[go: up one dir, main page]

CN111254159B - Soybean GmST1 gene mutant plant and preparation method thereof - Google Patents

Soybean GmST1 gene mutant plant and preparation method thereof Download PDF

Info

Publication number
CN111254159B
CN111254159B CN201811455513.6A CN201811455513A CN111254159B CN 111254159 B CN111254159 B CN 111254159B CN 201811455513 A CN201811455513 A CN 201811455513A CN 111254159 B CN111254159 B CN 111254159B
Authority
CN
China
Prior art keywords
gmst1
soybean
gene
seq
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811455513.6A
Other languages
Chinese (zh)
Other versions
CN111254159A (en
Inventor
韩英鹏
井妍
赵雪
滕卫丽
李文滨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Agricultural University
Original Assignee
Northeast Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Agricultural University filed Critical Northeast Agricultural University
Priority to CN201811455513.6A priority Critical patent/CN111254159B/en
Publication of CN111254159A publication Critical patent/CN111254159A/en
Application granted granted Critical
Publication of CN111254159B publication Critical patent/CN111254159B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8213Targeted insertion of genes into the plant genome by homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Botany (AREA)
  • Cell Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Immunology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

A soybean GmST1 gene mutant plant and a preparation method thereof, belonging to the technical field of plant biology. The invention provides a preparation method of a soybean GmST1 gene mutant plant for determining the disease resistance function of a soybean mosaic virus-resistant related gene, which comprises the following steps: designing a gRNA single-target-point primer according to a soybean GmST1 gene; preparing a gRNA single-target primer dimer; inserting the primer dimer into a Cas9/gRNA vector to construct a soybean GmST1 gene knockout vector; and (4) transforming the GmST1 gene knockout vector constructed in the step 3) into soybeans, and screening to obtain soybean GmST1 gene mutant plants. The invention determines that GmST1 can participate in the resistance reaction of resisting the soybean mosaic virus disease, and provides a theoretical basis for the research of the functions of the genes related to the soybean mosaic virus resistance.

Description

一种大豆GmST1基因突变体植株及其制备方法A kind of soybean GmST1 gene mutant plant and its preparation method

技术领域technical field

本发明涉及一种植物生物技术领域,具体涉及一种大豆GmST1基因突变体植株及其制备方法。The invention relates to the field of plant biotechnology, in particular to a soybean GmST1 gene mutant plant and a preparation method thereof.

背景技术Background technique

大豆花叶病毒病由大豆花叶病毒(Soybean Mosaic Virus,SMV)引起,是影响大豆产量和品质最严重的病毒性病害之一。在我国东北大豆主产区,N1和N3毒株为优势株系,其导致的大豆植株非正常生长可造成大豆大面积减产25%-60%,严重时甚至绝产。由于传统育种方法的局限性,因此利用分子手段筛选及鉴定有效的抗病基因,对抗病品种的选育便显得尤为重要,这为选育抗病品种提高了效率和准确性,加快了选育抗病品种的进程。由于大豆基因组庞大且大豆存在的多倍体化现象及低转化率等问题,对抗病基因的功能分析增加了难度。Soybean Mosaic Virus, caused by Soybean Mosaic Virus (SMV), is one of the most serious viral diseases affecting soybean yield and quality. In the main soybean producing areas in Northeast my country, N1 and N3 strains are the dominant strains, and the abnormal growth of soybean plants caused by them can cause a large area of soybean production reduction of 25%-60%, or even extinction in severe cases. Due to the limitations of traditional breeding methods, it is particularly important to use molecular methods to screen and identify effective disease-resistant genes for the selection of disease-resistant varieties, which improves the efficiency and accuracy of breeding disease-resistant varieties and speeds up the selection process. The process of breeding disease-resistant varieties. Due to the large soybean genome and the polyploidization and low transformation rate of soybean, the functional analysis of disease resistance genes has become more difficult.

发明内容Contents of the invention

本发明为了明确大豆抗花叶病毒相关基因的抗病功能,本发明提供了一种大豆GmST1基因突变体植株,所述突变体植株含有突变的大豆GmST1基因,所述突变是指GmST1基因编码区中5’AGAAAGGGGAGGAAATAA3’或5’CTTCCTAGGGAGAGAGGT 3’核苷酸序列发生碱基取代或缺失,使其编码的氨基酸序列发生改变,所述大豆GmST1基因核苷酸序列如SEQ ID NO:1所示。In order to clarify the disease resistance function of soybean anti-mosaic virus-related genes, the present invention provides a soybean GmST1 gene mutant plant, the mutant plant contains a mutated soybean GmST1 gene, and the mutation refers to the GmST1 gene coding region Base substitution or deletion occurs in the 5'AGAAAGGGGAGGAAATAA3' or 5'CTTCCTAGGGAGAGAGGT 3' nucleotide sequence, so that the encoded amino acid sequence changes. The nucleotide sequence of the soybean GmST1 gene is shown in SEQ ID NO:1.

上述大豆GmST1基因突变体植株的制备方法,包括如下步骤:The preparation method of the above-mentioned soybean GmST1 gene mutant plant comprises the following steps:

1)根据大豆GmST1基因设计gRNA单靶点引物;1) Design gRNA single-target primers according to the soybean GmST1 gene;

2)制备gRNA单靶点引物二聚体;2) Preparation of gRNA single-target primer-dimer;

3)将引物二聚体插入到Cas9/gRNA载体中,构建大豆GmST1基因敲除载体;3) inserting the primer dimer into the Cas9/gRNA vector to construct a soybean GmST1 gene knockout vector;

4)将步骤3)构建的GmST1基因敲除载体转化大豆,经筛选获得大豆GmST1基因突变体植株。4) Transforming soybean with the GmST1 gene knockout vector constructed in step 3), and obtaining soybean GmST1 gene mutant plants through screening.

进一步地限定,步骤1)所述大豆GmST1gRNA单靶点引物的正向引物为GmST1-1-S,其核苷酸序列如SEQ ID NO:2所示,反向引物为GmST1-1-A,其核苷酸序列SEQ ID NO:3所示;或者正向引物为GmST1-2-S,其核苷酸序列如SEQ ID NO:4所示,反向引物为GmST1-2-A,其核苷酸序列SEQ ID NO:5所示。Further defined, the forward primer of the soybean GmST1 gRNA single target primer in step 1) is GmST1-1-S, its nucleotide sequence is shown in SEQ ID NO: 2, and the reverse primer is GmST1-1-A, Its nucleotide sequence is shown in SEQ ID NO: 3; or the forward primer is GmST1-2-S, its nucleotide sequence is shown in SEQ ID NO: 4, and the reverse primer is GmST1-2-A, its nuclear The nucleotide sequence is shown in SEQ ID NO:5.

进一步地限定,步骤2)所述制备gRNA单靶点引物二聚体,是指每20uL合成体系中正向引物5μL,正向引物5μL和H2O 15μL,反应条件为95℃3min,冷却至25℃后,16℃静置5min。Further defined, the preparation of gRNA single-target primer-dimer in step 2) refers to 5 μL of forward primer, 5 μL of forward primer and 15 μL of H 2 O in each 20 uL synthesis system, the reaction conditions are 95°C for 3 minutes, cooled to 25°C After ℃, stand at 16 ℃ for 5min.

进一步地限定,步骤3)所述构建GmST1基因敲除载体,是指每10uL反应体系中,引物二聚体1-7μL,Cas9/gRNA vector,1μL,Solution1 1μL,Solution2 1μL,H2O 0-6μL,16℃过夜反应。To further define, the construction of the GmST1 gene knockout vector in step 3) means that in each 10uL reaction system, 1-7 μL of primer dimer, 1 μL of Cas9/gRNA vector, 1 μL of Solution1, 1 μL of Solution2, H 2 O 0- 6 μL, react overnight at 16°C.

进一步地限定,步骤4)所述GmST1基因敲除载体通过农杆菌介导法转化大豆;所述农杆菌为农杆菌EHA105。Further defined, in step 4), the GmST1 gene knockout vector is transformed into soybean through the Agrobacterium-mediated method; the Agrobacterium is Agrobacterium EHA105.

进一步地限定,步骤4)所述大豆为东农93-046。Further defined, the soybean described in step 4) is Dongnong 93-046.

进一步地限定,步骤4)所述筛选所用正向引物为CasJC-S,其核苷酸序列如SEQ IDNO:6所示,反向引物为CasJC-A,其核苷酸序列如SEQ ID NO:7所示,用于筛选阳性突变体植株。To further define, the forward primer used for the screening in step 4) is CasJC-S, whose nucleotide sequence is shown in SEQ ID NO: 6, and the reverse primer is CasJC-A, whose nucleotide sequence is shown in SEQ ID NO: 7, used to screen positive mutant plants.

进一步地限定,步骤4)所述筛选所用正向引物为GmST1-target1-S,其核苷酸序列如SEQ ID NO:8所示,反向引物序列为GmST1-target1-A,其核苷酸序列如SEQ ID NO:9所示,用于检测利用引物GmST1-1-S和GmST1-1-A构建获得的大豆GmST1基因突变体植株;或者正向引物为GmST1-target2-S,其核苷酸序列如SEQ ID NO:10所示,反向引物为GmST1-target2-A,其核苷酸序列如SEQ ID NO:11所示,用于检测利用引物GmST1-2-S和GmST1-2-A构建获得的大豆GmST1基因突变体植株。To further define, the forward primer used for the screening in step 4) is GmST1-target1-S, its nucleotide sequence is shown in SEQ ID NO: 8, and the reverse primer sequence is GmST1-target1-A, its nucleotide sequence The sequence is shown in SEQ ID NO: 9, which is used to detect the soybean GmST1 gene mutant plant obtained by constructing primers GmST1-1-S and GmST1-1-A; or the forward primer is GmST1-target2-S, and its nucleoside The acid sequence is shown in SEQ ID NO: 10, the reverse primer is GmST1-target2-A, and its nucleotide sequence is shown in SEQ ID NO: 11, used for detection using primers GmST1-2-S and GmST1-2- A Construct the obtained soybean GmST1 gene mutant plants.

进一步地限定,本发明对获得的大豆GmST1基因突变体植株中突变的GmST1基因表达量进行qRT-PCR定量检测,所述检测用的正向引物为qGmST1-S,其核苷酸序列如SEQ IDNO:12所示,反向引物为qGmST1-A,其核苷酸序列如SEQ ID NO:13所示;用于对照的基因为病毒外壳蛋白基因,检测该基因表达量的正向引物为SMV-CP-S,其核苷酸序列如SEQ IDNO:14所示,反向引物为SMV-CP-A,其核苷酸序列如SEQ ID NO:15所示。To further define, the present invention performs qRT-PCR quantitative detection of the mutated GmST1 gene expression in the obtained soybean GmST1 gene mutant plant, and the forward primer used for the detection is qGmST1-S, and its nucleotide sequence is as shown in SEQ ID NO : 12, the reverse primer is qGmST1-A, and its nucleotide sequence is shown in SEQ ID NO: 13; the gene used for the control is the viral coat protein gene, and the forward primer for detecting the expression of the gene is SMV- CP-S, its nucleotide sequence is shown in SEQ ID NO:14, and the reverse primer is SMV-CP-A, its nucleotide sequence is shown in SEQ ID NO:15.

有益效果Beneficial effect

本发明利用CRISPR/Cas9技术对大豆GmST1基因编码区进行靶向突变,获得了大豆突变体植株,通过与野生型表型鉴定及GmST1基因表达量、病毒外壳蛋白基因表达量分析对比可看出,GmST1基因突变后,其对大豆花叶病毒的抵抗力削弱,确定了GmST1能够参与到抗大豆花叶病毒病的抗性反应中,本发明为大豆抗花叶病毒相关基因功能的研究提供了理论依据。The present invention uses CRISPR/Cas9 technology to carry out targeted mutation on the soybean GmST1 gene coding region, and obtains soybean mutant plants. It can be seen from the comparison with wild-type phenotype identification, GmST1 gene expression, and virus coat protein gene expression analysis that, After GmST1 gene mutation, its resistance to soybean mosaic virus is weakened, and it is determined that GmST1 can participate in the resistance response of soybean mosaic virus disease resistance. The present invention provides a theory for the research on the function of soybean mosaic virus-resistant genes in accordance with.

附图说明Description of drawings

图1 GmST1基因2个单靶点载体构建菌液PCR,其中M:DL2000,1、2为靶点1的PCR检测结果,3、4为靶点2的PCR检测结果。Figure 1. Two single-target vectors of the GmST1 gene were used to construct bacterial liquid PCR, where M: DL2000, 1 and 2 are the PCR detection results of target 1, and 3 and 4 are the PCR detection results of target 2.

图2 T2代GmST1基因敲除植株的PCR突变检测,其中M:DL2000,1-4:转GmST1-1基因敲除载体的植株PCR产物,5:阴性对照(东农93-046)。Fig. 2 PCR mutation detection of GmST1 gene knockout plants of T2 generation, where M: DL2000, 1-4: PCR products of plants transfected with GmST1-1 gene knockout vector, 5: negative control (Donnong 93-046).

图3 GmST1-1突变体碱基缺失情况,CK为东农93-046,WT为Phytozome上GmST1基因(Glyma.13G191400)序列,2-1为突变体植株编号。Figure 3 The base deletion of GmST1-1 mutant, CK is Dongnong 93-046, WT is the sequence of GmST1 gene (Glyma.13G191400) on Phytozome, and 2-1 is the number of the mutant plant.

图4 T2代GmST1基因敲除植株接种SMV N1后叶片的变化。Fig. 4 Leaf changes of GmST1 knockout plants of T2 generation after inoculation with SMV N1.

图5 GmST1突变体qRT-PCR检测结果,其中a为GmST1-1突变体中GmST1基因qRT-PCR检测结果。CK为东农93-046,1-4:基因敲除突变体,1为GmST1-1靶点的突变体,植株编号2-1,2-4为GmST1-2靶点的突变体,植株编号依次为3-1、3-2、3-3;5-8:非突变体;b为GmST1-1突变体中SMV CP基因qRT-PCR检测结果。CK为东农93-046,a为1-4:基因敲除突变体,1为GmST1-1靶点的突变体,植株编号2-1,2-4为GmST1-2靶点的突变体植株,编号依次为3-1、3-2、3-3;5-8:非突变体。Figure 5 qRT-PCR detection results of GmST1 mutants, where a is the qRT-PCR detection results of GmST1 gene in GmST1-1 mutants. CK is Dongnong 93-046, 1-4: gene knockout mutant, 1 is the mutant of GmST1-1 target, plant number 2-1, 2-4 is the mutant of GmST1-2 target, plant number 3-1, 3-2, 3-3 in sequence; 5-8: non-mutant; b is the qRT-PCR detection result of SMV CP gene in GmST1-1 mutant. CK is Dongnong 93-046, a is 1-4: gene knockout mutant, 1 is the mutant of GmST1-1 target, plant number 2-1, 2-4 is the mutant plant of GmST1-2 target , and the numbers are 3-1, 3-2, 3-3; 5-8: non-mutant.

图6 T2代GmST1基因敲除植株的PCR突变检测,其中M:DL2000,1-4:转GmST1-2基因敲除载体的植株PCR产物,5:阴性对照(东农93-046)Figure 6 PCR mutation detection of T2 generation GmST1 gene knockout plants, where M: DL2000, 1-4: PCR products of plants transfected with GmST1-2 gene knockout vector, 5: negative control (Donnong 93-046)

图7 T2代GmST1基因敲除植株的碱基缺失情况,CK为东农93-046,WT为Phytozome上GmST1基因(Glyma.13G191400)序列,3-1、3-2、3-3分别为突变体植株编号。Figure 7 The base deletion of GmST1 gene knockout plants in T2 generation, CK is Dongnong 93-046, WT is the sequence of GmST1 gene (Glyma.13G191400) on Phytozome, 3-1, 3-2, 3-3 are mutations respectively Plant number.

具体实施方式Detailed ways

以下的实施例便于更好地理解本发明,但并不限定本发明。下述实施例中的实验方法,如无特殊说明,均为常规方法。下述实施例中所用的药品试剂,如无特殊说明,均为自常规生化试剂商店购买得到的。此外,大豆品种东农93-046(抗病品种)公众可以从东北农业大学获得;该品种记载在:滕卫丽.大豆抗花叶病遗传,细胞超微结构分析及基因定位.博士学位论文.东北农业大学.2006。公众均可以从东北农业大学获得。The following examples facilitate a better understanding of the present invention, but do not limit the present invention. The experimental methods in the following examples are conventional methods unless otherwise specified. The pharmaceutical reagents used in the following examples, unless otherwise specified, were purchased from conventional biochemical reagent stores. In addition, the soybean variety Dongnong 93-046 (disease-resistant variety) is available to the public from Northeast Agricultural University; this variety is recorded in: Teng Weili. Soybean Mosaic Disease Resistance Inheritance, Cell Ultrastructure Analysis and Gene Mapping. Doctoral Dissertation. Northeast China Agricultural University. 2006. Both are available to the public from Northeast Agricultural University.

其中,所用的LB培养基的配制方法为:配制每升培养基,在950ml去离子水中加入:胰蛋白胨10g,酵母提取物5g,NaCl 10g,摇动容器直至溶质溶解。用5mol/L NaOH调pH至7.0.用去离子水定容至1L.高压下蒸汽灭菌21min。Wherein, the preparation method of the LB medium used is: prepare every liter of medium, add in 950ml deionized water: tryptone 10g, yeast extract 5g, NaCl 10g, shake the container until the solute is dissolved. Use 5mol/L NaOH to adjust the pH to 7.0. Dilute to 1L with deionized water. Steam sterilize under high pressure for 21min.

YEP液体培养基:配制每升培养基,在950ml去离子水中加入:胰蛋白胨10g,酵母提取物5g,NaCl 5g,摇动容器直至溶质溶解。用5mol/LNaOH调pH至7.0.用去离子水定容至1L。在15psi高压下蒸汽灭菌21min。YEP liquid medium: prepare per liter of medium, add in 950ml deionized water: 10g tryptone, 5g yeast extract, 5g NaCl, shake the container until the solute is dissolved. Use 5mol/L NaOH to adjust the pH to 7.0. Dilute to 1L with deionized water. Steam sterilize at 15psi high pressure for 21min.

MS0培养基:称取4.43g MS粉末,30g蔗糖,加600-800ml蒸馏水溶解,玻璃棒搅拌充分溶解后,调节pH值至5.8,定容至1L,加入6g琼脂粉末,在15psi高压下蒸汽灭菌21min。MS 0 medium: Weigh 4.43g MS powder, 30g sucrose, add 600-800ml distilled water to dissolve, stir the glass rod to fully dissolve, adjust the pH value to 5.8, dilute to 1L, add 6g agar powder, steam under 15psi high pressure Sterilize for 21 minutes.

所述CRISPR/Cas9试剂盒购买自北京唯尚立德生物科技有限公司,货号VK005-15。The CRISPR/Cas9 kit was purchased from Beijing Weishang Lide Biotechnology Co., Ltd., product number VK005-15.

大豆花叶病毒N1株系(简称SMV-N1株系):公众可以从东北农业大学获得;该株系记载在:滕卫丽.大豆抗花叶病遗传,细胞超微结构分析及基因定位.博士学位论文.东北农业大学.2006.感病叶片的表型为:叶脉间失绿,系统花叶。Soybean mosaic virus N1 strain (referred to as SMV-N1 strain): The public can obtain it from Northeast Agricultural University; the strain is recorded in: Teng Weili. Soybean Mosaic Resistance Inheritance, Cell Ultrastructure Analysis and Gene Mapping. Ph.D. Thesis. Northeast Agricultural University. 2006. The phenotype of the affected leaves is: chlorosis between the veins, systematic mosaic.

实施例1.大豆GmST1基因突变体植株的制备方法。Example 1. Preparation method of soybean GmST1 gene mutant plants.

本实施例以第一个靶点为例(靶点核苷酸序列为5’AGAAAGGGGAGGAAATAA3’)位于GmST1编码区第47位至第64位碱基处,描述大豆GmST1基因突变体植株的制备方法。This example takes the first target as an example (the target nucleotide sequence is 5'AGAAAGGGGAGGAAATAA3') located at the 47th to 64th bases of the GmST1 coding region, and describes the preparation method of soybean GmST1 gene mutant plants.

1)根据大豆GmST1基因设计gRNA单靶点引物。1) Design gRNA single-target primers based on soybean GmST1 gene.

首先扩增获得大豆GmST1基因,以大豆品种东农93-046为材料,待长出第一组三出复叶时,取材,提取总RNA并反转录合成cDNA第一链。根据Phytozome上GmST1基因(Glyma.13G191400)序列,利用Primer 5软件设计基因克隆引物(引物1),其核苷酸序列如下:First, the soybean GmST1 gene was amplified, and the soybean variety Dongnong 93-046 was used as the material. When the first group of three compound leaves grew, the material was collected, total RNA was extracted, and the first strand of cDNA was synthesized by reverse transcription. According to the sequence of the GmST1 gene (Glyma.13G191400) on Phytozome, use the Primer 5 software to design gene cloning primers (primer 1), and its nucleotide sequence is as follows:

引物1-S:5’-GAAGATCTATGGCTCCAACAAATGTCAC-3’(SEQ ID NO:20所示);Primer 1-S: 5'-GAAGATCTATGGCTCCAACAAATGTCAC-3' (shown in SEQ ID NO: 20);

引物1-A:5’-CTTGGTTACCTTAAAATGACAAGCCTGAC-3’(SEQ ID NO:21所示)。Primer 1-A: 5'-CTTGGTTACCTTAAAATGACAAGCCTGAC-3' (shown in SEQ ID NO: 21).

以cDNA为模板进行RT-PCR反应,反应体系如下,反应程序:94℃ 5min;38个循环:94℃ 30s,58℃ 30s,72℃ 1min;72℃ 7min,4℃保存。反应后取PCR产物进行1%琼脂糖凝胶电泳检测并进行胶回收纯化目的片段。RT-PCR反应体系如下:The RT-PCR reaction was carried out using cDNA as a template. The reaction system was as follows. The reaction program: 94°C for 5 minutes; 38 cycles: 94°C for 30s, 58°C for 30s, 72°C for 1min; 72°C for 7min, and stored at 4°C. After the reaction, the PCR products were taken for 1% agarose gel electrophoresis detection and gel recovery and purification of the target fragment. The RT-PCR reaction system is as follows:

Figure BDA0001887661210000041
Figure BDA0001887661210000041

按照TIANGEN公司的PGM-T克隆试剂盒的步骤,将上述得到的胶回收产物与克隆载体进行连接,获得带有目的基因的克隆质粒pGM-T-GmST1,转化Top10大肠感受态细胞,挑取单克隆并进行PCR及测序验证。最终得到目的片段大小为1035bp的GmST1基因,如SEQ IDNO:1所示。According to the steps of the PGM-T cloning kit of TIANGEN Company, the gel recovery product obtained above was connected with the cloning vector to obtain the cloning plasmid pGM-T-GmST1 with the target gene, which was transformed into Top10 large intestine competent cells, and single Cloned and verified by PCR and sequencing. Finally, the GmST1 gene with the target fragment size of 1035 bp was obtained, as shown in SEQ ID NO:1.

根据获得的GmST1基因序列,设计gRNA单靶点引物。正向引物为GmST1-1-S,5’-ttgAGAAAGGGGAGGAAATAA-3’(SEQ ID NO:2所示),反向引物为GmST1-1-A,5’-aacTTATTTCCTCCCCTTTCT-3’(SEQ ID NO:3所示),上述引物经引物合成公司合成获得。According to the obtained GmST1 gene sequence, gRNA single-target primers were designed. The forward primer is GmST1-1-S, 5'-ttgAGAAAGGGGAGGAAATAA-3' (shown in SEQ ID NO: 2), the reverse primer is GmST1-1-A, 5'-aacTTATTTCCTCCCCTTTCT-3' (SEQ ID NO: 3 shown), the above primers were synthesized by Primer Synthesis Company.

2)制备gRNA单靶点引物二聚体。2) Preparation of gRNA single-target primer-dimer.

将上述正、反向引物按如下比例混合形成二聚体:GmST1-1-S/A(10μM)各5μL,H2O15μL混合后,进行如下处理:95℃3min;95℃到25℃缓慢冷却;16℃5min。Mix the above forward and reverse primers according to the following ratio to form a dimer: GmST1-1-S/A (10 μM) 5 μL each, H 2 O 15 μL after mixing, perform the following treatment: 95°C for 3 minutes; 95°C to 25°C for slow cooling ; 16°C for 5 min.

3)将引物二聚体插入到Cas9/gRNA载体中,构建GmST1基因敲除载体,记为GmST1-1基因敲除载体。3) Insert the primer dimer into the Cas9/gRNA vector to construct the GmST1 gene knockout vector, which is denoted as the GmST1-1 gene knockout vector.

反应体系如下(10μl体系):16℃过夜反应。The reaction system is as follows (10 μl system): overnight reaction at 16°C.

Figure BDA0001887661210000051
Figure BDA0001887661210000051

4)将步骤3)构建的GmST1-1基因敲除载体转化农杆菌,侵染大豆,经鉴定获得大豆GmST1基因突变体植株。4) Transforming the GmST1-1 gene knockout vector constructed in step 3) into Agrobacterium, infecting soybeans, and obtaining soybean GmST1 gene mutant plants after identification.

a转化:取上述产物10μl加入到刚解冻的50μl TOP10感受态中,轻弹混匀,冰浴30min,42℃热激90s,冰上静置2min,再加入500μl无抗LB培养基中,置于37℃恒温摇床中,170转,复苏1h后,涂Kana抗性的固体平板,37℃过夜培养,挑取3-5个单斑摇菌,进行菌液PCR及测序,如图1所示。所述菌液PCR检测引物为:a Transformation: Take 10 μl of the above product and add it to 50 μl TOP10 competent medium that has just been thawed, flick and mix well, bathe in ice for 30 minutes, heat shock at 42°C for 90 seconds, let stand on ice for 2 minutes, then add 500 μl of anti-antibody-free LB medium, place In a constant temperature shaker at 37°C, 170 rpm, after recovery for 1 hour, apply a Kana-resistant solid plate, culture overnight at 37°C, pick 3-5 single-spot shakers, and perform bacterial liquid PCR and sequencing, as shown in Figure 1 Show. The bacterial liquid PCR detection primers are:

CasJC-S:5’-AAAAGTCCCACATCGCTTAG-3’(SEQ ID NO:6所示)CasJC-S: 5'-AAAAGTCCCACATCGCTTAG-3' (shown in SEQ ID NO: 6)

CasJC-A:5’-TGTGCAAGGTAAGAAGATGG-3’(SEQ ID NO:7所示),目的片段为435bp,将测序结果与载体序列进行比对,保存阳性菌液于-80℃备用。CasJC-A: 5'-TGTGCAAGGTAAGAAGATGG-3' (shown in SEQ ID NO: 7), the target fragment is 435bp, the sequencing result is compared with the vector sequence, and the positive bacterial liquid is stored at -80°C for later use.

b.根癌农杆菌介导法转化大豆茎尖。b. Agrobacterium tumefaciens-mediated transformation of soybean shoot tips.

将GmST1-1基因敲除载体转入农杆菌EHA105中,采用本实验保存的质粒,冻融法转化农杆菌的方法,该方法可参考:王涛.大豆miRNA172及靶基因参与开花诱导和逆境响应的功能分析.博士学位论文.东北农业大学.2016中所述农杆菌转化方法。The GmST1-1 gene knockout vector was transformed into Agrobacterium EHA105, and the plasmid preserved in this experiment was used to transform Agrobacterium by freeze-thaw method. For this method, please refer to: Wang Tao. Soybean miRNA172 and target genes involved in flowering induction and stress response Functional Analysis. Ph.D. Dissertation. Northeast Agricultural University. 2016 Agrobacterium transformation method described.

通过农杆菌介导法将GmST1-1基因敲除载体转化抗病大豆品种东农93-046中,具体方法如下:The GmST1-1 gene knockout vector was transformed into the disease-resistant soybean variety Dongnong 93-046 by the Agrobacterium-mediated method, and the specific method was as follows:

(1)菌液制备:取制备好的菌液分别在YEP固体平板(50mg/mL Str,50mg/mL Kan,25mg/mL Rif)上划线28℃培养,挑取单菌落接种于YEP液体培养基(50mg/mL Str,50mg/mLKan,25mg/mL Rif)中,28℃200rpm震荡培养1-2天,取1-2ml菌液接种于50ml新鲜的YEP液体培养基中震荡培养至OD600为0.6-0.8。(1) Bacterial solution preparation: Take the prepared bacterial solution and streak it on the YEP solid plate (50mg/mL Str, 50mg/mL Kan, 25mg/mL Rif) to culture at 28°C, pick a single colony and inoculate it in the YEP liquid culture In culture medium (50mg/mL Str, 50mg/mLKan, 25mg/mL Rif), shake culture at 28°C 200rpm for 1-2 days, inoculate 1-2ml bacterial liquid into 50ml fresh YEP liquid medium and shake culture until OD 600 is 0.6-0.8.

(2)种子灭菌:选取饱满、无菌斑种子于培养皿中,采用氯气灭菌法,将种子放入通风厨的干燥器内,在干燥器的三角瓶中倒入96ml次氯酸钠,再快速加入6ml浓盐酸后迅速盖紧封盖。灭菌16h后置于超净工作台内吹走残留的氯气,大约30min左右,密封待用。(2) Seed sterilization: select plump, no-spot seeds in a petri dish, use chlorine gas sterilization, put the seeds in the desiccator of the fume hood, pour 96ml of sodium hypochlorite into the triangular flask of the desiccator, and quickly After adding 6ml of concentrated hydrochloric acid, quickly close the cap tightly. After sterilizing for 16 hours, place it in an ultra-clean workbench to blow off residual chlorine gas, and keep it sealed for about 30 minutes.

(3)种子萌发:将灭菌后的种子种脐向下种于MS0培养基中,每瓶种10粒,在23℃、16h光照/8h黑暗条件下萌发5-6天。(3) Seed germination: the sterilized seeds were planted in MS0 medium with the hilum down, 10 seeds were planted in each bottle, and germinated for 5-6 days at 23°C, 16h light/8h dark conditions.

(4)茎尖外植体的制备:种子萌发至子叶即将冲破种皮时,用镊子和解剖刀去掉种皮,将两半子叶中的一半切掉,用解剖刀轻轻刮掉子叶和生长点之间的腋芽,并在子叶节处轻轻划3-5道伤口,剩余的部分作为外植体用于侵染。(4) Preparation of shoot tip explant: when the seed germinates until the cotyledon is about to break through the seed coat, remove the seed coat with tweezers and a scalpel, cut off half of the two halves of the cotyledon, scrape off the cotyledon and grow gently with a scalpel The axillary buds between the points, and 3-5 wounds were gently drawn at the cotyledon nodes, and the remaining parts were used as explants for infection.

(5)侵染与共培养:将制备好的外植体放入侵染液中进行抽真空处理,抽真空条件为0.6pa,10min。真空侵染后的外植体用灭菌蒸馏水清洗三次,用无菌纸将外植体表面的侵染液吸干,插入MS0培养基中共培养3天,观察复活情况,根据外植体返青的情况确定移栽时间,移栽至土壤中后,置于25℃,16h光照/8h黑暗条件下的培养箱中培养。(5) Infection and co-cultivation: put the prepared explants into the invasion solution for vacuum treatment, the vacuum condition is 0.6 Pa, 10 min. The explants after vacuum infection were washed three times with sterilized distilled water, and the infection solution on the surface of the explants was blotted dry with sterile paper, inserted into MS0 medium for co-cultivation for 3 days, and the resurrection was observed. The transplanting time is determined according to the situation. After transplanting into the soil, it is cultivated in an incubator at 25°C and under the conditions of 16h light/8h dark.

c.突变体植株鉴定:取经敲除GmST1基因的大豆植株的T1代叶片以及对照(东农93-046)叶片,提取其DNA,进行PCR鉴定,引物为:c. Identification of mutant plants: Get the leaves of the T1 generation and the control (Donnong 93-046) leaves of the soybean plants with the GmST1 gene knocked out, extract their DNA, and carry out PCR identification. The primers are:

CasJC-S:5’-AAAAGTCCCACATCGCTTAG-3’(SEQ ID NO:6所示);CasJC-S: 5'-AAAAGTCCCACATCGCTTAG-3' (shown in SEQ ID NO: 6);

CasJC-A:5’-TGTGCAAGGTAAGAAGATGG-3’(SEQ ID NO:7所示),目的片段为435bp,鉴定出转GmST1-1基因敲除载体的转基因植株。收取T1代中鉴定为转基因植株的大豆种子并种下,提取叶片DNA,用单靶点突变检测引物进行PCR检测,正向引物为:GmST1-target1-S:5'-GATCGACCATTAGCACTCTA-3'(SEQ ID NO:8);反向引物:GmST1-target1-A:5'-TCCTTACATTCTTGACTTAGC-3'(SEQ ID NO:9)。扩增出目的片段121bp并将产物进行测序,如图2所示,测序结果发现有1个阳性植株在靶点处发生了突变,较野生型发生1个碱基缺失(如图3所示),突变的GmST1基因序列如SEQ ID NO:16所示。收取T1代中鉴定为转基因植株的大豆种子并种下,于T2代植株对生真叶完全展开时进行SMV N1病毒接种实验,具体方法为:配制0.01mol/L的磷酸氢二钠与磷酸二氢钠的磷酸缓冲液(pH=7.0)(10mL/g病毒叶),将其加入已放病毒叶和少量金刚砂的研钵内,研磨成匀浆状即可。将材料种在灭菌后的土壤里,待对生真叶充分展开后,用毛刷蘸取接种液并沿真叶叶脉摩擦接种,接种后立即用清水冲洗叶片表面致残渣去除。一周后进行第二次接种。CasJC-A: 5'-TGTGCAAGGTAAGAAGATGG-3' (shown in SEQ ID NO: 7), the target fragment is 435bp, and a transgenic plant transfected with the GmST1-1 gene knockout vector was identified. The soybean seeds identified as transgenic plants in the T1 generation were harvested and planted, leaf DNA was extracted, and PCR detection was performed with single-target mutation detection primers. The forward primer was: GmST1-target1-S:5'-GATCGACCATTAGCACTCTA-3'(SEQ ID NO: 8); reverse primer: GmST1-target1-A:5'-TCCTTACATTCTTGACTTAGC-3' (SEQ ID NO: 9). The target fragment 121bp was amplified and the product was sequenced, as shown in Figure 2, the sequencing results found that one positive plant had a mutation at the target site, and a base deletion occurred compared with the wild type (as shown in Figure 3) , the mutated GmST1 gene sequence is shown in SEQ ID NO:16. The soybean seeds identified as transgenic plants in the T1 generation were collected and planted, and the SMV N1 virus inoculation experiment was carried out when the opposite true leaves of the T2 generation plants were fully expanded. The specific method was: prepare 0.01mol/L disodium hydrogen phosphate and diphosphate Phosphate buffer solution of sodium hydrogen (pH=7.0) (10mL/g virus leaves), put it into the mortar with virus leaves and a small amount of corundum, and grind it into a homogenous slurry. Sow the material in the sterilized soil. After the opposite true leaves are fully unfolded, use a brush to dip in the inoculum and rub along the veins of the true leaves for inoculation. After inoculation, rinse the surface of the leaves with clean water immediately to remove residues. A second inoculation was performed a week later.

结果发现:接种后敲除GmST1基因的大豆叶片皱缩、出现较多花叶现象,对照大豆植株无明显变化,如图4所示,说明了GmST1基因在所述的靶点区(核苷酸序列为5’AGAAAGGGGAGGAAATAA3’)发生上述的碱基缺失,使得功能氨基酸发生了变化,从而导致抗病品种东农93-046对花叶病毒的抗性被削弱。As a result, it was found that the leaves of soybeans knocked out of the GmST1 gene shrank and appeared more mosaic after inoculation, and there was no significant change in the control soybean plants, as shown in Figure 4, which shows that the GmST1 gene is located in the target region (nucleotide The sequence is 5'AGAAAGGGGAGGAAATAA3'), the above-mentioned base deletion occurs, which makes the functional amino acid change, which leads to the weakening of the resistance of the disease-resistant variety Dongnong 93-046 to the mosaic virus.

根据GmST1基因以及病毒外壳蛋白基因的序列分别设计定量引物:Quantitative primers were designed respectively according to the sequences of the GmST1 gene and the viral coat protein gene:

GmST1基因定量引物为:正向引物:qGmST1-S:5'-TCCCCTTTCTCGGATTCATT-3'(SEQID NO:12);反向引物qGmST1-A:5'-TGCCAATCAGTACTAGAGATCG-3'(SEQ ID NO:13);病毒外壳蛋白基因SMV-CP(GenBank登录号:U25673.1)定量引物为:正向引物:SMV-CP-S:5’-AGGATCCAAAGAAGAGCACC-3’(SEQ ID NO:14),反向引物:SMV-CP-A:5’-GCCTTTCAGTATTTTCGGAGT-3’(SEQ ID NO:15)。GmST1 gene quantitative primers are: forward primer: qGmST1-S: 5'-TCCCCTTTCTCGGATTCATT-3' (SEQ ID NO: 12); reverse primer qGmST1-A: 5'-TGCCAATCAGTACTAGAGATCG-3' (SEQ ID NO: 13); Viral coat protein gene SMV-CP (GenBank accession number: U25673.1) quantitative primers are: forward primer: SMV-CP-S: 5'-AGGATCCAAAGAAGAGCACC-3' (SEQ ID NO: 14), reverse primer: SMV - CP-A: 5'-GCCTTTCAGTATTTTCGGAGT-3' (SEQ ID NO: 15).

利用qRT-PCR的方法对接种花叶病毒的T2代植株进行检测,结果检测到敲除GmST1基因的大豆叶片中GmST1基因的相对表达量低于对照品种,结果见图5。以超过对照2.5倍的相对表达量为基准,获得1株GmST1基因突变的突变的大豆突变体植株,标号为2-1。同时检测到了敲除GmST1基因的大豆叶片中存在的病毒外壳蛋白基因相对表达量高于对照品种。说明敲除GmST1基因会使得抗大豆花叶病毒病品种东农93-046产生一定的感病性。The qRT-PCR method was used to detect the T2 generation plants inoculated with mosaic virus. As a result, it was detected that the relative expression level of GmST1 gene in soybean leaves with GmST1 gene knocked out was lower than that of control varieties. The results are shown in Figure 5. Based on the relative expression level 2.5 times higher than that of the control, a mutated soybean mutant plant with a GmST1 gene mutation was obtained, designated as 2-1. At the same time, it was detected that the relative expression level of the virus coat protein gene in the soybean leaves in which the GmST1 gene was knocked out was higher than that in the control variety. It shows that knocking out the GmST1 gene will make the soybean mosaic virus resistant variety Dongnong 93-046 produce certain disease susceptibility.

实施例2.大豆GmST1基因突变体植株的制备方法。Example 2. The preparation method of soybean GmST1 gene mutant plants.

本实施例以第二个靶点为例(靶点核苷酸序列为5’CTTCCTAGGGAGAGAGGT 3’)位于GmST1编码区第115位至132位碱基处,描述大豆GmST1基因突变体植株的制备方法。This example takes the second target as an example (the target nucleotide sequence is 5'CTTCCTAGGGAGAGAGGT 3') located at the 115th to 132nd bases of the GmST1 coding region, and describes the preparation method of soybean GmST1 gene mutant plants.

1)根据大豆GmST1基因设计gRNA单靶点引物。1) Design gRNA single-target primers based on soybean GmST1 gene.

根据GmST1基因序列(SEQ ID NO:1所示),该基因获得方法同实施例1所述。设计gRNA单靶点引物。正向引物为GmST1-2-S,5’-ttgCTTCCTAGGGAGAGAGGT-3’(SEQ ID NO:4所示),反向引物为GmST1-2-A,5’-aacACCTCTCTCCCTAGGAAG-3’(SEQ ID NO:5所示),上述引物经引物合成公司合成获得。According to the GmST1 gene sequence (shown in SEQ ID NO: 1), the method for obtaining the gene is the same as that described in Example 1. Design gRNA single-target primers. The forward primer is GmST1-2-S, 5'-ttgCTTCCTAGGGAGAGAGGT-3' (shown in SEQ ID NO: 4), the reverse primer is GmST1-2-A, 5'-aacACCTCTCTCCCTAGGAAG-3' (SEQ ID NO: 5 shown), the above primers were synthesized by Primer Synthesis Company.

2)制备gRNA单靶点引物二聚体。2) Preparation of gRNA single-target primer-dimer.

将上述正、反向引物按如下比例混合形成二聚体。GmST1-2-S/A(10μM)各5μL,H2O15μL混合后,进行如下处理:95℃ 3min;95℃到25℃缓慢冷却;16℃ 5min。The above-mentioned forward and reverse primers were mixed according to the following proportions to form dimers. After mixing 5 μL of GmST1-2-S/A (10 μM) and 15 μL of H 2 O, the following treatment was performed: 95°C for 3 minutes; 95°C to 25°C for slow cooling; 16°C for 5 minutes.

3)将引物二聚体插入到Cas9/gRNA载体中,构建GmST1基因敲除载体,记为GmST1-2基因敲除载体。3) Insert the primer dimer into the Cas9/gRNA vector to construct the GmST1 gene knockout vector, which is denoted as the GmST1-2 gene knockout vector.

反应体系如下(10μl体系):16℃过夜反应。The reaction system is as follows (10 μl system): overnight reaction at 16°C.

Figure BDA0001887661210000071
Figure BDA0001887661210000071

4)将步骤3)构建的GmST1基因敲除载体转化农杆菌,侵染大豆,经鉴定获得大豆GmST1基因突变体植株。4) Transforming the GmST1 gene knockout vector constructed in step 3) into Agrobacterium, infecting soybeans, and obtaining soybean GmST1 gene mutant plants after identification.

a转化:取上述产物10μl加入到刚解冻的50μl TOP10感受态中,轻弹混匀,冰浴30min,42℃热激90s,冰上静置2min,再加入500μl无抗LB,置于37℃恒温摇床中,170转,复苏1h后,涂Kana抗性的固体平板,37℃过夜培养,挑取3-5个单斑摇菌,进行菌液PCR及测序,如图1所示,所述菌液PCR检测用的引物同实施例1中CasJC-S、CasJC-A。将测序结果与载体序列进行比对,保存阳性菌液于-80℃备用。a Transformation: Take 10 μl of the above product and add it to 50 μl TOP10 competent just thawed, flick and mix well, bathe in ice for 30 minutes, heat shock at 42°C for 90 seconds, let stand on ice for 2 minutes, then add 500 μl of no-antibody LB, and place at 37°C In a constant temperature shaker, 170 rpm, after recovery for 1 hour, apply Kana-resistant solid plate, culture overnight at 37°C, pick 3-5 single-spot shaking bacteria, and perform bacterial liquid PCR and sequencing, as shown in Figure 1. The primers used for PCR detection of the bacterial liquid are the same as CasJC-S and CasJC-A in Example 1. The sequencing results were compared with the carrier sequence, and the positive bacterial liquid was stored at -80°C for later use.

b.根癌农杆菌介导法转化大豆茎尖,参照实施例1中步骤4)中b所述转化方法,经培养后获得植株。b. Agrobacterium tumefaciens-mediated transformation of soybean shoot tips, referring to the transformation method described in b in step 4) of Example 1, and obtaining plants after cultivation.

c.突变体植株鉴定:取经敲除GmST1基因的大豆植株的T1代叶片以及对照(东农93-046)叶片,提取其DNA,进行PCR鉴定,(引物为上述CasJC-S、CasJC-A)目的片段为435bp,最终鉴定出转GmST1-2基因敲除载体的转基因植株。收取T1代中鉴定为转基因植株的大豆种子并种下,提取叶片DNA,用单靶点突变检测引物进行PCR检测。c. Identification of mutant plants: get the leaves of the T1 generation and the leaves of the control (Donnong 93-046) of soybean plants with the GmST1 gene knocked out, extract their DNA, and carry out PCR identification, (primers are the above-mentioned CasJC-S, CasJC-A) The target fragment was 435bp, and the transgenic plants transformed with the GmST1-2 gene knockout vector were finally identified. Soybean seeds identified as transgenic plants in the T1 generation were collected and planted, leaf DNA was extracted, and PCR detection was performed with single-target mutation detection primers.

正向引物:GmST1-target2-S:5'-AGATCGACCATTAGCACTCTA-3',(SEQ ID NO:10);Forward primer: GmST1-target2-S:5'-AGATCGACCATTAGCACTCTA-3', (SEQ ID NO: 10);

反向引物:GmST1-target2-A:5'-GACAATGGCAAAGGTGAGA-3',(SEQ ID NO:11)。Reverse primer: GmST1-target2-A:5'-GACAATGGCAAAGGTGAGA-3', (SEQ ID NO: 11).

扩增出目的片段324bp并将产物进行测序,如图6所示,测序结果发现3株转基因阳性植株在靶点处发生了突变,其中,编号3-1和3-3的植株较野生型发生2个碱基缺失,编号3-2的植株较野生型发生1个碱基缺失;如图7所示。编号3-1植株中突变的GmST1基因的核苷酸序列如SEQ ID NO:17所示,编号3-2植株中突变的GmST1基因的核苷酸序列如SEQ ID NO:18所示,编号3-3植株中突变的GmST1基因的核苷酸序列如SEQ ID NO:19所示。The target fragment 324bp was amplified and the product was sequenced, as shown in Figure 6, the sequencing results found that 3 transgenic positive plants had mutations at the target site, among which, the plants numbered 3-1 and 3-3 had more mutations than the wild type 2 bases were missing, and the plant numbered 3-2 had 1 base deletion compared with the wild type; as shown in Figure 7. The nucleotide sequence of the mutated GmST1 gene in the plant number 3-1 is shown in SEQ ID NO: 17, and the nucleotide sequence of the mutated GmST1 gene in the plant number 3-2 is shown in SEQ ID NO: 18, number 3 The nucleotide sequence of the mutated GmST1 gene in the -3 plant is shown in SEQ ID NO:19.

收取T1代中鉴定为转基因植株的大豆种子并种下,于T2代植株对生真叶完全展开时进行SMV N1病毒接种实验(接种方法参照实施例1所述),结果发现:接种后敲除GmST1基因的大豆叶片皱缩、出现较多花叶现象,对照大豆植株无明显变化,如图4所示,说明了GmST1基因在所述的靶点区(核苷酸序列为5’CTTCCTAGGGAGAGAGGT 3’)发生上述的碱基缺失后抗病品种东农93-046对花叶病毒的抗性被削弱。Collect the soybean seeds identified as transgenic plants in the T1 generation and plant them, and carry out the SMV N1 virus inoculation experiment when the opposite true leaves of the T2 generation plants are fully expanded (the inoculation method is described with reference to Example 1), and the results are found: knockout after inoculation The soybean leaf of GmST1 gene shrinks, and there are many mosaic phenomena, and contrast soybean plant has no obvious change, as shown in Figure 4, has illustrated that GmST1 gene is in the described target region (nucleotide sequence is 5' CTTCCTAGGGAGAGAGGT 3' ) The resistance of the disease-resistant variety Dongnong 93-046 to mosaic virus was weakened after the above-mentioned base deletion occurred.

根据GmST1基因以及病毒外壳蛋白基因的序列分别设计定量引物:Quantitative primers were designed respectively according to the sequences of the GmST1 gene and the viral coat protein gene:

GmST1基因定量引物为:正向引物:qGmST1-S 5'-TCCCCTTTCTCGGATTCATT-3'(SEQID NO:12);反向引物:qGmST1-A 5'-TGCCAATCAGTACTAGAGATCG-3'(SEQ ID NO:13)。GmST1 gene quantitative primers are: forward primer: qGmST1-S 5'-TCCCCTTTCTCGGATTCATT-3' (SEQ ID NO: 12); reverse primer: qGmST1-A 5'-TGCCAATCAGTACTAGAGATCG-3' (SEQ ID NO: 13).

病毒外壳蛋白基因SMV-CP(GenBank登录号:U25673.1)定量引物为:The quantitative primers for virus coat protein gene SMV-CP (GenBank accession number: U25673.1) are:

正向引物:SMV-CP-S:5’-AGGATCCAAAGAAGAGCACC-3’(SEQ ID NO:14);Forward primer: SMV-CP-S:5'-AGGATCCAAAGAAGAGCACC-3' (SEQ ID NO: 14);

反向引物:SMV-CP-A:5’-GCCTTTCAGTATTTTCGGAGT-3’(SEQ ID NO:15)。Reverse primer: SMV-CP-A: 5'-GCCTTTCAGTATTTTCGGAGT-3' (SEQ ID NO: 15).

利用qRT-PCR的方法对接种花叶病毒的T2代植株进行检测,结果检测到敲除GmST1基因的大豆叶片中GmST1基因的相对表达量低于对照品种,结果见图5。以超过对照2.5倍的相对表达量为基准,获得3株GmST1基因突变的突变的大豆突变体植株,同时检测到了敲除GmST1基因的大豆叶片中存在的病毒外壳蛋白基因相对表达量高于对照品种。说明敲除GmST1基因会使得抗大豆花叶病毒病品种东农93-046产生一定的感病性。The qRT-PCR method was used to detect the T2 generation plants inoculated with mosaic virus. As a result, it was detected that the relative expression level of GmST1 gene in soybean leaves with GmST1 gene knocked out was lower than that of control varieties. The results are shown in Figure 5. Based on the relative expression level of 2.5 times higher than that of the control, three mutated soybean mutant plants with GmST1 gene mutation were obtained, and the relative expression level of the virus coat protein gene present in the soybean leaves of the knockout GmST1 gene was detected to be higher than that of the control variety . It shows that knocking out the GmST1 gene will make the soybean mosaic virus resistant variety Dongnong 93-046 produce certain disease susceptibility.

核苷酸序列表Nucleotide Sequence Listing

<110> 东北农业大学<110> Northeast Agricultural University

<120> 一种大豆GmST1基因突变体植株及其制备方法<120> A soybean GmST1 gene mutant plant and its preparation method

<130><130>

<160> 19<160> 19

<170> PatentIn version 3.5<170> PatentIn version 3.5

<210> 1<210> 1

<211> 1035<211> 1035

<212> DNA<212>DNA

<213> 大豆GmST1基因<213> soybean GmST1 gene

<400> 1<400> 1

atggctccaa caaatgtcac atgcttcaga gaagaaaatg aatccgagaa aggggaggaa 60atggctccaa caaatgtcac atgcttcaga gaagaaaatg aatccgagaa aggggaggaa 60

ataacaatag aagaagacaa gctaagtcaa gaatgtaagg agttgatact ctctcttcct 120ataacaatag aagaagacaa gctaagtcaa gaatgtaagg agttgatact ctctcttcct 120

agggagagag gttggagaac acgttatata tatctatttc aaggattttg gtgccagcca 180aggggagagag gttggagaac acgttatata tatctatttc aaggattttg gtgccagcca 180

ttggaaatcc aagcaataat cacttttcag aagcacttcc aagctaaaga cagtgatgtt 240ttggaaatcc aagcaataat cacttttcag aagcacttcc aagctaaaga cagtgatgtt 240

attgtggcca caattccaaa atcaggtacc acttggctga aagctctcac ctttgccatt 300attgtggcca caattccaaa atcaggtacc acttggctga aagctctcac ctttgccatt 300

gtcaatcgcc atactcatag tatcactaca tcaatgtcat cacatccttt gcttacttct 360gtcaatcgcc atactcatag tatcactaca tcaatgtcat cacatccttt gcttacttct 360

aatcctcatg aacttgtgcc tttcatagaa tacaccgttt atggtaatgc ccctagccat 420aatcctcatg aacttgtgcc tttcatagaa tacaccgttt atggtaatgc ccctagccat 420

gttccaaacc tatccaacat gactgagcca agactttttg gtacacatat tccattccat 480gttccaaacc tatccaacat gactgagcca agactttttg gtacacatat tccatccat 480

gcattggcca agtcaatcaa ggagttcaat agtagaataa tttatatatg taggaaccca 540gcattggcca agtcaatcaa ggagttcaat agtagaataa tttatatatg taggaaccca 540

cttgacactt ttgtgtctac ttggattttc ctcaacaaaa ttaagccaga acatttacct 600cttgacactt ttgtgtctac ttggattttc ctcaacaaaa ttaagccaga aatttacct 600

gaatttgaac taggggaagc ttttgaaaag tattgcaaag gaataatagg gtttggtcca 660gaatttgaac taggggaagc ttttgaaaag tattgcaaag gaataatagg gtttggtcca 660

acttgggacc aaatgttggg ttattggaag gagagtatag ctaggcctag taaggttttg 720acttgggacc aaatgttggg ttattggaag gagagtatag ctaggcctag taaggttttg 720

ttcttgaagt acgaggatct taaaaaagat gtcaattttc atgtgaaaag aatagcggag 780ttcttgaagt acgaggatct taaaaaagat gtcaattttc atgtgaaaag aatagcggag 780

ttcttaggat ggcctttcac ttcggaggaa gaaggtgatg ggactattga gagcataatc 840ttcttaggat ggcctttcac ttcggaggaa gaaggtgatg ggactattga gagcataatc 840

aagctatgca gcttcgagaa gatgaaggaa ttggaggcaa ataaatctgg aacatttgct 900aagctatgca gcttcgagaa gatgaaggaa ttggaggcaa ataaatctgg aacatttgct 900

aggaactttg agagaaagta cttgttccga aaggctgaaa tgggagattg ggtgaactac 960aggaactttg agagaaagta cttgttccga aaggctgaaa tgggagattg ggtgaactac 960

ctttcccctg aaatgggtga aaagttatcg caaattatgg aagaaaagtt aagtgggtca 1020ctttcccctg aaatgggtga aaagttatcg caaattatgg aagaaaagtt aagtgggtca 1020

ggcttgtcat tttaa 1035ggcttgtcat tttaa 1035

<210> 2<210> 2

<211> 21<211> 21

<212> DNA<212>DNA

<213> GmST1-1-S<213> GmST1-1-S

<400> 2<400> 2

ttgagaaagg ggaggaaata a 21ttgagaaagg ggaggaaata a 21

<210> 3<210> 3

<211> 21<211> 21

<212> DNA<212>DNA

<213> GmST1-1-A<213> GmST1-1-A

<400> 3<400> 3

aacttatttc ctcccctttc t 21aacttatttc ctcccctttc t 21

<210> 4<210> 4

<211> 21<211> 21

<212> DNA<212>DNA

<213> GmST1-2-S<213> GmST1-2-S

<400> 4<400> 4

ttgcttccta gggagagagg t 21ttgcttccta gggagagagg t 21

<210> 5<210> 5

<211> 21<211> 21

<212> DNA<212>DNA

<213> GmST1-2-A<213> GmST1-2-A

<400> 5<400> 5

aacacctctc tccctaggaa g 21aacacctctc tccctaggaa g 21

<210> 6<210> 6

<211> 20<211> 20

<212> DNA<212>DNA

<213> CasJC-S<213> CasJC-S

<400> 6<400> 6

aaaagtccca catcgcttag 20aaaagtccca catcgcttag 20

<210> 7<210> 7

<211> 20<211> 20

<212> DNA<212>DNA

<213> CasJC- A<213> CasJC-A

<400> 7<400> 7

tgtgcaaggt aagaagatgg 20tgtgcaaggt aagaagatgg 20

<210> 8<210> 8

<211> 20<211> 20

<212> DNA<212>DNA

<213> GmST1-target1-S<213> GmST1-target1-S

<400> 8<400> 8

gatcgaccat tagcactcta 20gatcgaccat tagcactcta 20

<210> 9<210> 9

<211> 21<211> 21

<212> DNA<212>DNA

<213> GmST1-target1-A<213> GmST1-target1-A

<400> 9<400> 9

tccttacatt cttgacttag c 21tccttacatt cttgacttag c 21

<210> 10<210> 10

<211> 21<211> 21

<212> DNA<212>DNA

<213> GmST1-target2-S<213> GmST1-target2-S

<400> 10<400> 10

agatcgacca ttagcactct a 21agatcgacca ttagcactct a 21

<210> 11<210> 11

<211> 19<211> 19

<212> DNA<212>DNA

<213> GmST1-target2-A<213> GmST1-target2-A

<400> 11<400> 11

gacaatggca aaggtgaga 19gacaatggca aaggtgaga 19

<210> 12<210> 12

<211> 20<211> 20

<212> DNA<212>DNA

<213> qGmST1-S<213>qGmST1-S

<400> 12<400> 12

tcccctttct cggattcatt 20tcccctttct cggattcatt 20

<210> 13<210> 13

<211> 22<211> 22

<212> DNA<212>DNA

<213> qGmST1-A<213>qGmST1-A

<400> 13<400> 13

tgccaatcag tactagagat cg 22tgccaatcag tactagagat cg 22

<210> 14<210> 14

<211> 20<211> 20

<212> DNA<212>DNA

<213> SMV-CP-S<213> SMV-CP-S

<400> 14<400> 14

aggatccaaa gaagagcacc 20aggatccaaa gaagagcacc 20

<210> 15<210> 15

<211> 21<211> 21

<212> DNA<212>DNA

<213> SMV-CP-A<213> SMV-CP-A

<400> 15<400> 15

gcctttcagt attttcggag t 21gcctttcagt attttcggagt 21

<210> 16<210> 16

<211> 1034<211> 1034

<212> DNA<212>DNA

<213> 2-1植株GmST1基因突变序列<213> 2-1 plant GmST1 gene mutation sequence

<400> 16<400> 16

atggctccaa caaatgtcac atgcttcaga gaagaaaatg aatccgagaa aggggagaaa 60atggctccaa caaatgtcac atgcttcaga gaagaaaatg aatccgagaa aggggagaaa 60

taacaataga agaagacaag ctaagtcaag aatgtaagga gttgatactc tctcttccta 120taacaataga agaagacaag ctaagtcaag aatgtaagga gttgatactc tctcttccta 120

gggagagagg ttggagaaca cgttatatat atctatttca aggattttgg tgccagccat 180gggagagagg ttggagaaca cgttatatat atctatttca aggattttgg tgccagccat 180

tggaaatcca agcaataatc acttttcaga agcacttcca agctaaagac agtgatgtta 240tggaaatcca agcaataatc acttttcaga agcacttcca agctaaagac agtgatgtta 240

ttgtggccac aattccaaaa tcaggtacca cttggctgaa agctctcacc tttgccattg 300ttgtggccac aattccaaaa tcaggtacca cttggctgaa agctctcacc tttgccattg 300

tcaatcgcca tactcatagt atcactacat caatgtcatc acatcctttg cttacttcta 360tcaatcgcca tactcatagt atcactacat caatgtcatc acatcctttg cttacttcta 360

atcctcatga acttgtgcct ttcatagaat acaccgttta tggtaatgcc cctagccatg 420atcctcatga acttgtgcct ttcatagaat acaccgttta tggtaatgcc cctagccatg 420

ttccaaacct atccaacatg actgagccaa gactttttgg tacacatatt ccattccatg 480ttccaaacct atccaacatg actgagccaa gactttttgg tacacatatt ccattccatg 480

cattggccaa gtcaatcaag gagttcaata gtagaataat ttatatatgt aggaacccac 540cattggccaa gtcaatcaag gagttcaata gtagaataat ttatatatgt aggaacccac 540

ttgacacttt tgtgtctact tggattttcc tcaacaaaat taagccagaa catttacctg 600ttgacacttt tgtgtctact tggattttcc tcaacaaaat taagccagaa catttacctg 600

aatttgaact aggggaagct tttgaaaagt attgcaaagg aataataggg tttggtccaa 660aatttgaact agggggaagct tttgaaaagt attgcaaagg aataataggg tttggtccaa 660

cttgggacca aatgttgggt tattggaagg agagtatagc taggcctagt aaggttttgt 720cttgggacca aatgttgggt tattggaagg agagtatagc taggcctagt aaggttttgt 720

tcttgaagta cgaggatctt aaaaaagatg tcaattttca tgtgaaaaga atagcggagt 780tcttgaagta cgaggatctt aaaaaagatg tcaattttca tgtgaaaaga atagcggagt 780

tcttaggatg gcctttcact tcggaggaag aaggtgatgg gactattgag agcataatca 840tcttaggatg gcctttcact tcggaggaag aaggtgatgg gactattgag agcataatca 840

agctatgcag cttcgagaag atgaaggaat tggaggcaaa taaatctgga acatttgcta 900agctatgcag cttcgagaag atgaaggaat tggaggcaaa taaatctgga aatttgcta 900

ggaactttga gagaaagtac ttgttccgaa aggctgaaat gggagattgg gtgaactacc 960ggaactttga gagaaagtac ttgttccgaa aggctgaaat gggagattgg gtgaactacc 960

tttcccctga aatgggtgaa aagttatcgc aaattatgga agaaaagtta agtgggtcag 1020tttcccctga aatgggtgaa aagttatcgc aaattatgga agaaaagtta agtgggtcag 1020

gcttgtcatt ttaa 1034gcttgtcatt ttaa 1034

<210> 17<210> 17

<211> 1033<211> 1033

<212> DNA<212>DNA

<213> 3-1植株GmST1基因突变序列<213> 3-1 Plant GmST1 gene mutation sequence

<400> 17<400> 17

atggctccaa caaatgtcac atgcttcaga gaagaaaatg aatccgagaa aggggaggaa 60atggctccaa caaatgtcac atgcttcaga gaagaaaatg aatccgagaa aggggaggaa 60

ataacaatag aagaagacaa gctaagtcaa gaatgtaagg agttgatact ctctcttcct 120ataacaatag aagaagacaa gctaagtcaa gaatgtaagg agttgatact ctctcttcct 120

ggagagaggt tggagaacac gttatatata tctatttcaa ggattttggt gccagccatt 180ggagagaggt tggagaacac gttatatata tctatttcaa ggattttggt gccagccatt 180

ggaaatccaa gcaataatca cttttcagaa gcacttccaa gctaaagaca gtgatgttat 240ggaaatccaa gcaataatca cttttcagaa gcacttccaa gctaaagaca gtgatgttat 240

tgtggccaca attccaaaat caggtaccac ttggctgaaa gctctcacct ttgccattgt 300tgtggccaca attccaaaat caggtaccac ttggctgaaa gctctcacct ttgccattgt 300

caatcgccat actcatagta tcactacatc aatgtcatca catcctttgc ttacttctaa 360caatcgccat actcatagta tcactacatc aatgtcatca catcctttgc ttacttctaa 360

tcctcatgaa cttgtgcctt tcatagaata caccgtttat ggtaatgccc ctagccatgt 420tcctcatgaa cttgtgcctt tcatagaata caccgtttat ggtaatgccc ctagccatgt 420

tccaaaccta tccaacatga ctgagccaag actttttggt acacatattc cattccatgc 480tccaaaccta tccaacatga ctgagccaag actttttggt acacatattc cattccatgc 480

attggccaag tcaatcaagg agttcaatag tagaataatt tatatatgta ggaacccact 540attggccaag tcaatcaagg agttcaatag tagaataatt tatatatgta ggaacccact 540

tgacactttt gtgtctactt ggattttcct caacaaaatt aagccagaac atttacctga 600tgacactttt gtgtctactt ggattttcct caacaaaatt aagccagaac atttacctga 600

atttgaacta ggggaagctt ttgaaaagta ttgcaaagga ataatagggt ttggtccaac 660atttgaacta ggggaagctt ttgaaaagta ttgcaaagga aataagggt ttggtccaac 660

ttgggaccaa atgttgggtt attggaagga gagtatagct aggcctagta aggttttgtt 720ttgggaccaa atgttgggtt attggaagga gagtatagct aggcctagta aggttttgtt 720

cttgaagtac gaggatctta aaaaagatgt caattttcat gtgaaaagaa tagcggagtt 780cttgaagtac gaggatctta aaaaagatgt caattttcat gtgaaaagaa tagcggagtt 780

cttaggatgg cctttcactt cggaggaaga aggtgatggg actattgaga gcataatcaa 840cttaggatgg cctttcactt cggaggaaga aggtgatggg actattgaga gcataatcaa 840

gctatgcagc ttcgagaaga tgaaggaatt ggaggcaaat aaatctggaa catttgctag 900gctatgcagc ttcgagaaga tgaaggaatt ggaggcaaat aaatctggaa catttgctag 900

gaactttgag agaaagtact tgttccgaaa ggctgaaatg ggagattggg tgaactacct 960gaactttgag agaaagtact tgttccgaaa ggctgaaatg ggagattggg tgaactacct 960

ttcccctgaa atgggtgaaa agttatcgca aattatggaa gaaaagttaa gtgggtcagg 1020ttcccctgaa atgggtgaaa agttatcgca aattatggaa gaaaagttaa gtgggtcagg 1020

cttgtcattt taa 1033cttgtcattt taa 1033

<210> 18<210> 18

<211> 1034<211> 1034

<212> DNA<212>DNA

<213> 3-2植株GmST1基因突变序列<213> 3-2 plant GmST1 gene mutation sequence

<400> 18<400> 18

atggctccaa caaatgtcac atgcttcaga gaagaaaatg aatccgagaa aggggaggaa 60atggctccaa caaatgtcac atgcttcaga gaagaaaatg aatccgagaa aggggaggaa 60

ataacaatag aagaagacaa gctaagtcaa gaatgtaagg agttgatact ctctcttcct 120ataacaatag aagaagacaa gctaagtcaa gaatgtaagg agttgatact ctctcttcct 120

aggagagagg ttggagaaca cgttatatat atctatttca aggattttgg tgccagccat 180aggagagagg ttggagaaca cgttatatat atctatttca aggattttgg tgccagccat 180

tggaaatcca agcaataatc acttttcaga agcacttcca agctaaagac agtgatgtta 240tggaaatcca agcaataatc acttttcaga agcacttcca agctaaagac agtgatgtta 240

ttgtggccac aattccaaaa tcaggtacca cttggctgaa agctctcacc tttgccattg 300ttgtggccac aattccaaaa tcaggtacca cttggctgaa agctctcacc tttgccattg 300

tcaatcgcca tactcatagt atcactacat caatgtcatc acatcctttg cttacttcta 360tcaatcgcca tactcatagt atcactacat caatgtcatc acatcctttg cttacttcta 360

atcctcatga acttgtgcct ttcatagaat acaccgttta tggtaatgcc cctagccatg 420atcctcatga acttgtgcct ttcatagaat acaccgttta tggtaatgcc cctagccatg 420

ttccaaacct atccaacatg actgagccaa gactttttgg tacacatatt ccattccatg 480ttccaaacct atccaacatg actgagccaa gactttttgg tacacatatt ccattccatg 480

cattggccaa gtcaatcaag gagttcaata gtagaataat ttatatatgt aggaacccac 540cattggccaa gtcaatcaag gagttcaata gtagaataat ttatatatgt aggaacccac 540

ttgacacttt tgtgtctact tggattttcc tcaacaaaat taagccagaa catttacctg 600ttgacacttt tgtgtctact tggattttcc tcaacaaaat taagccagaa catttacctg 600

aatttgaact aggggaagct tttgaaaagt attgcaaagg aataataggg tttggtccaa 660aatttgaact agggggaagct tttgaaaagt attgcaaagg aataataggg tttggtccaa 660

cttgggacca aatgttgggt tattggaagg agagtatagc taggcctagt aaggttttgt 720cttgggacca aatgttgggt tattggaagg agagtatagc taggcctagt aaggttttgt 720

tcttgaagta cgaggatctt aaaaaagatg tcaattttca tgtgaaaaga atagcggagt 780tcttgaagta cgaggatctt aaaaaagatg tcaattttca tgtgaaaaga atagcggagt 780

tcttaggatg gcctttcact tcggaggaag aaggtgatgg gactattgag agcataatca 840tcttaggatg gcctttcact tcggaggaag aaggtgatgg gactattgag agcataatca 840

agctatgcag cttcgagaag atgaaggaat tggaggcaaa taaatctgga acatttgcta 900agctatgcag cttcgagaag atgaaggaat tggaggcaaa taaatctgga aatttgcta 900

ggaactttga gagaaagtac ttgttccgaa aggctgaaat gggagattgg gtgaactacc 960ggaactttga gagaaagtac ttgttccgaa aggctgaaat gggagattgg gtgaactacc 960

tttcccctga aatgggtgaa aagttatcgc aaattatgga agaaaagtta agtgggtcag 1020tttcccctga aatgggtgaa aagttatcgc aaattatgga agaaaagtta agtgggtcag 1020

gcttgtcatt ttaa 1034gcttgtcatt ttaa 1034

<210> 19<210> 19

<211> 1033<211> 1033

<212> DNA<212>DNA

<213> 3-3植株GmST1基因突变序列<213> 3-3 plant GmST1 gene mutation sequence

<400> 19<400> 19

atggctccaa caaatgtcac atgcttcaga gaagaaaatg aatccgagaa aggggaggaa 60atggctccaa caaatgtcac atgcttcaga gaagaaaatg aatccgagaa aggggaggaa 60

ataacaatag aagaagacaa gctaagtcaa gaatgtaagg agttgatact ctctcttcct 120ataacaatag aagaagacaa gctaagtcaa gaatgtaagg agttgatact ctctcttcct 120

agggagaggt tggagaacac gttatatata tctatttcaa ggattttggt gccagccatt 180aggggagaggt tggagaacac gttatatata tctatttcaa ggattttggt gccagccatt 180

ggaaatccaa gcaataatca cttttcagaa gcacttccaa gctaaagaca gtgatgttat 240ggaaatccaa gcaataatca cttttcagaa gcacttccaa gctaaagaca gtgatgttat 240

tgtggccaca attccaaaat caggtaccac ttggctgaaa gctctcacct ttgccattgt 300tgtggccaca attccaaaat caggtaccac ttggctgaaa gctctcacct ttgccattgt 300

caatcgccat actcatagta tcactacatc aatgtcatca catcctttgc ttacttctaa 360caatcgccat actcatagta tcactacatc aatgtcatca catcctttgc ttacttctaa 360

tcctcatgaa cttgtgcctt tcatagaata caccgtttat ggtaatgccc ctagccatgt 420tcctcatgaa cttgtgcctt tcatagaata caccgtttat ggtaatgccc ctagccatgt 420

tccaaaccta tccaacatga ctgagccaag actttttggt acacatattc cattccatgc 480tccaaaccta tccaacatga ctgagccaag actttttggt acacatattc cattccatgc 480

attggccaag tcaatcaagg agttcaatag tagaataatt tatatatgta ggaacccact 540attggccaag tcaatcaagg agttcaatag tagaataatt tatatatgta ggaacccact 540

tgacactttt gtgtctactt ggattttcct caacaaaatt aagccagaac atttacctga 600tgacactttt gtgtctactt ggattttcct caacaaaatt aagccagaac atttacctga 600

atttgaacta ggggaagctt ttgaaaagta ttgcaaagga ataatagggt ttggtccaac 660atttgaacta ggggaagctt ttgaaaagta ttgcaaagga aataagggt ttggtccaac 660

ttgggaccaa atgttgggtt attggaagga gagtatagct aggcctagta aggttttgtt 720ttgggaccaa atgttgggtt attggaagga gagtatagct aggcctagta aggttttgtt 720

cttgaagtac gaggatctta aaaaagatgt caattttcat gtgaaaagaa tagcggagtt 780cttgaagtac gaggatctta aaaaagatgt caattttcat gtgaaaagaa tagcggagtt 780

cttaggatgg cctttcactt cggaggaaga aggtgatggg actattgaga gcataatcaa 840cttaggatgg cctttcactt cggaggaaga aggtgatggg actattgaga gcataatcaa 840

gctatgcagc ttcgagaaga tgaaggaatt ggaggcaaat aaatctggaa catttgctag 900gctatgcagc ttcgagaaga tgaaggaatt ggaggcaaat aaatctggaa catttgctag 900

gaactttgag agaaagtact tgttccgaaa ggctgaaatg ggagattggg tgaactacct 960gaactttgag agaaagtact tgttccgaaa ggctgaaatg ggagattggg tgaactacct 960

ttcccctgaa atgggtgaaa agttatcgca aattatggaa gaaaagttaa gtgggtcagg 1020ttcccctgaa atgggtgaaa agttatcgca aattatggaa gaaaagttaa gtgggtcagg 1020

cttgtcattt taa 1033cttgtcattt taa 1033

<210> 20<210> 20

<211> 28<211> 28

<212> DNA<212>DNA

<213> 引物1-S<213> Primer 1-S

<400> 20<400> 20

gaagatctat ggctccaaca aatgtcac 28gaagatctat ggctccaaca aatgtcac 28

<210> 21<210> 21

<211> 29<211> 29

<212> DNA<212>DNA

<213> 引物1-A<213> Primer 1-A

<400> 21<400> 21

cttggttacc ttaaaatgac aagcctgac 29cttggttacc ttaaaatgac aagcctgac 29

Claims (1)

1. The application of soybean GmST1 gene mutant plants in improving soybean mosaic virus infection diseases is characterized in that the mutant plants contain mutant soybean GmST1 genes, the mutation is that nucleotide sequences of 5 'AGAAAGGGGAGGAAATAAA 3' or 5 'CTTCCTAGGGAGAGGGT 3' in coding regions of the GmST1 genes are subjected to base substitution or deletion, so that the coded amino acid sequences are changed, and the nucleotide sequences of the soybean GmST1 genes are shown as SEQ ID NO:1 is shown in the specification; the nucleotide sequence of the mutated soybean GmST1 gene is shown as SEQ ID NO: 17. the amino acid sequence of SEQ ID NO:18 or SEQ ID NO: as shown at 19.
CN201811455513.6A 2018-11-30 2018-11-30 Soybean GmST1 gene mutant plant and preparation method thereof Active CN111254159B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811455513.6A CN111254159B (en) 2018-11-30 2018-11-30 Soybean GmST1 gene mutant plant and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811455513.6A CN111254159B (en) 2018-11-30 2018-11-30 Soybean GmST1 gene mutant plant and preparation method thereof

Publications (2)

Publication Number Publication Date
CN111254159A CN111254159A (en) 2020-06-09
CN111254159B true CN111254159B (en) 2023-03-31

Family

ID=70923416

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811455513.6A Active CN111254159B (en) 2018-11-30 2018-11-30 Soybean GmST1 gene mutant plant and preparation method thereof

Country Status (1)

Country Link
CN (1) CN111254159B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111254148B (en) * 2018-11-30 2023-03-24 东北农业大学 Cultivation method and application of soybean mosaic virus resistant gene GmST1 and GmST1 transgenic soybeans

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103320427A (en) * 2012-03-20 2013-09-25 东北农业大学 Method for assisting in identifying resistance of soybeans to soybean mosaic viruses
CN103343130A (en) * 2013-05-28 2013-10-09 东北师范大学 Soybean antiviral gene and application thereof
CN105154450A (en) * 2015-07-15 2015-12-16 河北农业大学 Soybean mosaic virus resistant gene GmNN1 and application of functional marker thereof
CN105296531A (en) * 2015-11-03 2016-02-03 南京农业大学 Application of soybean elongation factor family in soybean mosaic virus resistance

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104450774A (en) * 2014-12-04 2015-03-25 中国农业科学院作物科学研究所 Construction of soybean CRISPR/Cas9 system and application of soybean CRISPR/Cas9 system in soybean gene modification
CN105821073B (en) * 2015-01-27 2021-08-10 中国科学院遗传与发育生物学研究所 Method for site-specific modification of whole plant through gene transient expression
WO2018103686A1 (en) * 2016-12-07 2018-06-14 中国科学院上海生命科学研究院 Chloroplast genome editing method
CN107475288B (en) * 2017-08-30 2019-11-08 浙江大学 Application of GmMAPKKK Gene in Improving Plant Resistance to Soybean Mosaic Virus Disease
CN108588128A (en) * 2018-04-26 2018-09-28 南昌大学 A kind of construction method of high efficiency soybean CRISPR/Cas9 systems and application

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103320427A (en) * 2012-03-20 2013-09-25 东北农业大学 Method for assisting in identifying resistance of soybeans to soybean mosaic viruses
CN103343130A (en) * 2013-05-28 2013-10-09 东北师范大学 Soybean antiviral gene and application thereof
CN105154450A (en) * 2015-07-15 2015-12-16 河北农业大学 Soybean mosaic virus resistant gene GmNN1 and application of functional marker thereof
CN105296531A (en) * 2015-11-03 2016-02-03 南京农业大学 Application of soybean elongation factor family in soybean mosaic virus resistance

Also Published As

Publication number Publication date
CN111254159A (en) 2020-06-09

Similar Documents

Publication Publication Date Title
CN111254148B (en) Cultivation method and application of soybean mosaic virus resistant gene GmST1 and GmST1 transgenic soybeans
US20210189410A1 (en) Targeted editing of citrus genes for disease resistance
US20190203223A1 (en) Phytophthora resistant plants belonging to the solanaceae family
CN107118264B (en) A rice booting stage cold tolerance-related protein CTB4a and its coding gene and application
CN110903368B (en) A gene for controlling maize female traits and kits, mutant genotypes and methods for creating maize female sterile lines
CN105567696B (en) A kind of method for cultivating soybean mosaic virus-resistant transgenic plants
EP1334979A1 (en) Gene conferring resistance to Phytophthera infestans (late-blight) in Solanaceae
CN110904130B (en) Construction and application of antibacterial nuclear disease gene GmGST1 and transgenic GmGST1 plant
CN111254159B (en) Soybean GmST1 gene mutant plant and preparation method thereof
CN107099544A (en) The PL LbCpf1 RVR genes of identification specific site and its application in paddy gene target practice
CN107142271A (en) The PL LbCpf1 RR genes with high mutation efficiency and its application in gene targeting
CN112143730B (en) Soybean GmEF1B gene mutant plant and preparation method and application thereof
CN113265403A (en) Soybean Dt1 gene editing site and application thereof
CN118931941A (en) Application of GmC2H2 protein or its encoding gene in plant antiviral
CN114945273A (en) Increasing the resistance of plants against fungal infections
CN115851821B (en) Application of BBX16 gene in improving plant salt tolerance
CN110862440A (en) Control gene ZKM465 of maize plant height and its application
CN117604003A (en) Application of soybean aspartokinase/homoserine dehydrogenase family gene GmAK-HSDH
KR101925468B1 (en) Infectious clone of Papaya leaf curl virus and uses thereof
CN113584048B (en) Application of OsHin1 Gene in Controlling Root-knot Nematodes of Poaceae
CN116121298B (en) Application of Inhibiting the Expression of HSRP1 Gene in Improving Heat Resistance of Plants
CN104830872B (en) Cotton GhEDR2 genes and its encoding proteins and application
CN104059135B (en) A kind of Bt protein and its coding gene and application
CN114656542B (en) Corn saline-alkali resistant protein and coding gene and application thereof
CN117757802B (en) Vitis spinosa VdERF054 gene and encoding protein and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant