CN111244223A - Method for forming silicon-based laminated layer and method for manufacturing silicon-based solar cell - Google Patents
Method for forming silicon-based laminated layer and method for manufacturing silicon-based solar cell Download PDFInfo
- Publication number
- CN111244223A CN111244223A CN201811442208.3A CN201811442208A CN111244223A CN 111244223 A CN111244223 A CN 111244223A CN 201811442208 A CN201811442208 A CN 201811442208A CN 111244223 A CN111244223 A CN 111244223A
- Authority
- CN
- China
- Prior art keywords
- silicon
- thin film
- film layer
- forming
- microwave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 127
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 127
- 239000010703 silicon Substances 0.000 title claims abstract description 127
- 238000000034 method Methods 0.000 title claims abstract description 120
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 34
- 239000010409 thin film Substances 0.000 claims abstract description 131
- 239000000758 substrate Substances 0.000 claims abstract description 82
- 239000004065 semiconductor Substances 0.000 claims description 74
- 239000000463 material Substances 0.000 claims description 27
- 239000010408 film Substances 0.000 claims description 25
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 15
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 14
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 13
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 13
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 11
- 229910000449 hafnium oxide Inorganic materials 0.000 claims description 11
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 claims description 11
- 230000007547 defect Effects 0.000 description 18
- 125000004429 atom Chemical group 0.000 description 14
- 229910021417 amorphous silicon Inorganic materials 0.000 description 12
- 238000002161 passivation Methods 0.000 description 8
- 238000000137 annealing Methods 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- 239000000969 carrier Substances 0.000 description 6
- 125000004430 oxygen atom Chemical group O* 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 238000000231 atomic layer deposition Methods 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000005240 physical vapour deposition Methods 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 239000002210 silicon-based material Substances 0.000 description 3
- 101001073212 Arabidopsis thaliana Peroxidase 33 Proteins 0.000 description 2
- 101001123325 Homo sapiens Peroxisome proliferator-activated receptor gamma coactivator 1-beta Proteins 0.000 description 2
- 102100028961 Peroxisome proliferator-activated receptor gamma coactivator 1-beta Human genes 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 230000005622 photoelectricity Effects 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/121—The active layers comprising only Group IV materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/129—Passivating
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/30—Coatings
- H10F77/306—Coatings for devices having potential barriers
- H10F77/311—Coatings for devices having potential barriers for photovoltaic cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
本发明提供一种硅基叠层的形成方法,其包括提供硅基板,其中硅基板具有相对的第一表面与第二表面。于第一表面上形成第一薄膜层。于第二表面上形成第二薄膜层。对硅基板、第一薄膜层及第二薄膜层进行微波制程,以钝化第一薄膜层及第二薄膜层。一种硅基太阳能电池的制造方法也被提出。
The present invention provides a method for forming a silicon-based stack, which includes providing a silicon substrate, wherein the silicon substrate has a first surface and a second surface opposite to each other. A first thin film layer is formed on the first surface. A second thin film layer is formed on the second surface. A microwave process is performed on the silicon substrate, the first thin film layer and the second thin film layer to passivate the first thin film layer and the second thin film layer. A method for manufacturing a silicon-based solar cell is also proposed.
Description
技术领域technical field
本发明涉及一种叠层的形成方法及太阳能电池的制造方法,尤其涉及一种硅基叠层的形成方法及硅基太阳能电池的制造方法。The present invention relates to a method for forming a stack and a method for manufacturing a solar cell, in particular to a method for forming a silicon-based stack and a method for manufacturing a silicon-based solar cell.
背景技术Background technique
硅为地球上蕴含量第二丰富的元素。由于硅在半导体工业的发展上已具有深厚的基础,因此,目前太阳能电池大多以硅为主要材料。太阳能电池的基本构造是运用P型与N型半导体接合而成,在N型半导体与P型半导体结合处,会产生一个由N指向P的内建电场。当太阳光照射进来时,光子提供能量,所产生的电子将会受电场作用而移动至N型半导体处,空穴则移动至P型半导体处,以导线连接在两侧累积的电荷,即可输出电流。Silicon is the second most abundant element on earth. Since silicon has a solid foundation in the development of the semiconductor industry, most solar cells currently use silicon as the main material. The basic structure of a solar cell is formed by bonding P-type and N-type semiconductors. At the junction of the N-type semiconductor and the P-type semiconductor, a built-in electric field from N to P is generated. When sunlight comes in, the photons provide energy, the generated electrons will be moved to the N-type semiconductor by the electric field, and the holes will move to the P-type semiconductor, and the charges accumulated on both sides are connected by wires. Output current.
然而,目前硅基材料(例如单晶硅基板或非晶硅层)的表面存在许多缺陷,例如高活性的悬键(dangling bond),致使电子和空穴易产生复合(recombination)而导致载子的生命周期降低。传统上使用加热退火制程以改善硅基材料表面的缺陷,但传统的加热方式是从外到内加热,使得加热不均匀且花费时间较长。However, at present, there are many defects on the surface of silicon-based materials (such as single-crystal silicon substrate or amorphous silicon layer), such as highly active dangling bonds, which cause electrons and holes to easily recombine and lead to carriers life cycle is reduced. The thermal annealing process is traditionally used to improve the defects on the surface of silicon-based materials, but the traditional heating method is from the outside to the inside, which makes the heating uneven and takes a long time.
发明内容SUMMARY OF THE INVENTION
本发明提供一种硅基叠层的形成方法,其可快速且均匀地改善硅基叠硅基叠层之间的界面缺陷密度。The present invention provides a method for forming a silicon-based stack, which can rapidly and uniformly improve the interface defect density between the silicon-based stack and the silicon-based stack.
本发明提供一种硅基太阳能电池的制造方法,其可快速且均匀地改善硅基板与上下叠层之间的界面缺陷密度,以提高载子的生命周期,使得硅基太阳能电池具有良好的光电转换效率。The present invention provides a method for manufacturing a silicon-based solar cell, which can rapidly and uniformly improve the interface defect density between the silicon substrate and the upper and lower stacked layers, so as to improve the life cycle of carriers, so that the silicon-based solar cell has good photoelectricity conversion efficiency.
本发明提出一种硅基叠层的形成方法,其包括提供硅基板,其中硅基板具有相对的第一表面与第二表面。于第一表面上形成第一薄膜层。于第二表面上形成第二薄膜层。对硅基板、第一薄膜层及第二薄膜层进行微波制程,以钝化第一薄膜层及第二薄膜层。The present invention provides a method for forming a silicon-based stack, which includes providing a silicon substrate, wherein the silicon substrate has a first surface and a second surface opposite to each other. A first thin film layer is formed on the first surface. A second thin film layer is formed on the second surface. A microwave process is performed on the silicon substrate, the first thin film layer and the second thin film layer to passivate the first thin film layer and the second thin film layer.
在本发明的一实施例中,上述的硅基叠层的形成方法中,第一薄膜层的材料包括本质硅、氮化硅、氧化硅、氧化铝或氧化铪,第二薄膜层的材料包括本质硅、氮化硅、氧化硅、氧化铝或氧化铪。In an embodiment of the present invention, in the above-mentioned method for forming a silicon-based stack, the material of the first thin film layer includes intrinsic silicon, silicon nitride, silicon oxide, aluminum oxide or hafnium oxide, and the material of the second thin film layer includes Intrinsic silicon, silicon nitride, silicon oxide, aluminum oxide or hafnium oxide.
在本发明的一实施例中,上述的硅基叠层的形成方法中,微波制程的微波频率例如是介于850MHz~3GHz之间。In an embodiment of the present invention, in the above-mentioned method for forming a silicon-based stack, the microwave frequency of the microwave process is, for example, between 850 MHz and 3 GHz.
在本发明的一实施例中,上述的硅基叠层的形成方法中,微波制程的单位面积的功率密度例如是介于10mW/cm2~1000mW/cm2之间,微波制程的时间例如是介于10分钟~90分钟之间。In an embodiment of the present invention, in the above-mentioned method for forming a silicon-based laminate, the power density per unit area of the microwave process is, for example, between 10 mW/cm 2 and 1000 mW/cm 2 , and the time of the microwave process is, for example, Between 10 minutes and 90 minutes.
在本发明的一实施例中,上述的硅基叠层的形成方法中,微波制程的单位面积的功率密度例如是介于180~220mW/cm2之间,微波制程的微波频率例如是介于2.3GHz~2.5GHz之间,微波制程的时间例如是介于25分钟~30分钟之间。In an embodiment of the present invention, in the above-mentioned method for forming a silicon-based laminate, the power density per unit area of the microwave process is, for example, between 180 and 220 mW/cm 2 , and the microwave frequency of the microwave process is, for example, between Between 2.3 GHz and 2.5 GHz, the time of the microwave process is, for example, between 25 minutes and 30 minutes.
在本发明的一实施例中,上述的硅基叠层的形成方法中,微波制程的单位面积的功率密度例如是介于140mW/cm2~160mW/cm2之间,微波制程的微波频率例如是介于900MHz~930MHz之间,微波制程的时间例如是介于25分钟~30分钟之间。In an embodiment of the present invention, in the above-mentioned method for forming a silicon-based laminate, the power density per unit area of the microwave process is, for example, between 140mW/cm 2 and 160mW/cm 2 , and the microwave frequency of the microwave process is, for example, It is between 900MHz and 930MHz, and the time of the microwave process is, for example, between 25 minutes and 30 minutes.
本发明提出一种硅基太阳能电池的制造方法,其包括提供半导体基板,具有第一导电方式、相对的第一表面与第二表面。于第一表面上形成第一薄膜层。于第二表面上形成第二薄膜层。对半导体基板、第一薄膜层及第二薄膜层进行微波制程处理,以钝化第一薄膜层及第二薄膜层。The present invention provides a method for manufacturing a silicon-based solar cell, which includes providing a semiconductor substrate with a first conductive mode, an opposite first surface and a second surface. A first thin film layer is formed on the first surface. A second thin film layer is formed on the second surface. The semiconductor substrate, the first thin film layer and the second thin film layer are subjected to microwave processing to passivate the first thin film layer and the second thin film layer.
在本发明的一实施例中,上述的硅基太阳能电池的制造方法中,第一薄膜层的材料包括本质硅、氮化硅、氧化硅、氧化铝或氧化铪,第二薄膜层的材料包括本质硅、氮化硅、氧化硅、氧化铝或氧化铪。In an embodiment of the present invention, in the above-mentioned manufacturing method of a silicon-based solar cell, the material of the first thin film layer includes intrinsic silicon, silicon nitride, silicon oxide, aluminum oxide or hafnium oxide, and the material of the second thin film layer includes Intrinsic silicon, silicon nitride, silicon oxide, aluminum oxide or hafnium oxide.
在本发明的一实施例中,上述的硅基太阳能电池的制造方法中,微波制程的微波频率例如是介于850MHz~3GHz之间。In an embodiment of the present invention, in the above-mentioned manufacturing method of a silicon-based solar cell, the microwave frequency of the microwave process is, for example, between 850 MHz and 3 GHz.
在本发明的一实施例中,上述的硅基太阳能电池的制造方法中,微波制程的单位面积的功率密度例如是介于10mW/cm2~1000mW/cm2之间,微波制程的时间例如是介于10分钟~90分钟之间。In an embodiment of the present invention, in the above-mentioned manufacturing method of a silicon-based solar cell, the power density per unit area of the microwave process is, for example, between 10mW/cm 2 and 1000mW/cm 2 , and the time of the microwave process is, for example, Between 10 minutes and 90 minutes.
在本发明的一实施例中,上述的硅基太阳能电池的制造方法中,微波制程的单位面积的功率密度例如是介于180~220mW/cm2之间,微波制程的微波频率例如是介于2.3GHz~2.5GHz之间,微波制程的时间例如是介于25分钟~30分钟之间。In an embodiment of the present invention, in the above-mentioned manufacturing method of a silicon-based solar cell, the power density per unit area of the microwave process is, for example, between 180 and 220 mW/cm 2 , and the microwave frequency of the microwave process is, for example, between Between 2.3 GHz and 2.5 GHz, the time of the microwave process is, for example, between 25 minutes and 30 minutes.
在本发明的一实施例中,上述的硅基太阳能电池的制造方法中,微波制程的单位面积的功率密度例如是介于140mW/cm2~160mW/cm2之间,微波制程的微波频率例如是介于900MHz~930MHz之间,微波制程的时间例如是介于25分钟~30分钟之间。In an embodiment of the present invention, in the above-mentioned manufacturing method of a silicon-based solar cell, the power density per unit area of the microwave process is, for example, between 140mW/cm 2 and 160mW/cm 2 , and the microwave frequency of the microwave process is, for example, It is between 900MHz and 930MHz, and the time of the microwave process is, for example, between 25 minutes and 30 minutes.
在本发明的一实施例中,上述的硅基太阳能电池的制造方法中,还包括于钝化后的第一薄膜层上形成第一半导体层,第一半导体层具有不同于第一导电方式的第二导电方式。于钝化后的第二薄膜层上形成第二半导体层,第二半导体层具有与半导体基板相同的第一导电方式。In an embodiment of the present invention, the above-mentioned method for manufacturing a silicon-based solar cell further includes forming a first semiconductor layer on the passivated first thin film layer, and the first semiconductor layer has a different conductivity than the first conductive method. The second conduction mode. A second semiconductor layer is formed on the passivated second thin film layer, and the second semiconductor layer has the same first conduction mode as the semiconductor substrate.
在本发明的一实施例中,上述的硅基太阳能电池的制造方法中,还包括于第一半导体层上形成第一透明导电膜。于第二半导体层上形成第二透明导电膜。In an embodiment of the present invention, the above-mentioned method for manufacturing a silicon-based solar cell further includes forming a first transparent conductive film on the first semiconductor layer. A second transparent conductive film is formed on the second semiconductor layer.
在本发明的一实施例中,上述的硅基太阳能电池的制造方法中,还包括于第一透明导电膜上形成第一电极。于第二透明导电膜上形成第二电极。In an embodiment of the present invention, the above-mentioned manufacturing method of a silicon-based solar cell further includes forming a first electrode on the first transparent conductive film. A second electrode is formed on the second transparent conductive film.
在本发明的一实施例中,上述的硅基太阳能电池的制造方法中,其中第一薄膜层具有不同于第一导电方式的第二导电方式。In an embodiment of the present invention, in the above-mentioned manufacturing method of a silicon-based solar cell, the first thin film layer has a second conductive mode different from the first conductive mode.
在本发明的一实施例中,上述的硅基太阳能电池的制造方法中,还包括于第一薄膜层上形成第三电极。于第二薄膜层上形成第四电极。In an embodiment of the present invention, the above-mentioned manufacturing method of a silicon-based solar cell further includes forming a third electrode on the first thin film layer. A fourth electrode is formed on the second thin film layer.
基于上述,在本发明所提出的硅基叠层的形成方法中,对硅基板、第一薄膜层及第二薄膜层进行微波制程,以快速且均匀地钝化第一薄膜层及第二薄膜层,如此可避免悬键与空气中的其他原子键结(例如碳原子或是氧原子),以改善硅基板与第一薄膜层及第二薄膜层之间的界面缺陷密度。另外,在本发明所提出的硅基太阳能电池的制造方法中,对半导体基板、第一薄膜层及第二薄膜层进行微波制程处理,以快速且均匀地钝化第一薄膜层及第二薄膜层。如此一来,可改善基板材料之间的界面缺陷密度,使得硅基太阳能电池具有良好的转换效率。Based on the above, in the method for forming a silicon-based laminate proposed in the present invention, a microwave process is performed on the silicon substrate, the first thin film layer and the second thin film layer to quickly and uniformly passivate the first thin film layer and the second thin film In this way, dangling bonds can be prevented from bonding with other atoms in the air (eg, carbon atoms or oxygen atoms), so as to improve the interface defect density between the silicon substrate and the first thin film layer and the second thin film layer. In addition, in the manufacturing method of the silicon-based solar cell proposed by the present invention, the semiconductor substrate, the first thin film layer and the second thin film layer are subjected to microwave processing to quickly and uniformly passivate the first thin film layer and the second thin film Floor. In this way, the interface defect density between the substrate materials can be improved, so that the silicon-based solar cell has good conversion efficiency.
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合附图作详细说明如下。In order to make the above-mentioned features and advantages of the present invention more obvious and easy to understand, the following embodiments are given and described in detail with the accompanying drawings as follows.
附图说明Description of drawings
图1A是依据本发明一实施例的硅基叠层的形成方法的流程图。FIG. 1A is a flowchart of a method for forming a silicon-based stack according to an embodiment of the present invention.
图1B是依据本发明一实施例的硅基叠层的形成方法的剖面示意图。1B is a schematic cross-sectional view of a method for forming a silicon-based stack according to an embodiment of the present invention.
图2是依据本发明一实施例的硅基太阳能电池的制造方法的流程图。FIG. 2 is a flowchart of a method for manufacturing a silicon-based solar cell according to an embodiment of the present invention.
图3是依据本发明一实施例的硅基太阳能电池的剖面示意图。3 is a schematic cross-sectional view of a silicon-based solar cell according to an embodiment of the present invention.
图4是依据本发明另一实施例的硅基太阳能电池的剖面示意图。4 is a schematic cross-sectional view of a silicon-based solar cell according to another embodiment of the present invention.
图5是现有太阳能电池的硅基板、第一薄膜层及第二薄膜层经传统退火的方式钝化后的载子生命周期图。FIG. 5 is a life cycle diagram of carriers after the silicon substrate, the first thin film layer and the second thin film layer of the conventional solar cell are passivated by conventional annealing.
图6是依据本发明一实施例的硅基太阳能电池的硅基板、第一薄膜层及第二薄膜层经微波的方式钝化后的载子生命周期图。6 is a life cycle diagram of carriers after the silicon substrate, the first thin film layer and the second thin film layer of the silicon-based solar cell are passivated by microwaves according to an embodiment of the present invention.
附图标记说明:Description of reference numbers:
100:硅基板;100: silicon substrate;
102:第一表面;102: the first surface;
104:第二表面;104: the second surface;
110、210、310:第一薄膜层;110, 210, 310: the first film layer;
120、220、320:第二薄膜层;120, 220, 320: the second film layer;
200、300:半导体基板;200, 300: semiconductor substrate;
200a:第一半导体层;200a: a first semiconductor layer;
200b:第二半导体层;200b: a second semiconductor layer;
230:第一透明导电膜;230: a first transparent conductive film;
240:第二透明导电膜;240: the second transparent conductive film;
250:第一电极;250: the first electrode;
260:第二电极;260: the second electrode;
330:第三电极;330: the third electrode;
340:第四电极。340: Fourth electrode.
具体实施方式Detailed ways
以下将参照本实施例的附图以更全面地阐述本发明。然而,本发明也可以各种不同的形式体现,而不应限于本文中所述的实施例。附图中的层与区域的厚度会为了清楚起见而放大。相同或相似的参考号码表示相同或相似的元件,以下段落将不再一一赘述。另外,实施例中所提到的方向用语,例如:上、下、左、右、前或后等,仅是参考附加附图的方向。因此,使用的方向用语是用来说明并非用来限制本发明。The present invention will be described more fully hereinafter with reference to the accompanying drawings of this embodiment. However, the present invention may be embodied in various forms and should not be limited to the embodiments described herein. The thicknesses of layers and regions in the figures may be exaggerated for clarity. The same or similar reference numerals denote the same or similar elements, and the detailed description in the following paragraphs will not be repeated. In addition, the directional terms mentioned in the embodiments, such as: up, down, left, right, front or rear, etc., only refer to the directions of the attached drawings. Accordingly, the directional terms used are illustrative and not limiting of the present invention.
一般硅基叠层在制作时容易发生表面缺陷的问题,下面将提供一种硅基叠层的形成方法来均匀且快速地降低硅基叠层的界面之间的缺陷。Generally, a silicon-based stack is prone to surface defects during fabrication. The following will provide a method for forming a silicon-based stack to uniformly and rapidly reduce defects between interfaces of the silicon-based stack.
图1A是依据本发明一实施例的硅基叠层的形成方法的流程图。图1B是依据本发明一实施例的硅基叠层的形成方法的剖面示意图。请参照图1A及图1B,首先,提供硅基板100(步骤S11)。硅基板100的材料例如是单晶硅、多晶硅、非晶硅或其组合,举例来说,硅基板100可为N型单晶硅基板、P型单晶硅基板、本质型非晶硅薄膜、N型非晶硅薄膜或P型非晶硅薄膜。FIG. 1A is a flowchart of a method for forming a silicon-based stack according to an embodiment of the present invention. 1B is a schematic cross-sectional view of a method for forming a silicon-based stack according to an embodiment of the present invention. Referring to FIG. 1A and FIG. 1B , first, a
从图1B可以看到硅基板100具有相对的第一表面102与第二表面104。接着,于第一表面102上形成第一薄膜层110(步骤S13),在本实施例中,第一薄膜层110的材料包括本质硅、氮化硅、氧化硅、氧化铝或氧化铪。当然,第一薄膜层110的材料不以此为限制。It can be seen from FIG. 1B that the
接着,于第二表面104上形成第二薄膜层120(步骤S15)。在本实施例中,第二薄膜层120的材料包括本质硅、氮化硅、氧化硅、氧化铝或氧化铪。当然,第二薄膜层120的材料不以此为限制。要说明的是,步骤S13与步骤S15在制作上的顺序也可以相反。也就是说,在一实施例中,也可以是先进行步骤S15之后再进行步骤S13。或者,在一实施例中,步骤S13与步骤S15可以是同时进行。Next, a second
在步骤S13与步骤S15中,薄膜层形成的方法可以是化学气相沉积法、物理气相沉积法或原子层沉积法。在本实施例中,薄膜层形成的方法是使用化学气相沉积法制作而成,制程压力例如是400毫托(mTorr),射频功率例如是500mW/cm2,基板温度例如是150℃,薄膜厚度例如是20纳米,但步骤S13与步骤S15并不以此为限。In step S13 and step S15, the method for forming the thin film layer may be chemical vapor deposition method, physical vapor deposition method or atomic layer deposition method. In this embodiment, the thin film layer is formed by chemical vapor deposition. The process pressure is, for example, 400 mTorr, the radio frequency power is, for example, 500 mW/cm 2 , the substrate temperature is, for example, 150° C., and the film thickness is For example, it is 20 nanometers, but steps S13 and S15 are not limited to this.
沉积完薄膜后,接着对硅基板100、第一薄膜层110及第二薄膜层120进行微波制程处理(步骤S17)。微波制程的微波频率例如是介于850MHz~3GHz之间。微波制程的单位面积的功率密度例如是介于10mW/cm2~1000mW/cm2之间。微波制程的时间例如是介于10分钟~90分钟之间。After the thin film is deposited, the
在本实施例中,微波频率优选是2.4GHz,微波制程的单位面积的功率密度优选是200mW/cm2,微波制程的时间优选是30分钟,但本发明并不以此为限。在另一实施例中,微波制程的微波频率优选是915MHz,微波制程的单位面积的功率密度优选是150mW/cm2,微波制程的时间优选是30分钟。In this embodiment, the microwave frequency is preferably 2.4GHz, the power density per unit area of the microwave process is preferably 200mW/cm 2 , and the microwave process time is preferably 30 minutes, but the invention is not limited thereto. In another embodiment, the microwave frequency of the microwave process is preferably 915MHz, the power density per unit area of the microwave process is preferably 150mW/cm 2 , and the time of the microwave process is preferably 30 minutes.
本发明利用硅材料是非常好的微波吸收体的特性,通过微波制程产生电磁波并穿透物体产生极化震荡的全均匀性加热,其所花费的时间较短,且能达到节能的目的,以改善传统退火制程是由外到内加热,容易加热不均匀且耗时的缺点。The present invention utilizes the characteristic that silicon material is a very good microwave absorber, and generates electromagnetic waves through the microwave manufacturing process and penetrates the object to generate polarized oscillation for full uniform heating, which takes a short time and can achieve the purpose of energy saving. The traditional annealing process is improved from the outside to the inside, which is easy to heat unevenly and takes time.
当硅基板100、第一薄膜层110及第二薄膜层120在经过微波制程之后,位于硅基板100的悬键失去活性,以避免悬键与其他原子产生键结(例如碳原子或是氧原子),进而产生钝化效应,藉此改善硅基板100与第一薄膜层110之间的界面缺陷密度,以及改善硅基板100与第二薄膜层120之间的界面缺陷密度。When the
本发明的硅基叠层的形成方法具有快速省时且能够均匀的加热的优势,还能达到节能的目的。在本实施例中,相较于传统以退火制程进行钝化,以微波制程来进行钝化能够达到节能约20%。The method for forming a silicon-based stack of the present invention has the advantages of fast time saving and uniform heating, and can also achieve the purpose of energy saving. In this embodiment, compared with the traditional passivation using the annealing process, the passivation using the microwave process can achieve energy saving of about 20%.
上述硅基叠层的形成方法可以应用于硅基太阳能电池的制作,例如是硅基异质接面太阳能电池的制作。下面将对此进行说明。The above-mentioned method for forming the silicon-based stack can be applied to the fabrication of silicon-based solar cells, for example, the fabrication of silicon-based heterojunction solar cells. This will be explained below.
图2是依据本发明一实施例的硅基太阳能电池的制造方法的流程图。图3是依据本发明一实施例的硅基太阳能电池的剖面示意图,其中硅基太阳能电池例如是硅基异质接面太阳能电池。请参照图2及图3,首先,提供半导体基板200(步骤S21),半导体基板200例如是硅基板,通过掺杂三价原子或五价原子,分别可为P型硅基板或N型硅基板。在此实施例中,半导体基板200是以N型硅基板为例来进行说明,但本发明并不以此为限。在另一实施例中,半导体基板200可为P型硅基板。FIG. 2 is a flowchart of a method for manufacturing a silicon-based solar cell according to an embodiment of the present invention. 3 is a schematic cross-sectional view of a silicon-based solar cell according to an embodiment of the present invention, wherein the silicon-based solar cell is, for example, a silicon-based heterojunction solar cell. 2 and 3 , first, a
接着,半导体基板200具有相对的第一表面201与第二表面202。于第一表面201上形成第一薄膜层210(步骤S23)。在本实施例中,第一薄膜层210的材料可以是非晶硅、非晶氮化硅、非晶氧化硅、非晶氧化铝或其组合。当然,第一薄膜层210的材料不以此为限制。Next, the
接着,于第二表面202上形成第二薄膜层220(步骤S25)。第二薄膜层220的材料可以是非晶硅、非晶氮化硅、非晶氧化硅、非晶氧化铝或其组合。当然,第二薄膜层220的材料不以此为限制。同样地,步骤S23与步骤S25没有顺序上的限制。薄膜层的形成方法可以是化学气相沉积法、物理气相沉积法或原子层沉积法。Next, a second
然后,对半导体基板200、第一薄膜层210及第二薄膜层220进行微波制程处理(步骤S27)。在本实施例中,微波制程的微波频率例如是介于850MHz~3GHz之间。微波制程的单位面积的功率密度例如是介于10mW/cm2~1000mW/cm2之间。微波制程的时间例如是介于10分钟~90分钟之间。Then, microwave processing is performed on the
半导体基板200、第一薄膜层210及第二薄膜层220在经过微波制程之后,位于半导体基板200的悬键失去活性,避免悬键与其他原子产生键结(例如碳原子或是氧原子),进而产生钝化效应。After the
再来,于第一薄膜层210上形成第一半导体层200a。半导体基板200具有第一导电方式,而第一薄膜层210具有不同于第一导电方式的第二导电方式。在此实施例中,第一半导体层200a是以P型非晶硅层为例来进行说明。第一半导体层200a的形成方法例如是化学气相沉积法、物理气相沉积法或原子层沉积法。Next, a
接着,于第二薄膜层220上形成第二半导体层200b,第二半导体层200b具有与半导体基板200相同的第一导电方式。在此实施例中,第二半导体层200b是以N型非晶硅层为例来进行说明。第二半导体层200b的形成方法例如是化学气相沉积法、物理气相沉积法或原子层沉积法。Next, a
再来,如图3所示,于第一半导体层200a上形成第一透明导电膜230,使得电流的收集效率能够提高。第一透明导电膜230的材料可以是透明导电氧化物(transparentconductive oxide,TCO),例如铟锡氧化物(ITO)等金属氧化物。第一透明导电膜230的形成方法例如是蒸镀或溅镀。Next, as shown in FIG. 3, a first transparent
此外,于第二半导体层200b上形成第二透明导电膜240,使得电流的收集效率能够提升。第二透明导电膜240的材料可以是透明导电氧化物(transparent conductiveoxide,TCO),例如铟锡氧化物(ITO)等金属氧化物。第二透明导电膜240的形成方法例如是蒸镀或溅镀。当然,第一透明导电膜230与第二透明导电膜240的形成顺序并不被限制。In addition, the second transparent
而后,于第一透明导电膜230上形成第一电极250。第一电极250可用于导出硅基异质接面太阳能电池所产生的电力。第一电极250的材料例如是铝、金、银或铜。Then, a
最后,于第二透明导电膜240上形成第二电极260,以形成硅基异质接面太阳能电池。第二电极260可用于导出硅基异质接面太阳能电池所产生的电力。第二电极260的材料例如是铝、金、银或铜。同样地,第一电极250与第二电极260的形成顺序并不被限制。Finally, a
在本实施例的硅基异质接面太阳能电池的制造方法中,由于对半导体基板200、第一薄膜层210及第二薄膜层220进行微波制程处理,以避免悬键与其他原子产生键结,进而改善半导体基板200与第一薄膜层210之间的界面缺陷密度,以及半导体基板200与第二薄膜层220之间的界面缺陷密度,可以使硅基异质接面太阳能电池具有良好的光电转换效率。并且,微波处理具有快速且均匀化的效果。In the manufacturing method of the silicon-based heterojunction solar cell of the present embodiment, the
图2的硅基太阳能电池的制造方法也可以应用于例如是背电极钝化电池(Passivated Emitter and Rear Contact Solar Cell,PERC)的制作。图4是依据本发明另一实施例的硅基太阳能电池的剖面示意图,其中硅基太阳能电池例如是背电极钝化电池。请参照图2及图4,首先,提供半导体基板300(步骤S21),半导体基板300例如是硅基板,通过掺杂三价原子或五价原子,分别可为P型硅基板或N型硅基板。在此实施例中,半导体基板300是以N型硅基板为例来进行说明,但本发明并不以此为限。在另一实施例中,半导体基板300可为P型硅基板。The manufacturing method of the silicon-based solar cell in FIG. 2 can also be applied to, for example, the manufacture of a back electrode passivation cell (Passivated Emitter and Rear Contact Solar Cell, PERC). 4 is a schematic cross-sectional view of a silicon-based solar cell according to another embodiment of the present invention, wherein the silicon-based solar cell is, for example, a back electrode passivation cell. 2 and FIG. 4 , first, a
半导体基板300具有相对的第一表面301与第二表面302。第一表面301具有织构化(Texture)结构,例如是锯齿状或是其他可以让第一表面301粗糙化的结构。The
接着,于第一表面301上形成第一薄膜层310(步骤S23)。第一薄膜层310的材料例如是氧化硅,可以作为太阳能电池的射极(emitter)。半导体基板300具有第一导电方式。而第一薄膜层310通过掺杂三价原子或五价原子,具有不同于第一导电方式的第二导电方式。举例来说,在一些实施例中,当半导体基板300为P型掺杂半导体时,第一薄膜层310可以是N型掺杂半导体。在另一些实施例中,当半导体基板300为N型掺杂半导体时,第一薄膜层310可以是P型掺杂半导体。Next, a first
接着,于第二表面302上形成第二薄膜层320(步骤S25)。第二薄膜层320的材料例如是氧化硅或氧化铝。Next, a second
然后,对半导体基板300、第一薄膜层310及第二薄膜层320进行微波制程处理(步骤S27)。在本实施例中,微波制程的微波频率例如是介于850MHz~3GHz之间。微波制程的单位面积的功率密度例如是介于10mW/cm2~1000mW/cm2之间。微波制程的时间例如是介于10分钟~90分钟之间。Then, microwave processing is performed on the
半导体基板300、第一薄膜层310及第二薄膜层320在经过微波制程之后,位于半导体基板300的悬键失去活性,避免悬键与其他原子产生键结(例如碳原子或是氧原子),进而产生钝化效应。After the
接着,将第三电极330设置在第一薄膜层310上,且第三电极330电性连接第一薄膜层310。第三电极330的材料例如是铝、金、银或铜。此外,将第四电极340设置在第二薄膜层320的开口上。第四电极340的材料例如是铝、金、银或铜。Next, the
基于上述实施例可知,对半导体基板300、第一薄膜层310及第二薄膜层320进行微波制程处理,可以避免悬键与其他原子产生键结,而可快速且均匀地改善半导体基板300与第一薄膜层310之间的界面缺陷密度,以及半导体基板300与第二薄膜层320之间的界面缺陷密度,可以使背电极钝化电池(Passivated Emitter and Rear Contact Solar Cell,PERC)具有良好的光电转换效率。Based on the above-mentioned embodiments, it can be known that the microwave process processing on the
图5是现有太阳能电池的硅基板、第一薄膜层及第二薄膜层经传统退火的方式钝化后的载子生命周期图。图6是依据本发明一实施例的硅基太阳能电池的硅基板、第一薄膜层及第二薄膜层经微波的方式钝化后的载子生命周期图。请参照图5及图6,经由实验结果可得,传统退火制程后的载子生命周期为940μs,而经过微波制程后的载子生命周期为1220μs。由此可知,将半导体基板、第一薄膜层及第二薄膜层进行微波制程处理,确实可有效地增加载子生命周期。FIG. 5 is a life cycle diagram of carriers after the silicon substrate, the first thin film layer and the second thin film layer of the conventional solar cell are passivated by conventional annealing. 6 is a life cycle diagram of carriers after the silicon substrate, the first thin film layer and the second thin film layer of the silicon-based solar cell are passivated by microwaves according to an embodiment of the present invention. Referring to FIG. 5 and FIG. 6 , the experimental results show that the carrier lifetime after the conventional annealing process is 940 μs, and the carrier lifetime after the microwave process is 1220 μs. Therefore, it can be seen that the microwave process treatment of the semiconductor substrate, the first thin film layer and the second thin film layer can effectively increase the carrier life cycle.
综上所述,本发明的硅基叠层的形成方法中,通过对硅基板、第一薄膜层及第二薄膜层,进行微波制程处理,以快速且均匀地钝化第一薄膜层及第二薄膜层,如此可避免悬键与其他原子(例如碳原子或是氧原子)产生键结,以改善硅基板与第一薄膜层之间的界面缺陷密度,以及硅基板与第二薄膜层之间的界面缺陷密度。另外,在本发明的硅基太阳能电池的制造方法中,对半导体基板、第一薄膜层及第二薄膜层进行微波制程处理,以快速且均匀地钝化第一薄膜层及第二薄膜层,如此可避免悬键与其他原子(例如碳原子或是氧原子)产生键结,以改善半导体基板与第一薄膜层之间的界面缺陷密度,以及半导体基板与第二薄膜层之间的界面缺陷密度,使硅基太阳能电池具有良好的转换效率。To sum up, in the method for forming a silicon-based laminate of the present invention, the silicon substrate, the first thin film layer and the second thin film layer are subjected to microwave processing to quickly and uniformly passivate the first thin film layer and the second thin film layer. Two thin film layers, which can prevent dangling bonds from bonding with other atoms (such as carbon atoms or oxygen atoms), so as to improve the interface defect density between the silicon substrate and the first thin film layer, and the relationship between the silicon substrate and the second thin film layer. interfacial defect density. In addition, in the manufacturing method of the silicon-based solar cell of the present invention, the semiconductor substrate, the first thin film layer and the second thin film layer are subjected to a microwave process to quickly and uniformly passivate the first thin film layer and the second thin film layer, In this way, dangling bonds can be prevented from bonding with other atoms (such as carbon atoms or oxygen atoms), so as to improve the interface defect density between the semiconductor substrate and the first thin film layer, as well as the interface defect between the semiconductor substrate and the second thin film layer. density, so that silicon-based solar cells have good conversion efficiency.
虽然本发明已以实施例揭示如上,然其并非用以限定本发明,任何所属技术领域中技术人员,在不脱离本发明的精神和范围内,当可作些许的更改与润饰,故本发明的保护范围当视所附的权利要求所界定者为准。Although the present invention has been disclosed above with examples, it is not intended to limit the present invention. Any person skilled in the art can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection shall be defined by the appended claims.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811442208.3A CN111244223A (en) | 2018-11-29 | 2018-11-29 | Method for forming silicon-based laminated layer and method for manufacturing silicon-based solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811442208.3A CN111244223A (en) | 2018-11-29 | 2018-11-29 | Method for forming silicon-based laminated layer and method for manufacturing silicon-based solar cell |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111244223A true CN111244223A (en) | 2020-06-05 |
Family
ID=70873824
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811442208.3A Pending CN111244223A (en) | 2018-11-29 | 2018-11-29 | Method for forming silicon-based laminated layer and method for manufacturing silicon-based solar cell |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111244223A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101542749A (en) * | 2006-11-22 | 2009-09-23 | 东京毅力科创株式会社 | Method for manufacturing solar cell and apparatus for manufacturing solar cell |
US20110088764A1 (en) * | 2009-12-29 | 2011-04-21 | Auria Solar Co., Ltd. | Solar cell and manufacturing method thereof |
CN102903785A (en) * | 2011-07-28 | 2013-01-30 | 中国科学院沈阳科学仪器研制中心有限公司 | Method for improving solar cell sheet conversion efficiency by adopting hydrogenation passivation |
CN103050553A (en) * | 2012-12-29 | 2013-04-17 | 中国科学院沈阳科学仪器股份有限公司 | Crystalline silicon solar cell with double-side passivation and preparing method thereof |
CN108198871A (en) * | 2016-12-08 | 2018-06-22 | 财团法人金属工业研究发展中心 | Heterojunction solar cell and manufacturing method thereof |
-
2018
- 2018-11-29 CN CN201811442208.3A patent/CN111244223A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101542749A (en) * | 2006-11-22 | 2009-09-23 | 东京毅力科创株式会社 | Method for manufacturing solar cell and apparatus for manufacturing solar cell |
US20110088764A1 (en) * | 2009-12-29 | 2011-04-21 | Auria Solar Co., Ltd. | Solar cell and manufacturing method thereof |
CN102903785A (en) * | 2011-07-28 | 2013-01-30 | 中国科学院沈阳科学仪器研制中心有限公司 | Method for improving solar cell sheet conversion efficiency by adopting hydrogenation passivation |
CN103050553A (en) * | 2012-12-29 | 2013-04-17 | 中国科学院沈阳科学仪器股份有限公司 | Crystalline silicon solar cell with double-side passivation and preparing method thereof |
CN108198871A (en) * | 2016-12-08 | 2018-06-22 | 财团法人金属工业研究发展中心 | Heterojunction solar cell and manufacturing method thereof |
Non-Patent Citations (1)
Title |
---|
屈盛 等: "双层PECVD氮化硅膜晶体硅太阳电池", 《创新与技术》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114784148B (en) | Preparation method of solar cell, solar cell and photovoltaic module | |
CN114823951A (en) | Solar cell and photovoltaic module | |
CN103035753B (en) | Photoelectric conversion device | |
CN106981539A (en) | A kind of preparation method and application of nano-stack conductive film | |
CN115939254A (en) | Preparation method of solar cell | |
CN102487102B (en) | Solar cell and preparation method thereof | |
CN110828585A (en) | Passivated contact solar cell and manufacturing method thereof | |
CN108054088A (en) | N-type silicon wafer boron diffusion method, crystalline silicon solar cell and manufacturing method thereof | |
CN103178132B (en) | Solaode | |
WO2014206211A1 (en) | Back-passivated solar battery and manufacturing method therefor | |
CN115440839A (en) | A kind of solar cell and its preparation method | |
TWM517422U (en) | Heterojunction solar cell with local passivation | |
WO2020220394A1 (en) | Double-sided power generation solar cell and fabricating method therefor | |
CN117594669B (en) | Solar cell and preparation method thereof, laminated cell and photovoltaic module | |
TWI692114B (en) | Method of forming silicon-based stacked layer and method of fabricating silicon-based solar cell | |
CN111244223A (en) | Method for forming silicon-based laminated layer and method for manufacturing silicon-based solar cell | |
CN117594686A (en) | Heterogeneous crystalline silicon solar cells, preparation methods and photovoltaic devices | |
CN116487482A (en) | Solar cell and manufacturing method thereof | |
CN114038932A (en) | Single crystalline silicon solar cell with back containing silicon oxide-titanium nitride double-layer contact structure and preparation method thereof | |
CN114188429A (en) | A kind of hetero-heterojunction battery with tunneling tunnel junction and preparation method thereof | |
CN102800742B (en) | Back contacts crystal silicon solar cell sheet manufacture method | |
CN105449041A (en) | Preparation method of solar cell with silicon-based heterojunction SIS structure | |
CN106098811B (en) | A kind of high efficiency crystal-silicon solar cell | |
CN222126545U (en) | Solar cell and photovoltaic module | |
TWI647327B (en) | Method of forming silicon-based stacked layer and method of fabricating silicon-based heterojunction solar cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20200605 |