[go: up one dir, main page]

CN111247078B - Elevator Analysis System and Elevator Analysis Method - Google Patents

Elevator Analysis System and Elevator Analysis Method Download PDF

Info

Publication number
CN111247078B
CN111247078B CN201880068025.1A CN201880068025A CN111247078B CN 111247078 B CN111247078 B CN 111247078B CN 201880068025 A CN201880068025 A CN 201880068025A CN 111247078 B CN111247078 B CN 111247078B
Authority
CN
China
Prior art keywords
elevator
floor
car
passengers
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880068025.1A
Other languages
Chinese (zh)
Other versions
CN111247078A (en
Inventor
佐藤信夫
浅原彰规
星野孝道
鸟谷部训
羽鸟贵大
吉川敏文
北野佑
下出直树
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to CN202210387282.XA priority Critical patent/CN114873395B/en
Publication of CN111247078A publication Critical patent/CN111247078A/en
Application granted granted Critical
Publication of CN111247078B publication Critical patent/CN111247078B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B3/00Applications of devices for indicating or signalling operating conditions of elevators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/02Control systems without regulation, i.e. without retroactive action
    • B66B1/06Control systems without regulation, i.e. without retroactive action electric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B50/00Energy efficient technologies in elevators, escalators and moving walkways, e.g. energy saving or recuperation technologies

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Elevator Control (AREA)
  • Indicating And Signalling Devices For Elevators (AREA)

Abstract

一种具有处理器和与处理器相连接的存储装置的电梯分析系统,存储装置用于保存乘坐人数,该乘坐人数为在作为控制对象的电梯群组各楼层的乘梯处,因要使用电梯而出现的用户数量,处理器根据保存在存储装置中的乘坐人数,来预测未来的乘坐人数,并根据所预测到的未来的乘坐人数,来确定对属于电梯群组的各轿厢的运行控制适用的运行规则、以及在各个运行规则中所设定的控制参数,进一步输出确定好的运行规则以及控制参数。

Figure 201880068025

An elevator analysis system with a processor and a storage device connected with the processor, the storage device is used to store the number of passengers, the number of passengers is at the elevator of each floor of the elevator group as the control object, because the elevator is to be used As for the number of users appearing, the processor predicts the number of passengers in the future according to the number of passengers stored in the storage device, and determines the operation control of each car belonging to the elevator group according to the predicted number of passengers in the future. Applicable operation rules and control parameters set in each operation rule are further outputted as determined operation rules and control parameters.

Figure 201880068025

Description

电梯分析系统与电梯分析方法Elevator Analysis System and Elevator Analysis Method

本申请于2017年10月30日提交的日本专利申请No.2017-209721的优先权,并且通过参考将该申请的整个内容引入于此。This application claims priority to Japanese Patent Application No. 2017-209721 filed on October 30, 2017, and the entire contents of this application are incorporated herein by reference.

技术领域technical field

本发明涉及一种用于分析群控电梯的技术。The present invention relates to a technique for analyzing group control elevators.

背景技术Background technique

在较大规模的大厦中,为提高电梯的运输能力而并行安装多个电梯,并且引入了一种在乘梯处呼叫电梯时可选择最佳轿厢进行服务的系统。而且,随着大厦规模的扩大,并行安装的电梯的数量增加,群控装置可适当地控制该多部电梯,以改善如减少用户的等候时间等的服务质量。此时,群控装置通过使用运转数据等预测电梯的使用状况,来尝试最佳的控制。In larger-scale buildings, multiple elevators are installed in parallel to increase the transport capacity of the elevators, and a system is introduced that selects the best car for service when an elevator is called at the boarding point. Also, as the building scale increases, the number of elevators installed in parallel increases, and the group control device can appropriately control the plurality of elevators to improve service quality such as reducing the waiting time of users. At this time, the group control device attempts to perform optimal control by predicting the usage status of the elevator using operation data or the like.

在专利文献1中,根据轿厢的乘梯人数,使用上行方向乘梯比例的特征量、上行方向下梯的特征量、下行方向乘梯比例的特征量以及下行方向下梯的特征量,来预测分析使用需求。In Patent Document 1, based on the number of people riding in a car, the feature data of the proportion of passengers getting off the elevator in the ascending direction, the feature amount of getting off the elevator in the ascending direction, the feature value of the proportion of getting on the elevator in the descending direction, and the feature amount of getting off the elevator in the descending direction are used. Predictive analytics usage needs.

在专利文献2中,在候梯厅中安装摄像头,并且对乘梯处人数进行计数。在预测某个时间内的电梯等候人数时,将过去特定时段内同一时间的等候时间的平均值用作预测值。In Patent Document 2, a camera is installed in an elevator hall, and the number of people at the boarding place is counted. When predicting the number of people waiting for an elevator in a certain period of time, the average of the waiting times at the same time in the past specific period is used as the predicted value.

在专利文献3中,使用了轿厢的乘梯人数。使用大厦当前的拥挤状态和过去的使用历史来预测拥挤状态。In Patent Document 3, the number of passengers on the car is used. Use the building's current congestion status and past occupancy history to predict congestion status.

在专利文献4中,安装摄像头以使其自候梯厅的前方朝向建筑物入口处拍摄图像,并且当检测到有人靠近候梯厅时则调度轿厢。In Patent Document 4, a camera is installed so as to take an image from the front of the hall toward the entrance of the building, and when a person is detected approaching the hall, the car is dispatched.

现有技术文献prior art literature

专利文献Patent Literature

专利文献1:日本特开2014-172718号公报Patent Document 1: Japanese Patent Laid-Open No. 2014-172718

专利文献2:日本特开2015-9909号公报Patent Document 2: Japanese Patent Laid-Open No. 2015-9909

专利文献3:国际公开第2017/006379号Patent Document 3: International Publication No. 2017/006379

专利文献4:日本特开2000-26034号公报Patent Document 4: Japanese Patent Laid-Open No. 2000-26034

发明内容SUMMARY OF THE INVENTION

本发明所要解决的课题Problem to be solved by the present invention

由于位于乘梯处的用户的乘梯时间、乘梯楼层、下梯楼层、乘梯人数均是未知的,因此对群控电梯的控制是有限的。Since the boarding time, the boarding floor, the landing floor, and the number of boarding persons of the user at the boarding place are all unknown, the control over the group elevator is limited.

在专利文献1和专利文献3中,由于使用了电梯轿厢的乘梯人数,因此虽然可知乘梯楼层和下梯楼层的情况,但是不知道乘梯处的情况。因此,很难根据乘梯处的变化来进行控制。In Patent Literature 1 and Patent Literature 3, since the number of passengers using the elevator car is used, the situation of the boarding floor and the landing floor is known, but the situation of the boarding place is not known. Therefore, it is difficult to control according to the change of the boarding place.

此外,在专利文献2和专利文献4中,由于将摄像头安装在乘梯处,所以可知乘梯处的情况,但是不知道乘梯楼层和下梯楼层的情况。因此,很难根据乘梯楼层和下梯楼层的情况来进行控制。此外,安装摄像头的费用是另外计算的。In addition, in Patent Document 2 and Patent Document 4, since the camera is installed at the boarding place, the situation at the boarding place is known, but the boarding floor and the descending floor are not known. Therefore, it is difficult to control according to the conditions of the boarding floor and the landing floor. In addition, the cost of installing the camera is calculated separately.

本发明目的在于实施控制,以使得当根据数据求取位于乘梯处的用户的使用时间、乘梯楼层、下梯楼层以及乘梯人数,并进一步预测未来拥挤状况时,通过缩短位于乘梯处的用户的等候时间来缓解用户的不满。The object of the present invention is to implement control so that when the usage time of the user at the boarding place, the boarding floor, the landing floor and the number of boarding persons are obtained from the data, and the future congestion situation is further predicted, by shortening the time at the boarding place user's waiting time to alleviate user dissatisfaction.

用于解决课题的方案solutions to problems

为了解决上述课题中的至少一个,本发明是一种具有处理器和与所述处理器相连接的存储装置的电梯分析系统,其特征在于:所述存储装置用于在作为控制对象的电梯群组各楼层的乘梯处,保存作为因要使用电梯而出现的用户数量的乘坐人数,所述处理器根据保存在所述存储装置中的乘坐人数来预测未来的乘坐人数,并根据所预测到的所述未来的乘坐人数来确定对属于所述电梯群组的所述各轿厢的运行控制适用的运行规则、以及在各个运行规则中所设定的控制参数,进一步输出确定好的所述运行规则以及控制参数。In order to solve at least one of the above-mentioned problems, the present invention is an elevator analysis system having a processor and a storage device connected to the processor, wherein the storage device is used in an elevator group to be controlled in an elevator group. The number of passengers that is the number of users appearing due to the use of the elevator is stored at the elevators on each floor of the group, and the processor predicts the number of passengers in the future according to the number of passengers stored in the storage device, and according to the predicted The number of passengers in the future is determined to determine the operation rules applicable to the operation control of the cars belonging to the elevator group, and the control parameters set in each operation rule, and further output the determined Run rules and control parameters.

发明效果Invention effect

根据本发明的一个形态,通过实现最佳的电梯控制,可以缓解电梯相关用户的不满。上述以外的课题、结构和效果将通过以下的实施方式的说明来加以明确。According to one aspect of the present invention, by realizing optimal elevator control, it is possible to alleviate the dissatisfaction of elevator-related users. Problems, structures, and effects other than those described above will be clarified by the description of the following embodiments.

附图说明Description of drawings

图1A是示出本发明的实施方式的群控电梯用控制系统的整体结构的框图。1A is a block diagram showing the overall configuration of a control system for a group elevator according to an embodiment of the present invention.

图1B是示出本发明的实施方式的分析服务器的硬件配置的框图。FIG. 1B is a block diagram showing the hardware configuration of the analysis server of the embodiment of the present invention.

图2是示出本发明的实施方式的群控电梯用控制系统的处理以及数据之间的关系的说明图。Fig. 2 is an explanatory diagram showing the relationship between processing and data of the control system for a group control elevator according to the embodiment of the present invention.

图3是示出本发明的实施方式的群控电梯用控制系统的处理中的乘坐人数预测以及目的地楼层预测的概要的时序图。3 is a sequence diagram showing an outline of the number of occupants predicted and the destination floor predicted in the process of the control system for group control elevators according to the embodiment of the present invention.

图4是示出本发明的实施方式的群控电梯用控制系统的处理中的有效规则/参数选择的概要的时序图。4 is a sequence diagram showing an outline of effective rules and parameter selection in the processing of the control system for group control elevators according to the embodiment of the present invention.

图5是示出本发明的实施方式的乘坐人数估计模型生成部的处理的流程图。5 is a flowchart showing the processing of the occupant number estimation model generation unit according to the embodiment of the present invention.

图6是示出本发明的实施方式的乘坐人数估计部的处理的流程图。FIG. 6 is a flowchart showing the processing of the occupant number estimation unit according to the embodiment of the present invention.

图7是示出本发明的实施方式的乘坐人数预测部的处理的流程图。7 is a flowchart showing the processing of the occupant number prediction unit according to the embodiment of the present invention.

图8是示出本发明的实施方式的目的地楼层估计部的处理的流程图。8 is a flowchart showing the processing of the destination floor estimation unit according to the embodiment of the present invention.

图9是示出本发明的实施方式的目的地楼层预测部的处理的流程图。9 is a flowchart showing the processing of the destination floor prediction unit according to the embodiment of the present invention.

图10是示出本发明的实施方式的控制选择器部的处理的流程图。FIG. 10 is a flowchart showing the processing of the control selector unit according to the embodiment of the present invention.

图11是示出本发明的实施方式的规则/参数评价部的处理的流程图。11 is a flowchart showing the processing of the rule/parameter evaluation unit according to the embodiment of the present invention.

图12是示出本发明的实施方式的由分析服务器保存的大厦基本信息的说明图。FIG. 12 is an explanatory diagram showing building basic information stored in the analysis server according to the embodiment of the present invention.

图13是示出本发明的实施方式的由分析服务器保存的随机种子的说明图。FIG. 13 is an explanatory diagram showing a random seed stored by the analysis server according to the embodiment of the present invention.

图14是示出本发明的实施方式的由分析服务器保存的乘降梯人数的说明图。FIG. 14 is an explanatory diagram showing the number of people getting on and off the elevator stored in the analysis server according to the embodiment of the present invention.

图15是示出本发明的实施方式的由分析服务器保存的电梯运行日志的说明图。15 is an explanatory diagram showing an elevator operation log stored in an analysis server according to an embodiment of the present invention.

图16是示出本发明的实施方式的由分析服务器保存的外部信息(天气)的说明图。16 is an explanatory diagram showing external information (weather) stored by the analysis server according to the embodiment of the present invention.

图17是示出本发明的实施方式的由分析服务器保存的外部信息(摄像头)的说明图。FIG. 17 is an explanatory diagram showing external information (camera) stored in the analysis server according to the embodiment of the present invention.

图18是示出本发明的实施方式的由分析服务器保存的外部信息(建筑物信息)的说明图。18 is an explanatory diagram showing external information (building information) stored by the analysis server according to the embodiment of the present invention.

图19是示出本发明的实施方式的由分析服务器保存的乘坐人数估计输入的说明图。FIG. 19 is an explanatory diagram showing the occupant number estimation input held by the analysis server according to the embodiment of the present invention.

图20是示出本发明的实施方式的由分析服务器保存的乘坐人数估计模型的说明图。20 is an explanatory diagram showing an occupant number estimation model stored in an analysis server according to an embodiment of the present invention.

图21是示出本发明的实施方式的由分析服务器保存的乘坐人数估计结果的说明图。FIG. 21 is an explanatory diagram showing an estimation result of the number of occupants stored in the analysis server according to the embodiment of the present invention.

图22是示出本发明的实施方式的由分析服务器保存的乘坐人数预测结果的说明图。FIG. 22 is an explanatory diagram showing an occupant number prediction result stored in the analysis server according to the embodiment of the present invention.

图23是示出本发明的实施方式的由分析服务器保存的乘坐人数预测结果2的说明图。FIG. 23 is an explanatory diagram showing the occupant number prediction result 2 stored in the analysis server according to the embodiment of the present invention.

图24是示出本发明的实施方式的由分析服务器保存的不同时间段目的地楼层估计的说明图。24 is an explanatory diagram showing destination floor estimates for different time periods held by the analysis server according to the embodiment of the present invention.

图25是示出本发明的实施方式的由分析服务器保存的不同时间段目的地楼层预测结果的说明图。FIG. 25 is an explanatory diagram showing destination floor prediction results for different time periods stored by the analysis server according to the embodiment of the present invention.

图26是示出本发明的实施方式的由分析服务器保存的规则/控制模板的说明图。FIG. 26 is an explanatory diagram showing a rule/control template stored by an analysis server according to an embodiment of the present invention.

图27是示出本发明的实施方式的由分析服务器保存的KPI列表的说明图。FIG. 27 is an explanatory diagram showing a KPI list stored by the analysis server according to the embodiment of the present invention.

图28是示出本发明的实施方式的由分析服务器保存的模拟输入和结果的说明图。FIG. 28 is an explanatory diagram showing simulation inputs and results stored by the analysis server according to the embodiment of the present invention.

图29是示出本发明的实施方式的由分析服务器保存的有效规则/参数的说明图。FIG. 29 is an explanatory diagram showing valid rules/parameters held by the analysis server according to the embodiment of the present invention.

图30是示出本发明的实施方式的由分析服务器保存的有效规则/参数细分列表的说明图。30 is an explanatory diagram showing a valid rule/parameter subdivision list held by an analysis server according to an embodiment of the present invention.

图31是示出本发明的实施方式的由分析服务器保存的规则/参数列表的说明图。FIG. 31 is an explanatory diagram showing a rule/parameter list stored by the analysis server according to the embodiment of the present invention.

图32是示出本发明的实施方式的由分析服务器输出的大厦个性化报告的说明图。32 is an explanatory diagram showing a building personalized report output by an analysis server according to an embodiment of the present invention.

具体实施方式Detailed ways

接着,参照附图对本发明的实施方式进行详细说明,但是,本发明并不限于以下实施方式,在本发明的技术构思范围内可以做出各种变形以及修改,这些变形与修改都应包含在此保护范围内。在下文中,将参考图1说明本发明的一个实施方式。Next, the embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the following embodiments, and various modifications and changes can be made within the scope of the technical idea of the present invention, and these modifications and modifications should be included in the within the scope of this protection. Hereinafter, one embodiment of the present invention will be explained with reference to FIG. 1 .

图1A是示出本发明的实施方式的群控电梯用控制系统的整体结构的框图。1A is a block diagram showing the overall configuration of a control system for a group elevator according to an embodiment of the present invention.

分析服务器SA、客户终端CL、外部信息邻近建筑物信息EXN、外部信息数据库EXD、外部信息摄像头EXC、控制柜CA、轿厢1CA1、轿厢2CA2及轿厢8CA8与处于open或close状态的网络NW相连。Analysis server SA, client terminal CL, external information adjacent building information EXN, external information database EXD, external information camera EXC, control cabinet CA, car 1CA1, car 2CA2 and car 8CA8 and network NW in open or close state connected.

分析服务器SA构成用于执行与群控电梯的控制有关的分析的电梯分析系统。分析服务器SA由数据库SA0、显示部SA1、请求部SA2以及执行部SA3构成。The analysis server SA constitutes an elevator analysis system for performing analysis related to the control of the group elevator. The analysis server SA includes a database SA0, a display unit SA1, a request unit SA2, and an execution unit SA3.

数据库SA0处理分析服务器SA中所使用的输入/输出数据。具体而言,数据库SA0包括预先设定在分析服务器SA中的信息、经由网络NW获取的信息、以及通过执行部SA3的处理所生成的信息等。尽管在图1A中未示出,但是数据库SA0包括例如大厦基本信息SA00、随机种子SA01、乘降梯人数SA02、电梯运行日志SA03、外部信息(天气)SA04、外部信息(摄像头)SA05、外部信息(建筑物信息)SA06、乘坐人数估计输入SA07、乘坐人数估计模型SA08、乘坐人数估计结果SA09、乘坐人数预测结果SA10、乘坐人数预测结果SA11、不同时间段目的地楼层估计SA12、不同时间段目的地楼层预测结果SA13、规则/控制模板SA14、KPI列表SA15、模拟输入和结果SA16、有效规则/参数SA17以及规则/参数列表SA19(参见图2、图12~图31)。The database SA0 handles input/output data used in the analysis server SA. Specifically, the database SA0 includes information preliminarily set in the analysis server SA, information acquired via the network NW, information generated by the processing of the execution unit SA3, and the like. Although not shown in FIG. 1A , the database SA0 includes, for example, building basic information SA00, random seed SA01, number of people taking elevators SA02, elevator operation log SA03, external information (weather) SA04, external information (camera) SA05, external information (building information) SA06, occupant number estimation input SA07, occupant number estimation model SA08, occupant number estimation result SA09, occupant number prediction result SA10, occupant number prediction result SA11, destination floor estimation at different time periods SA12, purpose in different time periods Ground floor prediction result SA13, rule/control template SA14, KPI list SA15, simulation input and result SA16, valid rule/parameter SA17, and rule/parameter list SA19 (see Figure 2, Figure 12 to Figure 31).

执行部SA3是实际执行分析的部分,并且由测量处理部SA31、乘坐人数估计模型生成部SA32、乘坐人数估计部SA33、乘坐人数预测部SA34、目的地楼层估计部SA35、目的地楼层预测部SA36、控制选择器部SA37、以及规则/参数评价部SA38构成。The execution part SA3 is a part that actually performs the analysis, and consists of the measurement processing part SA31, the occupant number estimation model generation part SA32, the occupant number estimation part SA33, the occupant number prediction part SA34, the destination floor estimation part SA35, and the destination floor prediction part SA36 , a control selector unit SA37, and a rule/parameter evaluation unit SA38.

客户终端CL是管理员用于浏览分析状况的终端。外部信息邻近建筑物信息EXN、外部信息数据库EXD、外部信息摄像头ExC以及控制柜CA提供与电梯运行无关的信息。将这些信息记载为外部信息。除上述信息之外,外部信息还可以包括铁路交通数据和道路状况数据等的公共信息。轿厢1CA1、轿厢2CA2及轿厢8CA8是电梯轿厢,控制柜CA是用于控制轿厢1CA1~轿厢8CA8的控制装置。The client terminal CL is a terminal used by the administrator to browse the analysis status. External information The adjacent building information EXN, the external information database EXD, the external information camera ExC and the control cabinet CA provide information not related to the operation of the elevator. This information is recorded as external information. In addition to the above-mentioned information, the external information may include public information such as railway traffic data and road condition data. The car 1CA1, the car 2CA2, and the car 8CA8 are elevator cars, and the control cabinet CA is a control device for controlling the cars 1CA1 to 8CA8.

尽管省略了一部分的图示,但是在图1A的示例中,轿厢1CA1~轿厢8CA8的8部轿厢由控制柜CA控制。轿厢1CA1~8CA8例如是安装在同一建筑物中且面向同一电梯乘梯处(候梯厅)的、由8部电梯构成的且作为群控对象的电梯群组的轿厢。然而,8部仅是一例,本发明还可以适用于由2部以上电梯组成的电梯群组。Although a part of illustration is abbreviate|omitted, in the example of FIG. 1A, 8 cages of cage|basket|car 1CA1 - cage|basket|car 8CA8 are controlled by the control cabinet CA. The cars 1CA1 to 8CA8 are, for example, cars of an elevator group that is installed in the same building and faces the same elevator boarding area (hall), is composed of 8 elevators, and is the target of group control. However, 8 is only an example, and the present invention can also be applied to an elevator group consisting of two or more elevators.

此外,在本实施方式中,所谓乘坐人数,是为了乘坐电梯而出现在候梯厅的用户的人数。In addition, in the present embodiment, the number of occupants refers to the number of users who appear in the hall in order to take the elevator.

图1B是示出本发明的实施方式的分析服务器SA的硬件配置的框图。FIG. 1B is a block diagram showing the hardware configuration of the analysis server SA of the embodiment of the present invention.

分析服务器SA例如是具有相互连接的接口(I/F)101、输入装置102、输出装置103、处理器104、主存储装置105以及辅助存储装置106的计算机。The analysis server SA is, for example, a computer having an interface (I/F) 101 , an input device 102 , an output device 103 , a processor 104 , a main storage device 105 , and an auxiliary storage device 106 that are connected to each other.

接口101连接到网络NW,并且经由网络NW与客户终端CL、外部信息数据库EXD、外部信息摄像头EXC以及控制柜CA进行通信,并获得外部信息邻近建筑物信息EXN等。输入装置102是分析服务器SA的用户用于向分析服务器SA输入信息的装置,并且可以包括键盘、鼠标、以及触摸传感器等中的至少一个。输出装置103是用于向分析服务器SA的用户输出信息的装置,并且可以包括显示例如文字和图像等的显示装置。The interface 101 is connected to the network NW, and communicates with the client terminal CL, the external information database EXD, the external information camera EXC, and the control cabinet CA via the network NW, and obtains external information neighboring building information EXN and the like. The input device 102 is a device used by the user of the analysis server SA to input information to the analysis server SA, and may include at least one of a keyboard, a mouse, a touch sensor, and the like. The output device 103 is a device for outputting information to a user of the analysis server SA, and may include a display device that displays, for example, text and images.

处理器104根据存储在主存储装置105中的程序执行各种处理。主存储装置105例如是像DRAM那样的半导体存储装置,并且存储由处理器104执行的程序、以及处理器的处理所必需的数据等。辅助存储装置106是例如硬盘驱动器或闪存等较大容量的存储装置,并且对在由处理器执行的处理过程中所参考的数据等进行存储。The processor 104 executes various processes according to programs stored in the main storage device 105 . The main storage device 105 is, for example, a semiconductor storage device such as a DRAM, and stores programs executed by the processor 104 , data necessary for processing by the processor, and the like. The auxiliary storage device 106 is a large-capacity storage device such as a hard disk drive or a flash memory, and stores data and the like that are referred to during processing performed by the processor.

在本实施方式的主存储装置105中,存储有用于实现执行部SA3中所包含的测量处理部SA31、乘坐人数估计模型生成部SA32、乘坐人数估计部SA33、乘坐人数预测部SA34、目的地楼层估计部SA35、目的地楼层预测部SA36、控制选择器部SA37以及规则/参数评价部SA38的程序。因此,在下面的说明中,包含在执行部SA3中的各部分所执行的处理,实际上是由处理器104根据与存储在主存储装置105中的各部分相对应的程序来执行。The main storage device 105 of the present embodiment stores therein a measurement processing unit SA31, an occupant estimation model generation unit SA32, an occupant estimation unit SA33, an occupant estimation unit SA34, and a destination floor included in the execution unit SA3. Programs of the estimation unit SA35, the destination floor prediction unit SA36, the control selector unit SA37, and the rule/parameter evaluation unit SA38. Therefore, in the following description, the processing executed by each part included in the execution unit SA3 is actually executed by the processor 104 according to the program corresponding to each part stored in the main storage device 105 .

此外,请求部SA2的处理也可以由处理器104根据与存储在主存储装置105中的请求部SA2相对应的程序,控制接口101或输入装置102来实现。显示部SA1的处理也可以由处理器104根据与存储在主存储装置105中的显示部SA1相对应的程序控制输出装置103来实现。Further, the processing of the request unit SA2 may be realized by the processor 104 controlling the interface 101 or the input device 102 according to a program corresponding to the request unit SA2 stored in the main storage device 105 . The processing of the display unit SA1 may be realized by the processor 104 controlling the output device 103 according to a program corresponding to the display unit SA1 stored in the main storage device 105 .

本实施方式的辅助存储装置106存储数据库SA0。进而,也可以将与执行部SA3中所包含的各部分相对应的程序存储在辅助存储装置106中,并且也可以根据需要将其复制到主存储装置105中。此外,也可以根据需要将数据库SA0中的至少一部分复制到主存储装置105中。The auxiliary storage device 106 of the present embodiment stores the database SA0. Furthermore, the program corresponding to each part included in the execution unit SA3 may be stored in the auxiliary storage device 106, and may be copied to the main storage device 105 as necessary. In addition, at least a part of the database SA0 may be copied to the main storage device 105 as needed.

图2是示出本发明的实施方式的群控电梯用控制系统的处理以及数据之间的关系的说明图。Fig. 2 is an explanatory diagram showing the relationship between processing and data of the control system for a group control elevator according to the embodiment of the present invention.

通过参考该图,使得与各个处理相关的输入数据和输出数据更加明确。此外,可以执行处理和数据的整体俯瞰。粗线的方框表示处理,细线的方框表示数据。此外,由实线包围的范围最好是实时处理,而由虚线包围的范围最好是离线执行。By referring to this figure, the input data and output data related to each process are made clearer. In addition, an overall overview of processing and data can be performed. Thick-lined boxes represent processing, and thin-lined boxes represent data. Furthermore, the range enclosed by the solid line is preferably processed in real time, while the range enclosed by the dashed line is preferably performed offline.

具体而言,乘坐人数估计模型生成部SA32根据大厦基本信息SA00(图12)以及随机种子SA01(图13)来执行乘坐人数模型处理SP01(图5),并且输出乘坐人数估计模型SA08(图20)。在图2的示例中,此乘坐人数模型处理SP01作为离线处理SZ1来执行。Specifically, the occupant number estimation model generation unit SA32 executes the occupant number model process SP01 ( FIG. 5 ) based on the building basic information SA00 ( FIG. 12 ) and the random seed SA01 ( FIG. 13 ), and outputs the occupant number estimation model SA08 ( FIG. 20 ) ). In the example of FIG. 2, this occupant number model processing SP01 is executed as off-line processing SZ1.

乘坐人数估计部SA33根据乘降梯人数SA02(图14)、电梯运行日志SA03(图15)、外部信息(天气)SA04(图16)、外部信息(摄像头)SA05(图17)、外部信息(建筑物信息)SA06(图18)、大厦基本信息SA00以及乘坐人数估计模型SA08来执行乘坐人数估计处理SP02(图6),并且将此结果输入到乘坐人数预测部SA34。若存在除上述信息之外的可利用外部信息,乘坐人数估计部SA33也可以使用该外部信息。The number of passengers estimating unit SA33 is based on the number of passengers SA02 ( FIG. 14 ), the elevator operation log SA03 ( FIG. 15 ), the external information (weather) SA04 ( FIG. 16 ), the external information (camera) SA05 ( FIG. 17 ), the external information ( Building information) SA06 (FIG. 18), building basic information SA00, and occupant estimation model SA08 execute occupant estimation processing SP02 (FIG. 6), and input the result to occupant prediction unit SA34. If there is available external information other than the above-mentioned information, the occupant number estimation unit SA33 may use the external information.

乘坐人数预测部SA34根据乘坐人数估计处理SP02的结果来执行乘坐人数预测处理SP03(图7),并将此结果输入到目的地楼层预测部SA36和控制选择器部SA37。此外,通过存储处理SP07(图9)存储此结果。The occupant number prediction unit SA34 executes the occupant number prediction process SP03 ( FIG. 7 ) based on the result of the occupant number estimation process SP02 , and inputs the result to the destination floor prediction unit SA36 and the control selector unit SA37 . In addition, this result is stored by storage processing SP07 (FIG. 9).

目的地楼层估计部SA35根据乘降梯人数SA02来执行目的地楼层估计处理SP04(图8),并将此结果输入到目的地楼层预测部SA36。The destination floor estimation unit SA35 executes the destination floor estimation process SP04 ( FIG. 8 ) based on the number of people getting on and off the elevator SA02 , and inputs the result to the destination floor estimation unit SA36 .

目的地楼层预测部SA36根据乘坐人数预测处理SP03以及目的地楼层估计处理SP04的结果,来执行目的地楼层预测处理SP05(图9)。通过存储处理SP07存储此结果。The destination floor prediction unit SA36 executes the destination floor prediction process SP05 ( FIG. 9 ) based on the results of the occupant number prediction process SP03 and the destination floor estimation process SP04. This result is stored by storage processing SP07.

控制选择器部SA37根据目的地楼层预测处理SP05的结果、乘坐人数预测处理SP03的结果以及由后述的显示/控制数据生成处理SP15所生成的规则/参数列表SA19,来执行控制选择器SP06(图10),并将此结果输出到控制柜CA。The control selector unit SA37 executes the control selector SP06 ( Figure 10), and output this result to the control cabinet CA.

在图2的示例中,上述乘坐人数估计处理SP02~存储处理SP07作为实时处理SZ0来执行。In the example of FIG. 2 , the above-described occupant number estimation processing SP02 to storage processing SP07 are executed as real-time processing SZ0.

规则/参数评价部SA38根据由存储处理SP07所存储的数据、规则/控制模板SA14(图26)以及KPI列表SA15(图27),来执行KPI模拟处理SP11、有效规则/参数选择SP12、结束判断处理SP13、有效规则/参数细分化处理SP14以及显示/控制数据生成处理SP15(图11)。在该过程中,生成模拟输入和结果SA16(图28)以及有效规则/参数SA17(图29),最终输出规则/参数列表SA19(图31)以及大厦个性化报告SA20(图32)。The rule/parameter evaluation unit SA38 executes the KPI simulation process SP11, the effective rule/parameter selection SP12, and the termination judgment based on the data stored in the storage process SP07, the rule/control template SA14 (FIG. 26), and the KPI list SA15 (FIG. 27). Processing SP13, valid rule/parameter subdivision processing SP14, and display/control data generation processing SP15 (FIG. 11). During this process, simulation inputs and results SA16 (FIG. 28) and valid rules/parameters SA17 (FIG. 29) are generated, and finally a list of rules/parameters SA19 (FIG. 31) and a building personalization report SA20 (FIG. 32) are generated.

在图2的示例中,上述KPI模拟处理SP11~显示/控制数据生成处理SP15作为离线处理SZ2来执行。In the example of FIG. 2, the above-described KPI simulation processing SP11 to display/control data generation processing SP15 are executed as offline processing SZ2.

图3是示出本发明的实施方式的群控电梯用控制系统的处理中的乘坐人数预测以及目的地楼层预测的概要的时序图。3 is a sequence diagram showing an outline of the number of occupants predicted and the destination floor predicted in the process of the control system for group control elevators according to the embodiment of the present invention.

图3中的时序图使用与相关数据(乘降梯人数SA02、电梯运行日志SA03、外部信息(天气)SA04、外部信息(摄像头)SA05等)、分析服务器SA、控制柜CA以及客户终端CL中的每一个相对应的4个轴来表示。The sequence diagram in FIG. 3 uses related data (the number of elevators SA02, elevator operation log SA03, external information (weather) SA04, external information (camera) SA05, etc.), analysis server SA, control cabinet CA, and client terminal CL in Each of the corresponding 4 axes is represented.

数据收集S01是由外部信息数据库EXD等的外部系统周期性地向分析服务器SA发送数据的处理。分析服务器SA的执行部SA3的测量处理部SA31接收这些数据,执行数据库注册S02,并将接收到的数据存储在数据库SA0的各个表格中。定期地执行执行部SA3的乘坐人数估计模型生成部SA32、乘坐人数估计部SA33、乘坐人数预测部SA34、目的地楼层估计部SA35、目的地楼层预测部SA36以及控制选择器部SA37的处理,通过数据库注册S03,将此结果数据存储在数据库SA0的各个表格中。最后,分析服务器SA将由控制选择器部SA37所选择的控制参数作为输入命令CA0发送到控制柜CA。The data collection S01 is a process of periodically sending data to the analysis server SA from an external system such as the external information database EXD. The measurement processing unit SA31 of the execution unit SA3 of the analysis server SA receives these data, executes the database registration S02, and stores the received data in each table of the database SA0. The processes of the occupant estimation model generation unit SA32, the occupant estimation unit SA33, the occupant estimation unit SA34, the destination floor estimation unit SA35, the destination floor estimation unit SA36, and the control selector unit SA37 of the execution unit SA3 are periodically executed, and the Database registration S03, this result data is stored in each table of database SA0. Finally, the analysis server SA transmits the control parameter selected by the control selector section SA37 to the control cabinet CA as an input command CA0.

图4是示出本发明的实施方式的群控电梯用控制系统的处理中的有效规则/参数选择的概要的时序图。4 is a sequence diagram showing an outline of effective rules and parameter selection in the processing of the control system for group control elevators according to the embodiment of the present invention.

图4的时序图使用与图3相同的4个轴来表示。The timing chart of FIG. 4 is represented using the same four axes as those of FIG. 3 .

在客户终端CL中,管理者执行经营者信息输入S04,例如输入KPI以及时段等以作为经营者信息。客户终端CL向分析服务器SA发送包括所输入的信息在内的请求命令。In the client terminal CL, the manager executes the operator information input S04, and inputs, for example, KPI and time period as the operator information. The client terminal CL sends a request command including the input information to the analysis server SA.

分析服务器SA执行数据获取S05,并获取从客户终端CL发送来的数据。然后,分析服务器SA执行规则/参数评价部SA38,在从数据库SA0中获取相应数据的同时选择有用的规则和控制参数,并使用此结果生成内容。分析服务器SA将包括所生成的内容在内的显示数据发送到客户终端CL。The analysis server SA executes data acquisition S05, and acquires the data sent from the client terminal CL. Then, the analysis server SA executes the rule/parameter evaluation section SA38, selects useful rules and control parameters while acquiring the corresponding data from the database SA0, and generates content using the results. The analysis server SA transmits display data including the generated content to the client terminal CL.

客户终端CL执行显示处理S06,并显示内容。关于所显示的内容的示例,将参考图30在下文中说明。此外,由于在分析时使用KPI和时段等,因此最好事先进行记录。The client terminal CL executes display processing S06 and displays the content. An example of the displayed content will be described later with reference to FIG. 30 . Also, since KPIs and time periods, etc. are used in the analysis, it is best to record them in advance.

图5是示出本发明的实施方式的乘坐人数估计模型生成部SA32的处理的流程图。FIG. 5 is a flowchart showing the processing of the occupant number estimation model generation unit SA32 according to the embodiment of the present invention.

乘坐人数模型处理SP01由乘坐人数数据生成SP010和乘坐人数估计模型生成SP011两部分构成。在乘坐人数数据生成SP010中,乘坐人数估计模型生成部SA32根据大厦基本信息SA00以及随机种子SA01通过模拟(第2模拟),来求出各个轿厢的乘降梯人数(也就是说乘梯人数和下梯人数)以及轿厢状态。The occupant number model processing SP01 consists of two parts: the occupant number data generation SP010 and the occupant number estimation model generation SP011. In the passenger number data generation SP010, the passenger number estimation model generation unit SA32 obtains the number of passengers (that is, the number of passengers in each car) by simulation (second simulation) based on the building basic information SA00 and the random seed SA01. and the number of people getting off the elevator) and the status of the car.

例如,乘坐人数估计模型生成部SA32在模拟中,随机生成要在各层候梯厅中乘坐电梯的多名用户。具体而言,乘坐人数估计模型生成部SA32使用随机种子SA01,来随机确定每名用户所出现的候梯厅楼层以及出现时间。进而,乘坐人数估计模型生成部SA32从根据大厦基本信息SA00所选择的楼层中随机确定每名用户的目的地楼层。For example, in the simulation, the number of occupants estimation model generation unit SA32 randomly generates a plurality of users who want to take the elevator in the hall on each floor. Specifically, the passenger number estimation model generation unit SA32 uses the random seed SA01 to randomly determine the hall floor and the appearance time of each user. Furthermore, the occupant number estimation model generation unit SA32 randomly specifies the destination floor for each user from the floors selected from the building basic information SA00.

然后,乘坐人数估计模型生成部SA32根据所确定的每名用户的出现时间、出现楼层以及目的地楼层,模拟各个轿厢的运行,求出每个时间各个轿厢的乘降梯人数和轿厢状态,并将其生成为乘坐人数估计输入SA07。所谓轿厢状态例如是各轿厢所处的楼层、各轿厢的行进方向(上行方向或下行方向)以及各轿厢内的乘梯人数等,详细地说,也可以与后述的电梯运行日志SA03中所记录的值相同。然而,虽然在电梯运行日志SA03中记录实际测量值,但是乘坐人数估计模型生成部SA32可以通过模拟来生成该值。Then, the passenger number estimation model generation unit SA32 simulates the operation of each car based on the determined appearance time, appearance floor, and destination floor of each user, and obtains the number of passengers and the car for each car at each time. status and generate it as occupancy estimate input into SA07. The car state is, for example, the floor where each car is located, the traveling direction (upward or downward direction) of each car, and the number of passengers in each car. The values recorded in log SA03 are the same. However, although the actual measurement value is recorded in the elevator operation log SA03, the occupant estimation model generation unit SA32 may generate the value by simulation.

此时,乘坐人数估计模型生成部SA32可以根据例如后述的规则/控制模板SA14(图26)中所记录的任何一个运行规则/控制参数来执行模拟。At this time, the occupant number estimation model generation unit SA32 may execute a simulation based on, for example, any one of the operation rules/control parameters recorded in the rule/control template SA14 ( FIG. 26 ) described later.

在乘坐人数估计模型生成SP011中,乘坐人数估计模型生成部SA32通过执行由步骤1和步骤2构成的两阶段处理来生成乘坐人数估计模型SA08。在步骤1中,乘坐人数估计模型生成部SA32根据模拟结果来确定每个时间的乘坐人数、分别对应求出的乘降梯人数以及轿厢状态。然后,在步骤2中,乘坐人数估计模型生成部SA32根据每部轿厢的状态、每层各个轿厢的乘梯人数和下梯人数,来求出满足用于估计乘坐人数的模型、即乘坐人数=f(乘降梯人数、轿厢状态)成立的函数f。如后所述,例如参考图20,也可以将乘降梯人数和轿厢状态作为说明指标,并且将乘坐人数作为目标变量来执行多元回归分析。In the occupant number estimation model generation SP011, the occupant number estimation model generation unit SA32 generates the occupant number estimation model SA08 by executing the two-stage process consisting of Step 1 and Step 2. In step 1, the occupant estimation model generation unit SA32 determines the occupant number at each time, the number of people getting on and off the elevator, and the state of the car, which are obtained in correspondence with each other, based on the simulation result. Then, in step 2, the occupant estimation model generation unit SA32 obtains a model for estimating the occupant, that is, the occupancy, based on the state of each car, the number of boardings and the number of people getting off the elevator for each car on each floor The number of people = f (the number of people taking the elevator, the state of the car) is a function f that holds. As will be described later, referring to FIG. 20, for example, multiple regression analysis may be performed using the number of passengers and the state of the car as explanatory indicators, and the number of passengers as a target variable.

此时,如果能够使用电梯运行日志SA03、外部信息(天气)SA04、外部信息(摄像头)SA05和外部信息(建筑物信息)SA06中的至少任意一个(或其他外部信息),则可以将这些值作为外部变量,并求出满足乘坐人数=f(乘降梯人数、轿厢状态、外部变量)成立的函数f。当求取函数f时,只需求出从在步骤1中所确定的乘坐人数转换到乘降梯人数等的逆转换即可。此外,如果求取函数f,则可以使用其他方法。At this time, if at least any one of the elevator operation log SA03, external information (weather) SA04, external information (camera) SA05, and external information (building information) SA06 (or other external information) can be used, these values can be As an external variable, a function f that satisfies the establishment of the number of passengers=f (the number of people taking the elevator, the state of the car, and the external variable) is obtained. When the function f is obtained, only the inverse conversion from the number of passengers determined in step 1 to the number of passengers taking elevators, etc. is required. Furthermore, if the function f is to be evaluated, other methods can be used.

图6是示出本发明的实施方式的乘坐人数估计部SA33的处理的流程图。FIG. 6 is a flowchart showing the processing of the occupant number estimation unit SA33 according to the embodiment of the present invention.

在乘坐人数估计处理SP02中,乘坐人数估计部SA33通过将当前的乘降梯人数SA02以及从电梯运行日志SA03中获取的实际的乘梯人数、下梯人数和轿厢状态,代入至图5中所求出的乘坐人数估计模型SA08中,来求出当前乘坐人数估计结果SA09,并保存在主存储装置105或辅助存储装置106中。由此,可以根据用户从各轿厢中的乘降状况以及每部轿厢的位置、行进方向等状态来估计即将乘坐电梯的用户的乘坐状况。In the passenger number estimation processing SP02, the passenger number estimation unit SA33 substitutes the current number of passengers SA02 and the actual number of passengers, the number of people getting off, and the car state acquired from the elevator operation log SA03 into FIG. 5 . In the obtained occupant number estimation model SA08 , a current occupant number estimation result SA09 is obtained, and stored in the main storage device 105 or the auxiliary storage device 106 . In this way, the riding status of the user who is about to take the elevator can be estimated from the riding status of each car and the state of each car, such as the position and traveling direction of the user.

各轿厢的乘降梯人数可以根据例如由控制柜CA测量的各轿厢的重量变化来估计。此外,各轿厢的位置、运行方向等取决于控制柜CA的控制。因此,根据上述乘坐人数模型处理SP01和乘坐人数估计处理SP02,即使在没有得到任何外部信息的情况下,也可以根据电梯本身所获得的信息来估计即将乘坐电梯的用户的乘坐情况。The number of people getting on and off each car can be estimated from, for example, a change in the weight of each car measured by the control cabinet CA. In addition, the position, running direction, etc. of each car depend on the control of the control cabinet CA. Therefore, according to the above-mentioned occupancy model processing SP01 and occupant estimation processing SP02, even if no external information is obtained, it is possible to estimate the occupancy of the user who is about to take the elevator based on the information obtained by the elevator itself.

另外,当前乘降梯人数SA02和电梯运行日志SA03也可以包含用于识别在获取包含于这些的数据时适用于电梯的运行规则/控制参数(也就是说控制柜CA据此来执行各轿厢的控制的运行规则/控制参数,例如参见图26)的信息。在这种情况下,乘坐人数估计部SA33根据此运行规则/控制参数的模拟,并通过将当前的乘降梯人数SA02以及从电梯运行日志SA03中获取的实际的乘梯人数、下梯人数和轿厢状态,代入至乘坐人数估计模型生成部SA32所生成的乘坐人数估计模型SA08中,来求出当前乘坐人数估计结果SA09。由此,可以执行高精度的估计。In addition, the current number of passengers SA02 and the elevator operation log SA03 may also contain operation rules/control parameters for identifying the operation rules/control parameters applicable to the elevator when acquiring the data contained in these (that is, the control cabinet CA executes each car according to this. The operating rules/control parameters of the control, for example, see Figure 26) information. In this case, the number of passengers estimating part SA33 simulates the operation rules/control parameters by comparing the current number of passengers SA02 and the actual number of passengers, the number of people getting off the elevator and the actual number of passengers obtained from the elevator operation log SA03. The car state is substituted into the occupant estimation model SA08 generated by the occupant estimation model generation unit SA32, and the current occupant estimation result SA09 is obtained. Thereby, highly accurate estimation can be performed.

此外,这时,如果能够使用电梯运行日志SA03、外部信息(天气)SA04、外部信息(摄像头)SA05和外部信息(建筑物信息)SA06中的至少任意一个(或其他外部信息)时,则可以代入使用这些。In addition, at this time, if at least one of the elevator operation log SA03, external information (weather) SA04, external information (camera) SA05, and external information (building information) SA06 (or other external information) can be used, then Substitute to use these.

图7是示出本发明的实施方式的的乘坐人数预测部SA34的处理的流程图。FIG. 7 is a flowchart showing the processing of the occupant number prediction unit SA34 according to the embodiment of the present invention.

乘坐人数预测处理SP03由乘坐人数预测SP030和格式转换SP031构成。The occupant number prediction processing SP03 consists of the occupant number prediction SP030 and the format conversion SP031.

在乘坐人数预测SP030中,乘坐人数预测部SA34使用在图6的处理中求出的每个时间点(例如,具有预定时间幅度的每个时间段)的乘坐人数估计结果SA09,来预测自存储在乘坐人数估计结果SA09中的时间起未来时间的乘坐人数,并将此结果作为乘坐人数预测结果SA10进行输出。此时,如果能够使用电梯运行日志SA03、外部信息(天气)SA04、外部信息(摄像头)SA05和外部信息(建筑物信息)SA06中的至少任意一个(或其他外部信息)时,则可以代入使用这些。例如,当能够使用外部信息(摄像头)SA05时,可以使用外部信息(摄像头)SA05中所包含的人数(SA057)来代替从乘坐人数估计结果SA09中获取的乘坐人数;当能够使用从其他外部信息中确定的乘坐人数时,则也可以使用这些。In the occupant number prediction SP030, the occupant number prediction unit SA34 uses the occupant number estimation result SA09 for each time point (for example, each time slot having a predetermined time width) obtained in the process of FIG. 6 to predict the self-storage The number of occupants at a future time from the time in the occupant number estimation result SA09, and the result is output as the occupant number prediction result SA10. At this time, if at least one of the elevator operation log SA03, external information (weather) SA04, external information (camera) SA05, and external information (building information) SA06 (or other external information) can be used, it can be used instead. These. For example, when the external information (camera) SA05 can be used, the number of people (SA057) contained in the external information (camera) SA05 can be used in place of the number of occupants acquired from the occupant number estimation result SA09; when the number of occupants obtained from other external information can be used These can also be used when the number of occupants determined in .

在格式转换SP031中,使用在乘坐人数预测SP030中求出的乘坐人数预测结果SA10,使用泊松分布将其转换为每单位时间不同人数的乘坐概率,并将此结果作为乘坐人数预测结果2_SAll来输出。可以使用此乘坐概率来执行后述的KPI模拟。In format conversion SP031, using the occupant number prediction result SA10 obtained in occupant number prediction SP030, it is converted into the occupancy probability of different occupants per unit time using Poisson distribution, and this result is used as occupant number prediction result 2_SAll. output. The KPI simulation described later can be performed using this riding probability.

图8是示出本发明的实施方式的目的地楼层估计部SA35的处理的流程图。FIG. 8 is a flowchart showing the processing of the destination floor estimation unit SA35 according to the embodiment of the present invention.

目的地楼层估计部SA35根据乘降梯人数SA02,求出每个时间段从轿厢下电梯的人的趋势,由此来估计目的地楼层,并且将此结果作为不同时间段目的地楼层估计SA12进行输出。The destination floor estimating unit SA35 estimates the destination floor by finding the trend of people getting off the elevator from the car in each time slot based on the number of people getting on and off the elevator SA02, and uses the result as the destination floor estimation SA12 for different time slots to output.

图9是示出本发明的实施方式的目的地楼层预测部SA36的处理的流程图。FIG. 9 is a flowchart showing the processing of the destination floor prediction unit SA36 according to the embodiment of the present invention.

目的地楼层预测部SA36执行目的地楼层预测处理SP05以及存储处理SP07。The destination floor prediction unit SA36 executes destination floor prediction processing SP05 and storage processing SP07.

在目的地楼层预测处理SP05中,目的地楼层预测部SA36预测乘坐用户的目的地楼层,即乘坐用户将要去的楼层。具体而言,目的地楼层预测部SA36通过将作为图7中的乘坐人数预测部SA34的处理结果的乘坐人数预测结果2_SA11,与作为图8中的目的地楼层估计部SA35的处理结果的不同时间段目的地楼层估计SA12相乘,来预测目的地楼层,并将此结果作为不同时间段目的地楼层预测结果SA13进行输出。In the destination floor prediction processing SP05, the destination floor prediction unit SA36 predicts the destination floor of the boarding user, that is, the floor to which the boarding user will go. Specifically, the destination floor prediction unit SA36 differentiates between the occupant population prediction result 2_SA11, which is the processing result of the occupant number prediction unit SA34 in FIG. 7, and the time difference, which is the processing result of the destination floor estimation unit SA35 in FIG. The segment destination floor estimation SA12 is multiplied to predict the destination floor, and the result is output as the destination floor prediction result SA13 for different time segments.

存储处理SP07是将此前求出的乘坐人数预测结果SA10和不同时间段目的地楼层预测结果SA13等存储在例如数据库SA0中的处理。执行此处理的理由是,在执行离线处理时需要过去的大量数据。The storage process SP07 is a process of storing, for example, the occupant number prediction result SA10 and the destination floor prediction result SA13 in different time zones, etc. obtained before, in the database SA0, for example. The reason for performing this processing is that a large amount of data in the past is required when performing offline processing.

图10是示出本发明的实施方式的控制选择器部SA37的处理的流程图。FIG. 10 is a flowchart showing the processing of the control selector unit SA37 according to the embodiment of the present invention.

由控制选择器部SA37执行的控制选择器SP06是用于选择满足乘坐人数预测结果SA10和不同时间段目的地楼层预测结果SA13的规则/参数列表的处理。所选参数作为输入命令CA0发送到控制柜CA。The control selector SP06 executed by the control selector section SA37 is a process for selecting a rule/parameter list that satisfies the occupancy number prediction result SA10 and the destination floor prediction result SA13 for different time periods. The selected parameters are sent to the control cabinet CA as input command CA0.

图11是示出本发明的实施方式的规则/参数评价部SA38的处理的流程图。FIG. 11 is a flowchart showing the processing of the rule/parameter evaluation unit SA38 according to the embodiment of the present invention.

规则/参数评价部SA38由KPI模拟处理SP11、有效规则/参数选择SP12、结束判断处理SP13、有效规则/参数细分化处理SP14以及显示/控制数据生成处理SP15构成。The rule/parameter evaluation unit SA38 includes KPI simulation processing SP11, valid rule/parameter selection SP12, termination judgment processing SP13, valid rule/parameter subdivision processing SP14, and display/control data generation processing SP15.

在KPI模拟处理SP11中,规则/参数评价部SA38使用规则/控制模板SA14、KPI列表SA15、不同时间段目的地楼层预测结果SA13以及乘坐人数预测结果2_SA11,在改变运行规则/控制参数的同时执行多个模拟(第1模拟),并输出KPI值。In the KPI simulation processing SP11, the rule/parameter evaluation unit SA38 executes while changing the operation rule/control parameter using the rule/control template SA14, KPI list SA15, destination floor prediction result SA13 for different time periods, and passenger number prediction result 2_SA11 Multiple simulations (1st simulation) and output KPI values.

具体而言,规则/参数评价部SA38按照不同时间段目的地楼层估计SA12中所填入的目的地楼层概率、以及乘坐人数预测结果2_SA11中所填入的每个人数的乘坐概率,在各层的候梯厅中出现用户,并与此相应地根据从规则/控制模板SA14中所选择的运行规则/控制参数来执行用于控制各轿厢的模拟。如后所述,在改变所适用的运行规则/控制参数的同时,多次执行此模拟。Specifically, the rule/parameter evaluation unit SA38 estimates the destination floor probability entered in SA12 and the occupancy probability entered in the occupant prediction result 2_SA11 according to the destination floor in different time periods, and the occupancy probability of each occupant entered in the occupant number prediction result 2_SA11 is estimated at each floor. The user appears in the hall of the , and accordingly, the simulation for controlling each car is executed according to the operation rule/control parameter selected from the rule/control template SA14. This simulation is performed multiple times while changing the applicable operating rules/control parameters, as described later.

在有效规则/参数选择SP12中,规则/参数评价部SA38从代入至KPI模拟处理SP11中的值和其结果中选择有效规则/参数。In the valid rule/parameter selection SP12, the rule/parameter evaluation unit SA38 selects the valid rule/parameter from the value substituted in the KPI simulation processing SP11 and the result thereof.

在结束判断处理SP13中,规则/参数评价部SA38判断能否看到改善效果以作为有效规则/参数选择SP12的结果,如果看到改善效果,则进入“Yes”;如果看不到,则进入“No”。In the end judgment processing SP13, the rule/parameter evaluation unit SA38 judges whether or not the improvement effect can be seen as a result of the effective rule/parameter selection SP12, and if the improvement effect is seen, it goes to "Yes"; "No".

在有效规则/参数细分化处理SP14中,规则/参数评价部SA38根据有效规则/参数选择SP12的结果,决定用于细分更有效的特征量的范围。In the effective rule/parameter subdivision processing SP14, the rule/parameter evaluation unit SA38 determines a range for subdividing more effective feature amounts based on the result of the effective rule/parameter selection SP12.

规则/参数评价部SA38通过将此结果代入KPI模拟处理SP11,重复循环,直到结束判断处理SP13看到改善效果为止。The rule/parameter evaluation unit SA38 repeats the loop by substituting this result into the KPI simulation process SP11 until the improvement effect is seen in the end judgment process SP13.

在显示/控制数据生成处理SP15中,规则/参数评价部SA38基于有效规则/参数SA17来生成规则/参数列表SA19和大厦个性化报告SA20。In the display/control data generation processing SP15, the rule/parameter evaluation section SA38 generates a rule/parameter list SA19 and a building personalized report SA20 based on the valid rule/parameter SA17.

图12是示出本发明的实施方式的由分析服务器SA保存的大厦基本信息SA00的说明图。FIG. 12 is an explanatory diagram showing the building basic information SA00 stored in the analysis server SA according to the embodiment of the present invention.

大厦基本信息SA00是记载大厦基本信息的表格。每栋大厦的电梯由多个轿厢组成,将其称为电梯组。大厦基本信息表是为了对每个电梯组执行控制,用于对其进行管理的表格(图12)。例如,图1A中的轿厢1CA1~轿厢8CA8属于一个电梯组。一个电梯组相当于作为控制柜CA群控对象的电梯群组。当在一个大厦中存在多个电梯组时,存在很多个控制柜和多个轿厢的组合。Building basic information SA00 is a table in which basic building information is recorded. The elevators in each building are made up of multiple cars, which are called elevator groups. The building basic information table is a table for managing each elevator group in order to perform control (FIG. 12). For example, cars 1CA1 to 8CA8 in FIG. 1A belong to one elevator group. An elevator group is equivalent to the elevator group that is the object of the control cabinet CA group control. When there are multiple elevator groups in a building, there are many combinations of control cabinets and multiple cars.

大厦ID(SA000)是安装有电梯的大厦的识别信息(ID)。使用不同的ID来识别各栋大厦。电梯组ID(SA001)是用于区分大厦中的电梯组的ID。组名称(SA002)是电梯组的名称。轿厢数(SA003)是构成电梯组的轿厢数量。对象楼层(SA004)表示构成电梯组的轿厢停靠的楼层。纬度(SA005)和经度(SA006)分别是表示电梯组所在位置的纬度和经度。当电梯组的面积较大时,也可以使用其重心的纬度和经度。此外,只要在覆盖整个地球的绝对坐标中有表示电梯组位置的信息即可,并且也可以是除纬度和经度以外的值。大厦名称(SA007)是电梯所在大厦的正式名称。The building ID (SA000) is identification information (ID) of the building in which the elevator is installed. Use different IDs to identify individual buildings. The elevator group ID (SA001) is an ID for distinguishing the elevator group in the building. Group Name (SA002) is the name of the elevator group. The number of cars (SA003) is the number of cars constituting the elevator group. The target floor (SA004) indicates the floor where the cars constituting the elevator group stop. The latitude (SA005) and the longitude (SA006) are the latitude and longitude indicating the location of the elevator group, respectively. When the area of the elevator group is large, the latitude and longitude of its center of gravity can also be used. Further, it is only necessary that there is information indicating the position of the elevator group in absolute coordinates covering the entire earth, and values other than latitude and longitude may be used. The building name (SA007) is the official name of the building where the elevator is located.

图12所示的是一例,在分析时如果存在大厦基本信息所需要的数据,则可以改变大厦基本信息SA00以追加此数据。FIG. 12 shows an example, and if there is data required for the building basic information at the time of analysis, the building basic information SA00 may be changed to add the data.

图13是示出本发明的实施方式的由分析服务器SA保存的随机种子SA01的说明图。FIG. 13 is an explanatory diagram showing the random seed SA01 stored in the analysis server SA according to the embodiment of the present invention.

随机种子SA01是记载在生成随机数时所使用的种子的表格。随机种子No(SA010)是随机种子的ID。使用不同的ID来识别每个随机种子。The random seed SA01 is a table describing seeds used when generating random numbers. Random seed No (SA010) is the ID of the random seed. Use a different ID to identify each random seed.

随机种子(SA011)是随机种子值。通过使用本表格,当指定随机种子No时,可以参考与其相应的值。Random Seed (SA011) is the random seed value. By using this table, when specifying the random seed No, you can refer to its corresponding value.

图13所示的是一例,当生成随机数时,如果存在必要数据,则可以改变随机种子SA01以追加此数据。An example shown in FIG. 13 is that when generating a random number, if necessary data exists, the random seed SA01 can be changed to add the data.

图14是示出本发明的实施方式的由分析服务器SA保存的乘降梯人数SA02的说明图。FIG. 14 is an explanatory diagram showing the number of passengers SA02 stored in the analysis server SA according to the embodiment of the present invention.

乘降梯人数SA02是表示电梯每个楼层各轿厢的实际乘梯人数以及下梯人数的表格。The number of people getting on and off the elevator SA02 is a table showing the actual number of people getting on and getting off the elevator for each car on each floor of the elevator.

大厦ID(SA020)是用于识别大厦的ID。电梯组ID(SA021)是用于识别大厦内多个电梯组中的各个ID。日期(SA022)是用于表示本电梯的运行状况的日期。时间(SA023)是用于表示本电梯的运行状况的时间。The building ID (SA020) is an ID for identifying the building. The elevator group ID (SA021) is an ID for identifying each of a plurality of elevator groups in the building. Date (SA022) is a date for indicating the operating status of the elevator. The time (SA023) is the time for indicating the operation status of the elevator.

星期(SA024)是用于表示本电梯的运行状况的星期。时间幅度(SA025)是用于汇总本电梯运行状况的时间幅度。轿厢1(SA026)表示已经识别出属于由电梯组ID(SA021)识别出的电梯组的一部轿厢。楼层(SA027)是轿厢1(SA026)在由日期(SA022)、时间(SA023)、星期(SA024)和时间幅度(SA025)所指定的时间段内所在的楼层。轿厢内乘梯人数(SA028)是在由日期(SA022)、时间(SA023)、星期(SA024)和时间幅度(SA025)所指定的时间段内搭乘该轿厢的用户人数(也就是轿厢内人数)。The day of the week (SA024) is the day of the week for indicating the operation status of the elevator. The time range (SA025) is a time range for summarizing the operating conditions of the elevator. Car 1 (SA026) indicates that a car belonging to the elevator group identified by the elevator group ID (SA021) has been identified. The floor (SA027) is the floor where the car 1 (SA026) is located within the time period specified by the date (SA022), time (SA023), day of the week (SA024), and time range (SA025). The number of passengers in the car (SA028) is the number of users who take the car (that is, the car) during the time period specified by the date (SA022), time (SA023), week (SA024) and time range (SA025). number of people inside).

上行方向(SA029)的乘梯人数(SA02A)表示,在由日期(SA022)、时间(SA023)、星期(SA024)和时间幅度(SA025)所指定的时间段内,当轿厢1(SA026)处于上行方向时搭乘该轿厢的用户人数(也就是乘梯人数)。上行方向(SA029)的下梯人数(SA02B)表示,在由日期(SA022)、时间(SA023)、星期(SA024)和时间幅度(SA025)所指定的时间段内,当轿厢1(SA026)处于上行方向时从该轿厢下电梯用户的人数(也就是下梯人数)。The number of passengers (SA02A) in the upward direction (SA029) indicates that in the time period specified by the date (SA022), time (SA023), day of the week (SA024) and time range (SA025), when the car 1 (SA026) In the upward direction, the number of users who take the car (that is, the number of passengers on the elevator). The number of people getting off the elevator (SA02B) in the upward direction (SA029) indicates that in the time period specified by the date (SA022), time (SA023), day of the week (SA024) and time range (SA025), when the car 1 (SA026) The number of users who get off the elevator from the car in the upward direction (that is, the number of people getting off the elevator).

下行方向(SA02C)的乘梯人数(SA02D)表示,在由日期(SA022)、时间(SA023)、星期(SA024)和时间幅度(SA025)所指定的时间段内,当轿厢处于下行方向时搭乘该轿厢的用户人数。下行方向(SA02C)的下梯人数(SA02E)表示,在由日期(SA022)、时间(SA023)、星期(SA024)和时间幅度(SA025)所指定的时间段内,当轿厢处于下行方向时的下梯人数。The number of passengers (SA02D) in the downward direction (SA02C) indicates that when the car is in the downward direction during the time period specified by the date (SA022), time (SA023), day of the week (SA024) and time range (SA025) The number of users taking this car. The number of people getting off the elevator (SA02E) in the downward direction (SA02C) indicates that when the car is in the downward direction during the time period specified by the date (SA022), time (SA023), day of the week (SA024) and time range (SA025) number of people descending the stairs.

乘降梯人数SA02包括与构成电梯组的所有轿厢相关的信息。图14所示的与轿厢1(SA026)相关的信息是其中之一。尽管在图14中未示出,但是关于其他轿厢的数据也作为乘降梯人数SA02来存储。The number of people getting on and off the elevator SA02 includes information on all the cars constituting the elevator group. The information about the car 1 (SA026) shown in FIG. 14 is one of them. Although not shown in FIG. 14 , data on other cars is also stored as the number of passengers SA02 .

在乘降梯人数SA02中填入数据的时机可以是每个事件(例如,实际发生变更时等),或者也可以是每个预定周期(例如,每1毫秒、每1秒、每1分钟等)。可以用日期(SA022)、时间(SA023)和星期(SA024)来表示实际填入的日期和时间。当按照每个预定周期填入信息时,也可以将此周期作为时间幅度(SA025)来填入。此外,不需要存储在本表格中所指定的所有数据。The timing of filling the data in the number of passengers SA02 may be every event (for example, when an actual change occurs, etc.), or may be every predetermined period (for example, every 1 millisecond, every 1 second, every 1 minute, etc. ). Date (SA022), time (SA023), and day of the week (SA024) can be used to indicate the date and time actually filled in. When filling in information every predetermined period, this period may also be filled in as a time range (SA025). In addition, all data specified in this form need not be stored.

例如,图14中表格的第一行表示:属于利用通过大厦ID“B001”识别出的大厦的电梯组ID“01”识别出的电梯组中的轿厢1(SA026),从2017年6月27日星期二上午10点0分1秒开始的5分钟内,在3楼至少停靠一次,当时轿厢内人数(SA028)为10人,上行移动过程中停靠时的乘梯人数(SA02A)和下梯人数(SA02bB)分别为15人和1人,并且下行移动过程中停靠时的乘梯人数(SA02D)和下梯人数(SA02E)分别为0人和10人。轿厢内人数(SA028)是在所停靠楼层完成乘降梯后的人数。如果在上述5分钟内轿厢1(SA026)在3楼多次停靠,则这些人数可以是这几次人数的总和,或者也可以填入每次在3楼停靠时的人数。此外,在相同的5分钟内,当该轿厢1(SA026)在另一层停靠一次以上时,则在该层的表格中填入与上述相同的信息。For example, the first row of the table in Figure 14 indicates that: Car 1 (SA026) belonging to the elevator group identified with the elevator group ID "01" of the building identified by the building ID "B001", from June 2017 At least one stop on the 3rd floor within 5 minutes starting from 10:00:01 a.m. on Tuesday, 27th, when the number of people in the car (SA028) was 10, the number of passengers at the stop during the upward movement (SA02A) and the number of people descending The number of people on the elevator (SA02bB) is 15 and 1, respectively, and the number of passengers (SA02D) and the number of people getting off the elevator (SA02E) at the stop during the downward movement are 0 and 10, respectively. The number of people in the car (SA028) is the number of people who have finished taking the elevator on the landing floor. If the car 1 (SA026) stops on the 3rd floor for many times within the above 5 minutes, the number of people can be the sum of these times, or the number of people each time it stops on the 3rd floor can be filled in. In addition, in the same 5 minutes, when the car 1 (SA026) stops more than once on another floor, the same information as above is filled in the table of the floor.

图14所示的是一例,当表示不同楼层的乘降梯人数时,如果存在必要数据,则可以改变乘降梯人数SA02以追加此数据。Fig. 14 shows an example, and when the number of people getting on and off the elevator on different floors is shown, if there is necessary data, the number of people getting on and off the elevator SA02 can be changed to add the data.

图15是示出本发明的实施方式的由分析服务器SA保存的电梯运行日志SA03的说明图。FIG. 15 is an explanatory diagram showing the elevator operation log SA03 stored in the analysis server SA according to the embodiment of the present invention.

电梯运行日志SA03是用于表示实际的电梯运行日志的表格。在此表格中,可以存储根据每个电梯组汇总的数据以及属于电梯组的轿厢数据等两方面的数据。The elevator operation log SA03 is a table for showing the actual elevator operation log. In this table, data can be stored in terms of both data aggregated by each elevator group and data of cars belonging to the elevator group.

大厦ID(SA030)是用于识别大厦的ID。电梯组ID(SA031)是用于识别大厦内的多个电梯组的ID。日期(SA032)是用于表示本电梯的运行状况的日期。时间(SA033)是用于表示本电梯的运行状况的时间。Building ID (SA030) is an ID for identifying the building. The elevator group ID (SA031) is an ID for identifying a plurality of elevator groups in the building. Date (SA032) is a date for indicating the operation status of the elevator. The time (SA033) is the time for indicating the operation status of the elevator.

星期(SA034)是用于表示本电梯的运行状况的星期。时间幅度(SA035)是用于汇总本电梯运行状况的时间的幅度。长时间等候率(SA036)是在日期(SA032)、时间(SA033)、星期(SA034)和时间幅度(SA035)所指定的时间段内,在电梯组所产生的等候时间(也就是呼叫轿厢的用户在轿厢达到之前的等候时间)中,表示大于等于预定时间长度(例如60秒)的等候时间所占的比例。预定时间长度可以通过预先指定来更改。The day of the week (SA034) is the day of the week for indicating the operation status of the elevator. The time width (SA035) is the time width for summarizing the operating conditions of the elevator. The long waiting rate (SA036) is the waiting time (that is, the calling car) generated by the elevator group during the time period specified by the date (SA032), time (SA033), week (SA034) and time range (SA035). In the waiting time of the users before the car arrives), it indicates the proportion of the waiting time greater than or equal to a predetermined time length (for example, 60 seconds). The predetermined length of time can be changed by prespecifying.

轿厢呼叫次数(SA037)是在日期(SA032)、时间(SA033)、星期(SA034)和时间幅度(SA035)所指定的时间段内,在电梯组内按下轿厢呼叫按钮的次数。交通流模式(SA038)是电梯组的运行模式。The number of car calls (SA037) is the number of times the car call button is pressed in the elevator group within the time period specified by date (SA032), time (SA033), day of the week (SA034), and time range (SA035). The traffic flow pattern (SA038) is the operating pattern of the elevator group.

长时间等候率(SA036)、轿厢呼叫次数(SA037)和交通流模式(SA038)是按照每个电梯组汇总的值,但如果存在必要数据,也可以更改上述并追加上述以外的信息。The long-time waiting rate (SA036), the number of car calls (SA037), and the traffic flow pattern (SA038) are aggregated values for each elevator group, but if necessary data exists, the above can be changed and information other than the above can be added.

轿厢1(SA039)表示已经识别出属于电梯组ID(SA031)中的一部轿厢。楼层(SA0A)是轿厢1(SA039)在日期(SA032)、时间(SA033)和星期(SA034)所指定的时间点所处的位置(楼层)。方向(SA03B)是轿厢1(SA039)在日期(SA032)、时间(SA033)和星期(SA034)所指定的时间点的运行方向。例如,上表示上行方向,下表示下行方向。Car 1 (SA039) indicates that a car belonging to the elevator group ID (SA031) has been identified. The floor (SA0A) is the position (floor) where the car 1 (SA039) is located at the time point specified by the date (SA032), the time (SA033), and the day of the week (SA034). The direction (SA03B) is the running direction of the car 1 (SA039) at the time point specified by the date (SA032), time (SA033) and day of the week (SA034). For example, up indicates the upward direction, and lower indicates the downward direction.

状态(SA03C)表示在日期(SA032)、时间(SA033)和星期(SA034)所指定的时间点的轿厢1(SA039)的状态。例如,“动作”表示轿厢1(SA039)实际上正在运行,而“停靠”表示已停靠。搭乘人数(SA03D)表示在日期(SA032)、时间(SA033)和星期(SA034)所指定的时间点,搭乘轿厢1(SA039)的人数。The state (SA03C) indicates the state of the car 1 (SA039) at the time point designated by the date (SA032), time (SA033), and day of the week (SA034). For example, "action" means that car 1 (SA039) is actually running, while "stop" means that it has stopped. The number of passengers (SA03D) indicates the number of people who took the car 1 (SA039) at the time specified by the date (SA032), the time (SA033), and the day of the week (SA034).

电梯运行日志SA03包括与构成电梯组的所有轿厢相关的信息。图15所示的轿厢1(SA039)是其中之一。尽管在图15中未示出,但是与其他轿厢相关的数据也作为电梯运行日志SA03来存储。The elevator operation log SA03 includes information on all the cars constituting the elevator group. Car 1 (SA039) shown in FIG. 15 is one of them. Although not shown in FIG. 15, data related to other cars is also stored as an elevator operation log SA03.

在电梯运行日志SA03中填入数据的时机可以是每个事件(例如,实际发生变更时等),或者也可以是每个预定周期(例如,每1毫秒、每1秒、每1分钟等)。可以用日期(SA032)、时间(SA033)和星期(SA034)来表示实际填入的日期和时间。当按照每个预定周期填入信息时,也可以将此周期作为时间幅度(SA035)来填入。此外,不需要存储在本表格中所指定的所有数据。The timing of filling data in the elevator operation log SA03 may be every event (eg, when a change actually occurs, etc.), or may be every predetermined period (eg, every 1 millisecond, every 1 second, every 1 minute, etc.) . Date (SA032), time (SA033), and day of the week (SA034) can be used to indicate the date and time actually filled in. When filling in information every predetermined period, this period may also be filled in as a time range (SA035). In addition, all data specified in this form need not be stored.

图15所示的是一例,当表示电梯运行日志时,如果存在必要数据,则可以变更电梯运行日志SA03以追加此数据。Fig. 15 shows an example, and when the elevator operation log is displayed, if necessary data exists, the elevator operation log SA03 can be changed and the data can be added.

图16是示出本发明的实施方式的由分析服务器SA保存的外部信息(天气)SA04的说明图。FIG. 16 is an explanatory diagram showing external information (weather) SA04 stored in the analysis server SA according to the embodiment of the present invention.

外部信息(天气)SA04是用于汇总与作为外部信息之一的天气相关的数据的表格。The external information (weather) SA04 is a table for summarizing data related to weather, which is one of the external information.

外部信息ID(SA040)是外部信息的识别ID。日期(SA041)是获取该外部信息的日期。时间(SA042)是获取该外部信息的时间。星期(SA043)是获取该外部信息的星期。地点(SA044)是获取该外部信息的地点。纬度(SA045)是获取该外部信息的纬度。经度(SA046)是获取该外部信息的经度。天气(SA047)、气温(SA048)和降雨量(SA049)分别是在日期(SA041)和时间(SA042)所指定的时间点的、在地点(SA044)所指定的地点的天气、气温和降雨量。The external information ID (SA040) is the identification ID of the external information. Date (SA041) is the date on which the external information was acquired. Time (SA042) is the time when the external information is acquired. The day of the week (SA043) is the week of the acquisition of the external information. The location (SA044) is the location where the external information is acquired. Latitude (SA045) is the latitude at which the external information is acquired. Longitude (SA046) is the longitude at which the external information was acquired. Weather (SA047), Air Temperature (SA048), and Rainfall (SA049) are the weather, temperature, and rainfall at the location specified by Location (SA044) at the time specified by Date (SA041) and Time (SA042), respectively .

在外部信息(天气)SA04中填入数据的时机可以是每个事件(例如,实际发生变更时等),或者也可以是每个预定周期(例如,每1毫秒、每1秒、每1分钟等)。可以用日期(SA041)、时间(SA042)和地点(SA044)来表示实际填写的日期和时间、以及获取数据的地点。此外,不需要存储在本表格中所指定的所有数据。The timing of filling data in the external information (weather) SA04 may be every event (for example, when a change actually occurs, etc.), or may be every predetermined period (for example, every 1 millisecond, every 1 second, every 1 minute) Wait). Date (SA041), time (SA042), and place (SA044) can be used to indicate the date and time actually filled in, and the place where the data was acquired. In addition, all data specified in this form need not be stored.

图16所示的是一例,当表示与作为外部信息之一的天气相关的数据时,如果存在必要数据,则可以变更外部信息(天气)SA04以追加此数据。An example shown in FIG. 16 is that when data related to weather, which is one of the external information, is displayed, if necessary data exists, the external information (weather) SA04 can be changed to add the data.

图17是示出本发明的实施方式的由分析服务器SA保存的外部信息(摄像头)SA05的说明图。FIG. 17 is an explanatory diagram showing external information (camera) SA05 stored in the analysis server SA according to the embodiment of the present invention.

外部信息(摄像头)SA05是用于将作为外部信息之一的、与通过摄像头测量识别出的信息相关的数据进行汇总的表格。External information (camera) SA05 is a table for summarizing data related to information identified by camera measurement, which is one of external information.

外部信息ID(SA050)是外部信息的识别ID。日期(SA051)是获取本信息的日期。时间(SA052)是获取本信息的时间。星期(SA053)是获取本信息的星期。大厦ID(SA054)是识别已获取本信息的大厦的ID。楼层(SA055)是获取本信息的楼层。安装地点(SA056)是为了获取本信息而安装摄像头的地点。The external information ID (SA050) is the identification ID of the external information. Date (SA051) is the date on which this information was acquired. Time (SA052) is the time when this information was acquired. The day of the week (SA053) is the day of the week for which this information was obtained. The building ID (SA054) is an ID for identifying the building that has acquired this information. Floor (SA055) is the floor where this information is acquired. The installation location (SA056) is the location where the camera is installed to obtain this information.

人数(SA057)是在日期(SA051)和时间(SA052)所指定的时间点内、在安装地点(SA056)所指定的地点安装的摄像头所检测到的人数。儿童(SA058)、成人(SA059)、男性(SA05A)、女性(SA05B)、轮椅(SA05C)和手推车(SA05D)分别是在日期(SA051)和时间(SA052)所指定的时间点、在安装地点(SA056)所指定的地点,所安装的摄像头所检测到的儿童、成人、男性、女性、轮椅和手推车的数量。以这种方式,不仅可以检测用户总数,而且还可以检测不同用户属性(例如年龄层和性别)的详细内容、以及除用户之外的物体。The number of people (SA057) is the number of people detected by the cameras installed at the location designated by the installation location (SA056) at the time point designated by the date (SA051) and time (SA052). Children (SA058), adults (SA059), males (SA05A), females (SA05B), wheelchairs (SA05C) and trolleys (SA05D) at the point of time specified by the date (SA051) and time (SA052), respectively, at the installation location (SA056) The number of children, adults, men, women, wheelchairs and trolleys detected by the cameras installed at the location specified. In this way, it is possible to detect not only the total number of users, but also the detailed contents of different user attributes such as age group and gender, as well as objects other than users.

根据在日期(SA051)和时间(SA052)所指定的时间点内、在安装地点(SA056)所指定的地点安装的摄像头所检测到的结果,愤怒(SA05E)是在该摄像头检测到的用户中,判断为愤怒用户的人数。如此一来,不仅可以检测用户人数,而且还可以利用摄像头通过面部表情和行为中检测用户的情绪,进一步计算检测到特定情绪的人数。Anger (SA05E) is among the users detected by the camera based on the results detected by the camera installed at the location specified by the installation site (SA056) at the point in time specified by date (SA051) and time (SA052). , the number of users who are judged to be angry. In this way, it is not only possible to detect the number of users, but also to use the camera to detect the user's emotions through facial expressions and behaviors, and further calculate the number of people who have detected a specific emotion.

在外部信息(摄像头)SA05中填入数据的时机可以是每个事件(例如,实际发生变更时等),或者也可以是每个预定周期(例如,每1毫秒、每1秒、每1分钟等)。可以用日期(SA051)、时间(SA052)和安装地点(SA056)来表示实际填写的日期和时间、以及获取此数据的摄像头的安装地点。此外,不需要存储在本表格中所指定的所有数据。The timing of filling data in the external information (camera) SA05 may be every event (for example, when a change actually occurs, etc.), or may be every predetermined period (for example, every 1 millisecond, every 1 second, every 1 minute) Wait). Date (SA051), time (SA052), and installation location (SA056) can be used to indicate the date and time actually filled in, and the installation location of the camera that acquired this data. In addition, all data specified in this form need not be stored.

图17所示的是一例,当表示作为外部信息之一的、与通过摄像头测量识别出的信息相关的数据时,如果存在必要数据,则可以变更外部信息(摄像头)SA05以追加此数据。FIG. 17 shows an example. When data related to information identified by camera measurement, which is one of the external information, is displayed, if necessary data exists, the external information (camera) SA05 can be changed to add the data.

图18是示出本发明的实施方式的由分析服务器SA保存的外部信息(建筑物信息)SA06的说明图。FIG. 18 is an explanatory diagram showing external information (building information) SA06 stored in the analysis server SA according to the embodiment of the present invention.

外部信息(建筑物信息)SA06是用于汇总与作为外部信息之一的建筑物相关的数据的表格。The external information (building information) SA06 is a table for summarizing data related to a building which is one of the external information.

外部信息ID(SA060)是外部信息的识别ID。大厦ID(SA061)是识别已获取本信息的大厦的ID。日期(SA062)是获取本信息的日期。时间(SA063)是获取本信息的时间。星期(SA064)是获取本信息的星期。3楼东侧(SA065)表示获取本信息的楼层(3楼)以及在划分该楼层的区域中获取本信息的区域(东侧)。存储按照每个楼层和每个区域汇总的值。可以任意添加楼层和区域,并且添加时,与3楼东侧(SA065)相同,可以对在该楼层和区域所汇总的数据进行存储。The external information ID (SA060) is the identification ID of the external information. The building ID (SA061) is an ID for identifying the building that has acquired this information. Date (SA062) is the date on which this information was acquired. Time (SA063) is the time when this information was acquired. The day of the week (SA064) is the day of the week for which this information was obtained. The east side of the 3rd floor (SA065) indicates the floor (3rd floor) where this information is acquired and the area (east side) where this information is acquired in the area dividing the floor. Stores values aggregated per floor and per area. Floors and areas can be added arbitrarily, and when adding, the data collected on the floors and areas can be stored in the same way as on the east side of the third floor (SA065).

用电量(SA066)和用水量(SA067)分别是在日期(SA062)和时间(SA063)所指定的时间点的3楼东侧(SA065)的用电量和用水量。温度(SA068)和湿度(SA069)分别是在日期(SA062)和时间(SA063)所指定的时间点的3楼东侧(SA065)的温度和湿度。停留人数(SA06A)是在日期(SA062)和时间(SA063)所指定的时间点的3楼东侧(SA065)的停留人数。The electricity consumption (SA066) and the water consumption (SA067) are the electricity consumption and the water consumption on the east side of the 3rd floor (SA065) at the time specified by the date (SA062) and the time (SA063), respectively. The temperature (SA068) and the humidity (SA069) are the temperature and humidity of the east side of the 3rd floor (SA065) at the time point specified by the date (SA062) and the time (SA063), respectively. The number of people staying (SA06A) is the number of people staying on the east side of the 3rd floor (SA065) at the time specified by the date (SA062) and time (SA063).

在外部信息(建筑物信息)SA06中填入数据的时机可以是每个事件(例如,实际发生变更时等),或者也可以是每个预定周期(例如,每1毫秒、每1秒、每1分钟等)。可以用日期(SA062)、时间(SA062)和3楼东侧(SA065)来表示实际填写的日期和时间、以及获取此数据的地点。此外,不需要存储在本表格中所指定的所有数据。The timing of filling data in the external information (building information) SA06 may be every event (for example, when a change actually occurs, etc.), or may be every predetermined period (for example, every 1 millisecond, every 1 second, every 1 minute, etc.). Date (SA062), time (SA062), and the east side of the third floor (SA065) can be used to indicate the date and time actually filled in, and the place where this data was acquired. In addition, all data specified in this form need not be stored.

图18所示的是一例,当表示与作为外部信息之一的建筑物相关的数据时,如果存在必要数据,则可以变更外部信息(建筑物信息)SA06以追加此数据。An example shown in FIG. 18 is that when data related to a building, which is one of the external information, is displayed, if necessary data exists, the external information (building information) SA06 can be changed to add the data.

图19是示出本发明的实施方式的由分析服务器SA保存的乘坐人数估计输入SA07的说明图。FIG. 19 is an explanatory diagram showing the occupant number estimation input SA07 held by the analysis server SA according to the embodiment of the present invention.

乘坐人数估计输入SA07是存储由乘坐人数模型处理SP01内的乘坐人数数据生成SP010所生成的数据的表格。所生成的数据包括每个楼层的乘坐人数、不同轿厢的乘降梯人数以及轿厢状态。The occupant number estimation input SA07 is a table in which data generated by the occupant number data generation SP010 in the occupant number model processing SP01 is stored. The data generated includes the number of passengers on each floor, the number of people taking elevators in different cars, and the status of the car.

乘坐人数估计输入ID(SA070)是用于识别乘坐人数估计输入值的ID。时间(SA071)、星期(SA072)和时间幅度(SA073)分别是由乘坐人数数据生成SP010所生成的时间、星期和时间幅度。乘坐人数(SA074)是由乘坐人数数据生成SP010所生成的乘坐人数。按照不同的楼层来求出乘坐人数。在图19中,用3楼(SA075)表示3楼的乘坐人数。尽管在图19中未示出,但是其他楼层的乘坐人数也按照相同方式进行填入。可以按照每个楼层、每个区域和每个候梯厅来生成乘坐人数,在这种情况下,将生成的乘坐人数存储在乘坐人数(SA074)中。The occupant estimation input ID (SA070) is an ID for identifying the occupant estimation input value. The time (SA071), the day of the week (SA072), and the time width (SA073) are the time, day of the week, and time width generated by the passenger number data generation SP010, respectively. The number of passengers (SA074) is the number of passengers generated by the number of passengers data generation SP010. Calculate the number of passengers by floor. In FIG. 19, the number of passengers on the third floor is represented by the third floor (SA075). Although not shown in FIG. 19 , the number of passengers on other floors is also filled in the same way. The number of passengers may be generated for each floor, each area, and each hall, and in this case, the generated number of passengers is stored in the number of passengers (SA074).

不同轿厢的乘降梯人数(SA076)是在时间(SA071)、星期(SA072)和时间幅度(SA073)所指定的时间段内、由乘坐人数数据生成SP010所生成的不同轿厢的乘降梯人数。不同轿厢的乘降梯人数(SA076)按照不同轿厢来求出。在图19中,用轿厢1(SA077)表示轿厢1的不同轿厢的乘降梯人数。在轿厢1(SA077)中存储与轿厢1的乘降梯人数相关的信息,楼层(SA078)是轿厢所在的楼层,上行方向(SA079)是向上运行的轿厢停靠在该楼层时的乘梯人数和下梯人数,下行方向(SA07A)是向下运行的轿厢停靠在该楼层时的乘梯人数和下梯人数。除上述内容外,轿厢1(SA077)中还可以存储与轿厢1相关的其他信息。不同轿厢乘降梯人数(SA076)对于轿厢1以外的轿厢来说,也可以存储与该轿厢相关的信息。The number of people getting on and off the elevator by car (SA076) is the number of people getting on and off the elevator in the time period specified by time (SA071), day of the week (SA072), and time range (SA073), generated by the number of passengers data generation SP010. number of ladders. The number of people on elevators (SA076) by car is obtained for each car. In Fig. 19 , the number of people riding on and off the elevator in different cars of the car 1 is represented by car 1 (SA077). In the car 1 (SA077), the information related to the number of people taking the elevator in the car 1 is stored, the floor (SA078) is the floor where the car is located, and the upward direction (SA079) is when the upward traveling car stops at the floor. The number of people getting on the elevator and the number of people getting off the elevator, the downward direction (SA07A) is the number of people who get on the elevator and the number of people getting off the elevator when the car running down is parked on the floor. In addition to the above, other information related to the car 1 may also be stored in the car 1 (SA077). The number of people riding on and off the elevator by car (SA076) For a car other than the car 1, information related to the car may be stored.

轿厢状态(SA07B)存储与轿厢状态相关的数据,并且将与轿厢1相关的数据存储在轿厢1(SA07C)中。楼层是轿厢1(SA07C)在时间(SA071)、星期(SA072)和时间幅度(SA073)所指定的时间段内所在的楼层。方向是轿厢1(SA07C)在时间(SA071)、星期(SA072)和时间幅度(SA073)所指定的时间段内运行的方向。例如,“上”表示上行方向,“下”表示下行方向。The car state (SA07B) stores the data related to the car state, and stores the data related to the car 1 in the car 1 (SA07C). The floor is the floor where the car 1 (SA07C) is located in the time period specified by the time (SA071), the day of the week (SA072), and the time range (SA073). The direction is the direction in which car 1 (SA07C) travels for the time period specified by time (SA071), day of the week (SA072), and time amplitude (SA073). For example, "up" indicates the upward direction, and "down" indicates the downward direction.

状态表示轿厢1(SA07C)在时间(SA071)、星期(SA072)和时间幅度(SA073)所指定的时间段内的轿厢1(SA07C)的状态。例如,“动作”表示其实际上正在运行,而“停靠”表示已停靠。搭乘人数表示在时间(SA071)、星期(SA072)和时间幅度(SA073)所指定的时间段内搭乘轿厢1(SA07C)的人数。除上述之外,轿厢1(SA07C)中还可以存储与轿厢1的状态相关的信息。轿厢状态(SA07B)对于轿厢1以外的轿厢来说,也可以存储与该轿厢的状态相关的信息。The state indicates the state of the car 1 (SA07C) in the time period specified by the time (SA071), the day of the week (SA072), and the time width (SA073) of the car 1 (SA07C). For example, "action" means it's actually running, and "dock" means it's docked. The number of passengers represents the number of people who took the car 1 (SA07C) during the time period specified by the time (SA071), the day of the week (SA072), and the time range (SA073). In addition to the above, information related to the state of the car 1 may be stored in the car 1 (SA07C). The car state (SA07B) may store information related to the state of the car other than the car 1 .

在乘坐人数估计输入SA07中填入数据的时机可以是每个事件(例如,实际发生变更时等),或者也可以是每个预定周期(例如,每1毫秒、每1秒、每1分钟等)。可以用时间(SA071)和星期(SA072)来表示实际填入的日期和时间。此外,不需要存储在本表格中所指定的所有数据。The timing of filling data in the occupancy estimation input SA07 may be every event (eg, when a change actually occurs, etc.), or may be every predetermined period (eg, every 1 millisecond, every 1 second, every 1 minute, etc.) ). The date and time actually filled in can be represented by time (SA071) and day of the week (SA072). In addition, all data specified in this form need not be stored.

图19所示的是一例,当表示在乘坐人数数据生成SP010中所生成的数据时,如果存在必要数据,则可以变更乘坐人数估计输入SA07以追加此数据。Fig. 19 shows an example, and when the data generated in the occupant data generation SP010 is shown, if necessary data exists, the occupant estimation input SA07 can be changed to add the data.

图20是示出本发明的实施方式的由分析服务器SA保存的乘坐人数估计模型SA08的说明图。FIG. 20 is an explanatory diagram showing the occupant number estimation model SA08 stored in the analysis server SA according to the embodiment of the present invention.

乘坐人数估计模型SA08是在乘坐人数模型处理SP01中存储由乘坐人数估计模型生成SP011所生成的数据的表格。生成的数据是满足“乘坐人数=f(乘降梯人数、轿厢状态、外部信息)”成立时的函数f。作为乘坐人数估计输入SA07获取乘坐人数、乘降梯人数以及轿厢状态,并且从外部信息(天气)SA04、外部信息(摄像头)SA05和外部信息(建筑物信息)SA06中获取外部信息。The occupant number estimation model SA08 is a table in which data generated by the occupant number estimation model generation SP011 is stored in the occupant number model processing SP01. The generated data is a function f satisfying "the number of passengers = f (the number of people getting on and off the elevator, the state of the car, and external information)". The number of occupants, the number of people getting on the elevator, and the state of the car are acquired as the number of passengers estimated input SA07, and external information is acquired from external information (weather) SA04, external information (camera) SA05, and external information (building information) SA06.

乘坐人数估计ID(SA080)是识别乘坐人数估计模型的ID。楼层(SA081)是用作所生成的估计模型的对象的楼层。方向(SA082)是用作所生成的估计模型的对象的方向。时间(SA083)是用作所生成的估计模型的对象的时间。星期(SA084)是用作所生成的估计模型的对象的星期。时间幅度(SA082)是用作所生成的估计模型的对象的时间幅度。The occupant number estimation ID (SA080) is an ID for identifying the occupant number estimation model. The floor (SA081) is the floor used as the object of the generated estimation model. The direction (SA082) is the direction of the object used as the generated estimation model. Time (SA083) is the time used as the object of the generated estimation model. Week (SA084) is the week used as the object of the generated estimation model. The time magnitude (SA082) is the time magnitude of the object used as the generated estimation model.

在后栏中存储函数f的系数。从乘坐人数估计输入SA07的不同轿厢乘降梯人数(SA076)、轿厢状态(SA07B)、或外部信息(天气)SA04、外部信息(摄像头)SA05以及外部信息(建筑物信息)SA06中选择一项以上的数据作为特征量。然后,将这些特征量作为说明指标、乘坐人数(SA074)作为目标指标,并且可以通过多元回归分析来求出特征量的系数。乘降梯人数系数1(SA085)、轿厢状态系数1(SA087)和外部变量系数1(SA088)是通过分析而求出的特征量系数。由于求出了每个特征量的系数,因此最好可以存储每个特征量的系数。Store the coefficients of the function f in the back column. Select from the number of people in different cars (SA076), car status (SA07B), or external information (weather) SA04, external information (camera) SA05, and external information (building information) SA06 entered in SA07 for estimating the number of passengers One or more pieces of data are used as feature quantities. Then, using these feature amounts as an explanatory index and the number of passengers (SA074) as a target index, the coefficients of the feature amounts can be obtained by multiple regression analysis. The number of passengers coefficient 1 (SA085), the car state coefficient 1 (SA087), and the external variable coefficient 1 (SA088) are feature quantity coefficients obtained by analysis. Since the coefficient of each feature amount is obtained, it is preferable to store the coefficient of each feature amount.

作为用于生成估计乘坐人数的模型的方法,也可以使用除多元回归分析以外的分析方法。As a method for generating a model for estimating the number of occupants, analysis methods other than multiple regression analysis can also be used.

在乘坐人数估计模型SA08中填入数据的时机可以是每个事件(例如,实际发生变更时等),或者也可以是每个预定周期(例如,每1毫秒、每1秒、每1分钟等)。可以用时间(SA083)和星期(SA084)来表示实际填入的日期和时间。此外,不需要存储在本表格中所指定的所有数据。The timing of filling data in the occupancy estimation model SA08 may be every event (for example, when a change actually occurs, etc.), or may be every predetermined period (for example, every 1 millisecond, every 1 second, every 1 minute, etc. ). The date and time actually filled in can be represented by time (SA083) and day of the week (SA084). In addition, all data specified in this form need not be stored.

图20所示的是一例,当表示在乘坐人数估计模型生成SP011中所生成的模型时,如果存在必要数据,则可以变更乘坐人数估计模型SA08以追加此数据。Fig. 20 shows an example, and when the model generated in the occupant estimation model generation SP011 is shown, if necessary data exists, the occupant estimation model SA08 may be changed to add the data.

图21是示出本发明的实施方式的由分析服务器SA保存的乘坐人数估计结果SA09的说明图。FIG. 21 is an explanatory diagram showing the occupant number estimation result SA09 stored in the analysis server SA according to the embodiment of the present invention.

乘坐人数估计结果SA09是在乘坐人数估计处理SP02内存储由乘坐人数估计SP020所生成的数据的表格。在乘坐人数估计SP020中,输入所存储的乘坐人数估计模型(函数f)、当前时间乘降梯人数、轿厢状态以及外部变量,并估计每个楼层所要乘坐的人数。将此结果存储在图21所示的乘坐人数估计结果SA09中。The occupant number estimation result SA09 is a table in which the data generated by the occupant number estimation SP020 is stored in the occupant number estimation processing SP02. In the passenger number estimation SP020, the stored passenger number estimation model (function f), the number of passengers taking the elevator at the current time, the state of the car, and external variables are input, and the number of passengers to be taken on each floor is estimated. This result is stored in the occupant number estimation result SA09 shown in FIG. 21 .

乘坐人数估计ID(SA090)是用于识别乘坐人数估计的ID。日期(SA092)是用于估计乘坐人数的日期。时间(SA093)是用于估计乘坐人数的时间。星期(SA094)是用于估计乘坐人数的星期。时间幅度(SA092)是用于估计乘坐人数的时间幅度。楼层(SA093)是用于估计乘坐人数的楼层。地点(SA094)是用于估计乘坐人数的地点。乘坐人数(SA095)是用于估计乘坐人数的乘坐人数。The estimated occupant number ID (SA090) is an ID for identifying the estimated number of occupants. Date (SA092) is a date for estimating the number of occupants. Time (SA093) is the time for estimating the number of passengers. Week (SA094) is the week used to estimate the number of occupants. The time span (SA092) is the time span for estimating the number of passengers. The floor (SA093) is a floor for estimating the number of passengers. The location (SA094) is a location for estimating the number of occupants. The number of passengers (SA095) is the number of passengers used to estimate the number of passengers.

在乘坐人数估计结果SA09中填入数据的时机可以是每个事件(例如,实际发生变更时等),或者也可以是每个预定周期(例如,每1毫秒、每1秒、每1分钟等)。可以用日期(SA092)、时间(SA093)和星期(SA094)来表示实际填入的日期和时间。此外,不需要存储在本表格中所指定的所有数据。The timing of filling the data in the occupancy estimation result SA09 may be every event (for example, when a change actually occurs, etc.), or may be every predetermined period (for example, every 1 millisecond, every 1 second, every 1 minute, etc. ). Date (SA092), time (SA093), and day of the week (SA094) can be used to indicate the date and time actually filled in. In addition, all data specified in this form need not be stored.

图21所示的是一例,当表示在乘坐人数估计SP020中所生成的乘坐人数时,如果存在必要数据,则可以变更乘坐人数估计结果SA09以追加此数据。Fig. 21 shows an example, and when the occupant number generated in the occupant number estimation SP020 is shown, if necessary data exists, the occupant number estimation result SA09 can be changed to add the data.

图22是示出本发明的实施方式的由分析服务器SA保存的乘坐人数预测结果SA10的说明图。FIG. 22 is an explanatory diagram showing the occupant number prediction result SA10 stored in the analysis server SA according to the embodiment of the present invention.

乘坐人数预测结果SA10是在乘坐人数预测处理SP03内存储由乘坐人数估计SP020所生成的数据的表格。在乘坐人数预测SP030中,乘坐人数预测部SA34使用在乘坐人数估计处理SP02中所求出的乘坐人数估计结果SA09和外部信息,来执行用于估计未来乘坐人数的处理。将此结果存储在图22所示的乘坐人数预测结果SA10中。The occupant number prediction result SA10 is a table in which the data generated by the occupant number estimation SP020 is stored in the occupant number prediction processing SP03. In the occupant number prediction SP030, the occupant number prediction unit SA34 executes processing for estimating the future occupant number using the occupant number estimation result SA09 obtained in the occupant number estimation process SP02 and external information. This result is stored in the occupant number prediction result SA10 shown in FIG. 22 .

如下面参照图7所说明的,乘坐人数预测SP030的输入包括用于分析的时间幅度(例如,过去的10分钟)、乘坐人数估计结果SA09、外部信息(天气)SA04、外部信息(摄像头)SA05以及外部信息(建筑物信息)SA06,而输出的是未来乘坐人数。As explained below with reference to FIG. 7 , the input of the occupant number prediction SP030 includes the time range for analysis (for example, the past 10 minutes), the occupant number estimation result SA09, the external information (weather) SA04, the external information (camera) SA05 And external information (building information) SA06, and the output is the number of passengers in the future.

作为预测乘坐人数的方法,例如,可以使用AR模型(自回归模型)等,但是也可以使用除了AR模型之外的分析方法。As a method of predicting the number of passengers, for example, an AR model (autoregressive model) or the like can be used, but an analysis method other than the AR model can also be used.

乘坐人数预测ID(SA100)是识别已执行乘坐人数预测的ID。日期(SA101)、时间(SA102)和星期(SA103)分别是作为分析对象(即在进行分析的时间点)的日期、时间和星期。预测时间(SA104)是预测分析对象的时间(即预测该时间的乘坐人数)。时间幅度(SA105)是分析对象的时间幅度。楼层(SA106)是分析对象的楼层。地点(SA107)是分析对象的地点。乘坐人数(SA108)是预测分析对象时的乘坐人数。The occupant number prediction ID ( SA100 ) is an ID for identifying that the occupant number prediction has been performed. Date ( SA101 ), time ( SA102 ), and day of the week ( SA103 ) are the date, time, and week of the analysis object (ie, at the point in time when the analysis is performed), respectively. The predicted time ( SA104 ) is the predicted time to be analyzed (ie, the predicted number of passengers at that time). The time range (SA105) is the time range of the analysis object. Floor (SA106) is the floor to be analyzed. The location (SA107) is the location of the analysis object. The number of occupants (SA108) is the number of occupants at the time of prediction analysis.

例如,图22中的乘坐人数预测结果SA10的第一行表示,从2017年6月27日星期二10点6分1秒开始的5分钟内,预测3楼电梯楼层的乘坐人数的处理是于当日上午10点1分1秒执行的,其结果表明,预测乘坐人数为12人。For example, the first row of the passenger number prediction result SA10 in Figure 22 indicates that within 5 minutes from 10:6:1 on Tuesday, June 27, 2017, the process of predicting the number of passengers on the elevator floor on the third floor is performed on that day. Executed at 10:00 a.m. 1 second, the result shows that the predicted number of passengers is 12 people.

在乘坐人数预测结果SA10中代入的时机可以是每个事件(例如,实际发生变更时等),或者也可以是每个预定周期(例如,每1毫秒、每1秒、每1分钟等)。可以用日期(SA101)、时间(SA102)和星期(SA103)来表示实际填入的日期和时间。此外,不需要存储在本表格中所指定的所有数据。The timing to be substituted into the occupant number prediction result SA10 may be every event (eg, when a change actually occurs) or every predetermined period (eg, every 1 millisecond, every 1 second, every 1 minute, etc.). Date (SA101), time (SA102), and day of the week (SA103) can be used to indicate the date and time actually filled in. In addition, all data specified in this form need not be stored.

图22所示的是一例,当在乘坐人数预测SP030中表示乘坐人数预测时,如果存在必要数据,则可以变更乘坐人数预测结果SA10以追加此数据。An example shown in FIG. 22 is that when the occupant number prediction is indicated in the occupant number prediction SP030, if necessary data exists, the occupant number prediction result SA10 can be changed to add the data.

图23是示出本发明的实施方式的由分析服务器SA保存的乘坐人数预测结果2_SA11的说明图。FIG. 23 is an explanatory diagram showing the occupant number prediction result 2_SA11 stored in the analysis server SA according to the embodiment of the present invention.

乘坐人数预测结果2_SA11是用于存储对在乘坐人数预测处理SP03中由格式转换SP031所生成的乘坐人数预测进行格式转换后的结果的表格。The occupant number prediction result 2_SA11 is a table for storing the result of format conversion of the occupant number prediction generated by the format conversion SP031 in the occupant number prediction processing SP03.

在格式转换SP031中,乘坐人数预测部SA34使用乘坐人数预测结果SA10,并利用泊松分布来求出每单位时间不同人数的乘坐概率。将此结果存储在图23所示的乘坐人数预测结果2_SA11中。In the format conversion SP031, the occupant number prediction unit SA34 uses the occupant number prediction result SA10 to obtain the occupancy probability of the different number of people per unit time using the Poisson distribution. This result is stored in the occupant number prediction result 2_SA11 shown in FIG. 23 .

泊松分布的公式如下式(1)所示。通过将不同楼层的乘坐人数代入式(1)中的λ,可以求出k人以上的乘坐概率P(k)。The formula of the Poisson distribution is shown in the following formula (1). By substituting the number of passengers on different floors into λ in Equation (1), the riding probability P(k) of more than k passengers can be obtained.

【数1】【Number 1】

Figure BDA0002455728880000131
Figure BDA0002455728880000131

上述示例是假设乘坐人数的概率分布为泊松分布时,求出每个乘坐人数的乘坐概率的方法。但是,为了求出乘坐人数的概率,也可以使用除泊松分布方法以外的分析方法。The above example is a method of calculating the occupancy probability for each occupant, assuming that the probability distribution of the occupants is a Poisson distribution. However, in order to obtain the probability of the number of passengers, an analysis method other than the Poisson distribution method may be used.

乘坐人数预测ID(SA110)是用于识别已执行乘坐人数预测的ID。日期(SA111)、时间(SA112)和星期(SA113)分别是作为分析对象(即在进行分析的时间点)的日期、时间和星期。预测时间(SA114)是预测分析对象的时间(即预测该时间的乘坐概率)。时间幅度(SA115)是分析对象的时间幅度。楼层(SA116)是分析对象的楼层。地点(SA117)是分析对象的地点。一人以上的乘坐概率(SA118)是每单位时间内一人以上的用户的乘坐概率。两人以上的乘坐概率(SA119)是每单位时间内两人以上的用户的乘坐概率。作为单位时间,也可以使用时间幅度(SA115)。The occupant number prediction ID ( SA110 ) is an ID for identifying the occupant number prediction that has been performed. Date (SA111), time (SA112), and day of the week (SA113) are the date, time, and day of the week that are the objects of analysis (ie, at the point in time when the analysis is performed). The predicted time ( SA114 ) is the time at which the analysis target is predicted (ie, the predicted ride probability at that time). The time range (SA115) is the time range of the analysis object. Floor (SA116) is the floor to be analyzed. The location (SA117) is the location of the analysis object. The riding probability of more than one person ( SA118 ) is the riding probability of one or more users per unit time. The riding probability of two or more people ( SA119 ) is the riding probability of two or more users per unit time. As the unit time, the time width (SA115) can also be used.

例如,图23中的乘坐人数预测结果2_SA11的第一行示出了与图22中的乘坐人数预测结果SA10的第一行中所填入的预测结果相对应的示例。即图23中的乘坐人数预测结果2_SA11的第一行表示,从预计在3楼电梯楼层处乘坐电梯的人数“12人”中,预测每单位时间内在3楼电梯楼层处一人以上的用户的乘坐概率为90%,两人以上的用户的乘坐概率为75%。尽管在图23中未示出,但是与此相同,也可以计算三人以上的用户的乘坐概率、四人以上的用户的乘坐概率,并且将其填入乘坐人数预测结果2_SA11中。For example, the first row of the occupant number prediction result 2_SA11 in FIG. 23 shows an example corresponding to the prediction result filled in the first row of the occupant number prediction result SA10 in FIG. 22 . That is, the first row of the number of occupants prediction result 2_SA11 in Figure 23 indicates that from the number of people "12 people" who are expected to take the elevator on the elevator floor on the 3rd floor, the occupancy of more than one user on the elevator floor on the 3rd floor per unit time is predicted. The probability is 90%, and the probability of riding for two or more users is 75%. Although not shown in FIG. 23 , similarly, the riding probability of three or more users and the riding probability of four or more users may be calculated and filled in the occupant number prediction result 2_SA11.

图23所示的是一例,当在格式转换SP031中表示乘坐人数预测时,如果存在必要数据,则可以变更乘坐人数预测结果2_SAl1以追加此数据。An example shown in FIG. 23 is that when the occupant number prediction is indicated in the format conversion SP031, if necessary data exists, the occupant number prediction result 2_SAl1 can be changed and the data can be added.

图24是示出本发明的实施方式的由分析服务器SA保存的不同时间段目的地楼层估计SA12的说明图。FIG. 24 is an explanatory diagram showing the destination floor estimation SA12 for different time periods held by the analysis server SA according to the embodiment of the present invention.

不同时间段目的地楼层估计SA12是存储目的地楼层估计处理SP04所生成的数据的表格。在目的地楼层估计处理SP04中,目的地楼层估计部SA35使用不同楼层的乘降梯人数(SA02)来生成用于估计不同时间段目的地楼层的模型。具体而言,目的地楼层估计部SA35对每个时间段内不同楼层的下梯人数进行计数,并且求出不同楼层的下梯人数的趋势。然后,将其转换为整体为100%的估计值。将此结果存储在图24所示的不同时间段目的地楼层估计SA12中。The destination floor estimation SA12 for different time periods is a table in which data generated by the destination floor estimation processing SP04 is stored. In the destination floor estimation processing SP04, the destination floor estimation unit SA35 generates a model for estimating the destination floor in a different time zone using the number of people getting on and off the elevator at the different floors (SA02). Specifically, the destination floor estimation unit SA35 counts the number of people getting off the elevators on different floors in each time zone, and obtains the trend of the number of people getting off the elevators on different floors. Then, convert it to an estimate that is 100% overall. This result is stored in the destination floor estimation SA12 for different time periods shown in FIG. 24 .

目的地楼层估计ID(SA120)是用于识别已执行的目的地楼层估计的ID。日期(SA121)、时间(SA122)、星期(SA123)和时间幅度(SA124)分别是分析对象的日期、时间、星期和时间幅度。乘梯楼层(SA125)是用户的乘梯楼层。方向(SA126)是轿厢运行的方向。目的地楼层(SA127)是用户的下梯楼层。相对于电梯停靠的楼层,填入整体为100%的估计值。The destination floor estimation ID ( SA120 ) is an ID for identifying the executed destination floor estimation. Date (SA121), time (SA122), day of the week (SA123), and time range (SA124) are the date, time, day of the week, and time range of the analysis object, respectively. The boarding floor (SA125) is the boarding floor of the user. The direction (SA126) is the direction in which the car travels. The destination floor (SA127) is the landing floor of the user. Fill in an estimate of 100% overall relative to the floor where the elevator stops.

例如,图24中的第一行表示,从2017年6月27日星期二上午10点1分1秒开始的60分钟内,在3楼乘坐处于上行方向的轿厢的用户中,有10%在26层下电梯,另有10%在27层下电梯,这是根据乘降梯人数SA02进行估计的。虽然在图24中省略了在其他楼层下电梯的用户的比例,但是计算在3楼乘坐电梯的用户的所有目的地楼层的比例之和为100%。对于在其他楼层乘梯的用户的目的地楼层来说,同样也计算该比例。在本实施方式中,这些比例可以用作目的地楼层概率,即出现在各个楼层的乘梯处的用户的目的地楼层即为该楼层的概率。For example, the first row in Figure 24 indicates that within 60 minutes from 10:1:1 a.m. on Tuesday, June 27, 2017, 10% of the users who took the car in the upward direction on the 3rd floor were in The 26th floor gets off the elevator, and another 10% gets off the elevator on the 27th floor, which is estimated based on the number of people taking the elevator SA02. Although the proportion of users who get off the elevator on other floors is omitted in FIG. 24 , the sum of the proportions of all destination floors of users who take the elevator on the third floor is calculated to be 100%. This ratio is also calculated for the destination floors of users who take elevators on other floors. In this embodiment, these ratios can be used as destination floor probabilities, that is, the probability that the destination floor of the user who appears at the boarding place of each floor is the floor.

另外,例如,当根据外部信息(摄像头)SA05等能够判断在各个楼层乘坐轿厢的用户与在各个楼层从轿厢下电梯的用户是否为同一个人时,根据此判断结果,确定在各个楼层乘坐电梯的用户分别是在哪一楼层下梯,并据此来计算在各个楼层乘坐电梯的用户的目的地楼层比例,例如在3楼乘梯的用户中,在第26层下电梯的用户的比例为10%等。但是,当不能使用上述外部信息时,例如,当根据轿厢重量来估计在各个楼层乘降梯人数等无法识别乘降梯用户的每个人时,可以根据某种假设近似计算目的地楼层比例。In addition, for example, when it can be determined whether the user who rides the car on each floor and the user who gets off the elevator from the car on each floor are the same person based on external information (camera) SA05, etc., it is determined to ride on each floor according to the judgment result. On which floor the elevator users get off the elevator, and based on this, the proportion of the destination floor of the users who take the elevator on each floor is calculated. For example, among the users who take the elevator on the 3rd floor, the proportion of users who get off the elevator on the 26th floor 10% etc. However, when the above-mentioned external information cannot be used, for example, when estimating the number of elevator users on each floor based on the car weight, etc., each of the elevator users cannot be identified, the destination floor ratio can be approximated based on certain assumptions.

例如,可以在日期(SA121)、时间(SA122)、星期(SA123)和时间幅度(SA124)所指定的时间段内汇总各个楼层下电梯的用户人数,计算在第26层下电梯的用户人数占在除3楼以外的楼层下电梯的用户人数的比例,以用作在第26层下电梯用户占在3楼乘坐电梯的用户的比例(即在3楼乘坐电梯的用户的目的地楼层为26楼的概率)。在这种情况下,可以使用相同的方法,计算在其他楼层下电梯的用户的比例、以及从其他楼层乘坐电梯后在各个楼层下电梯的用户的比例。For example, the number of users who get off the elevator on each floor can be summarized in the time period specified by the date (SA121), time (SA122), week (SA123) and time range (SA124), and the number of users who get off the elevator on the 26th floor is calculated. The proportion of the number of users who got off the elevator on floors other than the 3rd floor, to be used as the proportion of users who got off the elevator on the 26th floor to the users who took the elevator on the 3rd floor (i.e. the destination floor of users who took the elevator on the 3rd floor was 26 probability of building). In this case, the same method can be used to calculate the proportion of users who get off the elevator on other floors, and the proportion of users who get off the elevator on each floor after taking the elevator from other floors.

图24所示的是一例,当在目的地楼层估计处理SP04中表示目的地楼层估计时,如果存在必要数据,则可以变更不同时间段目的地楼层估计SA12以追加此数据。An example shown in FIG. 24 is that when the destination floor estimation is indicated in the destination floor estimation processing SP04, if there is necessary data, the time zone destination floor estimation SA12 can be changed to add the data.

图25是示出本发明的实施方式的由分析服务器SA保存的不同时间段目的地楼层预测结果SA13的说明图。FIG. 25 is an explanatory diagram showing the destination floor prediction result SA13 for different time periods held by the analysis server SA according to the embodiment of the present invention.

不同时间段目的地楼层预测结果SA13是用于存储在目的地楼层预测处理SP05内,由不同时间段目的地楼层预测SP051所生成的数据的表格。在不同时间段目的地楼层预测SP051中,目的地楼层预测部SA36使用不同时间段目的地楼层估计SA12和乘坐人数预测结果2_SA11作为输入数据,并且通过对这些进行组合,可以预测乘梯用户将要去往哪一楼层。具体而言,可以按照不同楼层将预测乘梯时间的乘坐概率与同一时间的目的地楼层估计相乘。The time zone destination floor prediction result SA13 is a table for storing data generated by the different time zone destination floor prediction SP051 in the destination floor prediction processing SP05. In the different time period destination floor prediction SP051, the destination floor prediction section SA36 uses the different time period destination floor estimation SA12 and the occupant number prediction result 2_SA11 as input data, and by combining these, it is possible to predict that the boarding user will go to Which floor to go to. Specifically, the boarding probability of the predicted boarding time can be multiplied by the estimated destination floor at the same time for each floor.

如上所示的不同时间段目的地楼层的预测方法是一个示例,也可以采用其他方法。将此结果存储在图25所示的不同时间段目的地楼层预测结果SA13中。The forecasting method for destination floors in different time periods shown above is an example, and other methods can also be used. This result is stored in the destination floor prediction result SA13 for different time periods shown in FIG. 25 .

目的地楼层预测ID(SA130)是用于识别已执行目的地楼层预测的ID。日期(SA131)、时间(SA132)和星期(SAl33)分别是作为分析对象(即在进行分析的时间点)的日期、时间和星期。预测时间(SA134)是预测分析对象的时间(即预测该时间的乘坐概率)。时间幅度(SA135)是分析对象的时间幅度。乘梯楼层(SA136)是分析对象的乘梯楼层。目的地楼层(SA137)是分析对象的目的地楼层。方向(SA138)是作为分析对象的轿厢的运行方向。一人以上的乘坐概率(SA139)是每单位时间内一人以上的用户的乘梯概率。二人以上的乘坐概率(SA13A)是每单位时间内二人以上的用户的乘梯概率。作为单位时间,也可以使用时间幅度(SA135)。The destination floor prediction ID ( SA130 ) is an ID for identifying that the destination floor prediction has been performed. The date (SA131), the time (SA132), and the day of the week (SAl33) are the date, time, and week of the analysis object (ie, at the time point at which the analysis was performed), respectively. The predicted time ( SA134 ) is the time at which the analysis target is predicted (ie, the predicted ride probability at that time). The time range (SA135) is the time range of the analysis object. The boarding floor (SA136) is the boarding floor to be analyzed. The destination floor (SA137) is the destination floor to be analyzed. The direction (SA138) is the running direction of the car to be analyzed. The riding probability of more than one person (SA139) is the riding probability of one or more users per unit time. The riding probability of two or more people (SA13A) is the riding probability of two or more users per unit time. As the unit time, the time width (SA135) can also be used.

例如,图25中不同时间段目的地楼层预测结果SA13的第一行示出了图23中的乘坐人数预测结果2_SA11的第一行中所填入的预测结果与图24中的不同时间段目的地楼层估计SA12的第一行中所填入的估计结果相对应的示例。即图25中的不同时间段目的地楼层预测结果SA13的第一行表示,在单位时间内,在3楼电梯楼层乘坐上行方向的轿厢并计划在第26层下电梯的用户中,预计一人以上的乘坐概率为9%,两人以上的乘坐概率为7.5%。For example, the first row of the destination floor prediction result SA13 in different time periods in FIG. 25 shows the prediction results filled in the first row of the passenger number prediction result 2_SA11 in FIG. 23 and the purpose of different time periods in FIG. 24 . An example corresponding to the estimation result filled in the first row of the ground floor estimation SA12. That is, the first line of the destination floor prediction result SA13 in different time periods in Fig. 25 indicates that, in unit time, among the users who take the elevator car in the upward direction on the elevator floor on the 3rd floor and plan to get off the elevator on the 26th floor, it is estimated that one user The probability of riding with more than one person is 9%, and the probability of riding with more than two people is 7.5%.

在此示例中,“9%”通过将图24中第一行的第26层占目的地楼层(SA127)的比例值“10%”乘以图23中第一行的作为一人以上的乘坐概率(SA118)的“90%”后而得出。“7.5%”通过将图24中第一行的第26层占目的地楼层(SA127)的比例值“10%”乘以图23中第一行的作为两人以上的乘坐概率(SA119)的“75%”后而得出。In this example, "9%" is calculated by multiplying the ratio value "10%" of the 26th floor in the first row of FIG. 24 to the destination floor (SA127) by the probability of riding as more than one person in the first row of FIG. 23 (SA118) after "90%". "7.5%" is obtained by multiplying the ratio value "10%" of the 26th floor in the first row in Fig. 24 to the destination floor (SA127) by the first row in Fig. 23, which is the occupancy probability (SA119) of two or more people "75%" after that.

图25所示的是一例,当在不同时间段目的地楼层预测SP051中表示不同时间段目的地楼层预测时,如果存在必要数据,则可以变更不同时间段目的地楼层预测结果SA13以追加此数据。Fig. 25 shows an example. When the destination floor prediction for different time periods is indicated in the destination floor prediction for different time periods SP051, if necessary data exists, the destination floor prediction result for different time periods SA13 can be changed to add the data. .

图26是示出本发明的实施方式的由分析服务器SA保存的规则/控制模板SA14的说明图。FIG. 26 is an explanatory diagram showing the rule/control template SA14 held by the analysis server SA according to the embodiment of the present invention.

规则/控制模板SA14是用于存储电梯的运行规则/控制参数模板的表格。这里,所谓运行规则,是指控制柜CA为了对作为群控对象的电梯的多部轿厢的运行实施控制而适用的规则,控制参数是指在各个运行规则中可以变更的参数。在本实施方式中,将运行规则与包括在其中的控制参数一并记载为运行规则/控制参数。此外,有时将运行规则单独记载为规则、将控制参数单独记载为参数。The rule/control template SA14 is a table for storing the operation rule/control parameter template of the elevator. Here, the operation rule refers to a rule applied by the control cabinet CA in order to control the operation of a plurality of cars of elevators as group control objects, and the control parameter refers to a parameter that can be changed in each operation rule. In the present embodiment, the operation rule and the control parameters included therein are described as operation rule/control parameter. In addition, an operation rule may be described individually as a rule, and a control parameter may be described as an individual parameter.

通过使用规则/控制模板SA14,可以搜索最佳运行规则/控制参数。搜索方法由2个步骤构成。步骤1是搜索规则/控制No(SA140)。这是从多个运行规则/控制参数中选择适用于提高KPI的控制参数的步骤。步骤2是搜索参数值(初始值)(SA144)。搜索对象是控制参数中的可控制参数值。通过对其进行搜索,可以求出更佳的控制参数。By using the rule/control template SA14, it is possible to search for the best operating rule/control parameters. The search method consists of two steps. Step 1 is to search for rule/control No (SA140). This is the step to select a control parameter from a number of run rules/control parameters that is suitable for improving the KPI. Step 2 is to search for parameter values (initial values) (SA144). The search object is the controllable parameter value in the control parameter. By searching for it, better control parameters can be found.

规则/控制No(SA140)是用于识别运行规则/控制参数的ID。规则名称(SA141)是运行规则/控制参数的名称。条件(SA142)是运行规则/控制参数的动作条件。参数值(初始值)(SA143)是运行规则/控制参数中的可控制参数。例如,在与规则/控制No“Ru01”相对应的规则“5分钟后,从○层直达”中,○部分(在该示例中为楼层数)是可控制参数。系数(初始系数)(SA145)是用于求出回归方程式等的系数。参数值(初始值)(SA143)和系数(初始系数)(SA145)可以通过重复执行优化处理来改变所存储的数值。Rule/Control No (SA140) is an ID for identifying an operation rule/control parameter. Rule name (SA141) is the name of the run rule/control parameter. Condition (SA142) is an action condition for running the rule/control parameter. The parameter value (initial value) (SA143) is a controllable parameter in the operation rule/control parameter. For example, in the rule "After 5 minutes, direct from the ○ floor" corresponding to the rule/control No "Ru01", the ○ part (the number of floors in this example) is a controllable parameter. The coefficient (initial coefficient) (SA145) is a coefficient for obtaining a regression equation or the like. The parameter value (initial value) (SA143) and the coefficient (initial coefficient) (SA145) can be changed by repeatedly performing the optimization process to the stored numerical value.

图26所示的是一例,当实现电梯的运行规则/控制参数时,如果存在必要数据,则可以变更规则/控制模板SA14以追加此数据。An example shown in FIG. 26 is to change the rule/control template SA14 to add the data if necessary data exists when the operation rule/control parameter of the elevator is realized.

图27是示出本发明的实施方式的由分析服务器SA保存的KPI列表SA15的说明图。FIG. 27 is an explanatory diagram showing the KPI list SA15 held by the analysis server SA according to the embodiment of the present invention.

KPI列表SA15是存储作为搜索最佳运行规则/控制参数时的评价指标的KPI(keyperformance indicator)的表格。由于存在每栋大厦的KPI不同的情况,因此通过使用标志(SA155)预先设定每栋大厦的KPI。此时,还可以设定KPI的目标值(SA154)。The KPI list SA15 is a table in which KPIs (key performance indicators), which are evaluation indicators when searching for optimal operation rules/control parameters, are stored. Since there are cases where the KPI of each building is different, the KPI of each building is preset by using the flag (SA155). At this time, the target value of the KPI can also be set (SA154).

KPIID(SA150)是用于识别KPI的ID。分类(SA151)是KPI的分类。具体而言,分类(SA151)表示准将从改进此KPI中受益。KPIID (SA150) is an ID for identifying a KPI. Classification (SA151) is the classification of KPIs. Specifically, a classification (SA151) indicates that the quasi would benefit from improving this KPI.

名称(SA152)是KPI的名称。条件(SA153)表示KPI的内容。目标值(SA154)表示条件(SA153)下的可变参数值部分(在图27的示例中为O的部分)的目标值。由于每栋大厦的情况不同,因此在使用之前进行设定。使用标志(SA155)从多个KIP中指定在执行当前优化时所使用的KPI。当使用标志(SA155)为1时,表示已被指定。此外,还可以指定多个KPI。Name (SA152) is the name of the KPI. The condition (SA153) indicates the content of the KPI. The target value ( SA154 ) represents the target value of the variable parameter value portion (the portion of 0 in the example of FIG. 27 ) under the condition ( SA153 ). Since the situation of each building is different, set it before using it. Use a flag (SA155) to specify the KPI from among several KIPs to use when performing the current optimization. When the use flag (SA155) is 1, it indicates that it has been designated. Additionally, multiple KPIs can be specified.

在图27的示例中,作为KPI,示出了在乘梯处出现的用户在乘坐轿厢前的等候时间、乘梯处的拥挤率、以及楼层的用电量(即包括轿厢运行的耗电量)。在这些示例中,可以将以下评价为适当的运行规则/控制参数:例如,可缩短最长等候时间的运行规则/控制参数、可降低乘梯处的拥挤率的运行规则/控制参数、以及减少用电量的运行规则/控制参数。In the example of FIG. 27 , as KPIs, the waiting time of users who appear at the boarding place before boarding the car, the congestion rate at the boarding place, and the power consumption of the floor (that is, the consumption including the car running) are shown. power). In these examples, the following can be evaluated as appropriate operating rules/control parameters: for example, operating rules/control parameters that can reduce the longest waiting time, operating rules/control parameters that can reduce the congestion rate at the ride, and reduce Operating rules/control parameters for electricity consumption.

然而,以上仅为一例,还可以指定上述之外的KPI。例如,还可以使用在不同楼层乘坐电梯的多名用户在同一轿厢乘坐的比率越小评价就越高的KPI。由此,可以根据电梯相关用户(例如,用户或者管理者等)的需求来实现对轿厢的控制,以使得该相关用户感到满意。However, the above is just an example, and KPIs other than the above may also be specified. For example, it is also possible to use a KPI that gives a higher evaluation as the ratio of a plurality of users taking the elevator on different floors in the same car is smaller. Thus, the control of the car can be implemented according to the needs of the elevator related users (eg, users or managers, etc.), so that the related users are satisfied.

图27所示的是一例,当实现电梯的运行规则/控制参数时,如果存在必要数据,则可以变更KPI列表SA15以追加此数据。An example shown in FIG. 27 is that when the operation rules and control parameters of the elevator are realized, if necessary data exists, the KPI list SA15 can be changed to add the data.

图28是示出本发明的实施方式的由分析服务器SA保存的模拟输入和结果SA16的说明图。FIG. 28 is an explanatory diagram showing simulation input and result SA16 held by the analysis server SA according to the embodiment of the present invention.

模拟输入和结果SA16是用于存储由KPI模拟处理SP11执行处理的结果的表格。在KPI模拟处理SP11中,作为输入,使用KPI列表SA15,其中存储有表示乘坐情况的乘坐人数预测结果2_SA11、不同时间段目的地楼层预测结果SA13、表示控制参数的规则/控制模板SA14、以及作为优化目标的KPI。通过使用这些数据,可以求出用于提高用户在乘梯状态下的KPI的运行规则/控制参数。The simulation input and result SA16 is a table for storing the result of the processing performed by the KPI simulation processing SP11. In the KPI simulation processing SP11, as an input, a KPI list SA15 is used, in which the occupant number prediction result 2_SA11 representing the occupancy situation, the destination floor prediction result SA13 for different time periods, the rule/control template SA14 representing the control parameter, and Optimization target KPIs. By using these data, operation rules and control parameters for improving the user's KPI in the riding state can be obtained.

在KPI模拟处理SP11中,在变更运行规则/控制参数的同时,多次执行用户在乘梯的状态下的、且在使用某一运行规则/控制参数时的KPI的输出处理。其结果是模拟输入和结果SA16。In the KPI simulation processing SP11, while changing the operation rule/control parameter, the output processing of KPIs when a certain operation rule/control parameter is used in the state where the user is riding the elevator is executed multiple times. The result is the analog input and the result SA16.

KPI模拟ID(SA160)是识别KPI模拟的ID。次数(SA161)是多次执行KPI模拟时的次数。规则控制列表1(SA162)表示在每次模拟中所使用的运行规则/控制参数中的一组。规则/控制No(SA163)是用于识别运行规则/控制参数的ID。参数值(SA164)是用于当前控制的控制参数。系数(SA165)是求出回归方程式等时的系数。在一次模拟中,可以存储多个规则控制列表。KPIID(SA166)是用于识别KPI的ID。KPI模拟结果(SA167)是作为使用规则控制列表来执行KPI模拟时的结果而获得的KPI值。The KPI Simulation ID (SA160) is an ID that identifies the KPI simulation. The number of times (SA161) is the number of times when the KPI simulation is executed multiple times. Rule Control List 1 (SA162) represents a set of run rules/control parameters used in each simulation. Rule/Control No (SA163) is an ID for identifying an operation rule/control parameter. The parameter value (SA164) is the control parameter for the current control. The coefficient (SA165) is a coefficient for obtaining the regression equation and the like. In one simulation, multiple rule control lists can be stored. KPIID (SA166) is an ID for identifying a KPI. The KPI simulation result (SA167) is the KPI value obtained as a result when the KPI simulation is performed using the rule control list.

图28所示的是一例,当实现电梯的运行规则/控制参数时,如果存在必要数据,则可以变更模拟输入和结果SA16以追加此数据。Fig. 28 shows an example, and if necessary data exists when realizing the operation rules and control parameters of the elevator, the analog input and result SA16 can be changed to add the data.

图29是示出本发明的实施方式的由分析服务器SA保存的有效规则/参数SA17的说明图。FIG. 29 is an explanatory diagram showing a valid rule/parameter SA17 held by the analysis server SA according to the embodiment of the present invention.

有效规则/参数SA17是用于存储以下结果的表格,即从图28所示的模拟输入和结果SA16中,求出有助于优化的(也就是说有效的)运行规则/控制参数的结果。规则/参数评价部SA38将图28所示的模拟输入和结果SA16作为输入,将目标变量作为KPI模拟结果,将解释变量作为规则控制列表,采用多次结果,可以执行多元回归分析。但是,只要指定有助于优化的规则控制参数即可,因此也可以采用除多元回归分析方法之外的方法。The effective rule/parameter SA17 is a table for storing the result of finding the operating rule/control parameter that contributes to optimization (that is, effective) from the simulation input and result SA16 shown in FIG. 28 . The rule/parameter evaluation unit SA38 uses the simulation input and result SA16 shown in FIG. 28 as input, uses the target variable as the KPI simulation result, and uses the explanatory variable as the rule control list, and can perform multiple regression analysis using the results of multiple times. However, methods other than multiple regression analysis methods can also be used, as long as the rule control parameters that contribute to the optimization are specified.

有效规则/参数ID(SA170)是用于识别有效运行规则/控制参数的ID。有效规则控制列表1(SA171)是在执行多元回归分析时贡献最大的规则控制参数。规则/控制No(SA172)是识别运行规则/控制参数的ID。参数值(SA173)是在本次处理中所使用的控制参数值。系数(SA174)是通过多元回归分析而求出的系数,并且是表示有助于优化的程度的值。通过参考这一点,可以指定有效的(也就是说有助于改善KPI的)运行规则/控制参数。可以存储多个有效的规则控制列表。KPIID(SA175)是用于识别KPI的ID。预测值(SA176)是使用通过多元回归分析而求出的回归方程式来预测的KPI值。Valid rule/parameter ID (SA170) is an ID for identifying a valid operating rule/control parameter. Valid rule control list 1 (SA171) is the rule control parameter that contributes the most when performing multiple regression analysis. Rule/Control No (SA172) is an ID that identifies an operation rule/control parameter. The parameter value (SA173) is the control parameter value used in this processing. The coefficient (SA174) is a coefficient obtained by multiple regression analysis, and is a value indicating a degree of contribution to optimization. By referring to this, it is possible to specify valid (that is to say, help to improve KPIs) operational rule/control parameters. Multiple valid rule control lists can be stored. KPIID (SA175) is an ID for identifying a KPI. The predicted value (SA176) is a KPI value predicted using the regression equation obtained by the multiple regression analysis.

图29所示的是一例,当实现电梯的运行规则/控制参数时,如果存在必要数据,则可以变更有效规则/参数SA17以追加此数据。Fig. 29 shows an example. When the operation rule/control parameter of the elevator is realized, if necessary data exists, the valid rule/parameter SA17 can be changed to add the data.

图30是示出本发明的实施方式的由分析服务器SA保存的有效规则/参数细分列表SA18的说明图。FIG. 30 is an explanatory diagram showing a valid rule/parameter subdivision list SA18 held by the analysis server SA according to the embodiment of the present invention.

对于从图29所示的有效规则/参数SA17中指定的、非常有助于优化的运行规则/控制参数来说,可以通过细分控制参数值来实现进一步优化。在有效规则/参数SA17的有效规则控制列表中选择系数(SA174)较大的运行规则/控制参数。然后,规则/参数评价部SA38对所选择的运行规则/控制参数,执行有效规则/参数的细分化处理SP14。具体而言,规则/参数评价部SA38可以通过增减所选择的运行规则/控制参数中所包含的控制参数值,来搜索更优化的运行规则/控制参数。Further optimization can be achieved by subdividing the control parameter values for the operating rules/control parameters specified from the effective rules/parameters SA17 shown in FIG. 29 that are very helpful for optimization. In the valid rule control list of valid rule/parameter SA17, select the operation rule/control parameter with the larger coefficient (SA174). Then, the rule/parameter evaluation unit SA38 executes the subdivision processing SP14 of the effective rule/parameter for the selected operation rule/control parameter. Specifically, the rule/parameter evaluation unit SA38 can search for a more optimal operating rule/control parameter by increasing or decreasing the control parameter value included in the selected operating rule/control parameter.

有效规则/参数细化ID(SA180)是用于识别有效规则/参数细化的ID。有效规则/参数ID(SA181)是用于识别有效运行规则/控制参数的ID。有效规则控制列表1(SA182)是通过多元回归分析估计贡献最大的规则控制参数。规则/控制No(SA183)是识别运行规则/控制参数的ID。参数值(SA184)是在本次处理中所使用的控制参数值。系数(SA185)是通过多元回归分析而求出的系数,并且是有助于优化的值。参数值细分范围(SA186)是通过有效规则/参数细分化处理SP14而求出的值。可以存储多个有效规则控制列表。KPIID(SA187)是用于识别KPI的ID。预测值(SA188)是使用通过多元回归分析而求出的回归方程式来预测的KPI值。此外,规则/参数评价部SA38可以从规则/控制模板SA14中随机选择几个运行规则/控制参数。Valid rule/parameter refinement ID (SA180) is an ID used to identify valid rule/parameter refinement. The valid rule/parameter ID (SA181) is an ID for identifying a valid operation rule/control parameter. Effective rule control list 1 (SA182) is the rule control parameter with the largest contribution estimated by multiple regression analysis. Rule/Control No (SA183) is an ID that identifies an operation rule/control parameter. The parameter value (SA184) is the control parameter value used in this processing. The coefficient (SA185) is a coefficient obtained by multiple regression analysis, and is a value that contributes to optimization. The parameter value subdivision range (SA186) is a value obtained by the valid rule/parameter subdivision processing SP14. Multiple valid rule control lists can be stored. KPIID (SA187) is an ID for identifying a KPI. The predicted value (SA188) is a KPI value predicted using the regression equation obtained by the multiple regression analysis. Furthermore, the rule/parameter evaluation section SA38 may randomly select several operating rule/control parameters from the rule/control template SA14.

图30所示的是一例,当实现电梯的运行规则/控制参数时,如果存在必要数据,则可以变更有效规则/参数细分列表SA18以追加此数据。Fig. 30 shows an example, when the operation rule/control parameter of the elevator is realized, if necessary data exists, the valid rule/parameter subdivision list SA18 can be changed to add the data.

图31是示出本发明的实施方式的由分析服务器SA保存的规则/参数列表SA19的说明图。FIG. 31 is an explanatory diagram showing the rule/parameter list SA19 held by the analysis server SA according to the embodiment of the present invention.

规则/参数列表SA19是存储从图29的有效规则/参数SA17中选择实际操作中使用的运行规则/控制参数的表格。在有效规则控制列表的运行规则/控制参数中,判断系数(SA174)值较大的部分为贡献率高的运行规则/控制参数。The rule/parameter list SA19 is a table in which operation rules/control parameters to be used in actual operation are selected from the valid rules/parameters SA17 of FIG. 29 . Among the operation rules/control parameters in the effective rule control list, the part with a larger value of the judgment coefficient (SA174) is an operation rule/control parameter with a high contribution rate.

规则/参数ID(SA190)是识别运行规则/控制参数的ID。第一有效规则控制(SA191)是根据多元回归分析的结果,估计贡献度最大的规则控制参数。规则/控制No(SA192)是识别运行规则/控制参数的ID。参数值(SA193)是在本次处理中所使用的控制参数值。系数(SA194)是通过多元回归分析而求出的系数,并且是有助于优化的值。The rule/parameter ID (SA190) is an ID that identifies the operating rule/control parameter. The first effective rule control (SA191) is to estimate the rule control parameter with the largest contribution according to the result of multiple regression analysis. Rule/Control No (SA192) is an ID that identifies an operation rule/control parameter. The parameter value (SA193) is the control parameter value used in this processing. The coefficient (SA194) is a coefficient obtained by multiple regression analysis, and is a value that contributes to optimization.

第二有效规则控制(SA195)是根据多元回归分析的结果,估计贡献度位列第二的运行规则/控制参数。规则/控制No(SA196)是在本次处理中所使用的控制参数值。参数值(SA197)是在本次处理中所使用的控制参数值。系数(SA198)是通过多元回归分析而求出的系数,并且是有助于优化的值。The second effective rule control (SA195) is to estimate the operating rule/control parameter with the second highest contribution degree based on the results of the multiple regression analysis. Rule/Control No (SA196) is the control parameter value used in this processing. The parameter value (SA197) is the control parameter value used in this processing. The coefficient (SA198) is a coefficient obtained by multiple regression analysis, and is a value that contributes to optimization.

KPIID(SA199)是用于识别KPI的ID。预测值(SA19A)是使用通过多元回归分析而求出的回归方程式来预测的值。KPIID (SA199) is an ID for identifying a KPI. The predicted value (SA19A) is a value predicted using the regression equation obtained by the multiple regression analysis.

将规则/参数列表SA19发送到控制选择器SP06。控制选择器SP06根据规则/参数列表SA19,来生成指示用于改善KPI的运行规则/控制参数的输入命令CA0,并发送至控制柜CA。控制柜CA根据输入命令CA0,将已经设定的运行规则/控制参数变更为所指示的运行规则/控制参数,并且根据变更后的运行规则/控制参数来控制轿厢。如此一来,实现了对改善KPI后的电梯的控制。The rule/parameter list SA19 is sent to the control selector SP06. The control selector SP06 generates an input command CA0 indicating an operation rule/control parameter for improving the KPI based on the rule/parameter list SA19, and sends it to the control cabinet CA. The control cabinet CA changes the already set operation rule/control parameter to the instructed operation rule/control parameter according to the input command CA0, and controls the car according to the changed operation rule/control parameter. In this way, the control of the elevator with improved KPI is realized.

图31所示的是一例,当实现电梯的运行规则/控制参数时,如果存在必要数据,则可以变更规则/控制参数列表SA19以追加此数据。Fig. 31 shows an example. When implementing the operation rule/control parameter of the elevator, if necessary data exists, the rule/control parameter list SA19 can be changed to add the data.

在分析服务器SA的执行部SA3中执行本实施方式中说明的处理,但是处理的一部分或全部可以由控制柜CA执行。例如,控制柜CA可以具有类似于图1B所示的分析服务器SA的硬件,并且分析服务器SA的功能的至少一部分可以由这些硬件来实现。The processing described in this embodiment is executed by the execution unit SA3 of the analysis server SA, but a part or all of the processing may be executed by the control cabinet CA. For example, the control cabinet CA may have hardware similar to the analysis server SA shown in FIG. 1B , and at least a part of the functions of the analysis server SA may be implemented by these hardwares.

图32是示出本发明的实施方式的由分析服务器SA输出的大厦个性化报告SA20的说明图。FIG. 32 is an explanatory diagram showing the building personalized report SA20 output by the analysis server SA according to the embodiment of the present invention.

大厦个性化报告SA20由规则/参数评价部SA38在显示/控制数据生成处理SP15中生成,并发送到显示部SA1中。显示部SA1(例如,作为输出装置103进行安装的显示装置)显示接收到的大厦个性化报告SA20。The building personalized report SA20 is generated by the rule/parameter evaluation unit SA38 in the display/control data generation process SP15, and sent to the display unit SA1. The display unit SA1 (eg, a display device installed as the output device 103 ) displays the received building personalized report SA20 .

例如,如图32所示,大厦个性化报告SA20包括大厦名称3201、电梯组名称3202、时段3203、KPI3204以及结果3205。For example, as shown in FIG. 32 , the building personalized report SA20 includes building name 3201 , elevator group name 3202 , time period 3203 , KPI 3204 , and result 3205 .

电梯组名称3202和大厦名称3201是作为图2中所示的各种处理的执行对象的电梯组和安装电梯组的建筑物名称,并且与图12中所示的组名称(SA002)和大厦名称(SA007)相对应。时段3203是作为模拟对象的时段。KPI3204是在规则/参数评价部SA38的处理中被选择为评价对象的评价指标,并且与图27中所示的使用标记(SA155)为有效的KPI相对应。结果3205是根据规则/参数评价部SA38的处理结果而选择的有效运行规则/控制参数,并且与规则/参数列表SA19中记录的运行规则/控制参数相对应。The elevator group name 3202 and the building name 3201 are the elevator group and the building name in which the elevator group is installed, which are the execution objects of the various processes shown in FIG. 2, and are the same as the group name (SA002) and the building name shown in FIG. (SA007) corresponds. A period 3203 is a period that is an object of simulation. The KPI 3204 is an evaluation index selected as an evaluation target in the process of the rule/parameter evaluation section SA38, and corresponds to the KPI for which the usage flag ( SA155 ) shown in FIG. 27 is valid. The result 3205 is the valid operation rule/control parameter selected according to the processing result of the rule/parameter evaluation section SA38, and corresponds to the operation rule/control parameter recorded in the rule/parameter list SA19.

通过参考大厦个性化报告SA20,电梯管理员可以掌握运行规则/控制参数的变更内容,其为改善作为KPI3204进行显示的评价指标而所需。管理员可以在控制柜CA中手动设定所掌握的运行规则/控制参数的变更。如此一来,实现了对改善KPI后的电梯的控制。By referring to the building personalized report SA20, the elevator manager can grasp the change content of the operation rules/control parameters, which is required to improve the evaluation index displayed as KPI3204. The administrator can manually set the change of the mastered operation rules/control parameters in the control cabinet CA. In this way, the control of the elevator with improved KPI is realized.

如上所述,根据本实施方式,根据楼层升降梯人数来预测候梯厅的乘坐人数,生成适合于此预测结果的控制方法,并且可以通过使用与用户不满意度相关的指标进行评价来实现最佳的电梯控制。例如,在预期未来会发生拥挤的时间附近,通过在乘梯处顺畅地调配轿厢,可以减少用户在乘梯处长时间等候的情况,提高用户的运输能力,并进一步提高用户满意度。As described above, according to the present embodiment, the number of passengers in the hall is predicted based on the number of people in the elevator hall, a control method suitable for the prediction result is generated, and the optimal performance can be achieved by evaluating using an index related to user dissatisfaction. The best elevator control. For example, near the time when congestion is expected to occur in the future, by smoothly deploying the car at the boarding place, it is possible to reduce the situation of users waiting for a long time at the boarding place, improve the transportation capacity of users, and further improve user satisfaction.

另外,本发明并不限于上述实施例,而是包括各种变形例。例如,上述实施例是为了更好地理解本发明而进行了详细的说明,但并不限定必须具备所说明的全部结构。In addition, the present invention is not limited to the above-described embodiments, but includes various modifications. For example, the above-mentioned embodiments have been described in detail for better understanding of the present invention, but are not necessarily limited to having all the structures described.

此外,上述各个结构、功能、处理部、处理装置等可以通过例如用集成电路进行设计等,利用硬件来实现这些的一部分或全部。此外,上述各个结构、功能等可以通过处理器解释、执行用来实现各种功能的程序,利用软件来实现。实现各种功能的程序、表格、文件等信息可以存储在非易失性半导体存储器、硬盘驱动器、SSD(Solid State Drive)等存储设备中,或者也可以存储在IC卡、SD卡、DVD等计算机可读取的非临时数据存储介质中。In addition, each of the above-described structures, functions, processing units, processing devices, and the like can be designed by, for example, an integrated circuit, and a part or all of them can be realized by hardware. In addition, each of the above-described structures, functions, and the like can be realized by software by interpreting and executing programs for realizing the various functions by a processor. Information such as programs, forms, and files that realize various functions can be stored in storage devices such as non-volatile semiconductor memory, hard disk drives, and SSD (Solid State Drive), or in computers such as IC cards, SD cards, and DVDs. readable non-transitory data storage medium.

此外,为了更好地说明,因此示出了控制线和信息线,但并不一定示出了产品上所有的控制线和信息线。实际上,也可以认为几乎所有的结构均相互连接。Furthermore, for better illustration, control lines and information lines are thus shown, but not necessarily all control lines and information lines on the product. In fact, it can also be considered that almost all structures are interconnected.

Claims (14)

1.一种电梯分析系统,其是一种具有处理器和与所述处理器相连接的存储装置的电梯分析系统,1. An elevator analysis system, which is an elevator analysis system with a processor and a storage device connected with the processor, 其特征在于:It is characterized by: 所述存储装置保存:乘降梯人数信息,其用于表示属于作为控制对象的电梯群组的各轿厢在各楼层实际的乘梯人数以及下梯人数;运行日志信息,其用于表示属于所述电梯群组的各轿厢的实际状态;以及乘坐人数,其中该乘坐人数是指在所述电梯群组各楼层的乘梯处因要使用电梯而出现的用户数量,The storage device saves: information on the number of people getting on and off the elevator, which is used to indicate the actual number of people on each floor and the number of people getting off the elevator in each car belonging to the elevator group that is the control object; The actual state of each car of the elevator group; and the number of passengers, wherein the number of passengers refers to the number of users who want to use the elevator at the boarding place of each floor of the elevator group, 所述处理器执行以下操作:The processor performs the following operations: 根据所述乘降梯人数信息和所述运行日志信息估计所述乘坐人数,Estimating the number of passengers according to the information on the number of people taking the elevator and the operation log information, 根据估计的所述乘坐人数来预测未来的乘坐人数,predicting future ridership based on the estimated ridership, 并根据所预测到的所述未来的乘坐人数来确定对属于所述电梯群组的所述各轿厢的运行控制适用的运行规则、以及在各个运行规则中所设定的控制参数,and according to the predicted number of passengers in the future to determine the running rules applicable to the running control of the cars belonging to the elevator group, and the control parameters set in the respective running rules, 进一步输出确定好的所述运行规则以及控制参数。The determined operation rules and control parameters are further output. 2.根据权利要求1所述的电梯分析系统,2. The elevator analysis system according to claim 1, 其特征在于:It is characterized by: 所述处理器根据乘降梯人数信息,在所述各楼层乘梯处出现的用户按照每层可能成为目的地楼层来计算目的地楼层概率,其中,目的地楼层概率是在所述各楼层乘梯处出现的用户的目的地楼层即为该楼层的概率;The processor calculates the probability of the destination floor according to the information on the number of people taking the elevator, and the users who appear at the elevator on each floor according to each floor may become the destination floor. The destination floor of the user appearing at the elevator is the probability of that floor; 根据所述未来乘坐人数和所述目的地楼层概率,确定对属于所述电梯群组中的所述各轿厢的运行控制适用的运行规则、以及在各运行规则中设定的控制参数。Based on the number of future passengers and the destination floor probability, an operation rule applicable to the operation control of each car belonging to the elevator group and a control parameter set in each operation rule are determined. 3.根据权利要求2所述的电梯分析系统,3. The elevator analysis system according to claim 2, 其特征在于:It is characterized by: 所述存储装置进一步保存有指定评价指标的信息,其中,该评价指标用于评价所述电梯群组中所述各轿厢的运行状况;The storage device further stores information specifying an evaluation index, wherein the evaluation index is used to evaluate the running status of each car in the elevator group; 所述处理器the processor 在改变所适用的所述运行规则以及所述控制参数的同时多次执行第一模拟,其中,该模拟根据所述未来乘坐人数和所述目的地楼层概率,在各层的乘梯处生成用户后运行所述电梯群组中的所述各轿厢;A first simulation is performed a plurality of times while changing the applicable operating rules and the control parameters, wherein the simulation generates users at the rides on each floor based on the future occupants and the destination floor probability then run each car in the elevator group; 根据所述第一模拟的结果,计算所指定的所述评价指标,According to the result of the first simulation, the specified evaluation index is calculated, 根据计算出的所述评价指标,来确定有助于提高所述评价指标的所述运行规则和所述控制参数,以作为对属于所述电梯群组的所述各轿厢的运行控制适用的运行规则、以及在各个运行规则中所设定的控制参数。According to the calculated evaluation index, the operation rule and the control parameter which are helpful for improving the evaluation index are determined, as the operation control applied to the cars belonging to the elevator group. Operation rules, and control parameters set in each operation rule. 4.根据权利要求3所述的电梯分析系统,4. The elevator analysis system according to claim 3, 其特征在于:It is characterized by: 所述处理器根据预测的所述未来乘坐人数,假设乘坐人数的概率分布为泊松分布时,按照每个乘坐人数来计算该人数的用户的乘坐概率;According to the predicted number of passengers in the future, the processor calculates the riding probability of the number of users according to each number of passengers when the probability distribution of the number of passengers is assumed to be Poisson distribution; 按照每个乘坐人数的所述乘坐概率与每个目的地楼层的所述目的地楼层概率来生成用户,执行所述第一模拟。The first simulation is performed by generating users according to the occupancy probability for each passenger number and the destination floor probability for each destination floor. 5.根据权利要求3所述的电梯分析系统,5. The elevator analysis system according to claim 3, 其特征在于:进一步具有与所述处理器相连的显示装置,It is characterized in that: it further has a display device connected with the processor, 所述处理器指定有助于提高所述评价指标的贡献度大小满足预定条件的所述运行规则和所述控制参数,The processor specifies the operation rule and the control parameter that help to improve the contribution of the evaluation index and satisfy a predetermined condition, 所述显示装置显示所指定的所述运行规则和控制参数。The display device displays the designated operation rules and control parameters. 6.根据权利要求3所述的电梯分析系统,6. The elevator analysis system according to claim 3, 其特征在于:It is characterized by: 进一步具有所述处理器以及与所述电梯分析系统的外部网络相连接的接口;further having the processor and an interface connected to an external network of the elevator analysis system; 在所述网络上连接有控制装置,其中,该控制装置用于控制属于所述电梯群组中的各个轿厢;A control device is connected to the network, wherein the control device is used to control each car belonging to the elevator group; 所述处理器指定有助于提高所述评价指标的贡献度大小满足预定条件的所述运行规则和所述控制参数;The processor specifies the operation rule and the control parameter that are helpful to improve the contribution of the evaluation index and satisfy a predetermined condition; 通过所述接口,将所指定的所述运行规则以及控制参数发送到所述控制装置中。The specified operating rules and control parameters are sent to the control device through the interface. 7.根据权利要求3所述的电梯分析系统,其特征在于:7. elevator analysis system according to claim 3, is characterized in that: 所述评价指标包括乘梯用户乘坐任意一个轿厢之前的等候时间、所述乘梯处的拥挤率、以及用于使所述电梯群组中各轿厢运行的耗电量中的任意一个。The evaluation index includes any one of the waiting time before the boarding user gets on any car, the congestion rate at the boarding place, and the power consumption for running each car in the elevator group. 8.根据权利要求1所述的电梯分析系统,8. The elevator analysis system according to claim 1, 其特征在于:It is characterized by: 所述处理器生成多名因要使用电梯而出现在所述电梯群组乘梯处的用户,随机确定每名用户所在的所述乘梯处楼层、所述每名用户的出现时间以及所述每名用户的目的地楼层,根据所述每名用户的出现时间、出现的所述乘梯处楼层以及目的地楼层来执行使属于所述电梯群组的各轿厢运行的第二模拟,从而根据所述各轿厢状态、各楼层中所述各轿厢的乘梯人数与各楼层中所述各轿厢的下梯人数,来生成用于估计用户出现在所述各楼层乘梯处的人数即乘坐人数的乘坐人数估计模型,The processor generates a plurality of users who appear at the elevator group boarding place because they want to use the elevator, and randomly determines the floor of the boarding place where each user is located, the appearance time of each user, and the For each user's destination floor, a second simulation of operating the cars belonging to the elevator group is performed based on the appearance time of the each user, the boarding floor at which the user appeared, and the destination floor, thereby According to the state of each car, the number of people getting on the elevator in each car on each floor, and the number of people getting off the elevator in each car on each floor, an estimate for estimating that a user appears at the boarding place on each floor is generated. The number of passengers is the passenger number estimation model of the number of passengers, 通过将根据所述乘降梯人数信息和所述运行日志信息获取的实际的乘梯人数、下梯人数以及各轿厢状态适用于所述乘坐人数估计模型中,估计各楼层的乘坐人数,By applying the actual number of people getting on the elevator, the number of people getting off the elevator, and the state of each car obtained according to the information on the number of people getting on and off the elevator and the information on the operation log into the number of passengers estimation model, the number of passengers on each floor is estimated, 将所估计的所述乘坐人数保存在所述存储装置中,storing the estimated number of occupants in the storage device, 根据保存于所述存储装置中的所述估计的乘坐人数,来预测所述未来乘坐人数。The future occupant number is predicted based on the estimated occupant number stored in the storage device. 9.根据权利要求8所述的电梯分析系统,其特征在于:9. elevator analysis system according to claim 8, is characterized in that: 在所述第二模拟中,所述处理器将在每个预定时间幅度内所述各楼层的乘坐人数作为目标指标、将在所述每个预定时间宽度内所述各轿厢的状态、各楼层中所述各轿厢的乘梯人数和各楼层中所述各轿厢的下梯人数作为说明指标,通过执行多元回归分析来生成所述乘坐人数估计模型。In the second simulation, the processor uses the number of occupants of each floor in each predetermined time width as a target index, and uses the state of each car, each The occupant number estimation model is generated by performing a multiple regression analysis using the number of people getting on the car in each floor and the number of people getting off the elevator in each car in each floor as explanatory indexes. 10.根据权利要求8所述的电梯分析系统,其特征在于:10. The elevator analysis system according to claim 8, wherein: 所述乘降梯人数信息以及所述运行日志信息,包括所述乘梯人数、下梯人数、以及表示当获得所述各轿厢的实际状态时属于所述电梯群组中的所述各轿厢的运行控制适用的运行规则和在所述运行规则中所设定的控制参数的信息;The information on the number of people getting on and off the elevator and the information on the running log include the number of people getting on the elevator, the number of people getting off the elevator, and each car belonging to the elevator group when the actual state of each car is obtained. Information on the operating rules applicable to the operating control of the car and the control parameters set in the operating rules; 所述处理器根据所述适用的运行规则以及所述所设定的控制参数,通过运行所述各轿厢来执行所述第二模拟。The processor performs the second simulation by operating the cars according to the applicable operating rules and the set control parameters. 11.一种电梯分析方法,其是一种由具有处理器和连接到所述处理器的存储装置的电梯分析系统来执行的电梯分析方法,其特征在于:11. An elevator analysis method performed by an elevator analysis system having a processor and a storage device connected to the processor, characterized in that: 所述存储装置保存:乘降梯人数信息,其用于表示属于作为控制对象的电梯群组的各轿厢在各楼层实际的乘梯人数以及下梯人数;运行日志信息,其用于表示属于所述电梯群组的各轿厢的实际状态;以及乘坐人数,其中该乘坐人数是指在所述电梯群组各楼层的乘梯处因要使用电梯而出现的用户数量;The storage device saves: information on the number of people getting on and off the elevator, which is used to indicate the actual number of people on each floor and the number of people getting off the elevator for each car belonging to the elevator group that is the control object; The actual state of each car of the elevator group; and the number of passengers, wherein the number of passengers refers to the number of users who want to use the elevator at the boarding place of each floor of the elevator group; 所述电梯分析方法包括以下步骤:顺序1,所述处理器根据所述乘降梯人数信息和所述运行日志信息估计所述乘坐人数;顺序2,所述处理器根据估计的所述乘坐人数来预测未来乘坐人数;顺序3,所述处理器根据预测的所述未来乘坐人数,确定对属于所述电梯群组中所述各轿厢的运行控制适用的运行规则以及在各运行规则中所设定的控制参数;顺序4,所述处理器输出所确定的所述运行规则和控制参数。The elevator analysis method includes the following steps: Sequence 1, the processor estimates the number of passengers according to the information on the number of passengers on and off the elevator and the operation log information; Sequence 2, the processor estimates the number of passengers according to the estimated number of passengers to predict the number of occupants in the future; in sequence 3, the processor determines, according to the predicted number of occupants in the future, the operation rules applicable to the operation control of each car belonging to the elevator group and the parameters in each operation rule. The set control parameters; in sequence 4, the processor outputs the determined operation rules and control parameters. 12.根据权利要求11所述的电梯分析方法,其特征在于:12. elevator analysis method according to claim 11 is characterized in that: 在所述顺序3中,In said sequence 3, 所述处理器根据所述乘降梯人数信息,在所述各楼层乘梯处出现的用户按照每层可能成为目的地楼层来计算目的地楼层概率,其中,目的地楼层概率是在所述各楼层乘梯处出现的用户的目的地楼层即为该楼层的概率;The processor calculates the probability of the destination floor according to the information on the number of people taking the elevator, and the users who appear at the elevator on each floor according to each floor may become the destination floor, wherein the probability of the destination floor is the The destination floor of the user that appears at the floor boarding place is the probability of that floor; 根据所述未来乘坐人数和所述目的地楼层概率,确定对属于所述电梯群组的所述各轿厢的运行控制适用的运行规则、以及在各运行规则中设定的控制参数。Based on the number of future passengers and the destination floor probability, an operation rule applicable to the operation control of each car belonging to the elevator group and a control parameter set in each operation rule are determined. 13.根据权利要求12所述的电梯分析方法,其特征在于:13. elevator analysis method according to claim 12 is characterized in that: 所述存储装置进一步保存有指定评价指标的信息,其中,该评价指标用于评价所述电梯群组中所述各轿厢的运行状况;The storage device further stores information specifying an evaluation index, wherein the evaluation index is used to evaluate the running status of each car in the elevator group; 在所述顺序3中,In said sequence 3, 所述处理器在改变所适用的所述运行规则以及所述控制参数的同时多次执行第一模拟,其中,该模拟根据所述未来乘坐人数和所述目的地楼层概率,在各层的乘梯处中生成用户后运行所述电梯群组中的所述各轿厢;The processor executes a first simulation a plurality of times while changing the applicable operating rules and the control parameters, wherein the simulation is based on the future occupant number and the destination floor probability, multiplying at each floor. After the user is generated in the elevator, each car in the elevator group is run; 根据所述第一模拟的结果,计算所指定的所述评价指标,According to the result of the first simulation, the specified evaluation index is calculated, 根据计算出的所述评价指标来确定有助于提高所述评价指标的所述运行规则和所述控制参数,以作为对属于所述电梯群组的所述各轿厢的运行控制适用的运行规则、以及在各个运行规则中所设定的控制参数。The operation rule and the control parameter that contribute to the improvement of the evaluation index are determined according to the calculated evaluation index, as the operation applicable to the operation control of the respective cars belonging to the elevator group rules, and the control parameters set in each operation rule. 14.根据权利要求11所述的电梯分析方法,其特征在于:14. elevator analysis method according to claim 11 is characterized in that: 所述电梯分析方法进一步包括以下顺序:The elevator analysis method further includes the following sequence: 所述处理器生成多名因要使用电梯而出现在所述电梯群组乘梯处的用户,随机确定每名用户所在的所述乘梯处楼层、所述每名用户的出现时间以及所述每名用户的目的地楼层,根据所述每名用户的出现时间、出现的所述乘梯处楼层以及目的地楼层来执行使属于所述电梯群组的各轿厢运行的第二模拟,从而根据所述各轿厢状态、各楼层中所述各轿厢的乘梯人数与各楼层中所述各轿厢的下梯人数,来生成用于估计用户出现在所述各楼层乘梯处的人数即乘坐人数的乘坐人数估计模型;The processor generates a plurality of users who appear at the elevator group boarding place because they want to use the elevator, and randomly determines the floor of the boarding place where each user is located, the appearance time of each user, and the For each user's destination floor, a second simulation of operating the cars belonging to the elevator group is performed based on the appearance time of the each user, the boarding floor at which the user appeared, and the destination floor, thereby According to the state of each car, the number of people getting on the elevator in each car on each floor, and the number of people getting off the elevator in each car on each floor, an estimate for estimating that a user appears at the boarding place on each floor is generated. The number of passengers is the passenger number estimation model of the number of passengers; 所述处理器通过将根据所述乘降梯人数信息和所述运行日志信息获取的实际的乘梯人数、下梯人数以及各轿厢状态适用于所述乘坐人数估计模型中,估计各楼层的乘坐人数;The processor estimates the number of passengers on each floor by applying the actual number of passengers, the number of people getting off the elevator, and the state of each car obtained from the information on the number of passengers on and off the elevator and the operation log information into the passenger number estimation model. the number of passengers; 所述处理器将所估计的所述乘坐人数保存在所述存储装置中;the processor saves the estimated number of occupants in the storage device; 在所述顺序2中,所述处理器根据保存于所述存储装置中的所述估计的乘坐人数,来预测所述未来乘坐人数。In the sequence 2, the processor predicts the future occupant based on the estimated occupant stored in the storage device.
CN201880068025.1A 2017-10-30 2018-10-15 Elevator Analysis System and Elevator Analysis Method Active CN111247078B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210387282.XA CN114873395B (en) 2017-10-30 2018-10-15 Elevator analysis system and elevator analysis method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017209721A JP6904883B2 (en) 2017-10-30 2017-10-30 Elevator analysis system and elevator analysis method
JP2017-209721 2017-10-30
PCT/JP2018/038355 WO2019087760A1 (en) 2017-10-30 2018-10-15 Elevator analysis system and elevator analysis method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202210387282.XA Division CN114873395B (en) 2017-10-30 2018-10-15 Elevator analysis system and elevator analysis method

Publications (2)

Publication Number Publication Date
CN111247078A CN111247078A (en) 2020-06-05
CN111247078B true CN111247078B (en) 2022-05-03

Family

ID=66332557

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202210387282.XA Active CN114873395B (en) 2017-10-30 2018-10-15 Elevator analysis system and elevator analysis method
CN201880068025.1A Active CN111247078B (en) 2017-10-30 2018-10-15 Elevator Analysis System and Elevator Analysis Method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202210387282.XA Active CN114873395B (en) 2017-10-30 2018-10-15 Elevator analysis system and elevator analysis method

Country Status (3)

Country Link
JP (4) JP6904883B2 (en)
CN (2) CN114873395B (en)
WO (1) WO2019087760A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7092574B2 (en) * 2018-06-26 2022-06-28 株式会社日立製作所 People flow prediction method and people flow prediction system
JP7315415B2 (en) * 2019-08-28 2023-07-26 株式会社日立製作所 ELEVATOR ANALYSIS SYSTEM AND DESIGN METHOD OF ELEVATOR ANALYSIS SYSTEM
CN112047212B (en) * 2020-08-31 2022-08-12 日立楼宇技术(广州)有限公司 Elevator operation control method, device, computer equipment and storage medium
CN113657740B (en) * 2021-08-06 2023-01-31 北京磁浮有限公司 Elevator product quality ranking method based on grey correlation analysis and entropy method
JP7608587B1 (en) 2023-12-20 2025-01-06 東芝エレベータ株式会社 Elevator system and information providing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948367A (en) * 1982-09-10 1984-03-19 株式会社日立製作所 Group controller for elevator
JPH06329352A (en) * 1993-05-20 1994-11-29 Hitachi Ltd Elevator operation demand anticipating device
JPH0920466A (en) * 1995-07-05 1997-01-21 Hitachi Ltd Elevator group management controller
JP2000318938A (en) * 1999-05-06 2000-11-21 Mitsubishi Electric Corp Elevator group control easy simulator and elevator group control device
CN101054140A (en) * 2006-04-12 2007-10-17 株式会社日立制作所 Lift group management control method and system

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2633681B2 (en) * 1989-04-12 1997-07-23 株式会社東芝 Elevator group control device
JPH10236742A (en) * 1997-02-28 1998-09-08 Hitachi Ltd Elevator group management control device
JPH11217164A (en) * 1998-02-03 1999-08-10 Hitachi Ltd Elevator simulator equipment
WO2001028909A1 (en) * 1999-10-21 2001-04-26 Mitsubishi Denki Kabushiki Kaisha Elevator group controller
JP4575030B2 (en) 2004-05-27 2010-11-04 三菱電機株式会社 Elevator traffic demand prediction device and elevator control device provided with the same
JP2009155042A (en) * 2007-12-26 2009-07-16 Toshiba Elevator Co Ltd Group supervisory elevator performance assessment device
US9820746B2 (en) 2008-07-28 2017-11-21 Incube Laboratories LLC System and method for scaffolding anastomoses
JP5464979B2 (en) * 2009-11-17 2014-04-09 株式会社日立製作所 Elevator group management system
JP2011140381A (en) * 2010-01-07 2011-07-21 Toshiba Elevator Co Ltd Device and method of group supervisory control for elevator having fire evacuation operation function
JP5504060B2 (en) * 2010-06-08 2014-05-28 株式会社日立製作所 Destination floor reservation group management elevator controller
JP5951421B2 (en) * 2012-09-10 2016-07-13 株式会社日立製作所 Elevator group management system
CN105324322B (en) * 2013-04-18 2017-06-09 株式会社日立制作所 Elevator device
CN104340779A (en) * 2013-07-23 2015-02-11 鸿富锦精密工业(深圳)有限公司 Control system and method of elevator
JP6329352B2 (en) 2013-09-24 2018-05-23 Ntn株式会社 Solid lubricant and method for producing the same
JP5863206B2 (en) * 2014-06-09 2016-02-16 東芝エレベータ株式会社 Elevator group management device
JP6203156B2 (en) * 2014-10-08 2017-09-27 三菱電機ビルテクノサービス株式会社 Location estimation device and program
US9834405B2 (en) * 2014-11-10 2017-12-05 Mitsubishi Electric Research Laboratories, Inc. Method and system for scheduling elevator cars in a group elevator system with uncertain information about arrivals of future passengers
JP6203306B2 (en) * 2016-03-07 2017-09-27 東芝エレベータ株式会社 Elevator group management system
CN107140499A (en) * 2017-06-05 2017-09-08 安徽讯桥信息科技有限公司 A kind of building elevator security-protection management system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948367A (en) * 1982-09-10 1984-03-19 株式会社日立製作所 Group controller for elevator
JPH06329352A (en) * 1993-05-20 1994-11-29 Hitachi Ltd Elevator operation demand anticipating device
JPH0920466A (en) * 1995-07-05 1997-01-21 Hitachi Ltd Elevator group management controller
JP2000318938A (en) * 1999-05-06 2000-11-21 Mitsubishi Electric Corp Elevator group control easy simulator and elevator group control device
CN101054140A (en) * 2006-04-12 2007-10-17 株式会社日立制作所 Lift group management control method and system

Also Published As

Publication number Publication date
JP2019081634A (en) 2019-05-30
CN114873395B (en) 2024-01-02
JP7437353B2 (en) 2024-02-22
JP6904883B2 (en) 2021-07-21
CN114873395A (en) 2022-08-09
JP2024161208A (en) 2024-11-15
WO2019087760A1 (en) 2019-05-09
JP2021143076A (en) 2021-09-24
JP7553642B2 (en) 2024-09-18
CN111247078A (en) 2020-06-05
JP2023086850A (en) 2023-06-22

Similar Documents

Publication Publication Date Title
CN111247078B (en) Elevator Analysis System and Elevator Analysis Method
JP7092574B2 (en) People flow prediction method and people flow prediction system
CN112602110A (en) Demand prediction device for ride pool vehicle, demand prediction method for ride pool vehicle, and program
CN104030108B (en) Elevator traffic needs prediction means
JP7273601B2 (en) Congestion analysis device and congestion analysis method
JP7233889B2 (en) Pedestrian simulation device
CN111201192B (en) In-building traffic prediction system, generation method of elevator lobby layout in in-building traffic prediction system
JPWO2017175551A1 (en) Human flow evaluation system, human flow control examination method
JP6454222B2 (en) Data processing system and data processing method
CN111377313A (en) elevator system
CN116167536B (en) Intelligent parking management method based on time period learning optimization
CN113891846B (en) Elevator analysis system and design method of elevator analysis system
JP2018081650A (en) Boarding guidance device, boarding guidance program, and boarding guidance method
JP7277257B2 (en) Movement demand estimation system and people flow estimation system
Basagoiti et al. Passenger flow pattern learning based on trip counting in lift systems combined with real-time information
JP2012226503A (en) Travel analysis method and travel analysis device
US20220333935A1 (en) Information presenting device, information presenting method, and information presenting program
Shi et al. The Influences of Elevator Traffic Flow under the Different Elevator Design—Based on the Project of the Ak-Keme Hotel
JPWO2022158090A5 (en)
Zakharenko Who should not share? The merits of withholding unused vehicles
JP2025026130A (en) Building management system and building management method
JP2023081587A (en) Elevator group management control device, elevator group management control method, and program
Basagoiti et al. 3 rd Symposium on Lift and Escalator Technologies

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant