WLAN室内定位方法的一个实施例,包括:For ease of understanding, please refer to FIG. 1 , an embodiment of a WLAN indoor positioning method provided by the present application includes:
步骤101、获取目标室内的第一环境信息数据。Step 101: Acquire first environment information data in the target room.
需要说明的是,第一环境信息数据包括空间三维点云数据、目标对象的位置坐标、目标对象的方位角以及俯仰角。本申请实施例中可以通过多个摄像头和多个雷达来获取目标室内的第一环境信息数据,通过摄像头采集目标室内的环境图像,通过采集的图像可以标定目标室内中的桌子、椅子等目标对象,通过雷达来测量发射脉冲与回波脉冲之间的时间差,因电磁波以光速传播,据此就能换算成目标对象的精确距离,此外,通过天线的尖锐方位波束测量目标对象的方位,通过窄的仰角波束测量仰角,进而根据目标对象的仰角和距离就能计算目标对象的高度。It should be noted that the first environment information data includes spatial three-dimensional point cloud data, the position coordinates of the target object, the azimuth angle and the elevation angle of the target object. In this embodiment of the present application, multiple cameras and multiple radars may be used to obtain the first environment information data in the target room, and the cameras may collect environment images in the target room, and the collected images may demarcate target objects such as tables and chairs in the target room. , the time difference between the transmitted pulse and the echo pulse is measured by radar. Since the electromagnetic wave propagates at the speed of light, it can be converted into the precise distance of the target object. In addition, the azimuth of the target object is measured through the sharp azimuth beam of the antenna The elevation angle beam measures the elevation angle, and then the height of the target object can be calculated according to the elevation angle and distance of the target object.
步骤102、对第一环境信息数据进行主成分分析,选取满足预置条件的累计贡献率对应的第一环境信息数据为第二环境信息数据。Step 102: Perform principal component analysis on the first environmental information data, and select the first environmental information data corresponding to the cumulative contribution rate satisfying the preset condition as the second environmental information data.
需要说明的是,对第一环境信息数据进行主成分分析,计算各个第一环境信息数据对应的贡献率,贡献率表征着各个第一环境信息数据对于目标室内环境建模影响的大小,贡献率越大,对应的第一环境信息数据对目标室内环境建模的影响越大,通过贡献率筛选得到较大影响的第一环境信息数据作为用于构建目标室内模型的第二环境信息数据,在对数据达到了一定程度降维作用的同时又避免了冗余数据对建模的影响。It should be noted that principal component analysis is performed on the first environmental information data, and the contribution rate corresponding to each first environmental information data is calculated, and the contribution rate represents the impact of each first environmental information data on the target indoor environment modeling, and the contribution rate The larger the value, the greater the impact of the corresponding first environmental information data on the target indoor environment modeling. The first environmental information data with greater influence is obtained through the contribution rate screening as the second environmental information data used to construct the target indoor model. It achieves a certain degree of dimensionality reduction for the data and avoids the influence of redundant data on modeling.
步骤103、基于第二环境信息数据构建目标室内的环境,得到目标室内模型。
需要说明的是,基于第二环境信息数据构建目标室内的环境,得到目标室内模型的过程属于现有技术,在此不再对建模的具体过程进行赘述。It should be noted that the process of constructing the target indoor environment based on the second environment information data and obtaining the target indoor model belongs to the prior art, and the specific process of the modeling will not be repeated here.
步骤104、在目标室内模型中布置AP和设置参考点,获取目标室内模型中每个参考点的信号强度RSSI值。Step 104: Arrange APs and set reference points in the target indoor model, and obtain the RSSI value of the signal strength of each reference point in the target indoor model.
需要说明的是,在目标室内模型中布置AP和设置参考点后,可以在每个参考点位置设置信号接收机,通过信号接收机来记录每个AP发出的信号强度RSSI值,从而得到每个参考点的信号强度RSSI值。It should be noted that after arranging APs and setting reference points in the target indoor model, a signal receiver can be set at each reference point, and the signal strength RSSI value sent by each AP can be recorded by the signal receiver, so as to obtain each signal strength RSSI value. Signal strength RSSI value of the reference point.
步骤105、基于每个参考点的信号强度RSSI值,根据模糊聚类算法对目标室内的环境进行区域划分,得到若干个子区域。
需要说明的是,标记部分参考点作为模糊聚类的已知类别信息,通过模糊聚类算法将目标室内环境分成多个子区域,并为每个参考点标记其所属子区域的类别信息,进而实现对区域的划分。It should be noted that some reference points are marked as the known category information of fuzzy clustering, and the target indoor environment is divided into multiple sub-regions through the fuzzy clustering algorithm, and the category information of the sub-region to which each reference point belongs is marked, thereby realizing Division of areas.
步骤106、将获取的子区域中的测试点的信号强度RSSI值输入到子区域对应的预置卷积神经网络模型,输出测试点的定位结果。Step 106: Input the acquired signal strength RSSI value of the test point in the sub-area into the preset convolutional neural network model corresponding to the sub-area, and output the location result of the test point.
需要说明的是,每个子区域对应的有一个预置卷积神经网络模型,预置卷积神经网络模型可以是训练好的BP神经网络模型,也可以是训练好的其他卷积神经网络模型,当需要对某个测试点进行定位时,可以在该测试点布置信号接收机来记录每个AP发出的信号强度RSSI值,并将获取的来自不同AP的信号强度RSSI值输入到该测试点所在的子区域对应的预置卷积神经网络模型中,从而输出该测试点的定位信息。It should be noted that each sub-area corresponds to a preset convolutional neural network model. The preset convolutional neural network model can be a trained BP neural network model, or other trained convolutional neural network models. When a test point needs to be located, a signal receiver can be arranged at the test point to record the signal strength RSSI value sent by each AP, and input the acquired signal strength RSSI values from different APs to the test point. In the preset convolutional neural network model corresponding to the sub-region of , the positioning information of the test point is output.
本申请实施例中的WLAN室内定位方法,通过对获取的目标室内的第一环境信息数据进行主成分分析,选取满足预置条件的累计贡献率对应的第一环境信息数据为第二环境信息数据,保留了对于构建目标室内模型影响较大的第一环境信息数据,去掉了对于目标室内模型影响不大的第一环境信息数据,达到了一定的数据降维作用,在一定程度上提高了定位速度;基于第二环境信息数据构建目标室内模型,在目标室内模型中合理布置AP和设置参考点,通过获取参考点来自各个AP的信号强度RSSI值,并通过聚类算法对目标室内的环境进行区域划分,得到多个子区域,通过将子区域中的测试点的信号强度RSSI值输入到子区域对应的预置卷积神经网络模型,得到测试点的定位结果,在划分子区域的基础上进行小区域的精确定位,在提高了室内定位精度的同时也提高了定位速度,解决了现有的室内定位方法采用欧氏距离进行搜索定位所存在的定位速度慢和定位精度低的技术问题。In the WLAN indoor positioning method in the embodiment of the present application, by performing principal component analysis on the acquired first environment information data in the target room, the first environment information data corresponding to the cumulative contribution rate satisfying the preset condition is selected as the second environment information data , the first environmental information data that has a great influence on the construction of the target indoor model is retained, and the first environmental information data that has little influence on the target indoor model is removed, which achieves a certain effect of data dimensionality reduction and improves positioning to a certain extent. Speed; build a target indoor model based on the second environmental information data, reasonably arrange APs and set reference points in the target indoor model, obtain the RSSI value of the signal strength from each AP at the reference point, and perform a clustering algorithm on the target indoor environment. The area is divided to obtain multiple sub-areas. By inputting the RSSI value of the signal strength of the test point in the sub-area into the preset convolutional neural network model corresponding to the sub-area, the positioning result of the test point is obtained. Precise positioning in small areas not only improves indoor positioning accuracy, but also improves positioning speed, and solves the technical problems of slow positioning speed and low positioning accuracy in existing indoor positioning methods using Euclidean distance for search and positioning.
为了便于理解,请参阅图2,本申请提供的一种WLAN室内定位方法的另一个实施例,包括:For ease of understanding, please refer to FIG. 2 , another embodiment of a WLAN indoor positioning method provided by the present application includes:
步骤201、获取目标室内的第一环境信息数据。Step 201: Acquire first environment information data in the target room.
需要说明的是,第一环境信息数据包括空间三维点云数据、目标对象的位置坐标、目标对象的方位角以及俯仰角。本申请实施例中可以通过多个摄像头和多个雷达来获取目标室内的第一环境信息数据,通过摄像头采集目标室内的环境图像,通过采集的图像可以标定目标室内中的桌子、椅子等目标对象,通过雷达来测量发射脉冲与回波脉冲之间的时间差,因电磁波以光速传播,据此就能换算成目标对象的精确距离,此外,通过天线的尖锐方位波束测量目标对象的方位,通过窄的仰角波束测量仰角,进而根据目标对象的仰角和距离就能计算目标对象的高度。It should be noted that the first environment information data includes spatial three-dimensional point cloud data, the position coordinates of the target object, the azimuth angle and the elevation angle of the target object. In this embodiment of the present application, multiple cameras and multiple radars may be used to obtain the first environment information data in the target room, and the cameras may collect environment images in the target room, and the collected images may demarcate target objects such as tables and chairs in the target room. , the time difference between the transmitted pulse and the echo pulse is measured by radar. Since the electromagnetic wave propagates at the speed of light, it can be converted into the precise distance of the target object. In addition, the azimuth of the target object is measured through the sharp azimuth beam of the antenna The elevation angle beam measures the elevation angle, and then the height of the target object can be calculated according to the elevation angle and distance of the target object.
步骤202、对第一环境信息数据进行主成分分析,选取满足预置条件的累计贡献率对应的第一环境信息数据为第二环境信息数据。Step 202: Perform principal component analysis on the first environmental information data, and select the first environmental information data corresponding to the cumulative contribution rate satisfying the preset condition as the second environmental information data.
需要说明的是,将通过不同的摄像头和雷达两部分获取的第一环境信息数据分别记为O1,O2,…Oi,…,Oj,…,On,n为大于0的整数,基于第一环境信息数据计算相关系数rij,生成相关系数矩阵R,即:It should be noted that the first environmental information data obtained by different cameras and radars are respectively recorded as O 1 , O 2 ,...O i ,...,O j ,...,On , and n is an integer greater than 0 , calculate the correlation coefficient r ij based on the first environmental information data, and generate the correlation coefficient matrix R, namely:
其中,rij为第一环境信息数据Oi和第一环境信息数据Oj之间的相关系数,rij=rji,分别为Oi和Oj的平均值,当所有相关系数计算完后,生成的相关系数矩阵为Wherein, r ij is the correlation coefficient between the first environmental information data O i and the first environmental information data O j , r ij =r ji , are the average of O i and O j respectively. After all correlation coefficients are calculated, the generated correlation coefficient matrix is
对基于相关系数矩阵构建的特征方程|λI-R|=0进行求解,得到特征值λl,l=1,2,…,n,可以通过MATLAB等工具进行计算。Solve the characteristic equation |λI-R|=0 constructed based on the correlation coefficient matrix, and obtain the characteristic values λ l , l=1,2,...,n, which can be calculated by tools such as MATLAB.
基于特征值计算贡献率,贡献率的计算公式为:The contribution rate is calculated based on the eigenvalues, and the calculation formula of the contribution rate is:
选取累计贡献率大于85%时对应的最少数量的特征值对应的第一环境信息数据为第二环境信息数据,累计贡献率的计算公式为:Select the first environmental information data corresponding to the minimum number of eigenvalues when the cumulative contribution rate is greater than 85% as the second environmental information data, and the calculation formula of the cumulative contribution rate is:
贡献率表征着各个第一环境信息数据对于目标室内环境建模影响的大小,贡献率越大,对应的第一环境信息数据对目标室内环境建模的影响越大,通过贡献率筛选得到较大影响的第一环境信息数据作为用于构建目标室内模型的第二环境信息数据,在对数据达到了一定程度降维作用的同时又避免了冗余数据对建模的影响。The contribution rate represents the impact of each first environmental information data on the target indoor environment modeling. The greater the contribution rate, the greater the impact of the corresponding first environmental information data on the target indoor environment modeling. The affected first environment information data is used as the second environment information data for constructing the target indoor model, which achieves a certain degree of dimensionality reduction effect on the data and avoids the influence of redundant data on modeling.
步骤203、基于第二环境信息数据构建目标室内的环境,得到目标室内模型。
需要说明的是,基于第二环境信息数据构建目标室内的环境,得到目标室内模型的过程属于现有技术,在此不再对建模的具体过程进行赘述。It should be noted that the process of constructing the target indoor environment based on the second environment information data and obtaining the target indoor model belongs to the prior art, and the specific process of the modeling will not be repeated here.
步骤204、对目标室内模型进行坐标化处理。
需要说明的是,对目标室内模型进行坐标化处理就是将目标室内的环境模拟成一个空间三维坐标系,若在坐标系中设置了原点则形成一个完整的可获取坐标数值的三维坐标系,为后续获取参考点的位置坐标提供基础,而对模型进行坐标化处理属于现有技术,在此不再对模型的坐标化处理的具体过程进行赘述。其中,可以通过存储器对坐标化处理后的目标室内模型进行存储。It should be noted that the coordinate processing of the target indoor model is to simulate the target indoor environment into a three-dimensional coordinate system in space. If the origin is set in the coordinate system, a complete three-dimensional coordinate system that can obtain coordinate values is formed. Subsequent acquisition of the position coordinates of the reference point provides a basis, and the coordinate processing of the model belongs to the prior art, and the specific process of the coordinate processing of the model will not be repeated here. Wherein, the coordinate-processed target indoor model can be stored in the memory.
步骤205、在目标室内模型中布置AP和设置参考点,获取目标室内模型中每个参考点的位置坐标和每个参考点的信号强度RSSI值。Step 205: Arrange APs and set reference points in the target indoor model, and obtain the position coordinates of each reference point in the target indoor model and the RSSI value of the signal strength of each reference point.
需要说明的是,在目标室内模型中布置若干个AP,布置AP时要确保目标室内中任一点都要被两个或两个以上的AP发出的信号覆盖,在目标室内模型中设置若干个参考点时,每个参考点按照预置距离均匀布置,预置距离的具体取值可以根据实际情况进行选择。在所有参考点中选取一个参考点作为目标参考点,以该目标参考点为原点建立三维坐标系,基于三维坐标系就能得到每个参考点的位置坐标;可以在每个参考点位置处设置信号接收机,通过信号接收机来记录每个AP发出的信号强度RSSI值,从而得到每个参考点的信号强度RSSI值。It should be noted that, arrange several APs in the target indoor model. When arranging APs, ensure that any point in the target room is covered by the signals sent by two or more APs, and set several reference points in the target indoor model. Each reference point is evenly arranged according to the preset distance, and the specific value of the preset distance can be selected according to the actual situation. Select a reference point from all reference points as the target reference point, establish a three-dimensional coordinate system with the target reference point as the origin, and based on the three-dimensional coordinate system, the position coordinates of each reference point can be obtained; it can be set at the position of each reference point The signal receiver records the signal strength RSSI value sent by each AP through the signal receiver, so as to obtain the signal strength RSSI value of each reference point.
步骤206、基于每个参考点的信号强度RSSI值,根据模糊聚类算法对目标室内的环境进行区域划分,得到若干个子区域。
需要说明的是,根据每个参考点的信号强度RSSI值得到原始数据矩阵A:It should be noted that the original data matrix A is obtained according to the RSSI value of the signal strength of each reference point:
A=(xij)n×m,j=1,2,…,m;i=1,2,…,n;A=(x ij ) n×m , j=1,2,...,m; i=1,2,...,n;
其中,n为AP的数量,m为参考点的数量,xij为第j个参考点接收的第i个AP发出的信号强度RSSI值。Among them, n is the number of APs, m is the number of reference points, and x ij is the RSSI value of the signal strength sent by the i-th AP received by the j-th reference point.
通过格贴近度建立模糊相似矩阵,令:The fuzzy similarity matrix is established by lattice closeness, so that:
其中,rij为相似系数,aj、bj、ai和bi为对信号强度RSSI值的隶属度的近似值;Among them, r ij is the similarity coefficient, a j , b j , a i and b i are approximate values of membership to the RSSI value of the signal strength;
模糊相似矩阵为:The fuzzy similarity matrix is:
R=(rij)m×m;R=(r ij ) m×m ;
根据模糊相似矩阵计算模糊等价矩阵:Calculate the fuzzy equivalence matrix from the fuzzy similarity matrix:
t(R)=R*=R2;t(R)=R * =R2 ;
设Assume
t(R)=(rij')m×m;t(R)=(r ij ') m×m ;
t(R)λ=(rij'(λ))m×m;t(R) λ =(r ij '(λ)) m×m ;
由前述求得的模糊相似矩阵R出发,构造一个模糊等价矩阵R*,可以是通过用平方法求出R的传递闭包t(R),然后由大到小取一组λ∈[0,1],一般λ=0.998,若rij'(λ)=1,则认为第i个AP的布置位置与第j个参考点的位置可以视为在一个子区域,从而实现将目标室内环境分成多个子区域。Starting from the fuzzy similarity matrix R obtained above, a fuzzy equivalent matrix R * can be constructed by using the square method to find the transitive closure t(R) of R, and then take a set of λ∈[0 ,1], generally λ=0.998, if r ij '(λ)=1, it is considered that the arrangement position of the ith AP and the position of the jth reference point can be regarded as a sub-area, so as to realize the target indoor environment into multiple sub-regions.
步骤207、将每个子区域的参考点的位置坐标和参考点的信号强度RSSI值作为一个训练集。Step 207: Use the position coordinates of the reference point of each sub-region and the RSSI value of the signal strength of the reference point as a training set.
需要说明的是,将每个子区域的参考点的位置坐标和参考点的信号强度RSSI值作为一个训练集,每个子区域对应一个训练集,有多少个子区域就有多少个训练集。It should be noted that the position coordinates of the reference point of each sub-region and the RSSI value of the signal strength of the reference point are used as a training set, each sub-region corresponds to a training set, and there are as many training sets as there are sub-regions.
步骤208、每个训练集训练一个卷积神经网络模型,当卷积神经网络模型达到收敛条件时,得到若干个训练好的卷积神经网络模型,将训练好的卷积神经网络模型作为预置卷积神经网络模型。Step 208: Train a convolutional neural network model for each training set. When the convolutional neural network model reaches the convergence condition, several trained convolutional neural network models are obtained, and the trained convolutional neural network model is used as a preset. Convolutional Neural Network Model.
需要说明的是,本申请实施例中每个训练集训练一个卷积神经网络模型,有多少个训练集,对应的就有多少个卷积神经网络模型,训练过程中卷积神经网络模型的隐藏层节点数h通过经验公式确定,即:It should be noted that, in the embodiment of the present application, each training set trains a convolutional neural network model, and there are as many training sets as there are corresponding convolutional neural network models. The number of layer nodes h is determined by the empirical formula, namely:
其中,o为输入层节点数,p为输出层节点数,q为1-10之间的调节常数。Among them, o is the number of nodes in the input layer, p is the number of nodes in the output layer, and q is an adjustment constant between 1 and 10.
根据输入向量、输入层和隐藏层的连接权值wij以及阈值aj,计算隐藏层输出H:According to the input vector, the connection weight w ij between the input layer and the hidden layer, and the threshold a j , calculate the hidden layer output H:
其中,f(·)为激活函数,本申请实施例中的激活函数为f(x)=1/(1+e-x)。Wherein, f(·) is an activation function, and the activation function in this embodiment of the present application is f(x)=1/(1+e −x ).
根据隐藏层输出H、连接层权值wjk和阈值bk,计算输出层输出Ok:According to the hidden layer output H, the connection layer weight w jk and the threshold b k , calculate the output layer output O k :
其中,m为输出层节点数。Among them, m is the number of output layer nodes.
根据卷积神经网络输出值Ok和期望输出yk(即参考点的位置坐标),计算该模型辨识误差E:According to the output value O k of the convolutional neural network and the expected output y k (that is, the position coordinates of the reference point), the identification error E of the model is calculated:
根据模型辨识误差E更新网络连接权值wij和wjk:Update the network connection weights w ij and w jk according to the model identification error E:
δjk=(yk-Ok)·Ok·(1-Ok);δ jk =(y k -O k )·O k ·(1-O k );
其中,为学习率,根据实际情况进行设置。in, For the learning rate, set it according to the actual situation.
根据模型辨识误差E,更新网络节点的阈值aj、bk:According to the model identification error E, update the thresholds a j and b k of the network nodes:
当卷积神经网络模型辨识误差小于预置阈值时,迭代结束,得到训练好的卷积神经网络模型,将训练好的卷积神经网络模型作为预置卷积神经网络模型。When the recognition error of the convolutional neural network model is less than the preset threshold, the iteration ends, and the trained convolutional neural network model is obtained, and the trained convolutional neural network model is used as the preset convolutional neural network model.
步骤209、将获取的子区域中的测试点的信号强度RSSI值输入到子区域对应的预置卷积神经网络模型,输出测试点的定位结果。Step 209: Input the acquired signal strength RSSI value of the test point in the sub-region into the preset convolutional neural network model corresponding to the sub-region, and output the positioning result of the test point.
需要说明的是,每个子区域对应一个预置卷积神经网络模型,当需要对某个测试点进行定位时,可以在该测试点布置信号接收机来记录每个AP发出的信号强度RSSI值,并将获取的来自不同AP的信号强度RSSI值输入到该测试点所在的子区域对应的预置卷积神经网络模型中,从而输出该测试点的位置坐标,得到该测试点的定位信息,其中,该测试点所在的子区域可以通过前述的聚类算法确定。将本申请实施例中的WLAN室内定位与传统的定位方法进行误差比对,如表1所示,本申请实施例中的WLAN室内定位方法误差更小,精度更高。It should be noted that each sub-region corresponds to a preset convolutional neural network model. When a test point needs to be located, a signal receiver can be arranged at the test point to record the signal strength RSSI value sent by each AP. Input the RSSI value of the obtained signal strength from different APs into the preset convolutional neural network model corresponding to the sub-region where the test point is located, so as to output the position coordinates of the test point, and obtain the positioning information of the test point, wherein , the sub-region where the test point is located can be determined by the aforementioned clustering algorithm. Comparing the errors of the WLAN indoor positioning in the embodiment of the present application with the traditional positioning method, as shown in Table 1, the WLAN indoor positioning method in the embodiment of the present application has smaller errors and higher accuracy.
表1误差比对表Table 1 Error comparison table
为了便于理解,请参阅图3,本申请提供的一种WLAN室内定位装置的一个实施例,包括:For ease of understanding, please refer to FIG. 3 , an embodiment of a WLAN indoor positioning device provided by the present application includes:
第一获取模块301,用于获取目标室内的第一环境信息数据,第一环境信息数据包括空间三维点云数据、目标对象的位置坐标、目标对象的方位角以及俯仰角。The first obtaining module 301 is configured to obtain first environment information data in the target room, where the first environment information data includes spatial three-dimensional point cloud data, the position coordinates of the target object, the azimuth angle and the elevation angle of the target object.
主成分分析模块302,用于对第一环境信息数据进行主成分分析,选取满足预置条件的累计贡献率对应的第一环境信息数据为第二环境信息数据。The principal component analysis module 302 is configured to perform principal component analysis on the first environmental information data, and select the first environmental information data corresponding to the cumulative contribution rate satisfying the preset condition as the second environmental information data.
构建模块303,用于基于第二环境信息数据构建目标室内的环境,得到目标室内模型。The construction module 303 is configured to construct the target indoor environment based on the second environment information data to obtain the target indoor model.
第二获取模块304,用于在目标室内模型中布置AP和设置参考点,获取目标室内模型中每个参考点的信号强度RSSI值。The second acquiring module 304 is used for arranging APs and setting reference points in the target indoor model, and acquiring the RSSI value of the signal strength of each reference point in the target indoor model.
划分模块305,用于基于每个参考点的信号强度RSSI值,根据模糊聚类算法对目标室内的环境进行区域划分,得到若干个子区域。The division module 305 is configured to divide the environment in the target indoor environment according to the fuzzy clustering algorithm based on the RSSI value of the signal strength of each reference point, and obtain several sub-areas.
定位模块306,用于将获取的子区域中的测试点的信号强度RSSI值输入到子区域对应的预置卷积神经网络模型,输出测试点的定位结果。The positioning module 306 is configured to input the acquired RSSI value of the signal strength of the test point in the sub-region into the preset convolutional neural network model corresponding to the sub-region, and output the positioning result of the test point.
进一步地,还包括:Further, it also includes:
预处理模块307,用于对目标室内模型进行坐标化处理。The preprocessing module 307 is used for coordinate processing on the target indoor model.
进一步地,第二获取模块304包括:Further, the second obtaining module 304 includes:
布置子模块3041,用于在目标室内模型中布置若干个AP和设置若干个参考点,参考点根据预置距离均匀分布。The arrangement sub-module 3041 is used for arranging several APs and setting several reference points in the target indoor model, and the reference points are evenly distributed according to the preset distance.
采集子模块3042,用于采集每个参考点的来自各个AP的信号强度RSSI值。The collection sub-module 3042 is configured to collect the RSSI value of the signal strength from each AP of each reference point.
进一步地,第二获取模块304还包括:Further, the second obtaining module 304 also includes:
选取子模块3043,用于在若干个参考点中选取目标参考点,以目标参考点为原点建立三维坐标系,基于三维坐标系得到每个参考点的位置坐标。The selection sub-module 3043 is used to select a target reference point among several reference points, establish a three-dimensional coordinate system with the target reference point as the origin, and obtain the position coordinates of each reference point based on the three-dimensional coordinate system.
进一步地,还包括:Further, it also includes:
训练集获取模块308,用于将每个子区域的参考点的位置坐标和参考点的信号强度RSSI值作为一个训练集;The training set acquisition module 308 is used to use the position coordinates of the reference point of each sub-region and the signal strength RSSI value of the reference point as a training set;
训练模块309,用于每个训练集训练一个卷积神经网络模型,当卷积神经网络模型达到收敛条件时,得到若干个训练好的卷积神经网络模型,将训练好的卷积神经网络模型作为预置卷积神经网络模型。The training module 309 is used to train a convolutional neural network model for each training set. When the convolutional neural network model reaches the convergence condition, several trained convolutional neural network models are obtained, and the trained convolutional neural network models are As a preset convolutional neural network model.
进一步地,主成分分析模块302具体用于:Further, the principal component analysis module 302 is specifically used for:
基于第一环境信息数据计算相关系数,生成相关系数矩阵;Calculate a correlation coefficient based on the first environmental information data, and generate a correlation coefficient matrix;
对基于相关系数矩阵构建的特征方程进行求解,得到特征值;Solve the characteristic equation constructed based on the correlation coefficient matrix to obtain the characteristic value;
基于特征值计算贡献率;Calculate contribution rate based on eigenvalues;
选取累计贡献率大于85%时对应的最少数量的特征值对应的第一环境信息数据为第二环境信息数据。Select the first environment information data corresponding to the minimum number of characteristic values when the cumulative contribution rate is greater than 85% as the second environment information data.
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。In the several embodiments provided in this application, it should be understood that the disclosed apparatus and method may be implemented in other manners. For example, the apparatus embodiments described above are only illustrative. For example, the division of the units is only a logical function division. In actual implementation, there may be other division methods. For example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented. On the other hand, the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。The units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。In addition, each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit. The above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以通过一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(英文全称:Read-OnlyMemory,英文缩写:ROM)、随机存取存储器(英文全称:Random Access Memory,英文缩写:RAM)、磁碟或者光盘等各种可以存储程序代码的介质。The integrated unit, if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium. Based on this understanding, the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , including several instructions for executing all or part of the steps of the methods described in the various embodiments of the present application through a computer device (which may be a personal computer, a server, or a network device, etc.). The aforementioned storage media include: U disk, mobile hard disk, read-only memory (full English name: Read-Only Memory, English abbreviation: ROM), random access memory (English full name: Random Access Memory, English abbreviation: RAM), magnetic disks Or various media such as optical discs that can store program codes.
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。As mentioned above, the above embodiments are only used to illustrate the technical solutions of the present application, but not to limit them; although the present application has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand: The technical solutions described in the embodiments are modified, or some technical features thereof are equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions in the embodiments of the present application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010043140.2A CN111263295B (en) | 2020-01-15 | 2020-01-15 | A WLAN indoor positioning method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010043140.2A CN111263295B (en) | 2020-01-15 | 2020-01-15 | A WLAN indoor positioning method and device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111263295A true CN111263295A (en) | 2020-06-09 |
CN111263295B CN111263295B (en) | 2021-08-13 |
Family
ID=70952116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010043140.2A Active CN111263295B (en) | 2020-01-15 | 2020-01-15 | A WLAN indoor positioning method and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111263295B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113206774A (en) * | 2021-03-19 | 2021-08-03 | 武汉特斯联智能工程有限公司 | Control method and device of intelligent household equipment based on indoor positioning information |
CN114091612A (en) * | 2021-11-25 | 2022-02-25 | 中国银行股份有限公司 | Indoor positioning method and system based on wireless broadband WIFI |
CN115988634A (en) * | 2022-11-23 | 2023-04-18 | 香港中文大学(深圳) | Indoor positioning method and subspace feature extraction method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1182897A1 (en) * | 2000-07-10 | 2002-02-27 | ScoreBoard, Inc. | Collection and analysis of signal propagation data in a wireless system |
CN104093203A (en) * | 2014-07-07 | 2014-10-08 | 浙江师范大学 | An Access Point Selection Algorithm for Wireless Indoor Positioning |
CN104574386A (en) * | 2014-12-26 | 2015-04-29 | 速感科技(北京)有限公司 | Indoor positioning method based on three-dimensional environment model matching |
CN105101408A (en) * | 2015-07-23 | 2015-11-25 | 常熟理工学院 | Indoor Positioning Method Based on Distributed AP Selection Strategy |
CN106131959A (en) * | 2016-08-11 | 2016-11-16 | 电子科技大学 | A kind of dual-positioning method divided based on Wi Fi signal space |
-
2020
- 2020-01-15 CN CN202010043140.2A patent/CN111263295B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1182897A1 (en) * | 2000-07-10 | 2002-02-27 | ScoreBoard, Inc. | Collection and analysis of signal propagation data in a wireless system |
CN104093203A (en) * | 2014-07-07 | 2014-10-08 | 浙江师范大学 | An Access Point Selection Algorithm for Wireless Indoor Positioning |
CN104574386A (en) * | 2014-12-26 | 2015-04-29 | 速感科技(北京)有限公司 | Indoor positioning method based on three-dimensional environment model matching |
CN105101408A (en) * | 2015-07-23 | 2015-11-25 | 常熟理工学院 | Indoor Positioning Method Based on Distributed AP Selection Strategy |
CN106131959A (en) * | 2016-08-11 | 2016-11-16 | 电子科技大学 | A kind of dual-positioning method divided based on Wi Fi signal space |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113206774A (en) * | 2021-03-19 | 2021-08-03 | 武汉特斯联智能工程有限公司 | Control method and device of intelligent household equipment based on indoor positioning information |
CN114091612A (en) * | 2021-11-25 | 2022-02-25 | 中国银行股份有限公司 | Indoor positioning method and system based on wireless broadband WIFI |
CN115988634A (en) * | 2022-11-23 | 2023-04-18 | 香港中文大学(深圳) | Indoor positioning method and subspace feature extraction method |
CN115988634B (en) * | 2022-11-23 | 2023-08-18 | 香港中文大学(深圳) | Indoor positioning method and subspace feature extraction method |
Also Published As
Publication number | Publication date |
---|---|
CN111263295B (en) | 2021-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110012428B (en) | A WiFi-based indoor positioning method | |
CN112748397B (en) | UWB positioning method based on self-adaptive BP neural network under non-line-of-sight condition | |
CN106912105B (en) | Three-dimensional positioning method based on PSO _ BP neural network | |
Zhang et al. | A comprehensive study of bluetooth fingerprinting-based algorithms for localization | |
CN111263295B (en) | A WLAN indoor positioning method and device | |
Wang et al. | TOA-based NLOS error mitigation algorithm for 3D indoor localization | |
CN106851571B (en) | Decision tree-based rapid KNN indoor WiFi positioning method | |
CN111352087B (en) | Passive MIMO radar multi-target positioning method based on DBSCAN | |
CN105629198B (en) | The indoor multi-target tracking method of fast search clustering algorithm based on density | |
CN109061774B (en) | Thunderstorm core correlation processing method | |
CN111726765B (en) | A WIFI indoor positioning method and system for large-scale complex scenes | |
Zhou et al. | Indoor fingerprint localization based on fuzzy c-means clustering | |
CN109814066B (en) | RSSI indoor positioning distance measurement method and indoor positioning platform based on neural network learning | |
WO2022242018A1 (en) | Indoor target positioning method based on improved cnn model | |
CN110049549A (en) | More fusion indoor orientation methods and its system based on WiFi fingerprint | |
CN110333480A (en) | A clustering-based multi-target AOA localization method for single UAV | |
Arsan et al. | A Clustering‐Based Approach for Improving the Accuracy of UWB Sensor‐Based Indoor Positioning System | |
CN112040405A (en) | An indoor localization method based on kernel extreme learning machine and particle filter | |
CN105866732B (en) | The mixing indoor orientation method that a kind of improvement MK models and WKNN algorithms are combined | |
Bal et al. | Regression of large-scale path loss parameters using deep neural networks | |
CN104581945A (en) | WLAN Indoor Positioning Method Based on Semi-supervised APC Clustering Algorithm Based on Distance Constraint | |
CN105722217A (en) | Indoor positioning method based on Wi-Fi | |
CN109121081A (en) | A kind of indoor orientation method based on position Candidate Set Yu EM algorithm | |
CN117241239A (en) | Indoor positioning method and system for position fingerprints based on one-dimensional convolutional neural network | |
CN113194401B (en) | Millimeter wave indoor positioning method and system based on generative countermeasure network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |