[go: up one dir, main page]

CN111244223A - Method for forming silicon-based laminated layer and method for manufacturing silicon-based solar cell - Google Patents

Method for forming silicon-based laminated layer and method for manufacturing silicon-based solar cell Download PDF

Info

Publication number
CN111244223A
CN111244223A CN201811442208.3A CN201811442208A CN111244223A CN 111244223 A CN111244223 A CN 111244223A CN 201811442208 A CN201811442208 A CN 201811442208A CN 111244223 A CN111244223 A CN 111244223A
Authority
CN
China
Prior art keywords
silicon
thin film
film layer
forming
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811442208.3A
Other languages
Chinese (zh)
Inventor
田伟辰
洪政源
叶昌鑫
吴以德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metal Industries Research and Development Centre
Original Assignee
Metal Industries Research and Development Centre
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metal Industries Research and Development Centre filed Critical Metal Industries Research and Development Centre
Priority to CN201811442208.3A priority Critical patent/CN111244223A/en
Publication of CN111244223A publication Critical patent/CN111244223A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • H10F71/121The active layers comprising only Group IV materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • H10F71/129Passivating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/30Coatings
    • H10F77/306Coatings for devices having potential barriers
    • H10F77/311Coatings for devices having potential barriers for photovoltaic cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

本发明提供一种硅基叠层的形成方法,其包括提供硅基板,其中硅基板具有相对的第一表面与第二表面。于第一表面上形成第一薄膜层。于第二表面上形成第二薄膜层。对硅基板、第一薄膜层及第二薄膜层进行微波制程,以钝化第一薄膜层及第二薄膜层。一种硅基太阳能电池的制造方法也被提出。

Figure 201811442208

The present invention provides a method for forming a silicon-based stack, which includes providing a silicon substrate, wherein the silicon substrate has a first surface and a second surface opposite to each other. A first thin film layer is formed on the first surface. A second thin film layer is formed on the second surface. A microwave process is performed on the silicon substrate, the first thin film layer and the second thin film layer to passivate the first thin film layer and the second thin film layer. A method for manufacturing a silicon-based solar cell is also proposed.

Figure 201811442208

Description

硅基叠层的形成方法及硅基太阳能电池的制造方法Method for forming silicon-based stack and method for manufacturing silicon-based solar cell

技术领域technical field

本发明涉及一种叠层的形成方法及太阳能电池的制造方法,尤其涉及一种硅基叠层的形成方法及硅基太阳能电池的制造方法。The present invention relates to a method for forming a stack and a method for manufacturing a solar cell, in particular to a method for forming a silicon-based stack and a method for manufacturing a silicon-based solar cell.

背景技术Background technique

硅为地球上蕴含量第二丰富的元素。由于硅在半导体工业的发展上已具有深厚的基础,因此,目前太阳能电池大多以硅为主要材料。太阳能电池的基本构造是运用P型与N型半导体接合而成,在N型半导体与P型半导体结合处,会产生一个由N指向P的内建电场。当太阳光照射进来时,光子提供能量,所产生的电子将会受电场作用而移动至N型半导体处,空穴则移动至P型半导体处,以导线连接在两侧累积的电荷,即可输出电流。Silicon is the second most abundant element on earth. Since silicon has a solid foundation in the development of the semiconductor industry, most solar cells currently use silicon as the main material. The basic structure of a solar cell is formed by bonding P-type and N-type semiconductors. At the junction of the N-type semiconductor and the P-type semiconductor, a built-in electric field from N to P is generated. When sunlight comes in, the photons provide energy, the generated electrons will be moved to the N-type semiconductor by the electric field, and the holes will move to the P-type semiconductor, and the charges accumulated on both sides are connected by wires. Output current.

然而,目前硅基材料(例如单晶硅基板或非晶硅层)的表面存在许多缺陷,例如高活性的悬键(dangling bond),致使电子和空穴易产生复合(recombination)而导致载子的生命周期降低。传统上使用加热退火制程以改善硅基材料表面的缺陷,但传统的加热方式是从外到内加热,使得加热不均匀且花费时间较长。However, at present, there are many defects on the surface of silicon-based materials (such as single-crystal silicon substrate or amorphous silicon layer), such as highly active dangling bonds, which cause electrons and holes to easily recombine and lead to carriers life cycle is reduced. The thermal annealing process is traditionally used to improve the defects on the surface of silicon-based materials, but the traditional heating method is from the outside to the inside, which makes the heating uneven and takes a long time.

发明内容SUMMARY OF THE INVENTION

本发明提供一种硅基叠层的形成方法,其可快速且均匀地改善硅基叠硅基叠层之间的界面缺陷密度。The present invention provides a method for forming a silicon-based stack, which can rapidly and uniformly improve the interface defect density between the silicon-based stack and the silicon-based stack.

本发明提供一种硅基太阳能电池的制造方法,其可快速且均匀地改善硅基板与上下叠层之间的界面缺陷密度,以提高载子的生命周期,使得硅基太阳能电池具有良好的光电转换效率。The present invention provides a method for manufacturing a silicon-based solar cell, which can rapidly and uniformly improve the interface defect density between the silicon substrate and the upper and lower stacked layers, so as to improve the life cycle of carriers, so that the silicon-based solar cell has good photoelectricity conversion efficiency.

本发明提出一种硅基叠层的形成方法,其包括提供硅基板,其中硅基板具有相对的第一表面与第二表面。于第一表面上形成第一薄膜层。于第二表面上形成第二薄膜层。对硅基板、第一薄膜层及第二薄膜层进行微波制程,以钝化第一薄膜层及第二薄膜层。The present invention provides a method for forming a silicon-based stack, which includes providing a silicon substrate, wherein the silicon substrate has a first surface and a second surface opposite to each other. A first thin film layer is formed on the first surface. A second thin film layer is formed on the second surface. A microwave process is performed on the silicon substrate, the first thin film layer and the second thin film layer to passivate the first thin film layer and the second thin film layer.

在本发明的一实施例中,上述的硅基叠层的形成方法中,第一薄膜层的材料包括本质硅、氮化硅、氧化硅、氧化铝或氧化铪,第二薄膜层的材料包括本质硅、氮化硅、氧化硅、氧化铝或氧化铪。In an embodiment of the present invention, in the above-mentioned method for forming a silicon-based stack, the material of the first thin film layer includes intrinsic silicon, silicon nitride, silicon oxide, aluminum oxide or hafnium oxide, and the material of the second thin film layer includes Intrinsic silicon, silicon nitride, silicon oxide, aluminum oxide or hafnium oxide.

在本发明的一实施例中,上述的硅基叠层的形成方法中,微波制程的微波频率例如是介于850MHz~3GHz之间。In an embodiment of the present invention, in the above-mentioned method for forming a silicon-based stack, the microwave frequency of the microwave process is, for example, between 850 MHz and 3 GHz.

在本发明的一实施例中,上述的硅基叠层的形成方法中,微波制程的单位面积的功率密度例如是介于10mW/cm2~1000mW/cm2之间,微波制程的时间例如是介于10分钟~90分钟之间。In an embodiment of the present invention, in the above-mentioned method for forming a silicon-based laminate, the power density per unit area of the microwave process is, for example, between 10 mW/cm 2 and 1000 mW/cm 2 , and the time of the microwave process is, for example, Between 10 minutes and 90 minutes.

在本发明的一实施例中,上述的硅基叠层的形成方法中,微波制程的单位面积的功率密度例如是介于180~220mW/cm2之间,微波制程的微波频率例如是介于2.3GHz~2.5GHz之间,微波制程的时间例如是介于25分钟~30分钟之间。In an embodiment of the present invention, in the above-mentioned method for forming a silicon-based laminate, the power density per unit area of the microwave process is, for example, between 180 and 220 mW/cm 2 , and the microwave frequency of the microwave process is, for example, between Between 2.3 GHz and 2.5 GHz, the time of the microwave process is, for example, between 25 minutes and 30 minutes.

在本发明的一实施例中,上述的硅基叠层的形成方法中,微波制程的单位面积的功率密度例如是介于140mW/cm2~160mW/cm2之间,微波制程的微波频率例如是介于900MHz~930MHz之间,微波制程的时间例如是介于25分钟~30分钟之间。In an embodiment of the present invention, in the above-mentioned method for forming a silicon-based laminate, the power density per unit area of the microwave process is, for example, between 140mW/cm 2 and 160mW/cm 2 , and the microwave frequency of the microwave process is, for example, It is between 900MHz and 930MHz, and the time of the microwave process is, for example, between 25 minutes and 30 minutes.

本发明提出一种硅基太阳能电池的制造方法,其包括提供半导体基板,具有第一导电方式、相对的第一表面与第二表面。于第一表面上形成第一薄膜层。于第二表面上形成第二薄膜层。对半导体基板、第一薄膜层及第二薄膜层进行微波制程处理,以钝化第一薄膜层及第二薄膜层。The present invention provides a method for manufacturing a silicon-based solar cell, which includes providing a semiconductor substrate with a first conductive mode, an opposite first surface and a second surface. A first thin film layer is formed on the first surface. A second thin film layer is formed on the second surface. The semiconductor substrate, the first thin film layer and the second thin film layer are subjected to microwave processing to passivate the first thin film layer and the second thin film layer.

在本发明的一实施例中,上述的硅基太阳能电池的制造方法中,第一薄膜层的材料包括本质硅、氮化硅、氧化硅、氧化铝或氧化铪,第二薄膜层的材料包括本质硅、氮化硅、氧化硅、氧化铝或氧化铪。In an embodiment of the present invention, in the above-mentioned manufacturing method of a silicon-based solar cell, the material of the first thin film layer includes intrinsic silicon, silicon nitride, silicon oxide, aluminum oxide or hafnium oxide, and the material of the second thin film layer includes Intrinsic silicon, silicon nitride, silicon oxide, aluminum oxide or hafnium oxide.

在本发明的一实施例中,上述的硅基太阳能电池的制造方法中,微波制程的微波频率例如是介于850MHz~3GHz之间。In an embodiment of the present invention, in the above-mentioned manufacturing method of a silicon-based solar cell, the microwave frequency of the microwave process is, for example, between 850 MHz and 3 GHz.

在本发明的一实施例中,上述的硅基太阳能电池的制造方法中,微波制程的单位面积的功率密度例如是介于10mW/cm2~1000mW/cm2之间,微波制程的时间例如是介于10分钟~90分钟之间。In an embodiment of the present invention, in the above-mentioned manufacturing method of a silicon-based solar cell, the power density per unit area of the microwave process is, for example, between 10mW/cm 2 and 1000mW/cm 2 , and the time of the microwave process is, for example, Between 10 minutes and 90 minutes.

在本发明的一实施例中,上述的硅基太阳能电池的制造方法中,微波制程的单位面积的功率密度例如是介于180~220mW/cm2之间,微波制程的微波频率例如是介于2.3GHz~2.5GHz之间,微波制程的时间例如是介于25分钟~30分钟之间。In an embodiment of the present invention, in the above-mentioned manufacturing method of a silicon-based solar cell, the power density per unit area of the microwave process is, for example, between 180 and 220 mW/cm 2 , and the microwave frequency of the microwave process is, for example, between Between 2.3 GHz and 2.5 GHz, the time of the microwave process is, for example, between 25 minutes and 30 minutes.

在本发明的一实施例中,上述的硅基太阳能电池的制造方法中,微波制程的单位面积的功率密度例如是介于140mW/cm2~160mW/cm2之间,微波制程的微波频率例如是介于900MHz~930MHz之间,微波制程的时间例如是介于25分钟~30分钟之间。In an embodiment of the present invention, in the above-mentioned manufacturing method of a silicon-based solar cell, the power density per unit area of the microwave process is, for example, between 140mW/cm 2 and 160mW/cm 2 , and the microwave frequency of the microwave process is, for example, It is between 900MHz and 930MHz, and the time of the microwave process is, for example, between 25 minutes and 30 minutes.

在本发明的一实施例中,上述的硅基太阳能电池的制造方法中,还包括于钝化后的第一薄膜层上形成第一半导体层,第一半导体层具有不同于第一导电方式的第二导电方式。于钝化后的第二薄膜层上形成第二半导体层,第二半导体层具有与半导体基板相同的第一导电方式。In an embodiment of the present invention, the above-mentioned method for manufacturing a silicon-based solar cell further includes forming a first semiconductor layer on the passivated first thin film layer, and the first semiconductor layer has a different conductivity than the first conductive method. The second conduction mode. A second semiconductor layer is formed on the passivated second thin film layer, and the second semiconductor layer has the same first conduction mode as the semiconductor substrate.

在本发明的一实施例中,上述的硅基太阳能电池的制造方法中,还包括于第一半导体层上形成第一透明导电膜。于第二半导体层上形成第二透明导电膜。In an embodiment of the present invention, the above-mentioned method for manufacturing a silicon-based solar cell further includes forming a first transparent conductive film on the first semiconductor layer. A second transparent conductive film is formed on the second semiconductor layer.

在本发明的一实施例中,上述的硅基太阳能电池的制造方法中,还包括于第一透明导电膜上形成第一电极。于第二透明导电膜上形成第二电极。In an embodiment of the present invention, the above-mentioned manufacturing method of a silicon-based solar cell further includes forming a first electrode on the first transparent conductive film. A second electrode is formed on the second transparent conductive film.

在本发明的一实施例中,上述的硅基太阳能电池的制造方法中,其中第一薄膜层具有不同于第一导电方式的第二导电方式。In an embodiment of the present invention, in the above-mentioned manufacturing method of a silicon-based solar cell, the first thin film layer has a second conductive mode different from the first conductive mode.

在本发明的一实施例中,上述的硅基太阳能电池的制造方法中,还包括于第一薄膜层上形成第三电极。于第二薄膜层上形成第四电极。In an embodiment of the present invention, the above-mentioned manufacturing method of a silicon-based solar cell further includes forming a third electrode on the first thin film layer. A fourth electrode is formed on the second thin film layer.

基于上述,在本发明所提出的硅基叠层的形成方法中,对硅基板、第一薄膜层及第二薄膜层进行微波制程,以快速且均匀地钝化第一薄膜层及第二薄膜层,如此可避免悬键与空气中的其他原子键结(例如碳原子或是氧原子),以改善硅基板与第一薄膜层及第二薄膜层之间的界面缺陷密度。另外,在本发明所提出的硅基太阳能电池的制造方法中,对半导体基板、第一薄膜层及第二薄膜层进行微波制程处理,以快速且均匀地钝化第一薄膜层及第二薄膜层。如此一来,可改善基板材料之间的界面缺陷密度,使得硅基太阳能电池具有良好的转换效率。Based on the above, in the method for forming a silicon-based laminate proposed in the present invention, a microwave process is performed on the silicon substrate, the first thin film layer and the second thin film layer to quickly and uniformly passivate the first thin film layer and the second thin film In this way, dangling bonds can be prevented from bonding with other atoms in the air (eg, carbon atoms or oxygen atoms), so as to improve the interface defect density between the silicon substrate and the first thin film layer and the second thin film layer. In addition, in the manufacturing method of the silicon-based solar cell proposed by the present invention, the semiconductor substrate, the first thin film layer and the second thin film layer are subjected to microwave processing to quickly and uniformly passivate the first thin film layer and the second thin film Floor. In this way, the interface defect density between the substrate materials can be improved, so that the silicon-based solar cell has good conversion efficiency.

为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合附图作详细说明如下。In order to make the above-mentioned features and advantages of the present invention more obvious and easy to understand, the following embodiments are given and described in detail with the accompanying drawings as follows.

附图说明Description of drawings

图1A是依据本发明一实施例的硅基叠层的形成方法的流程图。FIG. 1A is a flowchart of a method for forming a silicon-based stack according to an embodiment of the present invention.

图1B是依据本发明一实施例的硅基叠层的形成方法的剖面示意图。1B is a schematic cross-sectional view of a method for forming a silicon-based stack according to an embodiment of the present invention.

图2是依据本发明一实施例的硅基太阳能电池的制造方法的流程图。FIG. 2 is a flowchart of a method for manufacturing a silicon-based solar cell according to an embodiment of the present invention.

图3是依据本发明一实施例的硅基太阳能电池的剖面示意图。3 is a schematic cross-sectional view of a silicon-based solar cell according to an embodiment of the present invention.

图4是依据本发明另一实施例的硅基太阳能电池的剖面示意图。4 is a schematic cross-sectional view of a silicon-based solar cell according to another embodiment of the present invention.

图5是现有太阳能电池的硅基板、第一薄膜层及第二薄膜层经传统退火的方式钝化后的载子生命周期图。FIG. 5 is a life cycle diagram of carriers after the silicon substrate, the first thin film layer and the second thin film layer of the conventional solar cell are passivated by conventional annealing.

图6是依据本发明一实施例的硅基太阳能电池的硅基板、第一薄膜层及第二薄膜层经微波的方式钝化后的载子生命周期图。6 is a life cycle diagram of carriers after the silicon substrate, the first thin film layer and the second thin film layer of the silicon-based solar cell are passivated by microwaves according to an embodiment of the present invention.

附图标记说明:Description of reference numbers:

100:硅基板;100: silicon substrate;

102:第一表面;102: the first surface;

104:第二表面;104: the second surface;

110、210、310:第一薄膜层;110, 210, 310: the first film layer;

120、220、320:第二薄膜层;120, 220, 320: the second film layer;

200、300:半导体基板;200, 300: semiconductor substrate;

200a:第一半导体层;200a: a first semiconductor layer;

200b:第二半导体层;200b: a second semiconductor layer;

230:第一透明导电膜;230: a first transparent conductive film;

240:第二透明导电膜;240: the second transparent conductive film;

250:第一电极;250: the first electrode;

260:第二电极;260: the second electrode;

330:第三电极;330: the third electrode;

340:第四电极。340: Fourth electrode.

具体实施方式Detailed ways

以下将参照本实施例的附图以更全面地阐述本发明。然而,本发明也可以各种不同的形式体现,而不应限于本文中所述的实施例。附图中的层与区域的厚度会为了清楚起见而放大。相同或相似的参考号码表示相同或相似的元件,以下段落将不再一一赘述。另外,实施例中所提到的方向用语,例如:上、下、左、右、前或后等,仅是参考附加附图的方向。因此,使用的方向用语是用来说明并非用来限制本发明。The present invention will be described more fully hereinafter with reference to the accompanying drawings of this embodiment. However, the present invention may be embodied in various forms and should not be limited to the embodiments described herein. The thicknesses of layers and regions in the figures may be exaggerated for clarity. The same or similar reference numerals denote the same or similar elements, and the detailed description in the following paragraphs will not be repeated. In addition, the directional terms mentioned in the embodiments, such as: up, down, left, right, front or rear, etc., only refer to the directions of the attached drawings. Accordingly, the directional terms used are illustrative and not limiting of the present invention.

一般硅基叠层在制作时容易发生表面缺陷的问题,下面将提供一种硅基叠层的形成方法来均匀且快速地降低硅基叠层的界面之间的缺陷。Generally, a silicon-based stack is prone to surface defects during fabrication. The following will provide a method for forming a silicon-based stack to uniformly and rapidly reduce defects between interfaces of the silicon-based stack.

图1A是依据本发明一实施例的硅基叠层的形成方法的流程图。图1B是依据本发明一实施例的硅基叠层的形成方法的剖面示意图。请参照图1A及图1B,首先,提供硅基板100(步骤S11)。硅基板100的材料例如是单晶硅、多晶硅、非晶硅或其组合,举例来说,硅基板100可为N型单晶硅基板、P型单晶硅基板、本质型非晶硅薄膜、N型非晶硅薄膜或P型非晶硅薄膜。FIG. 1A is a flowchart of a method for forming a silicon-based stack according to an embodiment of the present invention. 1B is a schematic cross-sectional view of a method for forming a silicon-based stack according to an embodiment of the present invention. Referring to FIG. 1A and FIG. 1B , first, a silicon substrate 100 is provided (step S11 ). The material of the silicon substrate 100 is, for example, monocrystalline silicon, polycrystalline silicon, amorphous silicon or a combination thereof. N-type amorphous silicon film or P-type amorphous silicon film.

从图1B可以看到硅基板100具有相对的第一表面102与第二表面104。接着,于第一表面102上形成第一薄膜层110(步骤S13),在本实施例中,第一薄膜层110的材料包括本质硅、氮化硅、氧化硅、氧化铝或氧化铪。当然,第一薄膜层110的材料不以此为限制。It can be seen from FIG. 1B that the silicon substrate 100 has a first surface 102 and a second surface 104 opposite to each other. Next, a first thin film layer 110 is formed on the first surface 102 (step S13 ). In this embodiment, the material of the first thin film layer 110 includes intrinsic silicon, silicon nitride, silicon oxide, aluminum oxide or hafnium oxide. Of course, the material of the first thin film layer 110 is not limited thereto.

接着,于第二表面104上形成第二薄膜层120(步骤S15)。在本实施例中,第二薄膜层120的材料包括本质硅、氮化硅、氧化硅、氧化铝或氧化铪。当然,第二薄膜层120的材料不以此为限制。要说明的是,步骤S13与步骤S15在制作上的顺序也可以相反。也就是说,在一实施例中,也可以是先进行步骤S15之后再进行步骤S13。或者,在一实施例中,步骤S13与步骤S15可以是同时进行。Next, a second thin film layer 120 is formed on the second surface 104 (step S15). In this embodiment, the material of the second thin film layer 120 includes intrinsic silicon, silicon nitride, silicon oxide, aluminum oxide or hafnium oxide. Of course, the material of the second thin film layer 120 is not limited thereto. It should be noted that, the order of step S13 and step S15 may also be reversed. That is to say, in an embodiment, step S15 may be performed first and then step S13 may be performed. Alternatively, in an embodiment, step S13 and step S15 may be performed simultaneously.

在步骤S13与步骤S15中,薄膜层形成的方法可以是化学气相沉积法、物理气相沉积法或原子层沉积法。在本实施例中,薄膜层形成的方法是使用化学气相沉积法制作而成,制程压力例如是400毫托(mTorr),射频功率例如是500mW/cm2,基板温度例如是150℃,薄膜厚度例如是20纳米,但步骤S13与步骤S15并不以此为限。In step S13 and step S15, the method for forming the thin film layer may be chemical vapor deposition method, physical vapor deposition method or atomic layer deposition method. In this embodiment, the thin film layer is formed by chemical vapor deposition. The process pressure is, for example, 400 mTorr, the radio frequency power is, for example, 500 mW/cm 2 , the substrate temperature is, for example, 150° C., and the film thickness is For example, it is 20 nanometers, but steps S13 and S15 are not limited to this.

沉积完薄膜后,接着对硅基板100、第一薄膜层110及第二薄膜层120进行微波制程处理(步骤S17)。微波制程的微波频率例如是介于850MHz~3GHz之间。微波制程的单位面积的功率密度例如是介于10mW/cm2~1000mW/cm2之间。微波制程的时间例如是介于10分钟~90分钟之间。After the thin film is deposited, the silicon substrate 100 , the first thin film layer 110 and the second thin film layer 120 are then subjected to microwave processing (step S17 ). The microwave frequency of the microwave process is, for example, between 850MHz and 3GHz. The power density per unit area of the microwave process is, for example, between 10 mW/cm 2 and 1000 mW/cm 2 . The time of the microwave process is, for example, between 10 minutes and 90 minutes.

在本实施例中,微波频率优选是2.4GHz,微波制程的单位面积的功率密度优选是200mW/cm2,微波制程的时间优选是30分钟,但本发明并不以此为限。在另一实施例中,微波制程的微波频率优选是915MHz,微波制程的单位面积的功率密度优选是150mW/cm2,微波制程的时间优选是30分钟。In this embodiment, the microwave frequency is preferably 2.4GHz, the power density per unit area of the microwave process is preferably 200mW/cm 2 , and the microwave process time is preferably 30 minutes, but the invention is not limited thereto. In another embodiment, the microwave frequency of the microwave process is preferably 915MHz, the power density per unit area of the microwave process is preferably 150mW/cm 2 , and the time of the microwave process is preferably 30 minutes.

本发明利用硅材料是非常好的微波吸收体的特性,通过微波制程产生电磁波并穿透物体产生极化震荡的全均匀性加热,其所花费的时间较短,且能达到节能的目的,以改善传统退火制程是由外到内加热,容易加热不均匀且耗时的缺点。The present invention utilizes the characteristic that silicon material is a very good microwave absorber, and generates electromagnetic waves through the microwave manufacturing process and penetrates the object to generate polarized oscillation for full uniform heating, which takes a short time and can achieve the purpose of energy saving. The traditional annealing process is improved from the outside to the inside, which is easy to heat unevenly and takes time.

当硅基板100、第一薄膜层110及第二薄膜层120在经过微波制程之后,位于硅基板100的悬键失去活性,以避免悬键与其他原子产生键结(例如碳原子或是氧原子),进而产生钝化效应,藉此改善硅基板100与第一薄膜层110之间的界面缺陷密度,以及改善硅基板100与第二薄膜层120之间的界面缺陷密度。When the silicon substrate 100 , the first thin film layer 110 and the second thin film layer 120 are subjected to a microwave process, the dangling bonds on the silicon substrate 100 are deactivated, so as to prevent the dangling bonds from bonding with other atoms (such as carbon atoms or oxygen atoms) ), thereby generating a passivation effect, thereby improving the interface defect density between the silicon substrate 100 and the first thin film layer 110 and improving the interface defect density between the silicon substrate 100 and the second thin film layer 120 .

本发明的硅基叠层的形成方法具有快速省时且能够均匀的加热的优势,还能达到节能的目的。在本实施例中,相较于传统以退火制程进行钝化,以微波制程来进行钝化能够达到节能约20%。The method for forming a silicon-based stack of the present invention has the advantages of fast time saving and uniform heating, and can also achieve the purpose of energy saving. In this embodiment, compared with the traditional passivation using the annealing process, the passivation using the microwave process can achieve energy saving of about 20%.

上述硅基叠层的形成方法可以应用于硅基太阳能电池的制作,例如是硅基异质接面太阳能电池的制作。下面将对此进行说明。The above-mentioned method for forming the silicon-based stack can be applied to the fabrication of silicon-based solar cells, for example, the fabrication of silicon-based heterojunction solar cells. This will be explained below.

图2是依据本发明一实施例的硅基太阳能电池的制造方法的流程图。图3是依据本发明一实施例的硅基太阳能电池的剖面示意图,其中硅基太阳能电池例如是硅基异质接面太阳能电池。请参照图2及图3,首先,提供半导体基板200(步骤S21),半导体基板200例如是硅基板,通过掺杂三价原子或五价原子,分别可为P型硅基板或N型硅基板。在此实施例中,半导体基板200是以N型硅基板为例来进行说明,但本发明并不以此为限。在另一实施例中,半导体基板200可为P型硅基板。FIG. 2 is a flowchart of a method for manufacturing a silicon-based solar cell according to an embodiment of the present invention. 3 is a schematic cross-sectional view of a silicon-based solar cell according to an embodiment of the present invention, wherein the silicon-based solar cell is, for example, a silicon-based heterojunction solar cell. 2 and 3 , first, a semiconductor substrate 200 is provided (step S21 ). The semiconductor substrate 200 is, for example, a silicon substrate. By doping trivalent atoms or pentavalent atoms, the semiconductor substrate 200 can be a P-type silicon substrate or an N-type silicon substrate, respectively. . In this embodiment, the semiconductor substrate 200 is described by taking an N-type silicon substrate as an example, but the present invention is not limited thereto. In another embodiment, the semiconductor substrate 200 may be a P-type silicon substrate.

接着,半导体基板200具有相对的第一表面201与第二表面202。于第一表面201上形成第一薄膜层210(步骤S23)。在本实施例中,第一薄膜层210的材料可以是非晶硅、非晶氮化硅、非晶氧化硅、非晶氧化铝或其组合。当然,第一薄膜层210的材料不以此为限制。Next, the semiconductor substrate 200 has a first surface 201 and a second surface 202 opposite to each other. A first thin film layer 210 is formed on the first surface 201 (step S23). In this embodiment, the material of the first thin film layer 210 may be amorphous silicon, amorphous silicon nitride, amorphous silicon oxide, amorphous aluminum oxide or a combination thereof. Of course, the material of the first thin film layer 210 is not limited thereto.

接着,于第二表面202上形成第二薄膜层220(步骤S25)。第二薄膜层220的材料可以是非晶硅、非晶氮化硅、非晶氧化硅、非晶氧化铝或其组合。当然,第二薄膜层220的材料不以此为限制。同样地,步骤S23与步骤S25没有顺序上的限制。薄膜层的形成方法可以是化学气相沉积法、物理气相沉积法或原子层沉积法。Next, a second thin film layer 220 is formed on the second surface 202 (step S25). The material of the second thin film layer 220 may be amorphous silicon, amorphous silicon nitride, amorphous silicon oxide, amorphous aluminum oxide or a combination thereof. Of course, the material of the second thin film layer 220 is not limited thereto. Likewise, steps S23 and S25 are not restricted in order. The formation method of the thin film layer may be chemical vapor deposition method, physical vapor deposition method or atomic layer deposition method.

然后,对半导体基板200、第一薄膜层210及第二薄膜层220进行微波制程处理(步骤S27)。在本实施例中,微波制程的微波频率例如是介于850MHz~3GHz之间。微波制程的单位面积的功率密度例如是介于10mW/cm2~1000mW/cm2之间。微波制程的时间例如是介于10分钟~90分钟之间。Then, microwave processing is performed on the semiconductor substrate 200 , the first thin film layer 210 and the second thin film layer 220 (step S27 ). In this embodiment, the microwave frequency of the microwave process is, for example, between 850MHz and 3GHz. The power density per unit area of the microwave process is, for example, between 10 mW/cm 2 and 1000 mW/cm 2 . The time of the microwave process is, for example, between 10 minutes and 90 minutes.

半导体基板200、第一薄膜层210及第二薄膜层220在经过微波制程之后,位于半导体基板200的悬键失去活性,避免悬键与其他原子产生键结(例如碳原子或是氧原子),进而产生钝化效应。After the semiconductor substrate 200 , the first thin film layer 210 and the second thin film layer 220 are subjected to a microwave process, the dangling bonds on the semiconductor substrate 200 are deactivated, so as to prevent the dangling bonds from bonding with other atoms (such as carbon atoms or oxygen atoms), This results in a passivation effect.

再来,于第一薄膜层210上形成第一半导体层200a。半导体基板200具有第一导电方式,而第一薄膜层210具有不同于第一导电方式的第二导电方式。在此实施例中,第一半导体层200a是以P型非晶硅层为例来进行说明。第一半导体层200a的形成方法例如是化学气相沉积法、物理气相沉积法或原子层沉积法。Next, a first semiconductor layer 200 a is formed on the first thin film layer 210 . The semiconductor substrate 200 has a first conductive mode, and the first thin film layer 210 has a second conductive mode different from the first conductive mode. In this embodiment, the first semiconductor layer 200a is described by taking a P-type amorphous silicon layer as an example. The formation method of the first semiconductor layer 200a is, for example, chemical vapor deposition, physical vapor deposition, or atomic layer deposition.

接着,于第二薄膜层220上形成第二半导体层200b,第二半导体层200b具有与半导体基板200相同的第一导电方式。在此实施例中,第二半导体层200b是以N型非晶硅层为例来进行说明。第二半导体层200b的形成方法例如是化学气相沉积法、物理气相沉积法或原子层沉积法。Next, a second semiconductor layer 200 b is formed on the second thin film layer 220 , and the second semiconductor layer 200 b has the same first conductive mode as the semiconductor substrate 200 . In this embodiment, the second semiconductor layer 200b is described by taking an N-type amorphous silicon layer as an example. The formation method of the second semiconductor layer 200b is, for example, chemical vapor deposition, physical vapor deposition, or atomic layer deposition.

再来,如图3所示,于第一半导体层200a上形成第一透明导电膜230,使得电流的收集效率能够提高。第一透明导电膜230的材料可以是透明导电氧化物(transparentconductive oxide,TCO),例如铟锡氧化物(ITO)等金属氧化物。第一透明导电膜230的形成方法例如是蒸镀或溅镀。Next, as shown in FIG. 3, a first transparent conductive film 230 is formed on the first semiconductor layer 200a, so that the current collection efficiency can be improved. The material of the first transparent conductive film 230 may be transparent conductive oxide (transparent conductive oxide, TCO), such as metal oxides such as indium tin oxide (ITO). The formation method of the first transparent conductive film 230 is, for example, evaporation or sputtering.

此外,于第二半导体层200b上形成第二透明导电膜240,使得电流的收集效率能够提升。第二透明导电膜240的材料可以是透明导电氧化物(transparent conductiveoxide,TCO),例如铟锡氧化物(ITO)等金属氧化物。第二透明导电膜240的形成方法例如是蒸镀或溅镀。当然,第一透明导电膜230与第二透明导电膜240的形成顺序并不被限制。In addition, the second transparent conductive film 240 is formed on the second semiconductor layer 200b, so that the current collection efficiency can be improved. The material of the second transparent conductive film 240 may be a transparent conductive oxide (transparent conductive oxide, TCO), such as a metal oxide such as indium tin oxide (ITO). The formation method of the second transparent conductive film 240 is, for example, evaporation or sputtering. Of course, the order in which the first transparent conductive film 230 and the second transparent conductive film 240 are formed is not limited.

而后,于第一透明导电膜230上形成第一电极250。第一电极250可用于导出硅基异质接面太阳能电池所产生的电力。第一电极250的材料例如是铝、金、银或铜。Then, a first electrode 250 is formed on the first transparent conductive film 230 . The first electrode 250 can be used to derive the power generated by the silicon-based heterojunction solar cell. The material of the first electrode 250 is, for example, aluminum, gold, silver or copper.

最后,于第二透明导电膜240上形成第二电极260,以形成硅基异质接面太阳能电池。第二电极260可用于导出硅基异质接面太阳能电池所产生的电力。第二电极260的材料例如是铝、金、银或铜。同样地,第一电极250与第二电极260的形成顺序并不被限制。Finally, a second electrode 260 is formed on the second transparent conductive film 240 to form a silicon-based heterojunction solar cell. The second electrode 260 can be used to derive the power generated by the silicon-based heterojunction solar cell. The material of the second electrode 260 is, for example, aluminum, gold, silver or copper. Likewise, the order in which the first electrodes 250 and the second electrodes 260 are formed is not limited.

在本实施例的硅基异质接面太阳能电池的制造方法中,由于对半导体基板200、第一薄膜层210及第二薄膜层220进行微波制程处理,以避免悬键与其他原子产生键结,进而改善半导体基板200与第一薄膜层210之间的界面缺陷密度,以及半导体基板200与第二薄膜层220之间的界面缺陷密度,可以使硅基异质接面太阳能电池具有良好的光电转换效率。并且,微波处理具有快速且均匀化的效果。In the manufacturing method of the silicon-based heterojunction solar cell of the present embodiment, the semiconductor substrate 200 , the first thin film layer 210 and the second thin film layer 220 are subjected to microwave processing to avoid dangling bonds from bonding with other atoms. , thereby improving the interface defect density between the semiconductor substrate 200 and the first thin film layer 210, as well as the interface defect density between the semiconductor substrate 200 and the second thin film layer 220, so that the silicon-based heterojunction solar cell can have good photovoltaic performance. conversion efficiency. Also, microwave treatment has a rapid and homogenizing effect.

图2的硅基太阳能电池的制造方法也可以应用于例如是背电极钝化电池(Passivated Emitter and Rear Contact Solar Cell,PERC)的制作。图4是依据本发明另一实施例的硅基太阳能电池的剖面示意图,其中硅基太阳能电池例如是背电极钝化电池。请参照图2及图4,首先,提供半导体基板300(步骤S21),半导体基板300例如是硅基板,通过掺杂三价原子或五价原子,分别可为P型硅基板或N型硅基板。在此实施例中,半导体基板300是以N型硅基板为例来进行说明,但本发明并不以此为限。在另一实施例中,半导体基板300可为P型硅基板。The manufacturing method of the silicon-based solar cell in FIG. 2 can also be applied to, for example, the manufacture of a back electrode passivation cell (Passivated Emitter and Rear Contact Solar Cell, PERC). 4 is a schematic cross-sectional view of a silicon-based solar cell according to another embodiment of the present invention, wherein the silicon-based solar cell is, for example, a back electrode passivation cell. 2 and FIG. 4 , first, a semiconductor substrate 300 is provided (step S21 ). The semiconductor substrate 300 is, for example, a silicon substrate. By doping trivalent atoms or pentavalent atoms, the semiconductor substrate 300 can be a P-type silicon substrate or an N-type silicon substrate, respectively. . In this embodiment, the semiconductor substrate 300 is described by taking an N-type silicon substrate as an example, but the present invention is not limited thereto. In another embodiment, the semiconductor substrate 300 may be a P-type silicon substrate.

半导体基板300具有相对的第一表面301与第二表面302。第一表面301具有织构化(Texture)结构,例如是锯齿状或是其他可以让第一表面301粗糙化的结构。The semiconductor substrate 300 has a first surface 301 and a second surface 302 opposite to each other. The first surface 301 has a textured structure, such as zigzag or other structures that can roughen the first surface 301 .

接着,于第一表面301上形成第一薄膜层310(步骤S23)。第一薄膜层310的材料例如是氧化硅,可以作为太阳能电池的射极(emitter)。半导体基板300具有第一导电方式。而第一薄膜层310通过掺杂三价原子或五价原子,具有不同于第一导电方式的第二导电方式。举例来说,在一些实施例中,当半导体基板300为P型掺杂半导体时,第一薄膜层310可以是N型掺杂半导体。在另一些实施例中,当半导体基板300为N型掺杂半导体时,第一薄膜层310可以是P型掺杂半导体。Next, a first thin film layer 310 is formed on the first surface 301 (step S23). The material of the first thin film layer 310 is, for example, silicon oxide, which can be used as the emitter of the solar cell. The semiconductor substrate 300 has a first conduction mode. The first thin film layer 310 has a second conductive mode different from the first conductive mode by doping trivalent atoms or pentavalent atoms. For example, in some embodiments, when the semiconductor substrate 300 is a P-type doped semiconductor, the first thin film layer 310 may be an N-type doped semiconductor. In other embodiments, when the semiconductor substrate 300 is an N-type doped semiconductor, the first thin film layer 310 may be a P-type doped semiconductor.

接着,于第二表面302上形成第二薄膜层320(步骤S25)。第二薄膜层320的材料例如是氧化硅或氧化铝。Next, a second thin film layer 320 is formed on the second surface 302 (step S25). The material of the second thin film layer 320 is, for example, silicon oxide or aluminum oxide.

然后,对半导体基板300、第一薄膜层310及第二薄膜层320进行微波制程处理(步骤S27)。在本实施例中,微波制程的微波频率例如是介于850MHz~3GHz之间。微波制程的单位面积的功率密度例如是介于10mW/cm2~1000mW/cm2之间。微波制程的时间例如是介于10分钟~90分钟之间。Then, microwave processing is performed on the semiconductor substrate 300 , the first thin film layer 310 and the second thin film layer 320 (step S27 ). In this embodiment, the microwave frequency of the microwave process is, for example, between 850MHz and 3GHz. The power density per unit area of the microwave process is, for example, between 10 mW/cm 2 and 1000 mW/cm 2 . The time of the microwave process is, for example, between 10 minutes and 90 minutes.

半导体基板300、第一薄膜层310及第二薄膜层320在经过微波制程之后,位于半导体基板300的悬键失去活性,避免悬键与其他原子产生键结(例如碳原子或是氧原子),进而产生钝化效应。After the semiconductor substrate 300 , the first thin film layer 310 and the second thin film layer 320 are subjected to a microwave process, the dangling bonds on the semiconductor substrate 300 are deactivated, so as to prevent the dangling bonds from bonding with other atoms (such as carbon atoms or oxygen atoms), This results in a passivation effect.

接着,将第三电极330设置在第一薄膜层310上,且第三电极330电性连接第一薄膜层310。第三电极330的材料例如是铝、金、银或铜。此外,将第四电极340设置在第二薄膜层320的开口上。第四电极340的材料例如是铝、金、银或铜。Next, the third electrode 330 is disposed on the first thin film layer 310 , and the third electrode 330 is electrically connected to the first thin film layer 310 . The material of the third electrode 330 is, for example, aluminum, gold, silver or copper. In addition, the fourth electrode 340 is disposed on the opening of the second thin film layer 320 . The material of the fourth electrode 340 is, for example, aluminum, gold, silver or copper.

基于上述实施例可知,对半导体基板300、第一薄膜层310及第二薄膜层320进行微波制程处理,可以避免悬键与其他原子产生键结,而可快速且均匀地改善半导体基板300与第一薄膜层310之间的界面缺陷密度,以及半导体基板300与第二薄膜层320之间的界面缺陷密度,可以使背电极钝化电池(Passivated Emitter and Rear Contact Solar Cell,PERC)具有良好的光电转换效率。Based on the above-mentioned embodiments, it can be known that the microwave process processing on the semiconductor substrate 300 , the first thin film layer 310 and the second thin film layer 320 can avoid the bonding between dangling bonds and other atoms, and can quickly and uniformly improve the relationship between the semiconductor substrate 300 and the first thin film layer 320 . The interface defect density between a thin film layer 310 and the interface defect density between the semiconductor substrate 300 and the second thin film layer 320 can make the back electrode passivation cell (Passivated Emitter and Rear Contact Solar Cell, PERC) have good photoelectricity conversion efficiency.

图5是现有太阳能电池的硅基板、第一薄膜层及第二薄膜层经传统退火的方式钝化后的载子生命周期图。图6是依据本发明一实施例的硅基太阳能电池的硅基板、第一薄膜层及第二薄膜层经微波的方式钝化后的载子生命周期图。请参照图5及图6,经由实验结果可得,传统退火制程后的载子生命周期为940μs,而经过微波制程后的载子生命周期为1220μs。由此可知,将半导体基板、第一薄膜层及第二薄膜层进行微波制程处理,确实可有效地增加载子生命周期。FIG. 5 is a life cycle diagram of carriers after the silicon substrate, the first thin film layer and the second thin film layer of the conventional solar cell are passivated by conventional annealing. 6 is a life cycle diagram of carriers after the silicon substrate, the first thin film layer and the second thin film layer of the silicon-based solar cell are passivated by microwaves according to an embodiment of the present invention. Referring to FIG. 5 and FIG. 6 , the experimental results show that the carrier lifetime after the conventional annealing process is 940 μs, and the carrier lifetime after the microwave process is 1220 μs. Therefore, it can be seen that the microwave process treatment of the semiconductor substrate, the first thin film layer and the second thin film layer can effectively increase the carrier life cycle.

综上所述,本发明的硅基叠层的形成方法中,通过对硅基板、第一薄膜层及第二薄膜层,进行微波制程处理,以快速且均匀地钝化第一薄膜层及第二薄膜层,如此可避免悬键与其他原子(例如碳原子或是氧原子)产生键结,以改善硅基板与第一薄膜层之间的界面缺陷密度,以及硅基板与第二薄膜层之间的界面缺陷密度。另外,在本发明的硅基太阳能电池的制造方法中,对半导体基板、第一薄膜层及第二薄膜层进行微波制程处理,以快速且均匀地钝化第一薄膜层及第二薄膜层,如此可避免悬键与其他原子(例如碳原子或是氧原子)产生键结,以改善半导体基板与第一薄膜层之间的界面缺陷密度,以及半导体基板与第二薄膜层之间的界面缺陷密度,使硅基太阳能电池具有良好的转换效率。To sum up, in the method for forming a silicon-based laminate of the present invention, the silicon substrate, the first thin film layer and the second thin film layer are subjected to microwave processing to quickly and uniformly passivate the first thin film layer and the second thin film layer. Two thin film layers, which can prevent dangling bonds from bonding with other atoms (such as carbon atoms or oxygen atoms), so as to improve the interface defect density between the silicon substrate and the first thin film layer, and the relationship between the silicon substrate and the second thin film layer. interfacial defect density. In addition, in the manufacturing method of the silicon-based solar cell of the present invention, the semiconductor substrate, the first thin film layer and the second thin film layer are subjected to a microwave process to quickly and uniformly passivate the first thin film layer and the second thin film layer, In this way, dangling bonds can be prevented from bonding with other atoms (such as carbon atoms or oxygen atoms), so as to improve the interface defect density between the semiconductor substrate and the first thin film layer, as well as the interface defect between the semiconductor substrate and the second thin film layer. density, so that silicon-based solar cells have good conversion efficiency.

虽然本发明已以实施例揭示如上,然其并非用以限定本发明,任何所属技术领域中技术人员,在不脱离本发明的精神和范围内,当可作些许的更改与润饰,故本发明的保护范围当视所附的权利要求所界定者为准。Although the present invention has been disclosed above with examples, it is not intended to limit the present invention. Any person skilled in the art can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection shall be defined by the appended claims.

Claims (13)

1.一种硅基叠层的形成方法,其特征在于,包括:1. A method for forming a silicon-based stack, comprising: 提供硅基板,其中所述硅基板具有相对的第一表面与第二表面;providing a silicon substrate, wherein the silicon substrate has opposing first and second surfaces; 于所述第一表面上形成第一薄膜层;forming a first thin film layer on the first surface; 于所述第二表面上形成第二薄膜层;以及forming a second thin film layer on the second surface; and 对所述硅基板、所述第一薄膜层及所述第二薄膜层进行微波制程,以钝化所述第一薄膜层及所述第二薄膜层。A microwave process is performed on the silicon substrate, the first thin film layer and the second thin film layer to passivate the first thin film layer and the second thin film layer. 2.根据权利要求1所述的硅基叠层的形成方法,其特征在于,所述第一薄膜层的材料包括本质硅、氮化硅、氧化硅、氧化铝或氧化铪,所述第二薄膜层的材料包括本质硅、氮化硅、氧化硅、氧化铝或氧化铪。2 . The method for forming a silicon-based stack according to claim 1 , wherein the material of the first thin film layer comprises intrinsic silicon, silicon nitride, silicon oxide, aluminum oxide or hafnium oxide, and the second The material of the thin film layer includes intrinsic silicon, silicon nitride, silicon oxide, aluminum oxide or hafnium oxide. 3.根据权利要求1所述的硅基叠层的形成方法,其特征在于,所述微波制程的微波频率介于850MHz~3GHz之间。3 . The method for forming a silicon-based laminate according to claim 1 , wherein the microwave frequency of the microwave process is between 850 MHz and 3 GHz. 4 . 4.根据权利要求1所述的硅基叠层的形成方法,其特征在于,所述微波制程的单位面积的功率密度介于10mW/cm2~1000mW/cm2之间,所述微波制程的时间介于10分钟~90分钟之间。4 . The method for forming a silicon-based laminate according to claim 1 , wherein the power density per unit area of the microwave process is between 10 mW/cm 2 and 1000 mW/cm 2 . The time is between 10 minutes and 90 minutes. 5.根据权利要求1所述的硅基叠层的形成方法,其特征在于,所述微波制程的单位面积的功率密度介于180~220mW/cm2之间,所述微波制程的微波频率介于2.3GHz~2.5GHz之间,微波制程的时间介于25分钟~30分钟之间。5 . The method for forming a silicon-based laminate according to claim 1 , wherein the power density per unit area of the microwave process is between 180 and 220 mW/cm 2 , and the microwave frequency of the microwave process is between 180 and 220 mW/cm 2 . 6 . Between 2.3GHz and 2.5GHz, the microwave process time is between 25 minutes and 30 minutes. 6.根据权利要求1所述的硅基叠层的形成方法,其特征在于,所述微波制程的单位面积的功率密度介于140mW/cm2~160mW/cm2之间,所述微波制程的微波频率介于900MHz~930MHz之间,所述微波制程的时间介于25分钟~30分钟之间。6 . The method for forming a silicon-based laminate according to claim 1 , wherein the power density per unit area of the microwave process is between 140 mW/cm 2 and 160 mW/cm 2 . The microwave frequency is between 900MHz and 930MHz, and the time of the microwave process is between 25 minutes and 30 minutes. 7.一种硅基太阳能电池的制造方法,其特征在于,包括:7. A method for manufacturing a silicon-based solar cell, comprising: 提供半导体基板,具有第一导电方式、相对的第一表面与第二表面;providing a semiconductor substrate with a first conductive mode, a first surface and a second surface opposite to each other; 于所述第一表面上形成第一薄膜层;forming a first thin film layer on the first surface; 于所述第二表面上形成第二薄膜层;以及forming a second thin film layer on the second surface; and 对所述半导体基板、所述第一薄膜层及所述第二薄膜层进行微波制程处理,以钝化所述第一薄膜层及所述第二薄膜层。The semiconductor substrate, the first thin film layer and the second thin film layer are subjected to microwave processing to passivate the first thin film layer and the second thin film layer. 8.根据权利要求7所述的硅基太阳能电池的制造方法,其特征在于,所述第一薄膜层的材料包括本质硅、氮化硅、氧化硅、氧化铝或氧化铪,所述第二薄膜层的材料包括本质硅、氮化硅、氧化硅、氧化铝或氧化铪。8 . The method for manufacturing a silicon-based solar cell according to claim 7 , wherein the material of the first thin film layer comprises intrinsic silicon, silicon nitride, silicon oxide, aluminum oxide or hafnium oxide, and the second thin film layer comprises intrinsic silicon, silicon nitride, silicon oxide, aluminum oxide or hafnium oxide. The material of the thin film layer includes intrinsic silicon, silicon nitride, silicon oxide, aluminum oxide or hafnium oxide. 9.根据权利要求7所述的硅基太阳能电池的制造方法,其特征在于,所述微波制程的微波频率介于850MHz~3GHz之间。9 . The method for manufacturing a silicon-based solar cell according to claim 7 , wherein the microwave frequency of the microwave process is between 850MHz and 3GHz. 10 . 10.根据权利要求7所述的硅基太阳能电池的制造方法,其特征在于,所述微波制程的单位面积的功率密度介于10mW/cm2~1000mW/cm2之间,所述微波制程的时间介于10分钟~90分钟之间。10 . The method for manufacturing a silicon-based solar cell according to claim 7 , wherein the power density per unit area of the microwave process is between 10 mW/cm 2 and 1000 mW/cm 2 . 10 . The time is between 10 minutes and 90 minutes. 11.根据权利要求7所述的硅基太阳能电池的制造方法,其特征在于,所述微波制程的单位面积的功率密度介于180mW/cm2~220mW/cm2之间,所述微波制程的微波频率介于2.3GHz~2.5GHz之间,微波制程的时间介于25分钟~30分钟之间。11 . The method for manufacturing a silicon-based solar cell according to claim 7 , wherein the power density per unit area of the microwave process is between 180 mW/cm 2 and 220 mW/cm 2 . The microwave frequency is between 2.3GHz and 2.5GHz, and the microwave process time is between 25 minutes and 30 minutes. 12.根据权利要求7所述的硅基太阳能电池的制造方法,其特征在于,所述微波制程的单位面积的功率密度介于140mW/cm2~160mW/cm2之间,所述微波制程的微波频率介于900MHz~930MHz之间,微波制程的时间介于25分钟~30分钟之间。12 . The method for manufacturing a silicon-based solar cell according to claim 7 , wherein the power density per unit area of the microwave process is between 140 mW/cm 2 and 160 mW/cm 2 . 12 . The microwave frequency is between 900MHz and 930MHz, and the microwave process time is between 25 minutes and 30 minutes. 13.根据权利要求7所述的硅基太阳能电池的制造方法,其特征在于,还包括:13. The method for manufacturing a silicon-based solar cell according to claim 7, further comprising: 于钝化后的所述第一薄膜层上形成第一半导体层,所述第一半导体层具有不同于所述第一导电方式的第二导电方式;forming a first semiconductor layer on the passivated first thin film layer, the first semiconductor layer having a second conductive mode different from the first conductive mode; 于钝化后的所述第二薄膜层上形成第二半导体层,所述第二半导体层具有与所述半导体基板相同的所述第一导电方式;forming a second semiconductor layer on the passivated second thin film layer, the second semiconductor layer having the same first conductive mode as the semiconductor substrate; 于所述第一半导体层上形成第一透明导电膜;于所述第二半导体层上形成第二透明导电膜;forming a first transparent conductive film on the first semiconductor layer; forming a second transparent conductive film on the second semiconductor layer; 于所述第一透明导电膜上形成第一电极;以及forming a first electrode on the first transparent conductive film; and 于所述第二透明导电膜上形成第二电极。A second electrode is formed on the second transparent conductive film.
CN201811442208.3A 2018-11-29 2018-11-29 Method for forming silicon-based laminated layer and method for manufacturing silicon-based solar cell Pending CN111244223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811442208.3A CN111244223A (en) 2018-11-29 2018-11-29 Method for forming silicon-based laminated layer and method for manufacturing silicon-based solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811442208.3A CN111244223A (en) 2018-11-29 2018-11-29 Method for forming silicon-based laminated layer and method for manufacturing silicon-based solar cell

Publications (1)

Publication Number Publication Date
CN111244223A true CN111244223A (en) 2020-06-05

Family

ID=70873824

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811442208.3A Pending CN111244223A (en) 2018-11-29 2018-11-29 Method for forming silicon-based laminated layer and method for manufacturing silicon-based solar cell

Country Status (1)

Country Link
CN (1) CN111244223A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101542749A (en) * 2006-11-22 2009-09-23 东京毅力科创株式会社 Method for manufacturing solar cell and apparatus for manufacturing solar cell
US20110088764A1 (en) * 2009-12-29 2011-04-21 Auria Solar Co., Ltd. Solar cell and manufacturing method thereof
CN102903785A (en) * 2011-07-28 2013-01-30 中国科学院沈阳科学仪器研制中心有限公司 Method for improving solar cell sheet conversion efficiency by adopting hydrogenation passivation
CN103050553A (en) * 2012-12-29 2013-04-17 中国科学院沈阳科学仪器股份有限公司 Crystalline silicon solar cell with double-side passivation and preparing method thereof
CN108198871A (en) * 2016-12-08 2018-06-22 财团法人金属工业研究发展中心 Heterojunction solar cell and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101542749A (en) * 2006-11-22 2009-09-23 东京毅力科创株式会社 Method for manufacturing solar cell and apparatus for manufacturing solar cell
US20110088764A1 (en) * 2009-12-29 2011-04-21 Auria Solar Co., Ltd. Solar cell and manufacturing method thereof
CN102903785A (en) * 2011-07-28 2013-01-30 中国科学院沈阳科学仪器研制中心有限公司 Method for improving solar cell sheet conversion efficiency by adopting hydrogenation passivation
CN103050553A (en) * 2012-12-29 2013-04-17 中国科学院沈阳科学仪器股份有限公司 Crystalline silicon solar cell with double-side passivation and preparing method thereof
CN108198871A (en) * 2016-12-08 2018-06-22 财团法人金属工业研究发展中心 Heterojunction solar cell and manufacturing method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
屈盛 等: "双层PECVD氮化硅膜晶体硅太阳电池", 《创新与技术》 *

Similar Documents

Publication Publication Date Title
CN114784148B (en) Preparation method of solar cell, solar cell and photovoltaic module
CN114823951A (en) Solar cell and photovoltaic module
CN103035753B (en) Photoelectric conversion device
CN106981539A (en) A kind of preparation method and application of nano-stack conductive film
CN115939254A (en) Preparation method of solar cell
CN102487102B (en) Solar cell and preparation method thereof
CN110828585A (en) Passivated contact solar cell and manufacturing method thereof
CN108054088A (en) N-type silicon wafer boron diffusion method, crystalline silicon solar cell and manufacturing method thereof
CN103178132B (en) Solaode
WO2014206211A1 (en) Back-passivated solar battery and manufacturing method therefor
CN115440839A (en) A kind of solar cell and its preparation method
TWM517422U (en) Heterojunction solar cell with local passivation
WO2020220394A1 (en) Double-sided power generation solar cell and fabricating method therefor
CN117594669B (en) Solar cell and preparation method thereof, laminated cell and photovoltaic module
TWI692114B (en) Method of forming silicon-based stacked layer and method of fabricating silicon-based solar cell
CN111244223A (en) Method for forming silicon-based laminated layer and method for manufacturing silicon-based solar cell
CN117594686A (en) Heterogeneous crystalline silicon solar cells, preparation methods and photovoltaic devices
CN116487482A (en) Solar cell and manufacturing method thereof
CN114038932A (en) Single crystalline silicon solar cell with back containing silicon oxide-titanium nitride double-layer contact structure and preparation method thereof
CN114188429A (en) A kind of hetero-heterojunction battery with tunneling tunnel junction and preparation method thereof
CN102800742B (en) Back contacts crystal silicon solar cell sheet manufacture method
CN105449041A (en) Preparation method of solar cell with silicon-based heterojunction SIS structure
CN106098811B (en) A kind of high efficiency crystal-silicon solar cell
CN222126545U (en) Solar cell and photovoltaic module
TWI647327B (en) Method of forming silicon-based stacked layer and method of fabricating silicon-based heterojunction solar cell

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200605