CN111260113A - Online prediction method of junction temperature in the whole life cycle of SiC MOSFET module - Google Patents
Online prediction method of junction temperature in the whole life cycle of SiC MOSFET module Download PDFInfo
- Publication number
- CN111260113A CN111260113A CN202010017816.0A CN202010017816A CN111260113A CN 111260113 A CN111260113 A CN 111260113A CN 202010017816 A CN202010017816 A CN 202010017816A CN 111260113 A CN111260113 A CN 111260113A
- Authority
- CN
- China
- Prior art keywords
- sic mosfet
- junction temperature
- mosfet module
- neural network
- network model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000003062 neural network model Methods 0.000 claims abstract description 47
- 238000005070 sampling Methods 0.000 claims abstract description 13
- 210000002569 neuron Anatomy 0.000 claims description 20
- 230000032683 aging Effects 0.000 claims description 10
- 230000001351 cycling effect Effects 0.000 claims description 4
- 229920006395 saturated elastomer Polymers 0.000 claims 1
- 238000012549 training Methods 0.000 abstract description 4
- 238000013459 approach Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Computational Linguistics (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Strategic Management (AREA)
- Economics (AREA)
- Human Resources & Organizations (AREA)
- Game Theory and Decision Science (AREA)
- Development Economics (AREA)
- Entrepreneurship & Innovation (AREA)
- Marketing (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Testing Of Individual Semiconductor Devices (AREA)
Abstract
Description
技术领域technical field
本发明属于电子技术领域,涉及一种SiC MOSFET模块全生命周期结温在线预测方法。The invention belongs to the technical field of electronics, and relates to an on-line prediction method for junction temperature in the whole life cycle of a SiC MOSFET module.
背景技术Background technique
SiC MOSFET模块集合了耐高温、耐高压、开关速度快、低开关损耗等优点。随着科技的发展,航天、通讯、核能等众多领域,迫切需要一种在高温、高频等环境下仍然能够正常工作的功率电子器件。SiC高温特性很明显,芯片最大承受温度可达600℃,模块热击穿结温可以达到250℃。但是由于器件运行环境的特殊性,在运行状态下会产生大量热量,从而导致温升和热应力形变。由于长久运行不断承受功率循环或热循环,从而加速了模块的老化速度,形成长期的失效累积,从而降低器件乃至整个系统的可靠性。通常功率器件的结温监测都是按照器件在健康状态下进行的。但是忽略了模块在工作中随着慢慢老化,模块内部参数发生变化,预测结果不准确。SiC MOSFET modules combine the advantages of high temperature resistance, high voltage resistance, fast switching speed, and low switching loss. With the development of science and technology, aerospace, communications, nuclear energy and many other fields are in urgent need of a power electronic device that can still work normally in high temperature, high frequency and other environments. The high temperature characteristics of SiC are obvious. The maximum temperature of the chip can reach 600℃, and the thermal breakdown junction temperature of the module can reach 250℃. However, due to the particularity of the operating environment of the device, a large amount of heat will be generated in the operating state, resulting in temperature rise and thermal stress deformation. Due to the long-term operation and continuous power cycle or thermal cycle, the aging speed of the module is accelerated, and long-term failure accumulation is formed, thereby reducing the reliability of the device and even the entire system. Usually, the junction temperature monitoring of power devices is carried out according to the state of health of the device. However, it is ignored that the internal parameters of the module change as the module gradually ages during work, and the prediction result is inaccurate.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种SiC MOSFET模块全生命周期结温在线预测方法,解决了现有技术中存在的SiC MOSFET模块结温预测结果不准确的问题。The purpose of the present invention is to provide an online prediction method for the junction temperature of the SiC MOSFET module in the whole life cycle, which solves the problem of inaccurate prediction results of the junction temperature of the SiC MOSFET module in the prior art.
本发明所采用的技术方案是,The technical scheme adopted in the present invention is,
SiC MOSFET模块全生命周期结温在线预测方法,具体按照以下步骤实施:The online prediction method of junction temperature in the whole life cycle of SiC MOSFET module is implemented according to the following steps:
步骤1,采用一个全新的SiC MOSFET模块做功率循环直到模块完全老化失效;在功率循环期间采样该SiC MOSFET模块的电气参数作为数据集,电气参数分别为Vds、Id和R,其中Vds为饱和压降,Id为电流值,R为电阻值;Step 1, use a brand new SiC MOSFET module for power cycling until the module is completely aged and fail; during the power cycle, the electrical parameters of the SiC MOSFET module are sampled as a data set, and the electrical parameters are Vds, Id and R, where Vds is the saturation voltage. drop, Id is the current value, R is the resistance value;
步骤2,建立SiC MOSFET模块结温预测模型,SiC MOSFET模块结温预测模型包括依次连接的第一BP神经网络模型和第二BP神经网络模型,第一BP神经网络模型的输入对应Vds、Id和R,第一BP神经网络模型的输出对应实时的功率循环次数Nc,第一BP神经网络模型的输出与第二BP神经网络模型的一个输入相对应;Step 2, establish a junction temperature prediction model of the SiC MOSFET module. The junction temperature prediction model of the SiC MOSFET module includes a first BP neural network model and a second BP neural network model connected in sequence, and the input of the first BP neural network model corresponds to Vds, Id and R, the output of the first BP neural network model corresponds to the real-time power cycle number Nc, and the output of the first BP neural network model corresponds to an input of the second BP neural network model;
步骤3,采用数据集对SiC MOSFET模块结温预测模型进行训练;Step 3, using the data set to train the junction temperature prediction model of the SiC MOSFET module;
步骤4,将训练好的SiC MOSFET模块结温预测模型移植到FPGA的RAM中,FPGA与被测的SiC MOSFET模块连接,在被测的SiC MOSFET模块实际运行中,输入电流Id,实时输出对应的结温Tc。Step 4: Transplant the trained SiC MOSFET module junction temperature prediction model to the RAM of the FPGA. The FPGA is connected to the tested SiC MOSFET module. During the actual operation of the tested SiC MOSFET module, the current Id is input, and the corresponding Id is output in real time. Junction temperature Tc.
本发明的特点还在于,The present invention is also characterized in that,
步骤1中采样的具体步骤为:直流电源设定好电流数值Id,电流数值Id随机取[1,150]范围内的数值,结温从30℃起,采用间隔采样的方法获取电气参数,采样频率在老化初期为2000次功率循环,在老化后期为1000次功率循环。The specific steps of sampling in step 1 are: set the current value Id of the DC power supply, the current value Id randomly selects the value in the range of [1,150], the junction temperature starts from 30 °C, and the electrical parameters are obtained by the method of interval sampling, and the sampling frequency is 2000 power cycles in the initial stage of aging and 1000 power cycles in the later stage of aging.
第一BP神经网络模型的输入层神经元个数为3个,分别对应Vds、Id和R,输出层神经元个数为1个,对应Nc。The number of neurons in the input layer of the first BP neural network model is 3, corresponding to Vds, Id and R respectively, and the number of neurons in the output layer is 1, corresponding to Nc.
第一BP神经网络模型的隐含层神经元个数为7个。The number of neurons in the hidden layer of the first BP neural network model is 7.
第二BP神经网络模型的输入层神经元个数为4个,分别对应Vds、Id、R和第一BP神经网络模型的输出。The number of neurons in the input layer of the second BP neural network model is 4, respectively corresponding to Vds, Id, R and the output of the first BP neural network model.
第二BP神经网络模型的隐含层神经元个数为9个。The number of neurons in the hidden layer of the second BP neural network model is 9.
本发明的有益效果是The beneficial effects of the present invention are
本发明通过功率循环采样,对SiC MOSFET模块加入老化参数,补偿、修正结温预测。通过用BP网络算法对实验数据进行分析,利用BP神经网络有很强的非线性映射能力,能以任意精度逼近任何非线性函数,并且具有很强的自学习和自适应能力,对SiC MOSFET的结温进行预测。然后将算法移植到FPGA的RAM中,实现了SiC MOSFET模块结温的在线提取。克服了传统SiC MOSFET模块过温保护的缺陷,准确得到SiC MOSFET模块的结温。确保带SiCMOSFET模块的设备能安全稳定运行。The invention adds aging parameters to the SiC MOSFET module through power cycle sampling to compensate and correct the junction temperature prediction. By analyzing the experimental data with the BP network algorithm, the BP neural network has a strong nonlinear mapping ability, can approximate any nonlinear function with arbitrary precision, and has a strong self-learning and adaptive ability. junction temperature is predicted. Then the algorithm is transplanted into the RAM of the FPGA, and the online extraction of the junction temperature of the SiC MOSFET module is realized. Over-temperature protection of traditional SiC MOSFET modules is overcome, and the junction temperature of SiC MOSFET modules is accurately obtained. Ensure safe and stable operation of devices with SiCMOSFET modules.
附图说明Description of drawings
图1是本发明SiC MOSFET模块全生命周期结温在线预测方法中步骤流程图;Fig. 1 is a flow chart of steps in the on-line prediction method of junction temperature in the whole life cycle of SiC MOSFET module of the present invention;
图2是本发明SiC MOSFET模块全生命周期结温在线预测方法中第一BP神经网络模型的网络结构图;Fig. 2 is the network structure diagram of the first BP neural network model in the whole life cycle junction temperature online prediction method of SiC MOSFET module of the present invention;
图3是本发明SiC MOSFET模块全生命周期结温在线预测方法中第二BP神经网络模型的网络结构图。FIG. 3 is a network structure diagram of the second BP neural network model in the online prediction method of the junction temperature of the whole life cycle of the SiC MOSFET module of the present invention.
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明进行详细说明。The present invention will be described in detail below with reference to the accompanying drawings and specific embodiments.
本发明SiC MOSFET模块全生命周期结温在线预测方法,其特征在于,具体按照以下步骤实施:The on-line prediction method for junction temperature of SiC MOSFET module in the whole life cycle of the present invention is characterized in that it is specifically implemented according to the following steps:
步骤1,采用一个全新的SiC MOSFET模块做功率循环直到模块完全老化失效;在功率循环期间采样该SiC MOSFET模块的电气参数作为数据集,电气参数分别为Vds、Id和R;步骤1中采样的具体步骤为:直流电源设定好电流数值Id,电流数值Id随机取[1,150]范围内的数值,结温从30℃起,采用间隔采样的方法获取电气参数,采样频率在老化初期为2000次功率循环,在老化后期为1000次功率循环;Step 1, a brand new SiC MOSFET module is used for power cycling until the module is completely aged and fails; the electrical parameters of the SiC MOSFET module are sampled as a data set during the power cycle, and the electrical parameters are Vds, Id and R respectively; The specific steps are: set the current value Id for the DC power supply, and the current value Id randomly selects the value in the range of [1,150]. The junction temperature starts from 30°C, and the electrical parameters are obtained by the method of interval sampling. The sampling frequency is 2000 times in the early stage of aging. Power cycle, 1000 power cycles in the later stage of aging;
步骤2,建立SiC MOSFET模块结温预测模型,SiC MOSFET模块结温预测模型包括依次连接的第一BP神经网络模型(如图2)和第二BP神经网络模型(如图3),第一BP神经网络模型的输入对应Vds、Id和R,第一BP神经网络模型的输出对应实时的功率循环次数Nc,第一BP神经网络模型的输出与第二BP神经网络模型的一个输入相对应;Step 2, establish a junction temperature prediction model of the SiC MOSFET module. The junction temperature prediction model of the SiC MOSFET module includes a first BP neural network model (as shown in Figure 2) and a second BP neural network model (as shown in Figure 3), which are connected in sequence. The input of the neural network model corresponds to Vds, Id and R, the output of the first BP neural network model corresponds to the real-time power cycle number Nc, and the output of the first BP neural network model corresponds to an input of the second BP neural network model;
步骤3,采用数据集对SiC MOSFET模块结温预测模型进行训练;Step 3, using the data set to train the junction temperature prediction model of the SiC MOSFET module;
步骤4,将训练好的SiC MOSFET模块结温预测模型移植到FPGA的RAM中,FPGA与被测的SiC MOSFET模块连接,在被测的SiC MOSFET模块实际运行中,输入电流Id,实时输出对应的结温Tc。Step 4: Transplant the trained SiC MOSFET module junction temperature prediction model to the RAM of the FPGA. The FPGA is connected to the tested SiC MOSFET module. During the actual operation of the tested SiC MOSFET module, the current Id is input, and the corresponding Id is output in real time. Junction temperature Tc.
步骤2中的第一BP神经网络模型的输入层神经元个数为3个,分别对应Vds、Id和R,输出层神经元个数为1个对应Nc;第一BP神经网络模型的隐含层神经元个数为7个。The number of neurons in the input layer of the first BP neural network model in step 2 is 3, corresponding to Vds, Id and R respectively, and the number of neurons in the output layer is 1 corresponding to Nc; The number of neurons in the layer is 7.
第二BP神经网络模型的输入层神经元个数为4个,分别对应Vds、Id、R和第一BP神经网络模型的输出;第二BP神经网络模型的隐含层神经元个数为9个。The number of neurons in the input layer of the second BP neural network model is 4, corresponding to Vds, Id, R and the output of the first BP neural network model; the number of neurons in the hidden layer of the second BP neural network model is 9 indivual.
在对SiC MOSFET模块结温预测模型进行训练时,第一BP神经网络模型根据预测输出值和期望值的误差调整权值和阈值,直到输出值Nc逼近期望值Nf,第二BP神经网络模型根据预测输出值和期望值的误差调整权值和阈值,直到输出值Tj逼近期望值Tc;When training the junction temperature prediction model of the SiC MOSFET module, the first BP neural network model adjusts the weights and thresholds according to the error between the predicted output value and the expected value until the output value Nc approaches the expected value Nf, and the second BP neural network model according to the predicted output value The error between the value and the expected value adjusts the weight and threshold until the output value Tj approaches the expected value Tc;
实施例1Example 1
步骤1,对罗姆公司生产的1200V/300A的型号为BSM300D12P2E001,全新的SiCMOSFET模块,做功率循环直到模块完全老化失效;在功率循环期间采样该SiC MOSFET模块的电气参数作为数据集,电气参数分别为Vds、Id和R,其中Vds为饱和压降,Id为电流值,R为电阻值;Step 1. For the 1200V/300A model BSM300D12P2E001 produced by ROHM, a brand new SiCMOSFET module, perform power cycling until the module is completely aged and fail; during the power cycle, the electrical parameters of the SiC MOSFET module are sampled as a data set, and the electrical parameters are respectively are Vds, Id and R, where Vds is the saturation voltage drop, Id is the current value, and R is the resistance value;
具体采样方法为:The specific sampling method is:
直流电源设定好电流数值Id,此直流数值随机取[1,150]范围内的数值,结温从30℃起,采用间隔采样的方法获取电气参数,采样频率在老化初期为2000次功率循环,在老化后期为1000次功率循环,将采样数据按照3:1分为训练组数据测试组数据;训练组作为数据集,测试组数据用于验证本方法预测结果的正确性;The current value Id is set for the DC power supply. The DC value is randomly selected in the range of [1,150]. The junction temperature starts from 30 °C, and the electrical parameters are obtained by the method of interval sampling. The sampling frequency is 2000 power cycles in the early stage of aging. The aging period is 1000 power cycles, and the sampled data is divided into training group data and test group data according to 3:1; the training group is used as the data set, and the test group data is used to verify the correctness of the prediction results of this method;
步骤2,建立SiC MOSFET模块结温预测模型,SiC MOSFET模块结温预测模型包括依次连接的第一BP神经网络模型(如图2)和第二BP神经网络模型(如图3),第一BP神经网络模型的输入对应Vds、Id和R,第一BP神经网络模型的输出对应实时的功率循环次数Nc,第一BP神经网络模型的输出与第二BP神经网络模型的一个输入相对应;Step 2, establish a junction temperature prediction model of the SiC MOSFET module. The junction temperature prediction model of the SiC MOSFET module includes a first BP neural network model (as shown in Figure 2) and a second BP neural network model (as shown in Figure 3), which are connected in sequence. The input of the neural network model corresponds to Vds, Id and R, the output of the first BP neural network model corresponds to the real-time power cycle number Nc, and the output of the first BP neural network model corresponds to an input of the second BP neural network model;
第一BP神经网络模型的输入层神经元个数为3个,分别对应Vds、Id和输出层神经元个数为1个对应Nc;隐含层神经元个数为7个。The number of neurons in the input layer of the first BP neural network model is 3, corresponding to Vds, Id, and the number of neurons in the output layer is 1 corresponding to Nc; the number of neurons in the hidden layer is 7.
第二BP神经网络模型的输入层神经元个数为4个,分别对应Vds、Id、R和第一BP神经网络模型的输出;隐含层神经元个数为9个。The number of neurons in the input layer of the second BP neural network model is 4, respectively corresponding to the outputs of Vds, Id, R and the first BP neural network model; the number of neurons in the hidden layer is 9.
步骤3,采用数据集对SiC MOSFET模块结温预测模型进行训练;Step 3, using the data set to train the junction temperature prediction model of the SiC MOSFET module;
步骤4,将训练好的SiC MOSFET模块结温预测模型到FPGA的RAM中,FPGA与被测的SiC MOSFET模块连接,在被测的SiC MOSFET模块实际运行中,输入电流Id=65A,通过SiCMOSFET模块输出Vds=1.7008,实时输出对应的结温Tc=67.5℃。Step 4: Put the trained SiC MOSFET module junction temperature prediction model into the RAM of the FPGA, and the FPGA is connected to the tested SiC MOSFET module. In the actual operation of the tested SiC MOSFET module, the input current Id=65A, through the SiCMOSFET module The output Vds=1.7008, and the corresponding junction temperature Tc=67.5℃ for real-time output.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010017816.0A CN111260113A (en) | 2020-01-08 | 2020-01-08 | Online prediction method of junction temperature in the whole life cycle of SiC MOSFET module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010017816.0A CN111260113A (en) | 2020-01-08 | 2020-01-08 | Online prediction method of junction temperature in the whole life cycle of SiC MOSFET module |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111260113A true CN111260113A (en) | 2020-06-09 |
Family
ID=70946823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010017816.0A Pending CN111260113A (en) | 2020-01-08 | 2020-01-08 | Online prediction method of junction temperature in the whole life cycle of SiC MOSFET module |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111260113A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113361586A (en) * | 2021-06-02 | 2021-09-07 | 上海大学 | Neural network-based online aging detection method and system for power device |
CN115712044A (en) * | 2022-10-18 | 2023-02-24 | 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) | Threshold voltage monitoring circuit for SiC MOSFET power cycle test |
CN115828699A (en) * | 2022-12-19 | 2023-03-21 | 华中科技大学 | Power semiconductor module full life cycle junction temperature prediction method, system and terminal |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106443400A (en) * | 2016-09-14 | 2017-02-22 | 河北工业大学 | Electric-heat-aging junction temperature calculation model establishing method of IGBT module |
WO2019063000A1 (en) * | 2017-12-06 | 2019-04-04 | 南京埃斯顿自动化股份有限公司 | Real-time online prediction method for semiconductor power device dynamic junction temperature |
CN110502777A (en) * | 2019-07-03 | 2019-11-26 | 国网江苏省电力有限公司南京供电分公司 | IGBT module state detection system and method based on neural network prediction |
-
2020
- 2020-01-08 CN CN202010017816.0A patent/CN111260113A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106443400A (en) * | 2016-09-14 | 2017-02-22 | 河北工业大学 | Electric-heat-aging junction temperature calculation model establishing method of IGBT module |
WO2019063000A1 (en) * | 2017-12-06 | 2019-04-04 | 南京埃斯顿自动化股份有限公司 | Real-time online prediction method for semiconductor power device dynamic junction temperature |
CN110502777A (en) * | 2019-07-03 | 2019-11-26 | 国网江苏省电力有限公司南京供电分公司 | IGBT module state detection system and method based on neural network prediction |
Non-Patent Citations (1)
Title |
---|
姚芳等: "IGBT 模块结温预测BP 神经网络模型" * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113361586A (en) * | 2021-06-02 | 2021-09-07 | 上海大学 | Neural network-based online aging detection method and system for power device |
CN115712044A (en) * | 2022-10-18 | 2023-02-24 | 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) | Threshold voltage monitoring circuit for SiC MOSFET power cycle test |
CN115828699A (en) * | 2022-12-19 | 2023-03-21 | 华中科技大学 | Power semiconductor module full life cycle junction temperature prediction method, system and terminal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110161398B (en) | A method for evaluating the aging state of IGBT power modules using case temperature | |
CN109188232B (en) | A Construction Method of IGBT Module State Evaluation and Remaining Life Prediction Model | |
CN106443400B (en) | A method for establishing an electro-thermal-aging junction temperature calculation model for IGBT modules | |
CN110502777A (en) | IGBT module state detection system and method based on neural network prediction | |
CN112906333B (en) | On-line correction method and system for IGBT junction temperature of photovoltaic inverter considering aging | |
CN111260113A (en) | Online prediction method of junction temperature in the whole life cycle of SiC MOSFET module | |
CN103956887B (en) | Wind electric converter IGBT module junction temperature on-line calculation method | |
CN105550397B (en) | A kind of IGBT module state evaluating method based on damage voltage | |
CN107818207B (en) | Method for accurately evaluating reliability of IGBT (insulated gate bipolar transistor) based on life model parameter fluctuation | |
Rao et al. | IGBT remaining useful life prediction based on particle filter with fusing precursor | |
CN109698521B (en) | A low-penetration characteristic identification method of photovoltaic inverter based on measured data | |
CN106202970A (en) | A kind of fault rate appraisal procedure of MMC | |
Wu et al. | Junction temperature prediction of IGBT power module based on BP neural network | |
CN115508684A (en) | Power device on-state resistance measurement circuit and junction temperature measurement method and system | |
CN115935806A (en) | A PIN limiter performance and HPM effect prediction method based on deep learning | |
Li et al. | A new method to estimate the state of charge of the green battery | |
CN110197012B (en) | Support capacitor life evaluation method considering fault influence of traction transmission system | |
CN109412178B (en) | Switching control method of high-voltage high-capacity impedance measurement equipment | |
CN115291074B (en) | An online monitoring method for IGBT chip solder layer failure | |
CN113987998B (en) | Full-control power semiconductor module power circulation method based on electric power working condition | |
CN110309956A (en) | Remaining life prediction method of photovoltaic modules based on internal equivalent parameters | |
Tian et al. | Adaptive boosting based on multi-class neural networks for IGBT health parameter prediction | |
Yu et al. | Online Short-Term Aging Status Prediction of SiC MOSFETs for DC Solid-State Power Controller using Adaptive Variable Time-Steps Metabolic Gray Model | |
Wang et al. | IGBT lifetime prediction based on EMD-LSTM | |
Yang et al. | An IGBT Device Health Status Assessment Method Considering the Influence of Operating Conditions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200609 |
|
RJ01 | Rejection of invention patent application after publication |