CN111261969A - A method for recycling and regenerating cathode material of waste lithium iron phosphate battery - Google Patents
A method for recycling and regenerating cathode material of waste lithium iron phosphate battery Download PDFInfo
- Publication number
- CN111261969A CN111261969A CN202010080464.3A CN202010080464A CN111261969A CN 111261969 A CN111261969 A CN 111261969A CN 202010080464 A CN202010080464 A CN 202010080464A CN 111261969 A CN111261969 A CN 111261969A
- Authority
- CN
- China
- Prior art keywords
- positive electrode
- lithium
- iron phosphate
- lithium iron
- recycling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 title claims abstract description 43
- 238000000034 method Methods 0.000 title claims abstract description 42
- 238000004064 recycling Methods 0.000 title claims abstract description 29
- 239000002699 waste material Substances 0.000 title claims abstract description 17
- 230000001172 regenerating effect Effects 0.000 title claims abstract description 7
- 239000010406 cathode material Substances 0.000 title claims description 23
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 33
- 238000011084 recovery Methods 0.000 claims abstract description 26
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000000463 material Substances 0.000 claims abstract description 20
- 150000007524 organic acids Chemical class 0.000 claims abstract description 19
- 238000003756 stirring Methods 0.000 claims abstract description 15
- 239000007788 liquid Substances 0.000 claims abstract description 12
- 239000006185 dispersion Substances 0.000 claims abstract description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000000843 powder Substances 0.000 claims abstract description 10
- 239000003792 electrolyte Substances 0.000 claims abstract description 8
- 229910052742 iron Inorganic materials 0.000 claims abstract description 8
- 239000003960 organic solvent Substances 0.000 claims abstract description 7
- 239000000725 suspension Substances 0.000 claims abstract description 7
- 239000000203 mixture Substances 0.000 claims abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000013589 supplement Substances 0.000 claims abstract description 5
- 239000012298 atmosphere Substances 0.000 claims abstract description 3
- 238000004140 cleaning Methods 0.000 claims abstract description 3
- 238000011069 regeneration method Methods 0.000 claims description 10
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 6
- 239000010926 waste battery Substances 0.000 claims description 6
- 235000021355 Stearic acid Nutrition 0.000 claims description 5
- 239000002253 acid Substances 0.000 claims description 5
- 238000000498 ball milling Methods 0.000 claims description 5
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims description 5
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 claims description 5
- 239000008117 stearic acid Substances 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 238000001354 calcination Methods 0.000 claims description 4
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims description 4
- 229910052808 lithium carbonate Inorganic materials 0.000 claims description 4
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 claims description 3
- 239000013543 active substance Substances 0.000 claims description 3
- 229910052786 argon Inorganic materials 0.000 claims description 3
- 235000020778 linoleic acid Nutrition 0.000 claims description 3
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 claims description 3
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 claims description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 claims description 2
- 125000004432 carbon atom Chemical group C* 0.000 claims description 2
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 2
- 238000007599 discharging Methods 0.000 claims description 2
- 238000001704 evaporation Methods 0.000 claims description 2
- 239000000194 fatty acid Substances 0.000 claims description 2
- 229930195729 fatty acid Natural products 0.000 claims description 2
- 150000004665 fatty acids Chemical class 0.000 claims description 2
- 239000011261 inert gas Substances 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 238000007873 sieving Methods 0.000 claims description 2
- 239000010405 anode material Substances 0.000 claims 1
- 239000007774 positive electrode material Substances 0.000 abstract description 30
- 229910052782 aluminium Inorganic materials 0.000 abstract description 22
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 22
- 238000000926 separation method Methods 0.000 abstract description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 16
- 229910052799 carbon Inorganic materials 0.000 description 16
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 14
- 229910001416 lithium ion Inorganic materials 0.000 description 14
- 230000008569 process Effects 0.000 description 12
- 238000002386 leaching Methods 0.000 description 8
- 230000008929 regeneration Effects 0.000 description 8
- 238000001291 vacuum drying Methods 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 5
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000011149 active material Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 229910021645 metal ion Inorganic materials 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 229910000398 iron phosphate Inorganic materials 0.000 description 3
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 239000012612 commercial material Substances 0.000 description 2
- 239000002482 conductive additive Substances 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- SMBQBQBNOXIFSF-UHFFFAOYSA-N dilithium Chemical compound [Li][Li] SMBQBQBNOXIFSF-UHFFFAOYSA-N 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000009854 hydrometallurgy Methods 0.000 description 2
- 239000002608 ionic liquid Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- QSNQXZYQEIKDPU-UHFFFAOYSA-N [Li].[Fe] Chemical compound [Li].[Fe] QSNQXZYQEIKDPU-UHFFFAOYSA-N 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000006182 cathode active material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000000713 high-energy ball milling Methods 0.000 description 1
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/54—Reclaiming serviceable parts of waste accumulators
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/45—Phosphates containing plural metal, or metal and ammonium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/05—Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/84—Recycling of batteries or fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
本发明提供了一种磷酸铁锂废旧电池正极材料回收再生方法,包括以下步骤:将回收的磷酸铁锂废旧电池完全放电后进行拆解,取出正极片;用有机溶剂对正极片进行清洗,除去残留电解液,干燥;将干燥后正极片浸入有机酸与水形成的分散液中,加热、搅拌;将上一步的混合物过筛,分离出集流体,得悬浊液,将其在搅拌下蒸干,真空干燥得回收材料粉末;测定元素Li、Fe含量,补锂,混匀,混匀物料在惰性气氛下焙烧得到回收再生的正极材料。本发明使用上述分散液对集流体和正极活性材料进行分离,大大提高了铝、磷酸铁锂的回收率和二者分离效率,该工艺简便快捷,节省了机械法、酸浸或碱浸等繁复回收铝的步骤,降低了成本,避免对环境造成的二次污染。
The invention provides a method for recycling and regenerating positive electrode materials of waste lithium iron phosphate batteries, which comprises the following steps: disassembling the recycled waste lithium iron phosphate batteries after being completely discharged, and taking out positive electrode sheets; cleaning the positive electrode sheets with organic solvents to remove Residual electrolyte, dry; immerse the dried positive electrode sheet in a dispersion formed by organic acid and water, heat and stir; sieve the mixture from the previous step, separate the current collector, and obtain a suspension, which is evaporated under stirring Dry, vacuum-dry to obtain recycled material powder; measure the content of element Li and Fe, supplement lithium, mix well, and roast the mixed material in an inert atmosphere to obtain a recycled positive electrode material. The present invention uses the above-mentioned dispersion liquid to separate the current collector and the positive electrode active material, which greatly improves the recovery rate of aluminum and lithium iron phosphate and the separation efficiency of the two. The step of recycling aluminum reduces costs and avoids secondary pollution to the environment.
Description
技术领域technical field
本发明涉及磷酸铁锂废旧电池回收领域,具体涉及一种磷酸铁锂废旧电池正极材料回收再生方法。The invention relates to the field of recycling waste lithium iron phosphate batteries, in particular to a method for recycling and regenerating positive electrode materials of waste lithium iron phosphate batteries.
背景技术Background technique
自20世纪90年代锂离子电池商业化推出以来,得到了人们的广泛关注和重视,由于锂离子电池具有工作电压高、便于携带、高能量密度等优点已广泛应用于手机、笔记本电脑、照相机、电动汽车等现代电子设备中。随着科技的进步,锂离子电池的生产和需求与日俱增,如2000年-2010年,全球增长了800%,且随着其在电动汽车和智能电网的进一步潜在应用,对锂离子电池的需求更加日益加剧。根据工业需求和增长量估算,锂离子电池的市场价值将由2015年的314亿美元快速增长至2020年的537亿美元,这必将造成全世界对金属锂的强烈需求和金属锂的供不应求。Since the commercial launch of lithium-ion batteries in the 1990s, they have received widespread attention and attention. Due to the advantages of high operating voltage, easy portability, and high energy density, lithium-ion batteries have been widely used in mobile phones, notebook computers, cameras, etc. In modern electronic devices such as electric vehicles. With the advancement of technology, the production and demand of lithium-ion batteries are increasing day by day. For example, from 2000 to 2010, the global growth rate increased by 800%, and with its further potential applications in electric vehicles and smart grids, the demand for lithium-ion batteries is even greater. increasingly intensified. According to estimates of industrial demand and growth, the market value of lithium-ion batteries will rapidly increase from US$31.4 billion in 2015 to US$53.7 billion in 2020, which will inevitably lead to a strong demand for lithium metal worldwide and a shortage of lithium metal.
众所周知,锂离子电池经过一定次数的充放电后,容量会逐渐损失直至报废,锂离子电池的使用寿命一般为1-3年,动力锂电池寿命要长一些,所以随着使用量的增加将会产生大量的报废锂离子电池,如不对其处理就填埋将会严重污染环境并影响人体健康,还会造成资源浪费,加大地球现有资源利用的压力,限制锂电池更加长远的发展。因此,无论从环境或经济的角度来看,废旧锂离子电池的回收是势在必行,并亟需加大推进回收产业的力度。As we all know, after a certain number of charges and discharges, the capacity of lithium-ion batteries will gradually lose until they are scrapped. The service life of lithium-ion batteries is generally 1-3 years, and the life of power lithium batteries is longer. If a large number of scrapped lithium-ion batteries are generated, if they are not disposed of, landfill will seriously pollute the environment and affect human health. It will also cause waste of resources, increase the pressure on the utilization of existing resources on the earth, and limit the longer-term development of lithium batteries. Therefore, whether from an environmental or economic point of view, the recycling of used lithium-ion batteries is imperative, and there is an urgent need to increase the efforts to promote the recycling industry.
锂离子电池主要由正极、负极、电解液和隔膜四个主要部件组成,其中正极上的活性物质成本约占整个锂离子电池制造成本的30-50%,是锂离子电池中价值最高的部件,也是锂离子电池回收的重点和难点。离子电池正极活性物质回收或再次资源利用化的技术中比较成熟的是湿法冶金术,其过程简单易操控,回收效率较高,因此受到了广泛关注,详细的已公布的废旧锂离子电池的电池处理和回收方法主要是先进行电池的放电拆解,通过高温烧结、有机溶剂如NMP超声或NaOH腐蚀集流体等预处理方法分离出活性材料,再对活性材料通过酸浸、碱浸或混合浸出的方法对活性物质中的金属元素进行选择性或全部浸出,最后通过萃取、沉淀、置换、蒸馏等方法获得金属单质、金属化合物、正极材料等。相关的专利有专利CN107706480A公布了一种用于锂电池回收的硅胶萃取剂及制备方法和应用方法,设计了一种硅胶萃取剂,在不同的温度下对金属离子有不同的结合率,其萃取率高,可以实现金属离子高效环保无污染的分离。CN102368560B公布了一种电池的电极材料的回收方法,以离子液体为溶剂,选择性地溶解活性物质,溶解于离子液体的活性物质通过简单的高温处理使金属锂与其中的重金属元素得到回收。CN107419096B公布了一种废旧锂电池回收再生三元正极材料的制备方法,通过无机酸浸出废旧正极中金属元素后,除铜铝铁后在碱性条件下共沉淀得到三元材料前驱体,最后与碳酸锂球磨后煅烧得到再生三元正极材料。CN106921001B公布了一种利用功率超声回收钴酸锂电池的方法,通过H2S2O4-H2O2配以间歇形式的超声波辅助实现对锂和钴的高效浸出,后分步沉淀分别回收锂、钴。CN109449522A公开了一种废电池中的金属离子回收及其应用于全固态锂电池的方法,利用有机酸实现金属离子的回收同时将回收产物纳米化后用作惰性填料增加聚合物-锂盐中无定形区域,从而提高离子电导率,实现了资源的回收和再利用。Lithium-ion batteries are mainly composed of four main components: positive electrode, negative electrode, electrolyte and separator. The cost of active material on the positive electrode accounts for about 30-50% of the manufacturing cost of the entire lithium-ion battery, and is the most valuable component in lithium-ion batteries. It is also the focus and difficulty of lithium-ion battery recycling. Among the technologies for recycling or re-utilizing positive active materials of ion batteries, hydrometallurgy is the more mature technology. The process is simple and easy to control, and the recovery efficiency is high. Therefore, it has received extensive attention. The battery treatment and recycling method is mainly to firstly discharge and disassemble the battery, separate the active material through high temperature sintering, organic solvent such as NMP ultrasonic or NaOH corrosion current collector and other pretreatment methods, and then immerse the active material through acid leaching, alkali leaching or mixing. The leaching method selectively or completely leaches the metal elements in the active material, and finally obtains the metal element, metal compound, positive electrode material, etc. through extraction, precipitation, replacement, distillation and other methods. Relevant patents include patent CN107706480A, which discloses a silica gel extractant for lithium battery recovery and its preparation method and application method. A silica gel extractant is designed, which has different binding rates to metal ions at different temperatures. High efficiency, high efficiency, environmental protection and pollution-free separation of metal ions can be achieved. CN102368560B discloses a method for recycling electrode materials of a battery. The ionic liquid is used as a solvent to selectively dissolve active substances, and the active substances dissolved in the ionic liquid are recovered by simple high temperature treatment to recover metallic lithium and heavy metal elements therein. CN107419096B discloses a preparation method for recycling and regenerating ternary positive electrode materials from waste lithium batteries. After leaching metal elements in waste positive electrodes with inorganic acid, after removing copper, aluminum and iron, co-precipitate under alkaline conditions to obtain ternary material precursors, and finally combine with The lithium carbonate is ball-milled and then calcined to obtain a regenerated ternary cathode material. CN106921001B discloses a method for recovering lithium cobalt oxide batteries by using power ultrasound. The efficient leaching of lithium and cobalt is realized by H 2 S 2 O 4 -H 2 O 2 combined with intermittent ultrasonic assistance, and the subsequent precipitation is recovered separately. Lithium and cobalt. CN109449522A discloses a method for recovering metal ions in waste batteries and applying them to all-solid-state lithium batteries. The recovery of metal ions is realized by using organic acids, and the recovered products are nanosized and used as inert fillers to increase polymer-lithium salts. The shaping area, thereby improving the ionic conductivity, realizes the recovery and reuse of resources.
分析现有技术,湿法冶金法回收的过程中存在以下问题:1,工艺步骤繁多,工艺参数需要严格控制;2,消耗大量的试剂,引入大量的杂质离子,且增加了回收的成本;3,处理和回收过程通常会产生废液废气等二次污染,需要配备另外的装置进行收集处理。Analyzing the prior art, the following problems exist in the recovery process of hydrometallurgy: 1. There are many process steps, and the process parameters need to be strictly controlled; 2. A large amount of reagents are consumed, a large amount of impurity ions are introduced, and the cost of recovery is increased; 3. , the treatment and recovery process usually produces secondary pollution such as waste liquid and exhaust gas, and it needs to be equipped with another device for collection and treatment.
针对现有技术存在的缺点,本发明的目的在于提供一种磷酸铁锂废旧电池正极材料的低成本、短程且环保的闭环回收再生方法,利用天然存在的有机酸的酸性和碳元素,将回收过程中的预处理分离和后续的再合成一体化,制备碳包覆的再生正极材料。整个过程所用试剂少,回收效率高,且无二次污染。In view of the shortcomings of the prior art, the object of the present invention is to provide a low-cost, short-range and environmentally friendly closed-loop recovery and regeneration method for the positive electrode material of a lithium iron phosphate waste battery, utilizing the acidity and carbon elements of naturally occurring organic acids to recover The pretreatment separation and subsequent resynthesis are integrated in the process to prepare a carbon-coated recycled cathode material. The whole process uses less reagents, high recovery efficiency, and no secondary pollution.
发明内容SUMMARY OF THE INVENTION
本发明提供了一种磷酸铁锂废旧电池正极材料回收再生方法,该方法利用环保无污染,工艺步骤简单,成本低且回收效率高,没有二次污染。The invention provides a method for recycling and regenerating positive electrode materials of waste lithium iron phosphate batteries. The method is environmentally friendly and has no pollution, simple process steps, low cost, high recycling efficiency, and no secondary pollution.
一种磷酸铁锂废旧电池正极材料回收再生方法,包括以下步骤:A method for recycling and regenerating positive electrode materials of waste lithium iron phosphate batteries, comprising the following steps:
1)将回收的磷酸铁锂废旧电池完全放电后进行拆解,取出正极片;1) Disassemble the recycled lithium iron phosphate waste battery after fully discharging, and take out the positive electrode sheet;
2)用有机溶剂对正极片进行清洗,除去正极片上残留的电解液,干燥;2) cleaning the positive electrode sheet with an organic solvent, removing the residual electrolyte on the positive electrode sheet, and drying;
3)将步骤2)干燥后正极片浸入有机酸与水形成的分散液中,加热、搅拌;3) immersing the dried positive electrode sheet in step 2) in the dispersion formed by organic acid and water, heating and stirring;
4)将步骤3)最后得到的混合物过筛,分离出集流体,得含有正极活性物质的悬浊液,将悬浊液在搅拌下蒸干,真空干燥得回收材料粉末;4) sieving the mixture finally obtained in step 3), separating the current collector to obtain a suspension containing the positive active material, evaporating the suspension to dryness under stirring, and vacuum drying to obtain the recovered material powder;
5)测定元素Li、Fe含量,向回收材料粉末中添加锂源补锂,将混合物料机械或手动混匀,所得混匀物料在惰性气氛下焙烧得到回收再生的正极材料。5) Determination of element Li and Fe content, adding lithium source to the recycled material powder to supplement lithium, mixing the mixed material mechanically or manually, and roasting the obtained mixed material in an inert atmosphere to obtain a recycled positive electrode material.
步骤3)所述有机酸为脂肪酸或生物质酸,所述有机酸的碳原子数为12-20,包括但不限于硬脂酸、亚油酸中的至少一种;所述分散液中有机酸的质量分数为1-5%。Step 3) The organic acid is a fatty acid or a biomass acid, and the number of carbon atoms of the organic acid is 12-20, including but not limited to at least one of stearic acid and linoleic acid; The mass fraction of acid is 1-5%.
分散液中的有机酸一方面加速正极活性材料从集流体上剥离下来,另一方面为磷酸铁锂的碳包覆提供碳源。The organic acid in the dispersion, on the one hand, accelerates the peeling of the positive electrode active material from the current collector, and on the other hand provides a carbon source for the carbon coating of lithium iron phosphate.
步骤3)所述正极片与分散液的投料固液比为10-100g/L;优选的,步骤3)所述正极片与分散液的投料固液比为30g/L-60g/L。Step 3) The solid-liquid ratio of the positive electrode sheet to the dispersion liquid is 10-100 g/L; preferably, the solid-liquid ratio of the positive electrode sheet to the dispersion liquid in step 3) is 30 g/L-60 g/L.
步骤1)所述完全放电为最终磷酸铁锂废旧电池的开路电压小于2V。Step 1) The complete discharge is that the open circuit voltage of the final waste lithium iron phosphate battery is less than 2V.
步骤2)所述有机溶剂没有特别的限制,常用的磷酸铁锂电池电解液中溶剂即可,包括但不限于碳酸二甲酯、1,3-二氧戊环、碳酸二乙酯中的至少一种。Step 2) The organic solvent is not particularly limited, and the solvent in the commonly used lithium iron phosphate battery electrolyte can be used, including but not limited to at least one of dimethyl carbonate, 1,3-dioxolane, and diethyl carbonate. A sort of.
步骤3)所述搅拌速度为300-800r/min,所述加热温度为20-60℃,所述搅拌时间为5-10minStep 3) The stirring speed is 300-800r/min, the heating temperature is 20-60°C, and the stirring time is 5-10min
步骤4)所述筛的孔径为40-80目,所述搅拌速度为300-800r/min,所述加热温度为80-100℃,所述真空条件为-0.5-(-0.1)MPa。Step 4) The aperture of the sieve is 40-80 mesh, the stirring speed is 300-800r/min, the heating temperature is 80-100°C, and the vacuum condition is -0.5-(-0.1)MPa.
步骤5)所述锂源包括但不限于氢氧化锂、碳酸锂、磷酸铁锂中的至少一种;补锂后Li、Fe二者的摩尔比为1-1.08:1,所述混匀方式为机械球磨,球磨时间为1-5h。Step 5) The lithium source includes but is not limited to at least one of lithium hydroxide, lithium carbonate, and lithium iron phosphate; the molar ratio of Li and Fe after lithium supplementation is 1-1.08:1, and the mixing method For mechanical ball milling, the ball milling time is 1-5h.
步骤5)各元素含量精确测定方法包括但不限于ICP-AES、ICP-OES、ICP-MS中的至少一种。Step 5) The precise determination method of each element content includes but is not limited to at least one of ICP-AES, ICP-OES, and ICP-MS.
步骤5)所述惰性气体包括但不限于氮气或氩气,所述焙烧温度为300-800℃,焙烧时间为2-10h。Step 5) The inert gas includes but not limited to nitrogen or argon, the calcination temperature is 300-800°C, and the calcination time is 2-10h.
与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
一、本发明使用有机酸和水的混合液对集流体和正极活性材料进行分离,大大提高了铝、磷酸铁锂的回收率和二者分离效率,该工艺简便快捷,节省了机械法、酸浸或碱浸等繁复回收铝的步骤,降低了成本,避免对环境造成的二次污染。1. The present invention uses the mixed solution of organic acid and water to separate the current collector and the positive electrode active material, which greatly improves the recovery rate of aluminum and lithium iron phosphate and the separation efficiency of the two. The process is simple and fast, saving mechanical methods, acid Complicated aluminum recovery steps such as leaching or alkali leaching reduce costs and avoid secondary pollution to the environment.
二、发明人还预料不到的发现,调整有机酸的浓度以及用量最终得到的回收再生正极材料具有优良的电化学性能,已经接近新制备的磷酸铁锂正极材料的电池性能指标,显示出在产业上的优势。2. The inventors also unexpectedly found that the recycled cathode material finally obtained by adjusting the concentration and dosage of organic acid has excellent electrochemical performance, which is close to the battery performance index of the newly prepared lithium iron phosphate cathode material, showing that in industrial advantage.
三、本发明使用的有机酸与残留的导电添加剂、粘结剂作为后续的正极材料再生过程中的碳源,制备出电化学性能满足锂锂电池对正极材料要求的碳包覆再生正极材料,实现了磷酸铁锂废旧电池中正极材料的回收再利用,节约成本并保护了环境。3. The organic acid and the residual conductive additives and binders used in the present invention are used as the carbon source in the subsequent positive electrode material regeneration process to prepare a carbon-coated regenerated positive electrode material whose electrochemical performance meets the requirements of the lithium-lithium battery for the positive electrode material. The recycling and reuse of the cathode material in the waste lithium iron phosphate battery is realized, the cost is saved and the environment is protected.
四、本发明工艺将正极材料的分离和再生一体化,流程精简,所用试剂少且无污染,同时可以实现对正极材料进行碳包覆,提高回收后材料的电化学性能;本发明对设备要求不高,适于工业化锂电池回收再生放大化作业。Fourth, the process of the present invention integrates the separation and regeneration of the positive electrode material, the process is simplified, the reagents used are few and pollution-free, and at the same time, the carbon coating of the positive electrode material can be realized, and the electrochemical performance of the recycled material can be improved; the present invention requires equipment Not high, suitable for industrialized lithium battery recycling, regeneration and amplification operations.
附图说明Description of drawings
图1为本发明实施例3真空干燥回收材料粉末的SEM图;Fig. 1 is the SEM image of the vacuum-drying recovery material powder of Example 3 of the present invention;
图2为本发明实施例3焙烧后得到回收再生的正极材料的SEM图Fig. 2 is the SEM image of the cathode material recovered and regenerated after roasting in Example 3 of the present invention
图3为本发明实施例3真空干燥回收材料粉末的XRD图;Fig. 3 is the XRD pattern of the vacuum-drying recovery material powder of Example 3 of the present invention;
图4为本发明实施例3焙烧后得到回收再生的正极材料的XRD图;Fig. 4 is the XRD pattern of the positive electrode material that obtains recovery and regeneration after roasting in Example 3 of the present invention;
图5为本发明应用例3纽扣电池的首次充放电曲线;Fig. 5 is the first charge-discharge curve of the button battery of Application Example 3 of the present invention;
图6为本发明应用例3纽扣电池的循环曲线。FIG. 6 is a cycle curve of a button battery in Application Example 3 of the present invention.
具体实施方式Detailed ways
下面结合具体实施例对本发明作进一步的说明,但并不局限于说明书上的内容。若无特殊说明,本发明实施例中所述“份”均为重量份。所用试剂均为本领域可商购的试剂。The present invention is further described below in conjunction with specific embodiments, but is not limited to the contents in the description. Unless otherwise specified, the "parts" described in the examples of the present invention are all parts by weight. The reagents used are all commercially available reagents in the art.
实施例1Example 1
1)首先将回收的磷酸铁锂废旧电池完全放电后,放电后开路电压为0.8V,然后进行拆解,取出正极片(磷酸铁锂含量84.6%,铝含量12.1%);1) First, fully discharge the recycled lithium iron phosphate waste battery, and the open circuit voltage after discharge is 0.8V, then disassemble, and take out the positive electrode sheet (the content of lithium iron phosphate is 84.6%, and the content of aluminum is 12.1%);
2)用碳酸二甲酯清洗正极片,除去正极片上残留的电解液,将除去残留电解液的正极片置于80℃真空烘箱中干燥;2) Clean the positive electrode sheet with dimethyl carbonate, remove the residual electrolyte on the positive electrode sheet, and place the positive electrode sheet with the residual electrolyte removed in an 80°C vacuum oven to dry;
3)准确步骤2)所得正极片称量3g,将其投入100ml硬脂酸质量分数为1%的水分散液中,为进一步加快传质,将正极片裁剪成2cm×2cm大小,调节转速为500r/min,于25℃下搅拌5min;3) Accurately step 2) Weigh 3 g of the obtained positive electrode sheet, and put it into 100 ml of an aqueous dispersion with a mass fraction of 1% stearic acid. In order to further accelerate mass transfer, the positive electrode sheet is cut into a size of 2 cm × 2 cm, and the rotational speed is adjusted to be 500r/min, stirring at 25°C for 5min;
4)将步骤3)最后所得混合物使用孔径为40目的筛将集流体铝筛分出来,得含有正极活性物质的悬浊液,用去离子水清洗铝箔并烘干,取样采用2mo1/L的硝酸溶液溶解后用ICP-OES分析所得铝箔的纯度,计算铝的回收率。将悬浊液在搅拌速度为400r/min,温度为80℃,搅拌6h蒸干,并在真空度为-0.2MPa的真空干燥箱中干燥得回收材料粉末,计算其回收率,结果见表1;4) The final obtained mixture in step 3) is sieved out of the current collector aluminum using a 40 mesh sieve to obtain a suspension containing the positive active material, and the aluminum foil is cleaned with deionized water and dried, and 2mol/L of nitric acid is used for sampling. After the solution was dissolved, the purity of the obtained aluminum foil was analyzed by ICP-OES, and the recovery rate of aluminum was calculated. The suspension was evaporated to dryness at a stirring speed of 400 r/min and a temperature of 80 °C, stirred for 6 h, and dried in a vacuum drying oven with a vacuum degree of -0.2 MPa to obtain the recovered material powder, and the recovery rate was calculated. The results are shown in Table 1. ;
5)使用ICP-OES测量步骤4)回收材料粉末中的Li、Fe含量,Li、Fe二元素的摩尔比为0.8:1,并向其中添加锂源碳酸锂补锂,使得Li、Fe二者的摩尔比为1.05:1,所述混匀方式为高能球磨,球磨时间为3h,所得混匀物料在氮气气氛下600℃,焙烧6h得到回收再生的正极材料。5) Using ICP-OES to measure the Li and Fe content in the recovered material powder in step 4), the molar ratio of Li and Fe is 0.8:1, and adding lithium source lithium carbonate to supplement lithium, so that both Li and Fe are added. The molar ratio is 1.05:1, the mixing method is high-energy ball milling, and the ball milling time is 3h.
实施例2Example 2
其余与实施例1相同,不同之处在于硬脂酸质量分数为3%。The rest are the same as in Example 1, except that the mass fraction of stearic acid is 3%.
实施例3Example 3
其余与实施例1相同,不同之处在于硬脂酸质量分数为5%。The rest are the same as in Example 1, except that the mass fraction of stearic acid is 5%.
实施例4Example 4
其余与实施例1相同,不同之处在于步骤3中正极片的用量为1g。The rest are the same as in Example 1, except that the amount of the positive electrode sheet in step 3 is 1 g.
实施例5Example 5
其余与实施例1相同,不同之处在于步骤3中正极片的用量为6g。The rest are the same as in Example 1, except that the amount of the positive electrode sheet in step 3 is 6 g.
实施例6Example 6
其余与实施例1相同,不同之处在于步骤3中正极片的用量为10g。The rest are the same as in Example 1, except that the amount of the positive electrode sheet in step 3 is 10 g.
实施例7Example 7
其余与实施例1相同,不同之处在于步骤3中正极片的用量为11g。The rest are the same as in Example 1, except that the amount of the positive electrode sheet in step 3 is 11 g.
实施例8Example 8
其余与实施例1相同,不同之处在于所用有机酸为亚油酸。The rest are the same as in Example 1, except that the organic acid used is linoleic acid.
对比例1Comparative Example 1
其余与实施例1相同,不同之处在于所用有机酸为草酸。The rest are the same as in Example 1, except that the organic acid used is oxalic acid.
对比例2Comparative Example 2
采用现有技术进行铝和磷酸铁锂正极活性材料的回收。The recycling of aluminum and lithium iron phosphate cathode active materials is carried out using the prior art.
取废旧磷酸铁锂正极材料100g(磷酸铁锂含量84.6%,铝含量12.1%)和1.2L的氢氧化钠溶液(0.4mol/L)混合搅拌,加热至90℃,反应2h,进行碱浸除铝,过滤,使用硫酸溶液中和滤液至pH=9.0使铝以氢氧化铝形式沉淀出来,氢氧化铝沉淀用去离子水清洗后烘干,称重为31.89g,铝的收率78.53%,取样采用2mo1/L的硝酸溶液溶解后用ICP-OES分析所得氢氧化铝的纯度,纯度为96.78%,将除铝后磷酸铁锂滤渣在氮气气氛下600℃,焙烧6h,得到磷酸铁锂粉料82.65g,磷酸铁锂回收率为97.69%。Take 100g of waste lithium iron phosphate cathode material (content of lithium iron phosphate 84.6%, content of aluminum 12.1%) and 1.2L of sodium hydroxide solution (0.4mol/L), mix and stir, heat to 90°C, react for 2h, and carry out alkali leaching. Aluminum was filtered, and the filtrate was neutralized with a sulfuric acid solution to pH=9.0 to precipitate aluminum in the form of aluminum hydroxide. The aluminum hydroxide precipitate was washed with deionized water and dried. The weight was 31.89 g, and the yield of aluminum was 78.53%. Sampling was dissolved in 2mol/L nitric acid solution, and the purity of the obtained aluminum hydroxide was analyzed by ICP-OES. The purity was 96.78%. The lithium iron phosphate filter residue after aluminum removal was calcined at 600 ° C for 6 hours in a nitrogen atmosphere to obtain lithium iron phosphate powder. The material was 82.65 g, and the recovery rate of lithium iron phosphate was 97.69%.
应用例Application example
分别将上述实施例和对比例所得正极材料按以下步骤进行电池组装进行测试,对应的得应用例1-8,对比应用例1、2,The positive electrode materials obtained in the above examples and comparative examples are respectively tested by battery assembly according to the following steps, corresponding to application examples 1-8, and comparative application examples 1 and 2,
电极片制备:将得到的回收后的磷酸铁锂、碳黑和粘结剂(PVDF)以质量比:8:1:1混合制浆,将浆料均匀涂敷到涂碳铝箔集流体上,80℃鼓风烘箱烘干后经80℃真空干燥8h制成正极片。以锂片为对电极,采用PP隔膜(celgard2500),加入适量电解液(1M LiPF6溶解于体积比EC:DEC:DMC=1:1:1的有机溶剂中),在氩气保护下的手套箱中组装2032扣式电池,进行以下电化学性能测试:Electrode sheet preparation: The obtained recovered lithium iron phosphate, carbon black and binder (PVDF) were mixed and made into a slurry in a mass ratio of 8:1:1, and the slurry was uniformly coated on the carbon-coated aluminum foil current collector. After drying in a blast oven at 80°C, a positive electrode sheet was prepared by vacuum drying at 80°C for 8 hours. Lithium sheet is used as the counter electrode, PP separator (celgard2500) is used, an appropriate amount of electrolyte (1M LiPF 6 is dissolved in an organic solvent with a volume ratio of EC:DEC:DMC=1:1:1) is added, and gloves under the protection of argon A 2032 button cell was assembled in the box, and the following electrochemical performance tests were performed:
首次充放电性能:First charge and discharge performance:
在0.1C(1C=170mA/g)下首次充放电电压比容量,结果见图5和表1。The first charge-discharge voltage specific capacity at 0.1C (1C=170mA/g), the results are shown in Figure 5 and Table 1.
充放电循环稳定性:Charge-discharge cycle stability:
0.5C(1C=170mA/g)充放电模式下的循环寿命曲线,150次循环后的放电容量保持率,结果见图6和表1。The cycle life curve under 0.5C (1C=170mA/g) charge-discharge mode, the discharge capacity retention rate after 150 cycles, the results are shown in Figure 6 and Table 1.
表1Table 1
对比例2a指铝以氢氧化铝的形式回收,铝的纯度指氢氧化铝的纯度。Comparative Example 2 a refers to the recovery of aluminum in the form of aluminum hydroxide, and the purity of aluminum refers to the purity of aluminum hydroxide.
图1和图2分别为实施例3步骤4)真空干燥后回收材料和步骤5)焙烧后回收再生的正极材料的进行SEM测试结果,对比两图可以看出图2焙烧后的正极材料没有出现明显的团聚现象,制备的磷酸铁锂/碳颗粒相对均匀,且颗粒表面有明显包覆的碳颗粒,达到了包覆的目的。Fig. 1 and Fig. 2 are respectively embodiment 3 step 4) reclaimed material after vacuum drying and step 5) carry out SEM test result of the positive electrode material reclaimed after roasting There is obvious agglomeration phenomenon, the prepared lithium iron phosphate/carbon particles are relatively uniform, and the surface of the particles has obvious coated carbon particles, which achieves the purpose of coating.
图3和图4分别为实施例3步骤4)真空干燥后回收材料和和步骤5)焙烧后的到的回收再生的正极材料进行X射线衍射(XRD)结果。对于步骤4)分离后真空干燥的磷酸铁锂,对比商业化的贝特瑞P198-S13磷酸铁锂从图3的XRD可以看出,其主衍射峰与商业化材料保持一致,即表面磷酸铁锂的晶型结构没有被破坏,存在一些磷酸铁的杂相推测是由于循环过程中活性锂离子的缺失造成的。FIG. 3 and FIG. 4 are respectively X-ray diffraction (XRD) results of the recovered material after step 4) vacuum drying in Example 3 and the recovered and regenerated cathode material obtained after step 5) roasting. For the vacuum-dried lithium iron phosphate after separation in step 4), compared with the commercialized Lithium iron phosphate P198-S13, it can be seen from the XRD in Figure 3 that its main diffraction peak is consistent with the commercial material, that is, the surface iron phosphate The crystal structure of lithium is not destroyed, and the existence of some impurity phases of iron phosphate is presumed to be caused by the lack of active lithium ions during cycling.
对于步骤5)回收再生后的正极材料图4,对比商业化材料的磷酸铁锂及图3中磷酸铁的杂相,没有出现任何杂质峰,说明锂在焙烧过程中进入晶格,修复了有晶格缺陷的磷酸铁锂结构。同时还发现回收再生后的正极材料的XRD图峰形尖锐、狭窄,说明具有良好的晶型结构,观察不到晶态碳的衍射峰,说明碳包覆的碳以无定形的形式存在。For the cathode material recovered in step 5) Fig. 4, comparing the lithium iron phosphate of commercial material and the impurity phase of iron phosphate in Fig. 3, there is no impurity peak, indicating that lithium enters the crystal lattice during the roasting process, repairing the Lattice-defective lithium iron phosphate structure. At the same time, it was also found that the peak shape of the XRD pattern of the recovered cathode material was sharp and narrow, indicating that it had a good crystal structure, and no diffraction peak of crystalline carbon was observed, indicating that the carbon-coated carbon existed in an amorphous form.
图5为本发明应用例3纽扣电池的首次充放电曲线,结合图4及表1中的数据可以看出本发明制备的磷酸铁锂正极材料在0.1C倍率下首次充电比容量均高于160mAh/g,首次放电比容量均高于130mAh/g,优选的应用例首次放电比容量均高于150mAh/g,首次充放电效率高于90%,达到一般磷酸铁锂正极材料水平,即满足磷酸铁锂电池对正极材料的要求。Fig. 5 is the first charge-discharge curve of the button battery in Application Example 3 of the present invention. Combining with Fig. 4 and the data in Table 1, it can be seen that the first charge specific capacity of the lithium iron phosphate cathode material prepared by the present invention is higher than 160mAh at a rate of 0.1C. /g, the first discharge specific capacity is higher than 130mAh/g, the first discharge specific capacity of the preferred application example is higher than 150mAh/g, the first charge and discharge efficiency is higher than 90%, reaching the level of general lithium iron phosphate cathode material, that is, it satisfies phosphoric acid Requirements for cathode materials of iron-lithium batteries.
图6为本发明应用例3纽扣电池的循环曲线,结合图5及表1中数据可以看出本发明回收再生的磷酸铁锂正极材料在循环150次后能保持首次放电的80%以上的容量,最高者能达到91.55%,说明本发明回收再生的磷酸铁锂正极材料具有良好的充放电循环稳定性。Fig. 6 is the cycle curve of the button battery of application example 3 of the present invention. It can be seen from Fig. 5 and the data in Table 1 that the lithium iron phosphate cathode material recovered and regenerated by the present invention can maintain more than 80% of the capacity of the first discharge after 150 cycles. , the highest can reach 91.55%, indicating that the lithium iron phosphate cathode material recovered and regenerated by the present invention has good charge-discharge cycle stability.
从表1的数据可以看出,按照本发明所述的回收方法得到的正极材料,性能已经和新制备的磷酸铁锂正极材料接近,显示出令人满意的性能,具有产业上的优势。It can be seen from the data in Table 1 that the performance of the cathode material obtained by the recovery method of the present invention is close to that of the newly prepared lithium iron phosphate cathode material, showing satisfactory performance and having industrial advantages.
除了所得正极材料显示出优异的电化学性能外,本发明提供的回收废旧电池正极材料的方法还显示出很好的经济型,对正极材料中主要物质,即铝和磷酸铁锂的回收率都在非常令人满意的程度。特别是铝的收回率在97%以上,而按照现有技术一般方法,铝的回收率仅能为78%。正极活性材料磷酸铁锂的回收率和现有技术接近。但是由于本发明采用了特定浓度的有机酸及特定的固液投料比,使得正极材料的电化学性能有明显改善。In addition to the excellent electrochemical performance of the obtained positive electrode material, the method for recycling the positive electrode material of the waste battery provided by the present invention also shows good economical efficiency, and the recovery rates of the main substances in the positive electrode material, that is, aluminum and lithium iron phosphate, are both high. to a very satisfactory degree. In particular, the recovery rate of aluminum is more than 97%, while according to the general method in the prior art, the recovery rate of aluminum can only be 78%. The recovery rate of the positive electrode active material lithium iron phosphate is close to that of the prior art. However, since the present invention adopts a specific concentration of organic acid and a specific solid-liquid feeding ratio, the electrochemical performance of the positive electrode material is significantly improved.
本发明使用的有机酸与残留的导电添加剂、粘结剂作为后续的正极材料再生过程中的碳源,制备出电化学性能满足锂锂电池对正极材料要求的碳包覆再生正极材料,实现了磷酸铁锂废旧电池中正极材料的回收再利用,节约成本并保护了环境。The organic acid, the residual conductive additive and the binder used in the present invention are used as the carbon source in the subsequent regeneration process of the cathode material, and the carbon-coated regeneration cathode material whose electrochemical performance meets the requirements of the lithium-lithium battery for the cathode material is prepared. The recycling and reuse of cathode materials in waste lithium iron phosphate batteries saves costs and protects the environment.
本发明工艺将正极材料的分离和再生一体化,流程精简,所用试剂少且无污染,同时可以实现对正极材料进行碳包覆,提高回收后材料的电化学性能。The process of the invention integrates the separation and regeneration of the positive electrode material, the process is simplified, the used reagents are few and pollution-free, and at the same time, the carbon coating of the positive electrode material can be realized, and the electrochemical performance of the recycled material can be improved.
本发明制备工艺简单,对设备要求不高,适于工业化锂电池回收再生放大化作业。The preparation process of the invention is simple, the equipment requirements are not high, and the invention is suitable for the recovery, regeneration and amplification operation of the industrialized lithium battery.
上述详细说明是针对本发明其中之一可行实施例的具体说明,该实施例并非用以限制本发明的专利范围,凡未脱离本发明所为的等效实施或变更,均应包含于本发明技术方案的范围内。The above detailed description is a specific description of one of the feasible embodiments of the present invention, which is not intended to limit the scope of the present invention. Any equivalent implementation or modification that does not depart from the present invention shall be included in the present invention. within the scope of the technical solution.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010080464.3A CN111261969B (en) | 2020-02-05 | 2020-02-05 | A method for recycling and regenerating cathode material of waste lithium iron phosphate battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010080464.3A CN111261969B (en) | 2020-02-05 | 2020-02-05 | A method for recycling and regenerating cathode material of waste lithium iron phosphate battery |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111261969A true CN111261969A (en) | 2020-06-09 |
CN111261969B CN111261969B (en) | 2021-08-17 |
Family
ID=70951015
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010080464.3A Active CN111261969B (en) | 2020-02-05 | 2020-02-05 | A method for recycling and regenerating cathode material of waste lithium iron phosphate battery |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111261969B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111977704A (en) * | 2020-07-27 | 2020-11-24 | 昆明理工大学 | Rapid regeneration method of waste ternary lithium ion battery anode material |
CN112164834A (en) * | 2020-09-30 | 2021-01-01 | 武汉大学 | Regeneration method of waste lithium iron phosphate battery positive electrode material |
CN114006074A (en) * | 2021-11-08 | 2022-02-01 | 江苏奥盛新能源有限公司 | Method for recycling useful components of lithium iron phosphate battery |
CN114835102A (en) * | 2022-07-01 | 2022-08-02 | 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院) | Method for regenerating lithium iron phosphate based on solvothermal method |
CN115513548A (en) * | 2022-08-31 | 2022-12-23 | 广东邦普循环科技有限公司 | Recovery method and recovery production line of lithium iron phosphate positive electrode waste liquid |
CN115579537A (en) * | 2022-09-05 | 2023-01-06 | 昆明理工大学 | Short-process regeneration technology of waste lithium iron phosphate battery positive electrode material by low-temperature plasma technology |
CN116683075A (en) * | 2023-05-08 | 2023-09-01 | 山东华劲电池材料科技有限公司 | Repairing method of lithium ion battery anode material and anode material thereof |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102208706A (en) * | 2011-05-04 | 2011-10-05 | 合肥国轩高科动力能源有限公司 | Recycling and regenerating treatment method for waste lithium iron phosphate battery positive electrode material |
CN102332565A (en) * | 2011-09-30 | 2012-01-25 | 浙江工业大学 | A kind of synthetic method of lithium iron phosphate/carbon composite material |
CN102412430A (en) * | 2011-11-14 | 2012-04-11 | 佛山市邦普循环科技有限公司 | Chemical separation method for aluminum foil in waste lithium ion battery positive plate |
CN102709620A (en) * | 2012-05-23 | 2012-10-03 | 浙江大学 | Method for recycling positive material of waste lithium iron phosphate battery |
CN102751548A (en) * | 2012-06-18 | 2012-10-24 | 浙江大学 | Method for recovering and preparing lithium iron phosphate from waste lithium iron phosphate battery |
CN103449395A (en) * | 2013-08-28 | 2013-12-18 | 北京科技大学 | Method for recycling positive material from water-system waste lithium iron phosphate battery |
KR101708149B1 (en) * | 2016-05-20 | 2017-02-20 | (주)이엠티 | A Method For Recovering Lithium Compound From An Anode Material In Spent Lithium Batteries By Wet-Milling |
CN108281730A (en) * | 2018-01-10 | 2018-07-13 | 浙江衡远新能源科技有限公司 | The recovery method of metallic element in a kind of waste and old ternary lithium-ion-power cell |
CN108285977A (en) * | 2018-01-30 | 2018-07-17 | 武汉科技大学 | A kind of method of waste lithium ion cell anode material recovery |
CN109837392A (en) * | 2019-01-25 | 2019-06-04 | 宁波行殊新能源科技有限公司 | The recycling and regeneration method of lithium ion battery anode material waste material |
CN110620278A (en) * | 2019-09-25 | 2019-12-27 | 深圳清华大学研究院 | Method for recovering anode material of waste lithium iron phosphate battery |
CN110620277A (en) * | 2019-09-24 | 2019-12-27 | 中国矿业大学 | Method for separating and recovering valuable metal from waste lithium ion battery anode material |
CN110697673A (en) * | 2019-10-15 | 2020-01-17 | 俞杰 | Method for recycling regenerated lithium iron phosphate from waste power lithium ion battery |
-
2020
- 2020-02-05 CN CN202010080464.3A patent/CN111261969B/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102208706A (en) * | 2011-05-04 | 2011-10-05 | 合肥国轩高科动力能源有限公司 | Recycling and regenerating treatment method for waste lithium iron phosphate battery positive electrode material |
CN102332565A (en) * | 2011-09-30 | 2012-01-25 | 浙江工业大学 | A kind of synthetic method of lithium iron phosphate/carbon composite material |
CN102412430A (en) * | 2011-11-14 | 2012-04-11 | 佛山市邦普循环科技有限公司 | Chemical separation method for aluminum foil in waste lithium ion battery positive plate |
CN102709620A (en) * | 2012-05-23 | 2012-10-03 | 浙江大学 | Method for recycling positive material of waste lithium iron phosphate battery |
CN102751548A (en) * | 2012-06-18 | 2012-10-24 | 浙江大学 | Method for recovering and preparing lithium iron phosphate from waste lithium iron phosphate battery |
CN103449395A (en) * | 2013-08-28 | 2013-12-18 | 北京科技大学 | Method for recycling positive material from water-system waste lithium iron phosphate battery |
KR101708149B1 (en) * | 2016-05-20 | 2017-02-20 | (주)이엠티 | A Method For Recovering Lithium Compound From An Anode Material In Spent Lithium Batteries By Wet-Milling |
CN108281730A (en) * | 2018-01-10 | 2018-07-13 | 浙江衡远新能源科技有限公司 | The recovery method of metallic element in a kind of waste and old ternary lithium-ion-power cell |
CN108285977A (en) * | 2018-01-30 | 2018-07-17 | 武汉科技大学 | A kind of method of waste lithium ion cell anode material recovery |
CN109837392A (en) * | 2019-01-25 | 2019-06-04 | 宁波行殊新能源科技有限公司 | The recycling and regeneration method of lithium ion battery anode material waste material |
CN110620277A (en) * | 2019-09-24 | 2019-12-27 | 中国矿业大学 | Method for separating and recovering valuable metal from waste lithium ion battery anode material |
CN110620278A (en) * | 2019-09-25 | 2019-12-27 | 深圳清华大学研究院 | Method for recovering anode material of waste lithium iron phosphate battery |
CN110697673A (en) * | 2019-10-15 | 2020-01-17 | 俞杰 | Method for recycling regenerated lithium iron phosphate from waste power lithium ion battery |
Non-Patent Citations (1)
Title |
---|
刘进龙等: "磷酸铁锂废旧电池的回收概况", 《石油化工安全环保技术》 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111977704A (en) * | 2020-07-27 | 2020-11-24 | 昆明理工大学 | Rapid regeneration method of waste ternary lithium ion battery anode material |
CN112164834A (en) * | 2020-09-30 | 2021-01-01 | 武汉大学 | Regeneration method of waste lithium iron phosphate battery positive electrode material |
CN112164834B (en) * | 2020-09-30 | 2022-05-24 | 武汉大学 | Regeneration method of waste lithium iron phosphate battery positive electrode material |
CN114006074A (en) * | 2021-11-08 | 2022-02-01 | 江苏奥盛新能源有限公司 | Method for recycling useful components of lithium iron phosphate battery |
CN114006074B (en) * | 2021-11-08 | 2022-06-24 | 江苏奥盛新能源有限公司 | Method for recycling useful components of lithium iron phosphate battery |
CN114835102A (en) * | 2022-07-01 | 2022-08-02 | 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院) | Method for regenerating lithium iron phosphate based on solvothermal method |
CN115513548A (en) * | 2022-08-31 | 2022-12-23 | 广东邦普循环科技有限公司 | Recovery method and recovery production line of lithium iron phosphate positive electrode waste liquid |
CN115579537A (en) * | 2022-09-05 | 2023-01-06 | 昆明理工大学 | Short-process regeneration technology of waste lithium iron phosphate battery positive electrode material by low-temperature plasma technology |
CN116683075A (en) * | 2023-05-08 | 2023-09-01 | 山东华劲电池材料科技有限公司 | Repairing method of lithium ion battery anode material and anode material thereof |
CN116683075B (en) * | 2023-05-08 | 2024-10-22 | 山东华劲电池材料科技有限公司 | A method for repairing positive electrode material of lithium ion battery and positive electrode material thereof |
Also Published As
Publication number | Publication date |
---|---|
CN111261969B (en) | 2021-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111261969A (en) | A method for recycling and regenerating cathode material of waste lithium iron phosphate battery | |
CN102751549B (en) | Full-component resource reclamation method for waste positive electrode materials of lithium ion batteries | |
CN100440615C (en) | A kind of recycling method of waste lithium ion battery | |
CN113265704B (en) | Method for preparing flake single crystal ternary electrode material with exposed {010} crystal face by regenerating waste lithium ion battery | |
CN102208707B (en) | Method for repair and regeneration of waste lithium iron phosphate battery cathode material | |
CN102517448B (en) | Method for recycling metal ion from waste lithium-ion battery | |
CN102382987B (en) | Method for recovering and regenerating positive electrode material of lithium ion battery | |
CN111270072B (en) | Recycling method of waste lithium iron phosphate battery positive electrode material | |
CN104810566B (en) | A kind of waste lithium iron phosphate electrokinetic cell green reclaim processing method | |
CN102157726B (en) | Method for preparing high-voltage cathode material lithium-nickel-manganese-oxygen | |
CN105576314A (en) | Recycling method of positive electrode piece of lithium ion battery | |
CN1585187A (en) | Method for regenerating anode materials of waste lithium ion secondary battery | |
CN108285977A (en) | A kind of method of waste lithium ion cell anode material recovery | |
CN110526301B (en) | A method for reproducing the failed lithium cobalt oxide structure of the positive electrode of a lithium battery | |
CN111180822B (en) | A kind of nickel-cobalt-manganese waste ternary lithium battery cathode material recycling method | |
CN107919507A (en) | The method that LiFePO4 is recycled from waste lithium cell | |
CN114069083B (en) | Method for recycling and synthesizing high-safety anode material from anode scraps and application of high-safety anode material | |
CN114447465A (en) | Method and material for synergistically regenerating anode material and cathode material of lithium ion battery and application of material | |
CN112680596A (en) | Method for preparing hydrogen by combining waste ternary cathode material recovery and electrochemistry | |
CN108565419A (en) | A kind of regenerative lithium ion anode material and preparation method thereof | |
CN110563046B (en) | Method for recycling waste lithium ion battery anode material | |
US12068464B2 (en) | Systems and methods for recycling electrodes | |
CN108598396A (en) | A kind of preparation method of regenerative lithium ion anode material | |
CN114976334A (en) | Direct regeneration method of waste lithium ion battery anode material | |
CN115312797A (en) | A kind of recycling method of waste lithium ion battery cathode material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |