[go: up one dir, main page]

CN111260498A - Process parameter detection method and device, electronic equipment and readable storage medium - Google Patents

Process parameter detection method and device, electronic equipment and readable storage medium Download PDF

Info

Publication number
CN111260498A
CN111260498A CN202010026840.0A CN202010026840A CN111260498A CN 111260498 A CN111260498 A CN 111260498A CN 202010026840 A CN202010026840 A CN 202010026840A CN 111260498 A CN111260498 A CN 111260498A
Authority
CN
China
Prior art keywords
target process
sample
distribution curve
historical
process parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010026840.0A
Other languages
Chinese (zh)
Inventor
刘颖
解鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Baidu Netcom Science and Technology Co Ltd
Original Assignee
Beijing Baidu Netcom Science and Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Baidu Netcom Science and Technology Co Ltd filed Critical Beijing Baidu Netcom Science and Technology Co Ltd
Priority to CN202010026840.0A priority Critical patent/CN111260498A/en
Publication of CN111260498A publication Critical patent/CN111260498A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

本申请实施例提供一种工艺参数检测方法、装置、电子设备及可读存储介质,涉及云计算技术领域。该方法包括:获取待检测样本,所述待检测样本中包括目标工艺参数的多个参数值;根据所述多个参数值,确定所述待检测样本中所述目标工艺参数的分布曲线;根据所述待检测样本中所述目标工艺参数的分布曲线以及所述目标工艺参数对应的历史分布曲线的差异,确定所述待检测样本中的所述目标工艺参数是否存在异常;输出检测结果。该方法在检测工艺参数时不会丢失过多的信息,因此,使得检测结果的准确性得到极大的提升。

Figure 202010026840

Embodiments of the present application provide a process parameter detection method, device, electronic device, and readable storage medium, which relate to the technical field of cloud computing. The method includes: acquiring a sample to be tested, the sample to be tested includes multiple parameter values of target process parameters; determining a distribution curve of the target process parameter in the sample to be tested according to the multiple parameter values; The difference between the distribution curve of the target process parameter in the to-be-detected sample and the historical distribution curve corresponding to the target process parameter determines whether the target process parameter in the to-be-detected sample is abnormal, and outputs the detection result. The method does not lose too much information when detecting process parameters, therefore, the accuracy of the detection results is greatly improved.

Figure 202010026840

Description

工艺参数检测方法、装置、电子设备及可读存储介质Process parameter detection method, device, electronic device and readable storage medium

技术领域technical field

本申请实施例涉及云计算技术领域,尤其涉及一种工艺参数检测方法、装置、电子设备及可读存储介质。The embodiments of the present application relate to the field of cloud computing technologies, and in particular, to a process parameter detection method, apparatus, electronic device, and readable storage medium.

背景技术Background technique

在工业制造生产过程中,设备的温度、压力、功率等工艺参数直接决定着最终生产的产品是否合格。如果能在生产过程中及时发现这些工艺参数是否存在异常,并在工艺参数存在异常时及时预警并采取措施,就可以极大的降低产品的不良率。因此,如何检测工艺参数是否异常,是值得研究的问题。In the process of industrial manufacturing, the process parameters such as temperature, pressure and power of the equipment directly determine whether the final product is qualified. If the abnormality of these process parameters can be found in time in the production process, and the early warning and measures can be taken in time when the process parameters are abnormal, the defective rate of the product can be greatly reduced. Therefore, how to detect whether the process parameters are abnormal is a problem worth studying.

现有技术中,主要基于一维的工艺参数来检测工艺参数是否异常。具体的,在一个生产过程中对每个样本的每种工艺参数采样出一个参数值进行建模,通过传统的一维异常检测算法判断该工艺参数是否异常。例如,将当前检测样本所采样的工艺参数值同历史样本中该工艺参数的平均值进行比较,根据比较的差值来判断工艺参数是否存在异常。In the prior art, whether the process parameters are abnormal is mainly detected based on one-dimensional process parameters. Specifically, in a production process, a parameter value is sampled for each process parameter of each sample for modeling, and whether the process parameter is abnormal is judged by a traditional one-dimensional abnormality detection algorithm. For example, the value of the process parameter sampled by the current test sample is compared with the average value of the process parameter in the historical sample, and whether the process parameter is abnormal is determined according to the difference value compared.

但是,现有技术的方法损失了大量的信息,可能导致检测结果不够准确。However, the methods in the prior art lose a lot of information, which may lead to inaccurate detection results.

发明内容SUMMARY OF THE INVENTION

本申请实施例提供一种工艺参数检测方法、装置、电子设备及可读存储介质,用于解决现有技术中工艺参数检测会损失大量的信息而导致的检测结果不够准确的问题。Embodiments of the present application provide a process parameter detection method, device, electronic device, and readable storage medium, which are used to solve the problem of inaccurate detection results caused by the loss of a large amount of information in process parameter detection in the prior art.

第一方面,本申请实施提供一种工艺参数检测方法,包括:In the first aspect, the present application provides a process parameter detection method, comprising:

获取待检测样本,所述待检测样本中包括目标工艺参数的多个参数值;Obtaining a sample to be detected, the sample to be detected includes multiple parameter values of target process parameters;

根据所述多个参数值,确定所述待检测样本中所述目标工艺参数的分布曲线;determining the distribution curve of the target process parameter in the sample to be tested according to the plurality of parameter values;

根据所述待检测样本中所述目标工艺参数的分布曲线以及所述目标工艺参数对应的历史分布曲线的差异,确定所述待检测样本中的所述目标工艺参数是否存在异常,所述历史分布曲线基于历史的合格样本得到;输出检测结果,所述检测结果用于指示所述待检测样本中的所述目标工艺参数是否存在异常。According to the difference between the distribution curve of the target process parameter in the sample to be tested and the historical distribution curve corresponding to the target process parameter, it is determined whether the target process parameter in the sample to be tested is abnormal, and the historical distribution curve is determined. The curve is obtained based on the historical qualified samples; the detection result is output, and the detection result is used to indicate whether the target process parameter in the to-be-detected sample is abnormal.

作为一种可选的实现方式,所述根据所述待检测样本中所述目标工艺参数的分布曲线以及所述目标工艺参数对应的历史分布曲线的差异,确定所述待检测样本中的所述目标工艺参数是否存在异常之前,还包括:As an optional implementation manner, according to the difference between the distribution curve of the target process parameter in the to-be-detected sample and the historical distribution curve corresponding to the target process parameter, determine the Before checking whether the target process parameters are abnormal, it also includes:

获取多个历史合格样本,每个所述历史合格样本中包括所述目标工艺参数的多个参数值;Obtaining a plurality of historically qualified samples, each of the historically qualified samples including a plurality of parameter values of the target process parameters;

根据每个所述历史合格样本中的所述目标工艺参数的多个参数值,分别确定每个所述历史合格样本中所述目标工艺参数的分布曲线;According to a plurality of parameter values of the target process parameters in each of the historically qualified samples, respectively determine the distribution curve of the target process parameters in each of the historically qualified samples;

根据每个所述历史合格样本中所述目标工艺参数的分布曲线,确定所述目标工艺参数对应的历史分布曲线。According to the distribution curve of the target process parameter in each of the historical qualified samples, the historical distribution curve corresponding to the target process parameter is determined.

作为一种可选的实现方式,所述根据每个所述历史合格样本中所述目标工艺参数的分布曲线,确定所述目标工艺参数对应历史分布曲线,包括:As an optional implementation manner, determining the historical distribution curve corresponding to the target process parameter according to the distribution curve of the target process parameter in each of the historically qualified samples, including:

确定各所述历史合格样本中所述目标工艺参数的分布曲线的中心分布曲线,将所述中心分布曲线作为所述目标工艺参数对应的历史分布曲线。Determine the center distribution curve of the distribution curve of the target process parameter in each of the historical qualified samples, and use the center distribution curve as the historical distribution curve corresponding to the target process parameter.

作为一种可选的实现方式,所述根据所述待检测样本中所述目标工艺参数的分布曲线以及所述目标工艺参数对应的历史分布曲线的差异,确定所述待检测样本中的所述目标工艺参数是否存在异常,包括:As an optional implementation manner, according to the difference between the distribution curve of the target process parameter in the to-be-detected sample and the historical distribution curve corresponding to the target process parameter, determine the Whether the target process parameters are abnormal, including:

根据所述待检测样本中所述目标工艺参数的分布曲线与所述目标工艺参数对应的历史分布曲线的距离与目标距离的差异,确定所述待检测样本中的所述目标工艺参数是否存在异常。According to the difference between the distance between the distribution curve of the target process parameter in the sample to be tested and the historical distribution curve corresponding to the target process parameter and the target distance, determine whether the target process parameter in the sample to be tested is abnormal .

作为一种可选的实现方式,所述根据所述待检测样本中所述目标工艺参数的分布曲线以及所述目标工艺参数对应的历史分布曲线的差异,确定所述待检测样本中的所述目标工艺参数是否存在异常之前,还包括:As an optional implementation manner, according to the difference between the distribution curve of the target process parameter in the to-be-detected sample and the historical distribution curve corresponding to the target process parameter, determine the Before checking whether the target process parameters are abnormal, it also includes:

根据每个所述历史合格样本中所述目标工艺参数的分布曲线与所述目标工艺参数对应的历史分布曲线的距离,确定所述目标距离。The target distance is determined according to the distance between the distribution curve of the target process parameter in each of the historically qualified samples and the historical distribution curve corresponding to the target process parameter.

作为一种可选的实现方式,所述根据每个所述历史合格样本中所述目标工艺参数的分布曲线与所述目标工艺参数对应的历史分布曲线的距离,确定所述目标距离,包括:As an optional implementation manner, determining the target distance according to the distance between the distribution curve of the target process parameter in each of the historically qualified samples and the historical distribution curve corresponding to the target process parameter, including:

分别确定每个历史合格样本中所述目标工艺参数的分布曲线与所述目标工艺参数对应的历史分布曲线的距离,得到多个待选距离Respectively determine the distance between the distribution curve of the target process parameter in each historically qualified sample and the historical distribution curve corresponding to the target process parameter, and obtain a plurality of distances to be selected

将所述多个待选距离中的最大距离作为所述目标距离。The maximum distance among the plurality of candidate distances is used as the target distance.

作为一种可选的实现方式,所述根据所述多个参数值,确定所述待检测样本中所述目标工艺参数的分布曲线,包括:As an optional implementation manner, the determining the distribution curve of the target process parameter in the sample to be detected according to the plurality of parameter values includes:

根据所述多个参数值,确定所述待检测样本中所述目标工艺参数的经验分布函数;determining the empirical distribution function of the target process parameter in the sample to be tested according to the plurality of parameter values;

对所述经验分布函数进行光滑处理,得到所述待检测样本中所述目标工艺参数的分布曲线。Smoothing is performed on the empirical distribution function to obtain a distribution curve of the target process parameter in the sample to be detected.

第二方面,本申请实施例提供一种工艺参数检测装置,包括:In a second aspect, an embodiment of the present application provides a process parameter detection device, including:

获取模块,用于获取待检测样本,所述待检测样本中包括目标工艺参数的多个参数值;an acquisition module, configured to acquire a sample to be detected, where the sample to be detected includes a plurality of parameter values of target process parameters;

确定模块,用于根据所述多个参数值,确定所述待检测样本中所述目标工艺参数的分布曲线;以及,根据所述待检测样本中所述目标工艺参数的分布曲线以及所述目标工艺参数对应的历史分布曲线的差异,确定所述待检测样本中的所述目标工艺参数是否存在异常,所述历史分布曲线基于历史的合格样本得到;a determination module, configured to determine the distribution curve of the target process parameter in the sample to be detected according to the plurality of parameter values; and, according to the distribution curve of the target process parameter in the sample to be detected and the target The difference between the historical distribution curves corresponding to the process parameters determines whether the target process parameters in the samples to be tested are abnormal, and the historical distribution curves are obtained based on historical qualified samples;

输出模块,用于输出检测结果,所述检测结果用于指示所述待检测样本中的所述目标工艺参数是否存在异常。An output module, configured to output a detection result, where the detection result is used to indicate whether the target process parameter in the sample to be detected is abnormal.

作为一种可选的实现方式,所述获取模块还用于:As an optional implementation manner, the obtaining module is also used for:

获取多个历史合格样本,每个所述历史合格样本中包括所述目标工艺参数的多个参数值;Obtaining a plurality of historically qualified samples, each of the historically qualified samples including a plurality of parameter values of the target process parameters;

所述确定模块,还用于:根据每个所述历史合格样本中的所述目标工艺参数的多个参数值,分别确定每个所述历史合格样本中所述目标工艺参数的分布曲线;以及,The determining module is further configured to: respectively determine the distribution curve of the target process parameter in each of the historically qualified samples according to a plurality of parameter values of the target process parameter in each of the historically qualified samples; and ,

根据每个所述历史合格样本中所述目标工艺参数的分布曲线,确定所述目标工艺参数对应的历史分布曲线。According to the distribution curve of the target process parameter in each of the historical qualified samples, the historical distribution curve corresponding to the target process parameter is determined.

作为一种可选的实现方式,所述确定模块具体用于:As an optional implementation manner, the determining module is specifically used for:

确定各所述历史合格样本中所述目标工艺参数的分布曲线的中心分布曲线,将所述中心分布曲线作为所述目标工艺参数对应的历史分布曲线。Determine the center distribution curve of the distribution curve of the target process parameter in each of the historical qualified samples, and use the center distribution curve as the historical distribution curve corresponding to the target process parameter.

作为一种可选的实现方式,所述确定模块具体用于:As an optional implementation manner, the determining module is specifically used for:

根据所述待检测样本中所述目标工艺参数的分布曲线与所述目标工艺参数对应的历史分布曲线的距离与目标距离的差异,确定所述待检测样本中的所述目标工艺参数是否存在异常。According to the difference between the distance between the distribution curve of the target process parameter in the sample to be tested and the historical distribution curve corresponding to the target process parameter and the target distance, determine whether the target process parameter in the sample to be tested is abnormal .

作为一种可选的实现方式,所述确定模块具体用于:As an optional implementation manner, the determining module is specifically used for:

根据每个所述历史合格样本中所述目标工艺参数的分布曲线与所述目标工艺参数对应的历史分布曲线的距离,确定所述目标距离。The target distance is determined according to the distance between the distribution curve of the target process parameter in each of the historically qualified samples and the historical distribution curve corresponding to the target process parameter.

作为一种可选的实现方式,所述确定模块具体用于:As an optional implementation manner, the determining module is specifically used for:

分别确定每个历史合格样本中所述目标工艺参数的分布曲线与所述目标工艺参数对应的历史分布曲线的距离,得到多个待选距离;Respectively determine the distance between the distribution curve of the target process parameter in each historically qualified sample and the historical distribution curve corresponding to the target process parameter, and obtain a plurality of distances to be selected;

将所述多个待选距离中的最大距离作为所述目标距离。The maximum distance among the plurality of candidate distances is used as the target distance.

作为一种可选的实现方式,所述确定模块具体用于:As an optional implementation manner, the determining module is specifically used for:

根据所述多个参数值,确定所述待检测样本中所述目标工艺参数的经验分布函数;以及,determining an empirical distribution function of the target process parameter in the sample to be tested according to the plurality of parameter values; and,

对所述经验分布函数进行光滑处理,得到所述待检测样本中所述目标工艺参数的分布曲线。Smoothing is performed on the empirical distribution function to obtain a distribution curve of the target process parameter in the sample to be detected.

第三方面,本申请实施例提供一种电子设备,包括:In a third aspect, an embodiment of the present application provides an electronic device, including:

至少一个处理器;以及at least one processor; and

与所述至少一个处理器通信连接的存储器;其中,a memory communicatively coupled to the at least one processor; wherein,

所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行上述第一方面所述的方法。The memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to enable the at least one processor to perform the method of the first aspect above.

第四方面,本申请实施例提供一种存储有计算机指令的非瞬时计算机可读存储介质,所述计算机指令用于使所述计算机执行上述第一方面所述的方法。In a fourth aspect, an embodiment of the present application provides a non-transitory computer-readable storage medium storing computer instructions, where the computer instructions are used to cause the computer to execute the method described in the first aspect.

第五方面,本申请实施例提供一种工艺参数检测方法,包括:In a fifth aspect, the embodiments of the present application provide a process parameter detection method, including:

获取待检测样本,所述待检测样本中包括目标工艺参数的多个参数值;Obtaining a sample to be detected, the sample to be detected includes multiple parameter values of target process parameters;

根据所述多个参数值,确定所述待检测样本中所述目标工艺参数的分布曲线;determining the distribution curve of the target process parameter in the sample to be tested according to the plurality of parameter values;

根据所述待检测样本中所述目标工艺参数的分布曲线以及所述目标工艺参数对应的历史分布曲线,确定所述待检测样本中的所述目标工艺参数是否存在异常,所述历史分布曲线基于历史的合格样本得到;According to the distribution curve of the target process parameter in the to-be-detected sample and the historical distribution curve corresponding to the target process parameter, determine whether the target process parameter in the to-be-detected sample is abnormal, and the historical distribution curve is based on A qualified sample of history is obtained;

输出检测结果,所述检测结果用于指示所述待检测样本中的所述目标工艺参数是否存在异常Output a detection result, which is used to indicate whether the target process parameter in the sample to be detected is abnormal

上述申请中的一个实施例具有如下优点或有益效果:An embodiment in the above application has the following advantages or beneficial effects:

基于待检测样本中目标工艺参数的多个参数值,确定目标工艺参数的分布曲线,并基于该分布曲线与目标工艺参数对应的历史分布曲线的差异,确定出待检测样本中的目标工艺参数是否存在异常。由于目标工艺参数的分布曲线是基于多个参数值所得到的曲线,因此,能够表征出目标工艺参数的参数值随时间变化的完整的信息,因此,在根据该曲线与历史分布曲线检测目标工艺参数是否异常时,能够基于完整的参数值进行,而不会丢失过多的信息,因此,使得检测结果的准确性得到极大的提升。Based on multiple parameter values of the target process parameters in the sample to be tested, the distribution curve of the target process parameter is determined, and based on the difference between the distribution curve and the historical distribution curve corresponding to the target process parameter, it is determined whether the target process parameter in the sample to be tested is There is an exception. Since the distribution curve of the target process parameter is a curve obtained based on multiple parameter values, it can represent the complete information of the parameter value of the target process parameter changing with time. Therefore, when detecting the target process according to the curve and the historical distribution curve When a parameter is abnormal, it can be done based on the complete parameter value without losing too much information, so the accuracy of the detection result is greatly improved.

上述可选方式所具有的其他效果将在下文中结合具体实施例加以说明。Other effects of the above-mentioned optional manners will be described below with reference to specific embodiments.

附图说明Description of drawings

附图用于更好地理解本方案,不构成对本申请的限定。其中:The accompanying drawings are used for better understanding of the present solution, and do not constitute a limitation to the present application. in:

图1为对某胶料生产过程中温度工艺参数的示意图;Fig. 1 is a schematic diagram of temperature process parameters in a certain rubber compound production process;

图2为某胶料生产过程中功率工艺参数的示意图;Fig. 2 is a schematic diagram of power process parameters in a certain rubber compound production process;

图3为本申请实施例提供的工艺参数检测方法的流程示意图;3 is a schematic flowchart of a process parameter detection method provided by an embodiment of the present application;

图4为本申请实施例提供的工艺参数检测方法的流程示意图;4 is a schematic flowchart of a process parameter detection method provided by an embodiment of the present application;

图5为本申请实施例提供的工艺参数检测方法的流程示意图;5 is a schematic flowchart of a process parameter detection method provided by an embodiment of the present application;

图6为分布曲线距离的示例图;Fig. 6 is an example diagram of distribution curve distance;

图7为本申请实施例提供的工艺参数检测方法的流程示意图;7 is a schematic flowchart of a process parameter detection method provided by an embodiment of the present application;

图8为本申请实施例提供的工艺参数检测方法的原理示意图;8 is a schematic diagram of the principle of a process parameter detection method provided by an embodiment of the present application;

图9为本申请实施例提供的一种工艺参数检测装置900的模块结构图;FIG. 9 is a module structure diagram of a process parameter detection device 900 provided by an embodiment of the present application;

图10是根据本申请实施例的工艺参数检测方法的电子设备的框图。FIG. 10 is a block diagram of an electronic device for a process parameter detection method according to an embodiment of the present application.

具体实施方式Detailed ways

以下结合附图对本申请的示范性实施例做出说明,其中包括本申请实施例的各种细节以助于理解,应当将它们认为仅仅是示范性的。因此,本领域普通技术人员应当认识到,可以对这里描述的实施例做出各种改变和修改,而不会背离本申请的范围和精神。同样,为了清楚和简明,以下的描述中省略了对公知功能和结构的描述。Exemplary embodiments of the present application are described below with reference to the accompanying drawings, which include various details of the embodiments of the present application to facilitate understanding, and should be considered as exemplary only. Accordingly, those of ordinary skill in the art will recognize that various changes and modifications of the embodiments described herein can be made without departing from the scope and spirit of the present application. Also, descriptions of well-known functions and constructions are omitted from the following description for clarity and conciseness.

现有技术在一个生产过程中对每个样本的每种工艺参数采样出一个参数值进行建模,通过传统的一维异常检测算法判断该工艺参数是否异常。例如,将当前检测样本所采样的工艺参数值同历史样本中该工艺参数的平均值进行比较,根据比较的差值来判断工艺参数是否存在异常。这种方式仅以工艺参数的部分参数值作为检测的基准,因此在检测时会损失大量的工艺参数值,可能导致检测结果不准确。In the prior art, a parameter value is sampled for each process parameter of each sample in a production process for modeling, and whether the process parameter is abnormal is judged by a traditional one-dimensional abnormality detection algorithm. For example, the value of the process parameter sampled by the current test sample is compared with the average value of the process parameter in the historical sample, and whether the process parameter is abnormal is determined according to the difference value compared. This method only uses part of the parameter values of the process parameters as the benchmark for detection, so a large number of process parameter values will be lost during detection, which may lead to inaccurate detection results.

考虑到现有技术中使用一维异常检测算法检测工艺参数会损失大量工艺参数值而可能导致的检测结果不准确的问题,本申请实施例基于工艺参数的分布曲线进行检测,使得检测基于完整的工艺参数值进行,而不会损失大量的工艺参数值,进而可以极大提升检测结果的准确性。Considering the problem in the prior art that using a one-dimensional anomaly detection algorithm to detect process parameters will lose a large number of process parameter values and may cause inaccurate detection results, the embodiment of the present application performs detection based on the distribution curve of the process parameters, so that the detection is based on a complete Process parameter values are carried out without losing a large number of process parameter values, which can greatly improve the accuracy of the detection results.

本申请实施例可以应用于各种工业制造生产工程中,例如胶料生产过程、塑料注塑加工过程等。以某胶料加工过程为例,在一个生产过程中可能需要检测多种工艺参数,例如可以包括温度、转速、压力、功率以及能量等。在整个生产过程中的各个阶段,可以采集到每种工艺参数的参数值。将每种工艺参数在一个生产过程中的各个阶段参数值或者一个生产过程中的部分阶段的参数值统计起来,即可以形成一个样本。The embodiments of the present application can be applied to various industrial manufacturing and production projects, such as a rubber compound production process, a plastic injection molding process, and the like. Taking a rubber compound processing process as an example, a variety of process parameters may need to be detected in a production process, such as temperature, rotational speed, pressure, power, and energy. At each stage in the entire production process, the parameter values of each process parameter can be collected. A sample can be formed by counting the parameter values of each process parameter in each stage of a production process or the parameter values of some stages in a production process.

下述表1为某胶料加工过程中所形成的样本的示例,如表1所示,编号为1的样本包括了温度、压力、能量、功率、转速这五种工艺参数,每种工艺参数包括多个参数值。The following table 1 is an example of a sample formed during the processing of a rubber compound. As shown in table 1, the sample numbered 1 includes five process parameters of temperature, pressure, energy, power, and rotational speed. Each process parameter Include multiple parameter values.

表1Table 1

Figure BDA0002362780390000061
Figure BDA0002362780390000061

Figure BDA0002362780390000071
Figure BDA0002362780390000071

图1为对某胶料生产过程中温度工艺参数的示意图,如图1所示,横轴表示样本编号,纵轴表示温度值,每个样本中的温度工艺参数的所有参数值的分布通过对应的箱体图示出。Figure 1 is a schematic diagram of the temperature process parameters in the production process of a certain compound. As shown in Figure 1, the horizontal axis represents the sample number, and the vertical axis represents the temperature value. The distribution of all parameter values of the temperature process parameters in each sample is determined by the corresponding The box diagram is shown.

图2为某胶料生产过程中功率工艺参数的示意图,如图2所示,横轴表示样本编号,纵轴表示功率值,每个样本中的功率工艺参数的所有参数值的分布通过对应的箱体图示出。Figure 2 is a schematic diagram of the power process parameters in the production process of a rubber compound. As shown in Figure 2, the horizontal axis represents the sample number, and the vertical axis represents the power value. The distribution of all parameter values of the power process parameters in each sample passes through the corresponding Box diagram shown.

图3为本申请实施例提供的工艺参数检测方法的流程示意图,该方法的执行主体可以为具有计算处理能力的电子设备,如图3所示,该方法包括:FIG. 3 is a schematic flowchart of a process parameter detection method provided by an embodiment of the present application. The execution body of the method may be an electronic device with computing processing capability. As shown in FIG. 3 , the method includes:

S301、获取待检测样本,该待检测样本中包括目标工艺参数的多个参数值。S301. Obtain a sample to be detected, where the sample to be detected includes multiple parameter values of target process parameters.

可选的,上述待检测样本为对一个生产过程中的各个阶段或部分阶段的工艺参数的参数值统计所得到的样本。该待检测样本中可能包括一种工艺参数的多个参数值,也可能包括多种工艺参数,每种工艺参数均对应多个参数值。如果待检测样本中包括多种工艺参数,则上述目标工艺参数可以是指该多种工艺参数中的任意一种。对于每一种工艺参数,均可以按照下述实施例的方式检测其是否存在异常。Optionally, the above-mentioned sample to be detected is a sample obtained by statistics of parameter values of process parameters of each stage or part of the stage in a production process. The sample to be tested may include multiple parameter values of one process parameter, or may include multiple process parameters, and each process parameter corresponds to multiple parameter values. If the sample to be tested includes multiple process parameters, the above-mentioned target process parameter may refer to any one of the multiple process parameters. For each process parameter, it can be detected whether there is any abnormality in the manner of the following embodiments.

可选的,上述待检测样本的形式可以为前述的表1所示例的数据集合的形式,或者,也可以为上述图1或图2所示例的箱体图的形式,或者,也可以为其他能够表征所有参数值的形式,本申请实施例对此不做具体限定。Optionally, the form of the above-mentioned sample to be detected can be in the form of the data set exemplified in the aforementioned Table 1, or can also be in the form of the box diagram exemplified in the above-mentioned FIG. 1 or FIG. 2, or can also be other It can represent the form of all parameter values, which is not specifically limited in this embodiment of the present application.

S302、根据上述多个参数值,确定上述待检测样本中目标工艺参数的分布曲线。S302. Determine the distribution curve of the target process parameter in the sample to be detected according to the above-mentioned multiple parameter values.

可选的,基于上述多个参数值,可以得到目标工艺参数的分布曲线,该目标工艺参数的分布曲线能够表征多个参数值的信息,具体的,能够表征出工艺参数的参数值随时间变化的信息。Optionally, based on the above-mentioned multiple parameter values, a distribution curve of the target process parameter can be obtained, and the distribution curve of the target process parameter can represent the information of the multiple parameter values, and specifically, the parameter value that can represent the process parameter changes with time. Information.

可选的,本申请实施例中,目标工艺参数的分布曲线可以通过分布函数来表示。Optionally, in this embodiment of the present application, the distribution curve of the target process parameter may be represented by a distribution function.

S303、根据上述待检测样本中上述目标工艺参数的分布曲线以及上述目标工艺参数对应的历史分布曲线的差异,确定上述待检测样本中的上述目标工艺参数是否存在异常。S303 , according to the difference between the distribution curve of the target process parameter in the sample to be tested and the historical distribution curve corresponding to the target process parameter, determine whether the target process parameter in the sample to be tested is abnormal.

其中,该历史分布曲线基于历史的合格样本得到。Wherein, the historical distribution curve is obtained based on historical qualified samples.

可选的,上述历史分布曲线可以指针对待检测样本被检测之前所检测的样本中的合格样本所得到的分布曲线,即该历史分布曲线表征了合格样本所具有的特征。Optionally, the above-mentioned historical distribution curve may refer to the distribution curve obtained by the qualified samples in the samples detected before the samples to be detected are detected, that is, the historical distribution curve represents the characteristics of the qualified samples.

与待检测样本对应的,历史的合格样本中可以包括多种工艺参数,也可以包括一种工艺参数。本申请实施例中,历史分布曲线是指目标工艺参数对应的分布曲线。Corresponding to the samples to be tested, the historical qualified samples may include a variety of process parameters, or may include one process parameter. In the embodiment of the present application, the historical distribution curve refers to the distribution curve corresponding to the target process parameter.

上述历史分布曲线的获得过程将在下述实施例中详细说明。The process of obtaining the above historical distribution curve will be described in detail in the following embodiments.

在获得历史分布曲线的基础上,可以基于待检测样本中目标工艺参数的分布曲线与历史分布曲线进行比较,根据曲线间的差异,确定目标工艺参数是否存在异常。On the basis of obtaining the historical distribution curve, it is possible to compare the distribution curve of the target process parameter in the sample to be tested with the historical distribution curve, and determine whether the target process parameter is abnormal according to the difference between the curves.

S304、输出检测结果,该检测结果用于指示上述待检测样本中的上述目标工艺参数是否存在异常。S304 , outputting a detection result, where the detection result is used to indicate whether the above-mentioned target process parameter in the above-mentioned to-be-detected sample is abnormal.

可选的,上述检测结果可以为文字信息或者文字与图像结合的信息。Optionally, the above detection result may be text information or information combining text and images.

以文字与图像结合的信息为例,可以输出例如“本样本中温度参数存在异常”,同时,可以输出待检测样本中温度随时间变化的分布曲线的图像,或者,输出待检测样本中温度随时间变化的分布曲线以及历史分布曲线的对比图像等。Taking the information combining text and images as an example, for example, "the temperature parameter in this sample is abnormal" can be output, and at the same time, an image of the distribution curve of the temperature in the sample to be detected over time can be output, or the temperature in the sample to be detected can be output. Time-varying distribution curves and comparison images of historical distribution curves, etc.

本实施例中,基于待检测样本中目标工艺参数的多个参数值,确定目标工艺参数的分布曲线,并基于该分布曲线与目标工艺参数对应的历史分布曲线的差异,确定出待检测样本中的目标工艺参数是否存在异常。由于目标工艺参数的分布曲线是基于多个参数值所得到的曲线,因此,能够表征出目标工艺参数的参数值随时间变化的完整的信息,因此,在根据该曲线与历史分布曲线检测目标工艺参数是否异常时,能够基于完整的参数值进行,而不会丢失过多的信息,因此,使得检测结果的准确性得到极大的提升。In this embodiment, the distribution curve of the target process parameter is determined based on multiple parameter values of the target process parameter in the sample to be detected, and based on the difference between the distribution curve and the historical distribution curve corresponding to the target process parameter, the sample to be detected is determined. Whether the target process parameters are abnormal. Since the distribution curve of the target process parameter is a curve obtained based on multiple parameter values, it can represent the complete information of the parameter value of the target process parameter changing with time. Therefore, when detecting the target process according to the curve and the historical distribution curve When a parameter is abnormal, it can be done based on the complete parameter value without losing too much information, so the accuracy of the detection result is greatly improved.

在上述步骤S302中确定目标工艺参数的分布曲线时,一种可选的实施方式采用经验分布函数来表示目标工艺参数的分布曲线。具体的,以分布函数Fn(x)表示目标工艺参数的经验分布曲线,则可以直接使用该分布函数Fn(x)形成上述步骤S302中的目标工艺参数的分布函数。Fn(x)可以通过下述公式(1)表示。When the distribution curve of the target process parameter is determined in the above step S302, an optional embodiment adopts an empirical distribution function to represent the distribution curve of the target process parameter. Specifically, if the empirical distribution curve of the target process parameter is represented by the distribution function Fn (x), the distribution function Fn (x) can be directly used to form the distribution function of the target process parameter in the above step S302. F n (x) can be represented by the following formula (1).

Figure BDA0002362780390000091
Figure BDA0002362780390000091

其中,x为函数的自变量,xi表示拟合经验分布曲线的目标工艺参数的第i个参数值,n表示拟合经验分布曲线的目标工艺参数的参数值的个数,I表示示性函数,该示性函数的取值为0或1。具体的,当xi≤x时,I取值为1,当xi>x时,I取值为0。Among them, x is the independent variable of the function, xi represents the ith parameter value of the target process parameter fitting the empirical distribution curve, n represents the number of parameter values of the target process parameter fitting the empirical distribution curve, and I represents the indicative function , the value of the indicative function is 0 or 1. Specifically, when x i ≤x, I takes a value of 1, and when x i >x, I takes a value of 0.

而在具体实施过程中,由于目标工艺参数的参数值的差异可能较大,因此,利用Fn(x)表示的分布曲线可能不够光滑。基于这种考虑,作为另一种可选的实施方式,本申请实施例中将对Fn(x)光滑处理后的分布曲线作为目标工艺参数的分布曲线。In a specific implementation process, since the parameter values of the target process parameters may vary greatly, the distribution curve represented by F n (x) may not be smooth enough. Based on this consideration, as another optional implementation manner, the distribution curve of the smoothed F n (x) is used as the distribution curve of the target process parameter in the embodiment of the present application.

图4为本申请实施例提供的工艺参数检测方法的流程示意图,如图4所示,上述步骤S302中确定目标工艺参数的分布曲线的一种可选方式包括:4 is a schematic flowchart of a process parameter detection method provided by an embodiment of the present application. As shown in FIG. 4 , an optional method for determining the distribution curve of the target process parameter in the above step S302 includes:

S401、根据上述多个参数值,确定上述待检测样本中上述目标工艺参数的经验分布函数。S401. Determine an empirical distribution function of the target process parameter in the to-be-detected sample according to the plurality of parameter values.

该经验分布函数可以为上述的Fn(x)。The empirical distribution function may be the above-mentioned F n (x).

S402、对上述经验分布函数进行光滑处理,得到上述待检测样本中所述目标工艺参数的分布曲线。S402 , performing smoothing processing on the above-mentioned empirical distribution function to obtain a distribution curve of the target process parameter in the above-mentioned sample to be detected.

一种示例中,可以使用Bernstein分布函数估计量对Fn(x)进行光滑处理,以得到目标工艺参数的分布曲线Bmn(x),具体如下述公式(2)和(3)所示。In one example, the Bernstein distribution function estimator may be used to smooth F n (x) to obtain a distribution curve B mn (x) of the target process parameter, as shown in the following formulas (2) and (3).

Figure BDA0002362780390000092
Figure BDA0002362780390000092

Figure BDA0002362780390000093
Figure BDA0002362780390000093

其中,k为待检测样本(或者下文中的历史合格样本)中的工艺参数的种类个数,m表示多项式的阶。Wherein, k is the number of types of process parameters in the sample to be tested (or the historical qualified sample hereinafter), and m represents the order of the polynomial.

经过上述步骤S401-S402所得到的目标工艺参数的分布曲线具有更好的光滑性,同时具有更好的边界性质,因此,基于该分布曲线执行后续的曲线差异比较时,能够得到更准确的比较结果。The distribution curve of the target process parameters obtained through the above steps S401-S402 has better smoothness and better boundary properties. Therefore, when the subsequent curve difference comparison is performed based on the distribution curve, a more accurate comparison can be obtained. result.

如前文所述,上述历史分布曲线基于历史的合格样本得到。得到历史分布曲线的过程在上述步骤S303之前进行。在基于历史的合格样本得到历史分布曲线时,可以使用下述的任意一种方式。As mentioned above, the above historical distribution curve is obtained based on historical qualified samples. The process of obtaining the historical distribution curve is performed before the above step S303. When obtaining the historical distribution curve based on the historical qualified samples, any one of the following methods can be used.

第一种可选方式中,可以从多个历史的合格样本中随机选择一个合格样本,并建立该合格样本中目标工艺参数的分布曲线,将该曲线作为上述历史分布曲线。In the first optional manner, a qualified sample can be randomly selected from a plurality of historical qualified samples, and a distribution curve of the target process parameters in the qualified sample is established, and the curve is used as the above-mentioned historical distribution curve.

第二种可选方式中,可以选择距离待检测样本的生产时间最近的一个合格样本,并建立该合格样本中目标工艺参数的分布曲线,将该曲线作为上述历史分布曲线。In the second alternative, a qualified sample that is closest to the production time of the sample to be tested can be selected, and a distribution curve of the target process parameters in the qualified sample can be established, and the curve can be used as the above-mentioned historical distribution curve.

第三种可选方式中,可以基于多个历史的合格样本,经过对多个历史的合格样本进行处理,得到上述历史分布曲线。以下对该第三种可选方式进行详细说明。In the third optional manner, the above-mentioned historical distribution curve may be obtained by processing the qualified samples of the plurality of histories based on the qualified samples of the plurality of histories. The third optional manner will be described in detail below.

图5为本申请实施例提供的工艺参数检测方法的流程示意图,如图4所示,基于多个历史的格式样本得到上述历史分布曲线的过程包括:5 is a schematic flowchart of a process parameter detection method provided by an embodiment of the present application. As shown in FIG. 4 , the process of obtaining the above-mentioned historical distribution curve based on a plurality of historical format samples includes:

S501、获取多个历史合格样本,每个历史合格样本中包括上述目标工艺参数的多个参数值。S501. Acquire a plurality of historically qualified samples, and each historically qualified sample includes a plurality of parameter values of the above-mentioned target process parameters.

示例性的,上述多个历史合格样本可以是在生产上述待检测样本的时间之前预设时段内的合格样本,该预设时段例如可以是一个月、三个月或半年等。Exemplarily, the above-mentioned multiple historical qualified samples may be qualified samples within a preset period before the time when the above-mentioned samples to be tested are produced, and the preset period may be, for example, one month, three months, or half a year.

S502、根据每个历史合格样本中的目标工艺参数的多个参数值,分别确定每个历史合格样本中目标工艺参数的分布曲线。S502 , according to the multiple parameter values of the target process parameters in each historically qualified sample, respectively determine the distribution curve of the target process parameter in each historically qualified sample.

可选的,确定历史合格样本中目标工艺参数的分布曲线的方法可以与前述实施例中确定待检测样本中目标工艺参数的分布曲线的方法相同,具体过程可以参照前述实施例,此处不再赘述。Optionally, the method for determining the distribution curve of the target process parameter in the historically qualified samples may be the same as the method for determining the distribution curve of the target process parameter in the sample to be tested in the foregoing embodiment. Repeat.

S503、根据每个历史合格样本中目标工艺参数的分布曲线,确定目标工艺参数对应的历史分布曲线。S503: Determine a historical distribution curve corresponding to the target process parameter according to the distribution curve of the target process parameter in each historically qualified sample.

作为一种可选的实施方式,可以确定各历史合格样本中目标工艺参数的分布曲线的中心分布曲线,将该中心分布曲线作为所述目标工艺参数对应的历史分布曲线。As an optional embodiment, the center distribution curve of the distribution curve of the target process parameter in each historical qualified sample may be determined, and the center distribution curve is used as the historical distribution curve corresponding to the target process parameter.

上述中心分布曲线能够表征多个历史样本中的目标工艺参数的共同特征,因此,将该中心分布曲线作为与待检测样本进行比较的历史分布曲线,能够使得比较的结果的准确性更高。The above-mentioned central distribution curve can represent the common characteristics of the target process parameters in multiple historical samples. Therefore, using the central distribution curve as the historical distribution curve compared with the samples to be detected can make the comparison result more accurate.

以下说明上述步骤S303中确定待检测样本的目标工艺参数是否存在异常的过程。The following describes the process of determining whether the target process parameter of the sample to be tested is abnormal in the above step S303.

作为一种可选的实现方式,本申请实施例基于分布曲线之间的距离来衡量分布曲线的差异。As an optional implementation manner, the embodiment of the present application measures the difference between the distribution curves based on the distance between the distribution curves.

图6为分布曲线距离的示例图,如图6所示,假设有两个分布曲线

Figure BDA0002362780390000111
Figure BDA0002362780390000112
则两个分布曲线的距离为图6中双箭头线的长度,该长度可以通过如下公式(4)表示。Figure 6 is an example diagram of the distribution curve distance. As shown in Figure 6, it is assumed that there are two distribution curves
Figure BDA0002362780390000111
and
Figure BDA0002362780390000112
Then the distance between the two distribution curves is the length of the double-arrow line in FIG. 6 , and the length can be expressed by the following formula (4).

Figure BDA0002362780390000113
Figure BDA0002362780390000113

在具体实施过程中,作为一种示例,可以使用蒙特卡洛积分计算。具体步骤如下:In a specific implementation process, as an example, Monte Carlo integral calculation can be used. Specific steps are as follows:

首先,产生服从均匀分布的样本Y1,Y2,…,YNFirst, generate samples Y 1 , Y 2 ,...,Y N that obey a uniform distribution.

其次,基于Y1,Y2,…,YN产生服从

Figure BDA0002362780390000114
分布的样本X1,X1,…,XN。Secondly, based on Y 1 , Y 2 ,...,Y N , generate obedience
Figure BDA0002362780390000114
Distribution of samples X 1 ,X 1 ,…,X N .

进而,计算积分

Figure BDA0002362780390000115
Figure BDA0002362780390000116
Then, calculate the integral
Figure BDA0002362780390000115
Figure BDA0002362780390000116

在上述步骤S303中确定待检测样本的目标工艺参数是否存在异常,可以首先使用上述图6所示例的方法,计算出待检测样本中目标工艺参数的分布曲线与上述的历史分布曲线的距离。In the above step S303, to determine whether the target process parameters of the sample to be tested are abnormal, the method shown in FIG.

进而,对上述距离进行判断,根据待检测样本中目标工艺参数的分布曲线与目标工艺参数对应的历史分布曲线的距离与目标距离的差异,确定待检测样本中的目标工艺参数是否存在异常。Further, the above distance is judged, and according to the difference between the distance between the distribution curve of the target process parameter in the sample to be tested and the historical distribution curve corresponding to the target process parameter and the target distance, it is determined whether the target process parameter in the sample to be tested is abnormal.

其中,上述差异可以是差值,也可以是比值等。Wherein, the above-mentioned difference may be a difference value or a ratio value or the like.

一种可选方式中,上述目标距离可以为预设的一个经验值。In an optional manner, the above-mentioned target distance may be a preset empirical value.

另一种可选方式中,上述目标距离可以根据历史合格样本得到。In another optional manner, the above target distance may be obtained according to historical qualified samples.

具体的,在该可选方式中,可以根据每个历史合格样本中目标工艺参数的分布曲线与目标工艺参数对应的历史分布曲线的距离,确定出目标距离。Specifically, in this optional manner, the target distance may be determined according to the distance between the distribution curve of the target process parameter in each historically qualified sample and the historical distribution curve corresponding to the target process parameter.

如前文步骤S501-S503所述,可以得到各历史合格样本中目标工艺参数的分布曲线,以及,目标工艺参数对应的历史分布曲线,在此基础上,可以使用上述的图6所示例的方法,计算历史分布曲线与每个历史合格样本对应的分布曲线的距离,从而得到多个待选距离。在得到多个待选距离的基础上,可以从中选择一个待选距离作为目标距离,也可以对多个待选距离进行平均等处理,得到上述目标距离。下述图7以一种方式为例进行说明。As described above in steps S501-S503, the distribution curve of the target process parameters in each historically qualified sample, and the historical distribution curve corresponding to the target process parameters can be obtained. Calculate the distance between the historical distribution curve and the distribution curve corresponding to each historical qualified sample, so as to obtain a plurality of candidate distances. On the basis of obtaining a plurality of candidate distances, one candidate distance may be selected as the target distance, or the above target distance may be obtained by performing averaging and other processing on the plurality of candidate distances. The following FIG. 7 takes one form as an example for description.

图7为本申请实施例提供的工艺参数检测方法的流程示意图,如图7所示,确定目标距离的一种示例包括:FIG. 7 is a schematic flowchart of a process parameter detection method provided by an embodiment of the present application. As shown in FIG. 7 , an example of determining the target distance includes:

S701、分别确定每个历史合格样本中目标工艺参数的分布曲线与目标工艺参数对应的历史分布曲线的距离,得到多个待选距离。S701, respectively determining the distance between the distribution curve of the target process parameter in each historical qualified sample and the historical distribution curve corresponding to the target process parameter, to obtain a plurality of distances to be selected.

S702、将上述多个待选距离中的最大距离作为上述目标距离。S702. Use the maximum distance among the above-mentioned multiple candidate distances as the above-mentioned target distance.

值得说明的是,如果待检测样本中包括多个目标工艺参数,则分别针对每种目标工艺参数计算上述目标距离,也可以综合各种目标工艺参数计算上述目标距离。It should be noted that if the sample to be tested includes multiple target process parameters, the above target distance is calculated for each target process parameter, or the above target distance can be calculated by combining various target process parameters.

综合计算的示例如下。An example of a comprehensive calculation is as follows.

假设历史合格样本中某个样本i中包括k种目标工艺参数,这些目标工艺参数的分布曲线为

Figure BDA0002362780390000121
基于所有历史合格样本,得到各目标工艺参数的中心分布曲线
Figure BDA0002362780390000122
使用下述公式(5)计算出最大距离。Assuming that a certain sample i in the historical qualified samples includes k kinds of target process parameters, the distribution curve of these target process parameters is
Figure BDA0002362780390000121
Based on all historical qualified samples, the center distribution curve of each target process parameter is obtained
Figure BDA0002362780390000122
The maximum distance is calculated using the following formula (5).

Figure BDA0002362780390000123
Figure BDA0002362780390000123

其中,s为样本数量。where s is the sample size.

通过上述公式(5)计算得到的最大距离为样本中所有工艺参数的综合距离,因此,待检测样本中目标工艺参数的分布曲线与目标工艺参数对应的历史分布曲线的距离相应的也表示待检测样本中所有工艺参数的综合距离。The maximum distance calculated by the above formula (5) is the comprehensive distance of all process parameters in the sample. Therefore, the distance between the distribution curve of the target process parameter in the sample to be detected and the historical distribution curve corresponding to the target process parameter corresponds to the distance to be detected. The combined distance of all process parameters in the sample.

作为一种示例,假设待检测样本中目标工艺参数的分布曲线与目标工艺参数对应的历史分布曲线的距离为D′,如果D′>2*Dmax,则可以确定待检测样本中的目标工艺参数异常,即待检测样本为不合格样本。As an example, it is assumed that the distance between the distribution curve of the target process parameter in the sample to be tested and the historical distribution curve corresponding to the target process parameter is D', if D'>2*D max , the target process in the sample to be tested can be determined The parameter is abnormal, that is, the sample to be tested is an unqualified sample.

图8为本申请实施例提供的工艺参数检测方法的原理示意图,如图8所示,基于历史的合格样本得到每个样本的每种目标工艺参数的分布曲线,针对每种工艺参数,计算中心分布曲线。基于各历史个合格样本的分布曲线与中心分布曲线,可以计算得到最大距离(即前述目标距离)Dmax,基于待检测样本的分布曲线与中心分布曲线,可以计算得到D′,通过比较D′和Dmax,即可以得到待检测样本的目标工艺参数是否异常。FIG. 8 is a schematic diagram of the principle of the process parameter detection method provided by the embodiment of the present application. As shown in FIG. 8 , a distribution curve of each target process parameter of each sample is obtained based on historical qualified samples, and for each process parameter, the calculation center distribution curve. Based on the distribution curve and the center distribution curve of each historical qualified sample, the maximum distance (ie, the aforementioned target distance) D max can be calculated, and based on the distribution curve and the center distribution curve of the sample to be detected, D' can be calculated, and by comparing D' and D max , that is, whether the target process parameters of the sample to be tested are abnormal can be obtained.

图9为本申请实施例提供的一种工艺参数检测装置900的模块结构图,如图9所示,该装置包括:FIG. 9 is a block diagram of a process parameter detection device 900 provided by an embodiment of the present application. As shown in FIG. 9 , the device includes:

获取模块901,用于获取待检测样本,所述待检测样本中包括目标工艺参数的多个参数值。The obtaining module 901 is configured to obtain a sample to be detected, wherein the sample to be detected includes a plurality of parameter values of target process parameters.

确定模块902,用于根据所述多个参数值,确定所述待检测样本中所述目标工艺参数的分布曲线;以及,根据所述待检测样本中所述目标工艺参数的分布曲线以及所述目标工艺参数对应的历史分布曲线的差异,确定所述待检测样本中的所述目标工艺参数是否存在异常,所述历史分布曲线基于历史的合格样本得到。A determination module 902, configured to determine the distribution curve of the target process parameter in the sample to be detected according to the plurality of parameter values; and, according to the distribution curve of the target process parameter in the sample to be detected and the The difference between the historical distribution curves corresponding to the target process parameters determines whether the target process parameters in the samples to be tested are abnormal, and the historical distribution curves are obtained based on historical qualified samples.

输出模块903,用于输出检测结果,所述检测结果用于指示所述待检测样本中的所述目标工艺参数是否存在异常。The output module 903 is configured to output a detection result, where the detection result is used to indicate whether the target process parameter in the sample to be detected is abnormal.

作为一种可选的实施方式,获取模块901还用于:As an optional implementation manner, the obtaining module 901 is also used for:

获取多个历史合格样本,每个所述历史合格样本中包括所述目标工艺参数的多个参数值。A plurality of historically qualified samples are obtained, and each of the historically qualified samples includes a plurality of parameter values of the target process parameters.

确定模块902,还用于:根据每个所述历史合格样本中的所述目标工艺参数的多个参数值,分别确定每个所述历史合格样本中所述目标工艺参数的分布曲线;以及,根据每个所述历史合格样本中所述目标工艺参数的分布曲线,确定所述目标工艺参数对应的历史分布曲线。The determination module 902 is further configured to: respectively determine the distribution curve of the target process parameter in each of the historically qualified samples according to a plurality of parameter values of the target process parameter in each of the historically qualified samples; and, According to the distribution curve of the target process parameter in each of the historical qualified samples, the historical distribution curve corresponding to the target process parameter is determined.

作为一种可选的实施方式,确定模块902具体用于:As an optional implementation manner, the determining module 902 is specifically configured to:

确定各所述历史合格样本中所述目标工艺参数的分布曲线的中心分布曲线,将所述中心分布曲线作为所述目标工艺参数对应的历史分布曲线。Determine the center distribution curve of the distribution curve of the target process parameter in each of the historical qualified samples, and use the center distribution curve as the historical distribution curve corresponding to the target process parameter.

作为一种可选的实施方式,确定模块902具体用于:As an optional implementation manner, the determining module 902 is specifically configured to:

根据所述待检测样本中所述目标工艺参数的分布曲线与所述目标工艺参数对应的历史分布曲线的距离与目标距离的差异,确定所述待检测样本中的所述目标工艺参数是否存在异常。According to the difference between the distance between the distribution curve of the target process parameter in the sample to be tested and the historical distribution curve corresponding to the target process parameter and the target distance, determine whether the target process parameter in the sample to be tested is abnormal .

作为一种可选的实施方式,确定模块902具体用于:As an optional implementation manner, the determining module 902 is specifically configured to:

根据每个所述历史合格样本中所述目标工艺参数的分布曲线与所述目标工艺参数对应的历史分布曲线的距离,确定所述目标距离。The target distance is determined according to the distance between the distribution curve of the target process parameter in each of the historically qualified samples and the historical distribution curve corresponding to the target process parameter.

作为一种可选的实施方式,确定模块902具体用于:As an optional implementation manner, the determining module 902 is specifically configured to:

分别确定每个历史合格样本中所述目标工艺参数的分布曲线与所述目标工艺参数对应的历史分布曲线的距离,得到多个待选距离,将所述多个待选距离中的最大距离作为所述目标距离。Determine the distance between the distribution curve of the target process parameter in each historical qualified sample and the historical distribution curve corresponding to the target process parameter, obtain a plurality of candidate distances, and use the maximum distance in the plurality of candidate distances as the distance. the target distance.

作为一种可选的实施方式,确定模块902具体用于:As an optional implementation manner, the determining module 902 is specifically configured to:

根据所述多个参数值,确定所述待检测样本中所述目标工艺参数的经验分布函数;以及,对所述经验分布函数进行光滑处理,得到所述待检测样本中所述目标工艺参数的分布曲线。Determine an empirical distribution function of the target process parameter in the sample to be tested according to the plurality of parameter values; and perform smoothing on the empirical distribution function to obtain an empirical distribution function of the target process parameter in the sample to be tested distribution curve.

根据本申请的实施例,本申请还提供了一种电子设备和一种可读存储介质。According to the embodiments of the present application, the present application further provides an electronic device and a readable storage medium.

如图10所示,是根据本申请实施例的工艺参数检测方法的电子设备的框图。电子设备旨在表示各种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。电子设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本申请的实现。As shown in FIG. 10 , it is a block diagram of an electronic device of the method for detecting a process parameter according to an embodiment of the present application. Electronic devices are intended to represent various forms of digital computers, such as laptops, desktops, workstations, personal digital assistants, servers, blade servers, mainframe computers, and other suitable computers. Electronic devices may also represent various forms of mobile devices, such as personal digital processors, cellular phones, smart phones, wearable devices, and other similar computing devices. The components shown herein, their connections and relationships, and their functions are by way of example only, and are not intended to limit implementations of the application described and/or claimed herein.

如图10所示,该电子设备包括:一个或多个处理器1001、存储器1002,以及用于连接各部件的接口,包括高速接口和低速接口。各个部件利用不同的总线互相连接,并且可以被安装在公共主板上或者根据需要以其它方式安装。处理器可以对在电子设备内执行的指令进行处理,包括存储在存储器中或者存储器上以在外部输入/输出装置(诸如,耦合至接口的显示设备)上显示GUI的图形信息的指令。在其它实施方式中,若需要,可以将多个处理器和/或多条总线与多个存储器和多个存储器一起使用。同样,可以连接多个电子设备,各个设备提供部分必要的操作(例如,作为服务器阵列、一组刀片式服务器、或者多处理器系统)。图10中以一个处理器1001为例。As shown in FIG. 10, the electronic device includes: one or more processors 1001, a memory 1002, and interfaces for connecting various components, including a high-speed interface and a low-speed interface. The various components are interconnected using different buses and may be mounted on a common motherboard or otherwise as desired. The processor may process instructions executed within the electronic device, including instructions stored in or on memory to display graphical information of the GUI on an external input/output device, such as a display device coupled to the interface. In other embodiments, multiple processors and/or multiple buses may be used with multiple memories and multiple memories, if desired. Likewise, multiple electronic devices may be connected, each providing some of the necessary operations (eg, as a server array, a group of blade servers, or a multiprocessor system). In FIG. 10, a processor 1001 is used as an example.

存储器1002即为本申请所提供的非瞬时计算机可读存储介质。其中,所述存储器存储有可由至少一个处理器执行的指令,以使所述至少一个处理器执行本申请所提供的工艺参数检测方法。本申请的非瞬时计算机可读存储介质存储计算机指令,该计算机指令用于使计算机执行本申请所提供的工艺参数检测方法。The memory 1002 is the non-transitory computer-readable storage medium provided by the present application. Wherein, the memory stores instructions executable by at least one processor, so that the at least one processor executes the process parameter detection method provided by the present application. The non-transitory computer-readable storage medium of the present application stores computer instructions, and the computer instructions are used to cause the computer to execute the process parameter detection method provided by the present application.

存储器1002作为一种非瞬时计算机可读存储介质,可用于存储非瞬时软件程序、非瞬时计算机可执行程序以及模块,如本申请实施例中的工艺参数检测方法对应的程序指令/模块(例如,附图10所示的获取模块1001、确定模块1002和输出模块1003)。处理器1001通过运行存储在存储器1002中的非瞬时软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现上述方法实施例中的工艺参数检测方法。As a non-transitory computer-readable storage medium, the memory 1002 can be used to store non-transitory software programs, non-transitory computer-executable programs and modules, such as program instructions/modules corresponding to the process parameter detection method in the embodiments of the present application (for example, The acquisition module 1001, the determination module 1002 and the output module 1003 shown in FIG. 10). The processor 1001 executes various functional applications and data processing of the server by running the non-transitory software programs, instructions and modules stored in the memory 1002, that is, implementing the process parameter detection method in the above method embodiments.

存储器1002可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据工艺参数检测的电子设备的使用所创建的数据等。此外,存储器1002可以包括高速随机存取存储器,还可以包括非瞬时存储器,例如至少一个磁盘存储器件、闪存器件、或其他非瞬时固态存储器件。在一些实施例中,存储器1002可选包括相对于处理器1001远程设置的存储器,这些远程存储器可以通过网络连接至工艺参数检测的电子设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。The memory 1002 can include a stored program area and a stored data area, wherein the stored program area can store an operating system, an application program required by at least one function; the stored data area can store data created according to the use of electronic equipment detected by process parameters, etc. . Additionally, memory 1002 may include high-speed random access memory, and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid-state storage device. In some embodiments, the memory 1002 may optionally include memory located remotely relative to the processor 1001, and these remote memories may be connected to the electronic device for process parameter detection via a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.

工艺参数检测的电子设备还可以包括:输入装置1003和输出装置1004。处理器1001、存储器1002、输入装置1003和输出装置1004可以通过总线或者其他方式连接,图10中以通过总线连接为例。The electronic device for process parameter detection may further include: an input device 1003 and an output device 1004 . The processor 1001 , the memory 1002 , the input device 1003 and the output device 1004 may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 10 .

输入装置1003可接收输入的数字或字符信息,以及产生与工艺参数检测的电子设备的用户设置以及功能控制有关的键信号输入,例如触摸屏、小键盘、鼠标、轨迹板、触摸板、指示杆、一个或者多个鼠标按钮、轨迹球、操纵杆等输入装置。输出装置1004可以包括显示设备、辅助照明装置(例如,LED)和触觉反馈装置(例如,振动电机)等。该显示设备可以包括但不限于,液晶显示器(LCD)、发光二极管(LED)显示器和等离子体显示器。在一些实施方式中,显示设备可以是触摸屏。The input device 1003 can receive input numerical or character information, and generate key signal input related to user settings and function control of electronic equipment for process parameter detection, such as touch screen, keypad, mouse, trackpad, touchpad, pointing stick, One or more input devices such as mouse buttons, trackballs, joysticks, etc. Output devices 1004 may include display devices, auxiliary lighting devices (eg, LEDs), haptic feedback devices (eg, vibration motors), and the like. The display device may include, but is not limited to, a liquid crystal display (LCD), a light emitting diode (LED) display, and a plasma display. In some implementations, the display device may be a touch screen.

此处描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、专用ASIC(专用集成电路)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。Various implementations of the systems and techniques described herein can be implemented in digital electronic circuitry, integrated circuit systems, application specific ASICs (application specific integrated circuits), computer hardware, firmware, software, and/or combinations thereof. These various embodiments may include being implemented in one or more computer programs executable and/or interpretable on a programmable system including at least one programmable processor that The processor, which may be a special purpose or general-purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device an output device.

这些计算程序(也称作程序、软件、软件应用、或者代码)包括可编程处理器的机器指令,并且可以利用高级过程和/或面向对象的编程语言、和/或汇编/机器语言来实施这些计算程序。如本文使用的,术语“机器可读介质”和“计算机可读介质”指的是用于将机器指令和/或数据提供给可编程处理器的任何计算机程序产品、设备、和/或装置(例如,磁盘、光盘、存储器、可编程逻辑装置(PLD)),包括,接收作为机器可读信号的机器指令的机器可读介质。术语“机器可读信号”指的是用于将机器指令和/或数据提供给可编程处理器的任何信号。These computational programs (also referred to as programs, software, software applications, or codes) include machine instructions for programmable processors, and may be implemented using high-level procedural and/or object-oriented programming languages, and/or assembly/machine languages calculation program. As used herein, the terms "machine-readable medium" and "computer-readable medium" refer to any computer program product, apparatus, and/or apparatus for providing machine instructions and/or data to a programmable processor ( For example, magnetic disks, optical disks, memories, programmable logic devices (PLDs), including machine-readable media that receive machine instructions as machine-readable signals. The term "machine-readable signal" refers to any signal used to provide machine instructions and/or data to a programmable processor.

为了提供与用户的交互,可以在计算机上实施此处描述的系统和技术,该计算机具有:用于向用户显示信息的显示装置(例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给计算机。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。To provide interaction with a user, the systems and techniques described herein may be implemented on a computer having a display device (eg, a CRT (cathode ray tube) or LCD (liquid crystal display) monitor) for displaying information to the user ); and a keyboard and pointing device (eg, a mouse or trackball) through which a user can provide input to the computer. Other kinds of devices can also be used to provide interaction with the user; for example, the feedback provided to the user can be any form of sensory feedback (eg, visual feedback, auditory feedback, or tactile feedback); and can be in any form (including acoustic input, voice input, or tactile input) to receive input from the user.

可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)和互联网。The systems and techniques described herein may be implemented on a computing system that includes back-end components (eg, as a data server), or a computing system that includes middleware components (eg, an application server), or a computing system that includes front-end components (eg, a user's computer having a graphical user interface or web browser through which a user may interact with implementations of the systems and techniques described herein), or including such backend components, middleware components, Or any combination of front-end components in a computing system. The components of the system may be interconnected by any form or medium of digital data communication (eg, a communication network). Examples of communication networks include: Local Area Networks (LANs), Wide Area Networks (WANs), and the Internet.

计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。A computer system can include clients and servers. Clients and servers are generally remote from each other and usually interact through a communication network. The relationship of client and server arises by computer programs running on the respective computers and having a client-server relationship to each other.

根据本申请实施例的技术方案,还提供一种工艺参数检测方法,包括:According to the technical solutions of the embodiments of the present application, a method for detecting process parameters is also provided, including:

获取待检测样本,所述待检测样本中包括目标工艺参数的多个参数值。A sample to be detected is obtained, and the sample to be detected includes multiple parameter values of the target process parameter.

根据所述多个参数值,确定所述待检测样本中所述目标工艺参数的分布曲线。According to the plurality of parameter values, a distribution curve of the target process parameter in the sample to be detected is determined.

根据所述待检测样本中所述目标工艺参数的分布曲线以及所述目标工艺参数对应的历史分布曲线,确定所述待检测样本中的所述目标工艺参数是否存在异常,所述历史分布曲线基于历史的合格样本得到。According to the distribution curve of the target process parameter in the to-be-detected sample and the historical distribution curve corresponding to the target process parameter, determine whether the target process parameter in the to-be-detected sample is abnormal, and the historical distribution curve is based on A qualified sample of history is obtained.

输出检测结果,所述检测结果用于指示所述待检测样本中的所述目标工艺参数是否存在异常。A detection result is output, where the detection result is used to indicate whether the target process parameter in the sample to be detected is abnormal.

应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本发申请中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本申请公开的技术方案所期望的结果,本文在此不进行限制。It should be understood that steps may be reordered, added or deleted using the various forms of flow shown above. For example, the steps described in the present application can be performed in parallel, sequentially or in different orders, and as long as the desired results of the technical solutions disclosed in the present application can be achieved, no limitation is imposed herein.

上述具体实施方式,并不构成对本申请保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本申请的精神和原则之内所作的修改、等同替换和改进等,均应包含在本申请保护范围之内。The above-mentioned specific embodiments do not constitute a limitation on the protection scope of the present application. It should be understood by those skilled in the art that various modifications, combinations, sub-combinations and substitutions may occur depending on design requirements and other factors. Any modifications, equivalent replacements and improvements made within the spirit and principles of this application shall be included within the protection scope of this application.

Claims (17)

1. A process parameter detection method is characterized by comprising the following steps:
obtaining a sample to be detected, wherein the sample to be detected comprises a plurality of parameter values of target process parameters;
determining a distribution curve of the target process parameters in the sample to be detected according to the plurality of parameter values;
determining whether the target process parameters in the sample to be detected are abnormal or not according to the difference between the distribution curve of the target process parameters in the sample to be detected and the historical distribution curve corresponding to the target process parameters, wherein the historical distribution curve is obtained based on historical qualified samples;
and outputting a detection result, wherein the detection result is used for indicating whether the target process parameters in the sample to be detected are abnormal or not.
2. The method according to claim 1, wherein before determining whether the target process parameter in the sample to be detected is abnormal according to the difference between the distribution curve of the target process parameter in the sample to be detected and the historical distribution curve corresponding to the target process parameter, the method further comprises:
obtaining a plurality of historical qualified samples, wherein each historical qualified sample comprises a plurality of parameter values of the target process parameter;
respectively determining a distribution curve of the target process parameter in each historical qualified sample according to a plurality of parameter values of the target process parameter in each historical qualified sample;
and determining a historical distribution curve corresponding to the target process parameter according to the distribution curve of the target process parameter in each historical qualified sample.
3. The method of claim 2, wherein said determining a historical profile of the target process parameter from the profile of the target process parameter in each of the historically qualified samples comprises:
and determining a central distribution curve of the target process parameter in each historical qualified sample, and taking the central distribution curve as a historical distribution curve corresponding to the target process parameter.
4. The method according to claim 2 or 3, wherein the determining whether the target process parameter in the sample to be detected is abnormal according to the difference between the distribution curve of the target process parameter in the sample to be detected and the historical distribution curve corresponding to the target process parameter comprises:
and determining whether the target process parameters in the sample to be detected are abnormal or not according to the difference between the target distance and the distance between the distribution curve of the target process parameters in the sample to be detected and the historical distribution curve corresponding to the target process parameters.
5. The method according to claim 4, wherein before determining whether the target process parameter in the sample to be detected is abnormal according to the difference between the distribution curve of the target process parameter in the sample to be detected and the historical distribution curve corresponding to the target process parameter, the method further comprises:
and determining the target distance according to the distance between the distribution curve of the target process parameter in each historical qualified sample and the historical distribution curve corresponding to the target process parameter.
6. The method of claim 5, wherein said determining the target distance based on the distance between the profile of the target process parameter in each of the historically qualified samples and the historical profile corresponding to the target process parameter comprises:
respectively determining the distance between the distribution curve of the target process parameter in each historical qualified sample and the historical distribution curve corresponding to the target process parameter to obtain a plurality of candidate distances;
and taking the maximum distance in the plurality of candidate distances as the target distance.
7. The method according to any one of claims 1 to 6, wherein said determining a profile of said target process parameter in said sample to be tested based on said plurality of parameter values comprises:
determining an empirical distribution function of the target process parameters in the sample to be detected according to the plurality of parameter values;
and smoothing the empirical distribution function to obtain a distribution curve of the target process parameters in the sample to be detected.
8. A process parameter detection device is characterized by comprising:
the system comprises an acquisition module, a processing module and a processing module, wherein the acquisition module is used for acquiring a sample to be detected, and the sample to be detected comprises a plurality of parameter values of target process parameters;
the determining module is used for determining a distribution curve of the target process parameters in the sample to be detected according to the plurality of parameter values; and the number of the first and second groups,
determining whether the target process parameters in the sample to be detected are abnormal or not according to the difference between the distribution curve of the target process parameters in the sample to be detected and the historical distribution curve corresponding to the target process parameters, wherein the historical distribution curve is obtained based on historical qualified samples;
and the output module is used for outputting a detection result, and the detection result is used for indicating whether the target process parameters in the sample to be detected are abnormal or not.
9. The apparatus of claim 8, wherein the obtaining module is further configured to:
obtaining a plurality of historical qualified samples, wherein each historical qualified sample comprises a plurality of parameter values of the target process parameter;
the determining module is further configured to: respectively determining a distribution curve of the target process parameter in each historical qualified sample according to a plurality of parameter values of the target process parameter in each historical qualified sample; and the number of the first and second groups,
and determining a historical distribution curve corresponding to the target process parameter according to the distribution curve of the target process parameter in each historical qualified sample.
10. The apparatus of claim 9, wherein the determining module is specifically configured to:
and determining a central distribution curve of the target process parameter in each historical qualified sample, and taking the central distribution curve as a historical distribution curve corresponding to the target process parameter.
11. The apparatus according to claim 9 or 10, wherein the determining module is specifically configured to:
and determining whether the target process parameters in the sample to be detected are abnormal or not according to the difference between the target distance and the distance between the distribution curve of the target process parameters in the sample to be detected and the historical distribution curve corresponding to the target process parameters.
12. The apparatus of claim 11, wherein the determining module is specifically configured to:
and determining the target distance according to the distance between the distribution curve of the target process parameter in each historical qualified sample and the historical distribution curve corresponding to the target process parameter.
13. The apparatus of claim 12, wherein the determining module is specifically configured to:
respectively determining the distance between the distribution curve of the target process parameter in each historical qualified sample and the historical distribution curve corresponding to the target process parameter to obtain a plurality of candidate distances; and the number of the first and second groups,
and taking the maximum distance in the plurality of candidate distances as the target distance.
14. The apparatus according to any one of claims 8 to 13, wherein the determining module is specifically configured to:
determining an empirical distribution function of the target process parameters in the sample to be detected according to the plurality of parameter values; and the number of the first and second groups,
and smoothing the empirical distribution function to obtain a distribution curve of the target process parameters in the sample to be detected.
15. An electronic device, comprising:
at least one processor; and
a memory communicatively coupled to the at least one processor; wherein,
the memory stores instructions executable by the at least one processor to enable the at least one processor to perform the method of any one of claims 1-7.
16. A non-transitory computer readable storage medium having stored thereon computer instructions for causing the computer to perform the method of any one of claims 1-4.
17. A process parameter detection method is characterized by comprising the following steps:
obtaining a sample to be detected, wherein the sample to be detected comprises a plurality of parameter values of target process parameters;
determining a distribution curve of the target process parameters in the sample to be detected according to the plurality of parameter values;
determining whether the target process parameters in the sample to be detected are abnormal or not according to the distribution curve of the target process parameters in the sample to be detected and a historical distribution curve corresponding to the target process parameters, wherein the historical distribution curve is obtained based on historical qualified samples;
and outputting a detection result, wherein the detection result is used for indicating whether the target process parameters in the sample to be detected are abnormal or not.
CN202010026840.0A 2020-01-10 2020-01-10 Process parameter detection method and device, electronic equipment and readable storage medium Pending CN111260498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010026840.0A CN111260498A (en) 2020-01-10 2020-01-10 Process parameter detection method and device, electronic equipment and readable storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010026840.0A CN111260498A (en) 2020-01-10 2020-01-10 Process parameter detection method and device, electronic equipment and readable storage medium

Publications (1)

Publication Number Publication Date
CN111260498A true CN111260498A (en) 2020-06-09

Family

ID=70952809

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010026840.0A Pending CN111260498A (en) 2020-01-10 2020-01-10 Process parameter detection method and device, electronic equipment and readable storage medium

Country Status (1)

Country Link
CN (1) CN111260498A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113450550A (en) * 2021-06-24 2021-09-28 张�杰 Alarming method and device in blood transfusion process
CN114354233A (en) * 2021-12-31 2022-04-15 北京百度网讯科技有限公司 Anomaly determination method, device, apparatus, medium, and product
CN115170583A (en) * 2022-07-04 2022-10-11 昆山卡尔达精密电子科技有限公司 Method and system for monitoring preparation of thermoplastic plastic product with complex structure
WO2024207757A1 (en) * 2023-04-04 2024-10-10 广东电网有限责任公司揭阳供电局 Composite insulator detection method and apparatus, electronic device, and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106446339A (en) * 2016-08-29 2017-02-22 北京化工大学 Rotating machine operation state anomaly detection method based on Dirichlet mixture model
CN108693846A (en) * 2018-05-16 2018-10-23 京东方科技集团股份有限公司 Control method, production executive system and the equipment interface system of technological parameter
US20190012553A1 (en) * 2017-07-07 2019-01-10 Kabushiki Kaisha Toshiba Diagnostic device, diagnosis method and computer program
CN109753027A (en) * 2017-11-08 2019-05-14 阿里巴巴集团控股有限公司 It is a kind of industry manufacture in parameter monitoring method and device
CN110113226A (en) * 2019-04-16 2019-08-09 新华三信息安全技术有限公司 A kind of method and device of detection device exception

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106446339A (en) * 2016-08-29 2017-02-22 北京化工大学 Rotating machine operation state anomaly detection method based on Dirichlet mixture model
US20190012553A1 (en) * 2017-07-07 2019-01-10 Kabushiki Kaisha Toshiba Diagnostic device, diagnosis method and computer program
CN109753027A (en) * 2017-11-08 2019-05-14 阿里巴巴集团控股有限公司 It is a kind of industry manufacture in parameter monitoring method and device
CN108693846A (en) * 2018-05-16 2018-10-23 京东方科技集团股份有限公司 Control method, production executive system and the equipment interface system of technological parameter
CN110113226A (en) * 2019-04-16 2019-08-09 新华三信息安全技术有限公司 A kind of method and device of detection device exception

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113450550A (en) * 2021-06-24 2021-09-28 张�杰 Alarming method and device in blood transfusion process
CN114354233A (en) * 2021-12-31 2022-04-15 北京百度网讯科技有限公司 Anomaly determination method, device, apparatus, medium, and product
CN115170583A (en) * 2022-07-04 2022-10-11 昆山卡尔达精密电子科技有限公司 Method and system for monitoring preparation of thermoplastic plastic product with complex structure
CN115170583B (en) * 2022-07-04 2024-06-28 昆山卡尔达精密电子科技有限公司 Method and system for monitoring preparation of thermoplastic plastic product with complex structure
WO2024207757A1 (en) * 2023-04-04 2024-10-10 广东电网有限责任公司揭阳供电局 Composite insulator detection method and apparatus, electronic device, and storage medium

Similar Documents

Publication Publication Date Title
CN111260498A (en) Process parameter detection method and device, electronic equipment and readable storage medium
CN112270399B (en) Operator registration processing method, device and electronic device based on deep learning
CN107766299A (en) The abnormal monitoring method of data target and its system, storage medium, electronic equipment
AU2021201794A1 (en) Method and apparatus for evaluating quantum gate in superconducting circuit, device and storage
CN111784663A (en) Parts detection method, device, electronic equipment and storage medium
CN111242306A (en) Method, apparatus, electronic device, and computer-readable storage medium for quantum principal component analysis
CN110659600A (en) Object detection method, device and equipment
CN111046257A (en) A session recommendation method, device and electronic device
CN111666187A (en) Method and apparatus for detecting abnormal response time
CN103322931A (en) System and method for measuring gap and offset of point cloud
CN111598246A (en) Quantum Gibbs state generation method and device and electronic equipment
CN115013340A (en) Early warning method and device for adjusting fault of moving blade of axial flow fan in thermal power plant
CN114992150A (en) Early warning method and device for coal-fired power plant fan stall and storage medium
CN113746798B (en) Cloud network shared resource abnormal root cause positioning method based on multi-dimensional analysis
CN110705551A (en) Method, device, electronic device and storage medium for identifying key position
CN115971597A (en) Temperature monitoring method and device for reflow soldering and storage medium
CN115096363A (en) Method and device for detecting faults of blast furnace equipment, electronic equipment and storage medium
CN111612533A (en) An online strategy adjustment method, device, equipment and medium
TW201642184A (en) Using radial basis function networks and hyper-cubes for excursion classification in semi-conductor processing equipment
CN108171425A (en) Power quality partition method, device and storage medium
CN117215868B (en) Magnetic disk abnormality detection method and device, electronic equipment and storage medium
CN111599174A (en) Anomaly detection method and electronic device for traffic indicators
CN111339344A (en) Indoor image retrieval method and device and electronic equipment
CN111241688A (en) Method and device for monitoring composite production process
CN119028420B (en) Method, device, equipment, storage medium and program product for determining comprehensive yield

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200609