[go: up one dir, main page]

CN111244200A - Light emitting device, display device, method for manufacturing display device, and power generation device - Google Patents

Light emitting device, display device, method for manufacturing display device, and power generation device Download PDF

Info

Publication number
CN111244200A
CN111244200A CN201811445903.5A CN201811445903A CN111244200A CN 111244200 A CN111244200 A CN 111244200A CN 201811445903 A CN201811445903 A CN 201811445903A CN 111244200 A CN111244200 A CN 111244200A
Authority
CN
China
Prior art keywords
layer
functional layer
light
display device
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811445903.5A
Other languages
Chinese (zh)
Inventor
曹蔚然
钱磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TCL Corp
TCL Research America Inc
Original Assignee
TCL Research America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TCL Research America Inc filed Critical TCL Research America Inc
Priority to CN201811445903.5A priority Critical patent/CN111244200A/en
Publication of CN111244200A publication Critical patent/CN111244200A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/10Semiconductor bodies
    • H10F77/12Active materials
    • H10F77/123Active materials comprising only Group II-VI materials, e.g. CdS, ZnS or HgCdTe
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/10Semiconductor bodies
    • H10F77/12Active materials
    • H10F77/122Active materials comprising only Group IV materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/822Materials of the light-emitting regions
    • H10H20/823Materials of the light-emitting regions comprising only Group II-VI materials, e.g. ZnO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/822Materials of the light-emitting regions
    • H10H20/826Materials of the light-emitting regions comprising only Group IV materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明涉及光电器件技术领域,具体提供一种发光器件、显示装置及显示装置的制造方法和发电装置。所述发光器件包括光源、衬底、核心功能单元,所述核心功能单元包括阳极、核心功能层、阴极,所述核心功能层设置在所述阳极和所述阴极之间;所述核心功能层与所述阴极之间还包括第一传输层;所述核心功能层的材料由纳米颗粒和半导体材料混合而成;还包括设置在所述衬底背对于所述核心功能单元一侧的光源。本发明发光器件,能够实现对发光亮度的有效调节,以获得不同亮度需求的发光效果。基于该发光器件的显示装置,可以实现对每个像素单元亮度的调节,从而形成有效的显示,极大的扩展了发光显示装置的结构和应用。

Figure 201811445903

The present invention relates to the technical field of optoelectronic devices, and specifically provides a light-emitting device, a display device, a manufacturing method of the display device, and a power generation device. The light-emitting device includes a light source, a substrate, and a core functional unit, the core functional unit includes an anode, a core functional layer, and a cathode, and the core functional layer is disposed between the anode and the cathode; the core functional layer A first transmission layer is also included between the cathode and the core functional layer; the material of the core functional layer is mixed with nano-particles and semiconductor materials; and a light source is provided on the side of the substrate opposite to the core functional unit. The light-emitting device of the present invention can effectively adjust the light-emitting brightness, so as to obtain light-emitting effects with different brightness requirements. The display device based on the light-emitting device can realize the adjustment of the brightness of each pixel unit, thereby forming an effective display, which greatly expands the structure and application of the light-emitting display device.

Figure 201811445903

Description

发光器件、显示装置及显示装置的制造方法和发电装置Light-emitting device, display device, and manufacturing method of display device, and power generation device

技术领域technical field

本发明属于光电技术领域,尤其涉及一种发光器件、显示装置及显示装置的制造方法和发电装置。The invention belongs to the field of optoelectronic technology, and in particular relates to a light-emitting device, a display device, a manufacturing method of the display device, and a power generation device.

背景技术Background technique

胶体量子点材料(Quantum dots,QDs)作为发光材料,相比其他发光材料具有难以比拟的优势,如发光波长连续可调、超高的内量子效率、优异的色纯度等,在未来显示技术领域具有巨大的应用前景。由于材料的光学特性,量子点被应用在LCD面板中提高色域。同时,随着量子点电致发光(量子点发光二极管,QLED)研究的不断深入,产业化进程也取得越来越多的进展。As a luminescent material, colloidal quantum dots (QDs) have incomparable advantages over other luminescent materials, such as continuously adjustable luminescence wavelength, ultra-high internal quantum efficiency, excellent color purity, etc. Has huge application prospects. Due to the optical properties of the material, quantum dots are used in LCD panels to improve color gamut. At the same time, with the deepening of quantum dot electroluminescence (quantum dot light-emitting diode, QLED) research, more and more progress has been made in the industrialization process.

目前市场上的量子点显示技术主要使用量子点光致发光的原理,将量子点材料装在蓝色背光上,蓝光激发量子点而发出红光和绿光,这样形成的红绿蓝三基色可以扩大幅度提高液晶显示的饱和度,但是这种技术只是液晶显示性能的一种提升,其对颜色及色阶的控制还利用液晶的偏转来控制。另外一方面,现在正在进行技术开发的量子点电致发光技术(QLED)与OLED技术类似,属于主动发光类型,通电情况下,量子点像素发光,通过控制器件的电流或电压实现开关和色阶的调整。At present, the quantum dot display technology on the market mainly uses the principle of quantum dot photoluminescence. The quantum dot material is mounted on a blue backlight, and the blue light excites the quantum dots to emit red light and green light. The three primary colors of red, green and blue formed in this way can be Enlarging the range to improve the saturation of the liquid crystal display, but this technology is only an improvement of the performance of the liquid crystal display, and the control of the color and the color level is also controlled by the deflection of the liquid crystal. On the other hand, quantum dot electroluminescence technology (QLED), which is currently undergoing technical development, is similar to OLED technology and belongs to an active light-emitting type. When powered on, quantum dot pixels emit light, and switching and color levels are realized by controlling the current or voltage of the device. adjustment.

不过目前的量子点显示设备,其结构均为膜层结构,而且除材料之外,层结构比较简单,而且只能实现光致发光而不能同时实现光致发电的功能。However, the structure of the current quantum dot display device is all film layer structure, and the layer structure is relatively simple except for the material, and it can only achieve photoluminescence and cannot realize the function of photoelectric power generation at the same time.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于提供一种发光器件,旨在提供光强度可调的器件结构。The purpose of the present invention is to provide a light-emitting device, aiming to provide a device structure with adjustable light intensity.

进一步地,本发明还提供一种显示装置及其制造方法,旨在为光致发光显示设备提供更丰富的结构,实现对光致发光显示的调节。Further, the present invention also provides a display device and a manufacturing method thereof, aiming at providing a richer structure for the photoluminescence display device and realizing the adjustment of the photoluminescence display.

最后,本发明还提供一种发电装置。Finally, the present invention also provides a power generation device.

本发明是这样实现的:The present invention is realized in this way:

一种发光器件,包括光源、衬底、核心功能单元,所述核心功能单元包括阳极、核心功能层、阴极,所述核心功能层设置在所述阳极和所述阴极之间;所述核心功能层与所述阴极之间还包括第一传输层;A light-emitting device includes a light source, a substrate, and a core functional unit, wherein the core functional unit includes an anode, a core functional layer, and a cathode, and the core functional layer is arranged between the anode and the cathode; the core functional unit a first transport layer is also included between the layer and the cathode;

所述核心功能层的材料由纳米颗粒和半导体材料混合而成;The material of the core functional layer is formed by mixing nanoparticles and semiconductor materials;

还包括设置在所述衬底背对于所述核心功能单元一侧的光源。It also includes a light source disposed on the side of the substrate facing away from the core functional unit.

相应地,一种显示装置,包括多个重复排列的像素单元;所述像素单元包括如上所述的发光器件,所述发光器件共用同一所述衬底,所述光源均位于所述衬底同一侧。Correspondingly, a display device includes a plurality of repeatedly arranged pixel units; the pixel units include the above-mentioned light-emitting devices, the light-emitting devices share the same substrate, and the light sources are all located on the same substrate side.

相应地,一种显示装置的制造方法,至少包括以下步骤:Correspondingly, a method for manufacturing a display device includes at least the following steps:

提供衬底;provide a substrate;

在所述衬底的一表面上形成像素界定层和第一电极,由所述像素界定层围合成若干像素槽,所述第一电极设于所述像素槽中;A pixel definition layer and a first electrode are formed on a surface of the substrate, a plurality of pixel grooves are formed by the pixel definition layer, and the first electrode is arranged in the pixel groove;

在所述像素槽中的第一电极上形成核心功能层;forming a core functional layer on the first electrode in the pixel groove;

在所述核心功能层上形成第二电极;forming a second electrode on the core functional layer;

在所述衬底背对所述核心功能层的一侧设置光源;A light source is arranged on the side of the substrate facing away from the core functional layer;

其中,若所述第一电极为阳极,所述第二电极为阴极时,在所述核心功能层上形成第二电极之前,还包括在所述核心功能层上形成第一传输层的步骤,所述第二电极形成于所述第一传输层上;Wherein, if the first electrode is an anode and the second electrode is a cathode, before forming the second electrode on the core functional layer, it further includes the step of forming a first transport layer on the core functional layer, the second electrode is formed on the first transport layer;

或者若所述第一电极为阴极,所述第二电极为阳极时,在所述像素槽中的第一电极上形成核心功能层之前,还包括在所述第一电极上形成第一传输层的步骤,所述核心功能层形成于所述第一传输层上。Or if the first electrode is a cathode and the second electrode is an anode, before forming the core functional layer on the first electrode in the pixel groove, it also includes forming a first transport layer on the first electrode step, the core functional layer is formed on the first transport layer.

以及,一种发电装置,包括衬底和设置在所述衬底一侧的核心功能单元,所述核心功能单元包括阳极、核心功能层、阴极,所述核心功能层设置在所述阳极和所述阴极之间;所述核心功能层与所述阴极之间还包括第一传输层;And, a power generation device, comprising a substrate and a core functional unit provided on one side of the substrate, the core functional unit comprising an anode, a core functional layer, and a cathode, the core functional layer provided on the anode and the between the cathodes; a first transport layer is also included between the core functional layer and the cathode;

所述核心功能层的材料由纳米颗粒和半导体材料混合而成。The material of the core functional layer is formed by mixing nanoparticles and semiconductor materials.

本发明的有益效果如下:The beneficial effects of the present invention are as follows:

相对于现有技术,本发明提供的发光器件,在核心功能层的上下两端均设置有电极,通过光源发出的光可使核心功能层产生激子,而对阴阳电极通电后,能使光致产生的激子发生解离,激子复合发光的几率降低,甚至淬灭而不发光,从而实现对发光器件光强弱的有效调节。Compared with the prior art, the light-emitting device provided by the present invention is provided with electrodes at the upper and lower ends of the core functional layer. The light emitted by the light source can make the core functional layer generate excitons. The generated excitons are dissociated, the probability of excitons recombination luminescence is reduced, or even quenched without emitting light, thereby realizing the effective adjustment of the light intensity of the light-emitting device.

本发明提供的显示装置,在核心功能层的上下两端均设置有电极,在光源的作用可使核心功能层产生激子,而对阴阳电极通电后,能使光致产生的激子发生解离,激子复合发光的几率降低,甚至淬灭而不发光,从而实现对出光强弱的有效调节。通过本发明的结构设计,实现对每个像素点亮度的调节,从而形成有效的显示,极大的丰富了发光显示装置的结构。In the display device provided by the present invention, electrodes are arranged at the upper and lower ends of the core functional layer, and the core functional layer can generate excitons under the action of the light source, and after the cathode and anode electrodes are energized, the photogenerated excitons can be dissociated. The probability of exciton recombination emission is reduced, and even quenching does not emit light, so as to effectively adjust the intensity of the light. Through the structural design of the present invention, the brightness of each pixel can be adjusted, thereby forming an effective display, which greatly enriches the structure of the light-emitting display device.

本发明提供的显示装置的制造方法,加工工艺简单,产品合格率高,并且,适于大规模生产,而且获得的产品发光强度可调,市场前景广阔。The manufacturing method of the display device provided by the invention has the advantages of simple processing technology, high product qualification rate, suitable for large-scale production, adjustable luminous intensity of the obtained product, and broad market prospect.

本发明提供的发电装置,在太阳光的照射下,核心功能单元的核心功能层会被激发产生激子,激子会在纳米发光材料与半导体的材料界面解离,解离的电子、空穴能够形成电流回路,从而实现发电功能。In the power generation device provided by the present invention, under the irradiation of sunlight, the core functional layer of the core functional unit will be excited to generate excitons, and the excitons will dissociate at the interface between the nano-luminescent material and the semiconductor material, and the dissociated electrons and holes will dissociate. It can form a current loop to realize the power generation function.

附图说明Description of drawings

为了更清楚地说明本发明施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the embodiments. Obviously, the drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without any creative effort.

图1是本发明提供的发光器件的结构示意图;1 is a schematic structural diagram of a light-emitting device provided by the present invention;

图2是本发明提供的显示装置的俯视示意图;2 is a schematic top view of a display device provided by the present invention;

图3是本发明提供的图2所示的显示装置沿A-A线的剖视示意图;3 is a schematic cross-sectional view of the display device shown in FIG. 2 provided by the present invention along line A-A;

图4是本发明提供的图2所示的显示装置沿A-A线的另一剖视示意图;4 is another schematic cross-sectional view of the display device shown in FIG. 2 provided by the present invention along line A-A;

图5是本发明提供的包括第二传输层的显示装置沿图2中A-A线的剖视示意图;5 is a schematic cross-sectional view of the display device including the second transmission layer provided by the present invention along the line A-A in FIG. 2;

图6是本发明提供的包括第一传输层的显示装置沿图2中A-A线的剖视示意图;6 is a schematic cross-sectional view of the display device including the first transmission layer provided by the present invention along the line A-A in FIG. 2;

图7是本发明提供的同时包括第一传输层和第二传输层的显示装置沿图2中A-A线的剖视示意图;7 is a schematic cross-sectional view of the display device provided by the present invention including a first transmission layer and a second transmission layer along the line A-A in FIG. 2;

图8是本发明在图7所示的基础上增加第二辅助功能层的显示装置沿图2中A-A线的剖视示意图;8 is a schematic cross-sectional view of the display device with a second auxiliary function layer added on the basis of FIG. 7 according to the present invention along the line A-A in FIG. 2;

图9是本发明在图7所示的基础上增加第一辅助功能层的显示装置沿图2中A-A线的剖视示意图;9 is a schematic cross-sectional view of the display device with a first auxiliary function layer added on the basis of FIG. 7 according to the present invention along the line A-A in FIG. 2;

图10是本发明在图7所示的基础上同时增加第一辅助功能层和第二辅助功能层的显示装置沿图2中A-A线的剖视示意图;10 is a schematic cross-sectional view of the display device along the line A-A in FIG. 2 with a first auxiliary function layer and a second auxiliary function layer added simultaneously on the basis of the present invention;

图11是本发明提供的显示装置的衬底示意图;11 is a schematic diagram of a substrate of a display device provided by the present invention;

图12是本发明提供的显示装置在衬底上形成阳极的俯视示意图;12 is a schematic top view of the display device provided by the present invention forming an anode on a substrate;

图13是本发明图12提供的显示装置半成品沿B-B线的剖视示意图;13 is a schematic cross-sectional view of the semi-finished product of the display device provided in FIG. 12 of the present invention along line B-B;

图14是本发明图12提供的显示装置半成品在阳极及外露衬底表面形成像素界定层的俯视示意图;14 is a schematic top view of the semi-finished product of the display device provided in FIG. 12 of the present invention forming a pixel defining layer on the surface of the anode and the exposed substrate;

图15是本发明图14提供的显示装置半成品沿C-C线的剖视示意图;15 is a schematic cross-sectional view of the semi-finished product of the display device provided in FIG. 14 of the present invention along line C-C;

图16是本发明图14提供的显示装置半成品在像素界定层形成的像素槽内形成核心功能层的俯视示意图;16 is a schematic top view of the semi-finished product of the display device provided in FIG. 14 of the present invention forming a core functional layer in a pixel groove formed by a pixel defining layer;

图17是本发明图16提供的显示装置半成品沿D-D线的剖视示意图;17 is a schematic cross-sectional view of the semi-finished product of the display device provided in FIG. 16 of the present invention along the D-D line;

图18是本发明图16提供的显示装置半成品在核心功能层上形成阴极的俯视示意图;18 is a schematic top view of the semi-finished product of the display device provided in FIG. 16 of the present invention forming a cathode on the core functional layer;

图19是本发明图18提供的显示装置半成品沿E-E线的剖视示意图;19 is a schematic cross-sectional view of the semi-finished product of the display device provided in FIG. 18 of the present invention along the line E-E;

图20是本发明图18提供的显示装置半成品在衬底另一表面上形成光源的俯视示意图;20 is a schematic top view of the semi-finished product of the display device provided in FIG. 18 of the present invention forming a light source on the other surface of the substrate;

图21是本发明图20提供的显示装置沿F-F线的剖视示意图;21 is a schematic cross-sectional view of the display device provided in FIG. 20 of the present invention along line F-F;

图22是本发明提供的发电装置的结构示意图;22 is a schematic structural diagram of a power generation device provided by the present invention;

其中,11-衬底;12-阳极;13-像素界定层;14-像素槽;15-核心功能层;16-阴极;17-光源;18-第二传输层;19-第一传输层;20-第二辅助功能层;21-第一辅助功能层;11-substrate; 12-anode; 13-pixel defining layer; 14-pixel groove; 15-core functional layer; 16-cathode; 17-light source; 18-second transmission layer; 19-first transmission layer; 20-the second auxiliary function layer; 21-the first auxiliary function layer;

此外,值得注意的是,由于本发明的装置可大可小,附图所展示的图仅为局部示意图,并非完整的装置图。In addition, it should be noted that, since the device of the present invention can be large or small, the figures shown in the accompanying drawings are only partial schematic diagrams, and are not complete device views.

具体实施方式Detailed ways

为了使本发明要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the technical problems, technical solutions and beneficial effects to be solved by the present invention clearer, the present invention will be further described in detail below with reference to the embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.

名词解释:在本发明中,纳米发光材料和纳米颗粒所表示的意思相同。Explanation of terms: In the present invention, nano-luminescent materials and nanoparticles have the same meaning.

请参阅图1,本发明一方面提供一种发光器件,包括光源17,衬底11,以及包括阳极12、核心功能层15和阴极16的核心功能单元,衬底11设置在光源17和所述核心功能单元之间,所述核心功能单元中,核心功能层15设置在阳极12和阴极16之间,核心功能层15的材料由纳米颗粒和半导体材料混合而成,核心功能层15和阴极16之间还包括第一传输层19。Referring to FIG. 1, one aspect of the present invention provides a light-emitting device, comprising a light source 17, a substrate 11, and a core functional unit including an anode 12, a core functional layer 15 and a cathode 16, the substrate 11 is disposed on the light source 17 and the Between the core functional units, in the core functional unit, the core functional layer 15 is arranged between the anode 12 and the cathode 16, the material of the core functional layer 15 is mixed with nanoparticles and semiconductor materials, and the core functional layer 15 and the cathode 16 A first transport layer 19 is also included therebetween.

具体地,本发明的发光器件中,衬底11、阳极12、阴极16的材料均为透明材料,以利于出光。Specifically, in the light-emitting device of the present invention, the materials of the substrate 11 , the anode 12 , and the cathode 16 are all transparent materials, so as to facilitate light extraction.

优选地,所述纳米颗粒为量子点或者纳米棒或者纳米片;Preferably, the nanoparticles are quantum dots or nanorods or nanosheets;

所述半导体材料为无机半导体材料、有机半导体材料、有机-无机杂化钙钛矿型半导体材料中的至少一种。The semiconductor material is at least one of an inorganic semiconductor material, an organic semiconductor material, and an organic-inorganic hybrid perovskite type semiconductor material.

进一步优选地,所述纳米颗粒的材料为II-VI族纳米晶、II-V族纳米晶、III-VI族纳米晶、III-V族纳米晶、IV-VI族纳米晶、I-III-VI组纳米晶、II-IV-VI族纳米晶、IV族纳米晶中的至少一种。Further preferably, the materials of the nanoparticles are II-VI group nanocrystals, II-V group nanocrystals, III-VI group nanocrystals, III-V group nanocrystals, IV-VI group nanocrystals, I-III- At least one of group VI nanocrystals, group II-IV-VI nanocrystals, and group IV nanocrystals.

优选地,所述第一传输层19的材料选自ZnO、TiO2、SnO2、Ta2O3、AlZnO、ZnSnO、InSnO、Ca、Ba、CsF、LiF、Cs2CO3中的至少一种。Preferably, the material of the first transport layer 19 is selected from at least one of ZnO, TiO 2 , SnO 2 , Ta 2 O 3 , AlZnO, ZnSnO, InSnO, Ca, Ba, CsF, LiF, Cs 2 CO 3 .

优选地,上述发光器件还包括第二传输层(图1中未标出),所述第二传输层设置在阳极12和核心功能层15之间。Preferably, the above-mentioned light-emitting device further includes a second transport layer (not shown in FIG. 1 ), and the second transport layer is disposed between the anode 12 and the core functional layer 15 .

作为优选地,所述第二传输层的材料选自聚(9,9-二辛基芴-CO-N-(4-丁基苯基)二苯胺)、聚乙烯咔唑、聚(N,N'双(4-丁基苯基)-N,N'-双(苯基)联苯胺)、聚(9,9-二辛基芴-共-双-N,N-苯基-1,4-苯二胺)、4,4’,4”-三(咔唑-9-基)三苯胺、4,4'-二(9-咔唑)联苯、N,N’-二苯基-N,N’-二(3-甲基苯基)-1,1’-联苯-4,4’-二胺、N,N’-二苯基-N,N’-(1-萘基)-1,1’-联苯-4,4’-二胺、NiOx、MoS2、MoSe2、WS2、WSe2中的至少一种。Preferably, the material of the second transmission layer is selected from poly(9,9-dioctylfluorene-CO-N-(4-butylphenyl)diphenylamine), polyvinylcarbazole, poly(N, N'bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine), poly(9,9-dioctylfluorene-co-bis-N,N-phenyl-1, 4-phenylenediamine), 4,4',4"-tris(carbazol-9-yl)triphenylamine, 4,4'-bis(9-carbazole)biphenyl, N,N'-diphenyl -N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine, N,N'-diphenyl-N,N'-(1-naphthalene base)-1,1'-biphenyl-4,4'-diamine, at least one of NiO x , MoS 2 , MoSe 2 , WS 2 , and WSe 2 .

上述的发光器件还可以进一步包括第一辅助功能层(图1中未标出),所述辅助功能层设置在所述第一传输层19和阴极16之间。所述的第一辅助功能层的材料选自三(8-羟基喹啉)铝、1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯、2,9-二甲基-4,7-联苯-1,10-菲罗啉、4,7-二苯基-1,10-菲啰啉中的至少一种。The above-mentioned light-emitting device may further include a first auxiliary function layer (not shown in FIG. 1 ), and the auxiliary function layer is disposed between the first transport layer 19 and the cathode 16 . The material of the first auxiliary functional layer is selected from tris(8-hydroxyquinoline)aluminum, 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene, 2,9 -At least one of dimethyl-4,7-biphenyl-1,10-phenanthroline and 4,7-diphenyl-1,10-phenanthroline.

上的数的发光器件还可以包括第二辅助功能层(图1中未标出),所述第二辅助功能层设置在阳极12与所述第二传输层之间。The above light-emitting device may further include a second auxiliary function layer (not marked in FIG. 1 ), the second auxiliary function layer being disposed between the anode 12 and the second transport layer.

优选地,所述第二辅助功能层的材料选自聚乙撑二氧噻吩-聚(苯乙烯磺酸盐)、MoOx、WOx、CrOx、CuO、CuS中的至少一种。Preferably, the material of the second auxiliary functional layer is selected from at least one of polyethylenedioxythiophene-poly(styrene sulfonate), MoO x , WO x , CrO x , CuO, and CuS.

本发明提供的发光器件,在光源17的作用下,核心功能层15的材料被光激发产生激子,而对阳极12和阴极16通电后,光致产生的激子会发生解离,激子复合发光的几率降低,甚至淬灭因而从阴极16端看不到出光,因此可以通过对阳极12和阴极16电压的强弱调节以控制核心功能层15出光的强弱。当不在电极上加电压时,激子解离最少,发光器件产生的光最强,而加上电压之后,部分激子发生解离,像素单元发光变弱,电压越高,像素单元发光越弱,甚至完全不发光。通过本发明的结构,获得一种光强可有效调节的发光器件。In the light-emitting device provided by the present invention, under the action of the light source 17, the material of the core functional layer 15 is excited by light to generate excitons, and after the anode 12 and the cathode 16 are energized, the photo-generated excitons will dissociate, and the excitons will be dissociated. The probability of recombination emission is reduced, or even quenched, so that no light can be seen from the cathode 16. Therefore, the intensity of the light emitted by the core functional layer 15 can be controlled by adjusting the voltage of the anode 12 and the cathode 16. When no voltage is applied to the electrodes, the dissociation of excitons is the least, and the light generated by the light-emitting device is the strongest. After the voltage is applied, some excitons dissociate, and the pixel unit emits less light. The higher the voltage, the weaker the pixel unit emits light. , not even glowing at all. Through the structure of the present invention, a light-emitting device whose light intensity can be effectively adjusted is obtained.

另一方面,本发明还提供一种显示装置。请参阅图2、3或2、4,该装置包括如下的部分:In another aspect, the present invention also provides a display device. Referring to Figures 2, 3 or 2, 4, the device includes the following parts:

(1)、衬底11:该衬底11具有第一表面和背对于所述第一表面的第二表面。(1) Substrate 11: The substrate 11 has a first surface and a second surface opposite to the first surface.

(2)、若干阳极12:若干阳极12铺设在衬底11的第一表面上,并且相邻的阳极12之间两两具有间隔。(2) A number of anodes 12: A number of anodes 12 are laid on the first surface of the substrate 11, and adjacent anodes 12 have intervals between them.

(3)、像素界定层13:像素界定层13叠设在阳极12相互间隔形成的间隙里,由像素界定层13围合在所述阳极12的四周而形成若干像素槽14(参阅图14),由此获得的每个像素槽14的底部对应一阳极12。(3) Pixel defining layer 13: The pixel defining layer 13 is stacked in the gap formed by the anodes 12 spaced apart from each other, and the pixel defining layer 13 is enclosed around the anode 12 to form a plurality of pixel grooves 14 (refer to FIG. 14) , the bottom of each pixel groove 14 thus obtained corresponds to an anode 12 .

(4)、核心功能层15:核心功能层15叠设于像素槽14内,也就是叠设于阳极12上。(4) Core functional layer 15 : the core functional layer 15 is stacked in the pixel groove 14 , that is, stacked on the anode 12 .

(5)、第一传输层19:第一传输层19设置在核心功能层15和阴极16之间。(5) The first transport layer 19 : the first transport layer 19 is arranged between the core functional layer 15 and the cathode 16 .

(6)、阴极16:阴极16叠设于核心功能层15上。(6) Cathode 16 : The cathode 16 is stacked on the core functional layer 15 .

(7)、光源17:光源17设置在衬底11的第二表面位置,其可以是直接贴附于第二表面,也可以与第二表面有一定间隙,主要用于对核心功能层15提供光源,以使得核心功能层15被激发产生激子。(7) Light source 17: The light source 17 is arranged at the position of the second surface of the substrate 11, which can be directly attached to the second surface or have a certain gap with the second surface, and is mainly used to provide the core functional layer 15 with light source, so that the core functional layer 15 is excited to generate excitons.

此外,本发明的可发光或发电的装置中,如图3所示,像素界定层13可以部分延伸至阳极12表面;也可以如图4所示,像素界定层13直接叠设于衬底11的第一表面(即阳极12相互间间隔形成的间隙底部位)上,由像素界定层13围合成若干像素槽14(参阅图14)。In addition, in the device capable of emitting light or generating electricity of the present invention, as shown in FIG. 3 , the pixel defining layer 13 may partially extend to the surface of the anode 12 ; or as shown in FIG. 4 , the pixel defining layer 13 may be directly stacked on the substrate 11 . A plurality of pixel grooves 14 (refer to FIG. 14 ) are enclosed by the pixel defining layer 13 on the first surface (ie, the bottom of the gap formed by the anodes 12 spaced apart from each other).

在具体的实施例中,阳极12和阴极16的位置可以互换,由此构成正向的装置或者倒置的装置。In a specific embodiment, the positions of the anode 12 and the cathode 16 can be interchanged, thereby forming a positive device or an inverted device.

本发明的装置结构,将核心功能层15进行像素化,将核心功能层15进行分割,使每个像素槽14与阳极12、核心功能层15、阴极16形成的结构即为一个子像素单元,若干个子像素单元构成一个像素单元。在核心功能层15的两相对表面加上电极时,在光源17的作用下,放置在每个像素槽14内的核心功能层15的材料被光激发产生激子,而对阳极12和阴极16通电后,光致产生的激子会发生解离,激子复合发光的几率降低,甚至淬灭因而从阴极16端看不到出光,因此可以通过对阳极12和阴极16电压的强弱调节以控制核心功能层15出光的强弱。当不在电极上加电压时,激子解离最少,显示装置产生的光最强,发光显示效果最好,而加上电压之后,部分激子发生解离,像素单元发光变弱,电压越高,像素单元发光越弱,甚至完全不发光。通过本发明的结构,实现对每个像素单元亮度的调节,从而形成有效的显示装置,可以有效的控制发光的效果。In the device structure of the present invention, the core functional layer 15 is pixelized, and the core functional layer 15 is divided, so that the structure formed by each pixel slot 14 and the anode 12, the core functional layer 15 and the cathode 16 is a sub-pixel unit. Several sub-pixel units constitute a pixel unit. When electrodes are added to the two opposite surfaces of the core functional layer 15, under the action of the light source 17, the material of the core functional layer 15 placed in each pixel slot 14 is excited by light to generate excitons, while the anode 12 and the cathode 16 After electrification, the photo-generated excitons will dissociate, the probability of excitons recombination emission is reduced, and even quenched, so that no light can be seen from the cathode 16 end, so the voltage of the anode 12 and the cathode 16 can be adjusted to achieve the desired effect. Control the intensity of light emitted by the core functional layer 15 . When no voltage is applied to the electrodes, the excitons dissociate the least, the light generated by the display device is the strongest, and the luminous display effect is the best. After the voltage is applied, some excitons dissociate, and the pixel unit emits less light, and the higher the voltage , the weaker the pixel unit emits light, or even does not emit light at all. Through the structure of the present invention, the brightness of each pixel unit can be adjusted, thereby forming an effective display device, which can effectively control the effect of light emission.

换一句话,本发明提供的显示装置,包括多个重复排列的像素单元,每个所述像素单元均包括如上所述的发光器件,当所有的发光器件的衬底11为同一衬底(一体化),所有光源17均位于所述衬底11的同一侧并且所述像素单元位于所述衬底11背对所述光源17一侧时,即可获得本发明的显示装置结构。In other words, the display device provided by the present invention includes a plurality of pixel units arranged repeatedly, and each of the pixel units includes the above-mentioned light-emitting devices, when the substrates 11 of all the light-emitting devices are the same substrate (integrated When all the light sources 17 are located on the same side of the substrate 11 and the pixel units are located on the side of the substrate 11 facing away from the light sources 17, the display device structure of the present invention can be obtained.

具体地,衬底11可以是刚性衬底也可以是柔性衬底,根据不同场合需求使用不同的衬底材料。Specifically, the substrate 11 can be a rigid substrate or a flexible substrate, and different substrate materials are used according to the requirements of different occasions.

优选地,所述的刚性衬底为玻璃,玻璃透光性良好,光源17产生的光可透过衬底11,以对核心功能层15产生有效照射。当然,所述刚性衬底还可以是玻璃以外的其他透明刚性材料。Preferably, the rigid substrate is glass, which has good light transmittance, and the light generated by the light source 17 can pass through the substrate 11 to effectively illuminate the core functional layer 15 . Of course, the rigid substrate can also be other transparent rigid materials other than glass.

优选地,所述柔性衬底包括但不限于聚对苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)、聚醚醚酮(PEEK)、聚苯乙烯(PS)、聚醚砜(PES)、聚碳酸酯(PC)、聚芳基酸酯(PAT)、聚芳酯(PAR)、聚酰亚胺(PI)、聚氯乙烯(PVC)、聚乙烯(PE)、聚乙烯吡咯烷酮(PVP)、纺织纤维中的一种或多种。Preferably, the flexible substrate includes but is not limited to polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyetheretherketone (PEEK), polystyrene (PS) ), polyethersulfone (PES), polycarbonate (PC), polyarylate (PAT), polyarylate (PAR), polyimide (PI), polyvinyl chloride (PVC), polyethylene ( PE), polyvinylpyrrolidone (PVP), one or more of textile fibers.

本发明的光源17用于对核心功能层15发光,从而激发的核心功能层15发光,核心功能层15可以共用一个或多个光源17、或者每个核心功能层15对应设置一个光源17,所述光源17可以是发光背板、LED光源或OLED发光器件。The light source 17 of the present invention is used to emit light to the core functional layer 15, so that the excited core functional layer 15 emits light. The core functional layer 15 may share one or more light sources 17, or each core functional layer 15 may be provided with a corresponding light source 17, so The light source 17 may be a light-emitting backplane, an LED light source or an OLED light-emitting device.

本发明的阳极12,以透明的电极作为阳极12,保证光源17发出的光可以透过。具体使用的材料可以是薄层金属、碳材料、金属氧化物中的任一种,这几种材料具有良好的透光特性,保证提供优质的入射光。当然阳极12的材料也可以是所列举材料以外的其他透明材料。In the anode 12 of the present invention, a transparent electrode is used as the anode 12 to ensure that the light emitted by the light source 17 can pass through. The specific material used can be any one of thin-layer metal, carbon material, and metal oxide. These materials have good light-transmitting properties and ensure high-quality incident light. Of course, the material of the anode 12 can also be other transparent materials other than the listed materials.

当阳极12的材料为薄层金属时,优选地,所述薄层金属包括Al、Ag、Cu、Mo、Au中的一种或多种。When the material of the anode 12 is a thin-layer metal, preferably, the thin-layer metal includes one or more of Al, Ag, Cu, Mo, and Au.

当阳极12的材料为碳材料时,优选地,所述碳材料包括石墨、碳纳米管、石墨烯、碳纤维中的一种或多种。When the material of the anode 12 is a carbon material, preferably, the carbon material includes one or more of graphite, carbon nanotube, graphene, and carbon fiber.

当阳极12的材料为金属氧化物时,其可以是不掺杂的金属氧化物,也可以是掺杂的金属氧化物。如优选地包括ITO、FTO、ATO、AZO、GZO、IZO、MZO、AMO中的一种或多种。When the material of the anode 12 is a metal oxide, it can be an undoped metal oxide or a doped metal oxide. Such as preferably include one or more of ITO, FTO, ATO, AZO, GZO, IZO, MZO, AMO.

此外,阳极12还可以是包括掺杂或非掺杂透明金属氧化物之间夹着薄层金属的复合电极。当为复合电极时,所述复合电极包括AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO2/Ag/TiO2、TiO2/Al/TiO2、ZnS/Ag/ZnS、ZnS/Al/ZnS、TiO2/Ag/TiO2、TiO2/Al/TiO2中的一种或多种。In addition, the anode 12 may also be a composite electrode comprising thin layers of metal sandwiched between doped or undoped transparent metal oxides. When it is a composite electrode, the composite electrode includes AZO/Ag/AZO, AZO/Al/AZO, ITO/Ag/ITO, ITO/Al/ITO, ZnO/Ag/ZnO, ZnO/Al/ZnO, TiO 2 / One or more of Ag/TiO 2 , TiO 2 /Al/TiO 2 , ZnS/Ag/ZnS, ZnS/Al/ZnS, TiO 2 /Ag/TiO 2 , TiO 2 /Al/TiO 2 .

本发明的核心功能层15的材料为纳米发光材料,或者为纳米发光材料和绝缘材料的混合物,在本发明中,纳米发光材料也统称纳米颗粒。The material of the core functional layer 15 of the present invention is a nano-luminescent material, or a mixture of a nano-luminescent material and an insulating material. In the present invention, the nano-luminescent material is also collectively referred to as nanoparticles.

上述纳米发光材料为量子点或者纳米棒或者纳米片中的至少一种。The above-mentioned nano-luminescent material is at least one of quantum dots, nanorods or nanosheets.

优选地,所述纳米发光材料为II-VI族纳米晶、II-V族纳米晶、III-VI族纳米晶、III-V族纳米晶、IV-VI族纳米晶、I-III-VI组纳米晶、II-IV-VI族纳米晶、IV族纳米晶中的至少一种。Preferably, the nano-luminescent material is group II-VI nanocrystals, group II-V nanocrystals, group III-VI nanocrystals, group III-V nanocrystals, group IV-VI nanocrystals, group I-III-VI At least one of nanocrystals, group II-IV-VI nanocrystals, and group IV nanocrystals.

上述的几种纳米晶,可以是二元纳米晶、三元纳米晶、四元纳米晶,或者二元纳米晶与三元纳米晶的混合物,二元纳米晶与三元纳米晶、四元纳米晶的混合物,三元纳米晶和四元纳米晶的混合物。The above-mentioned several nanocrystals can be binary nanocrystals, ternary nanocrystals, quaternary nanocrystals, or a mixture of binary nanocrystals and ternary nanocrystals, binary nanocrystals and ternary nanocrystals, quaternary nanocrystals. A mixture of crystals, a mixture of ternary nanocrystals and quaternary nanocrystals.

更为优选地,所述纳米晶的晶体结构包括单核结构或者核壳结构。More preferably, the crystal structure of the nanocrystal includes a single-core structure or a core-shell structure.

其中,单核结构如II-VI族纳米晶、II-V族纳米晶、III-VI族纳米晶、III-V族纳米晶、IV-VI族纳米晶、I-III-VI组纳米晶、II-IV-VI族纳米晶、IV族纳米晶形成的单核结构。Among them, mononuclear structures such as II-VI group nanocrystals, II-V group nanocrystals, III-VI group nanocrystals, III-V group nanocrystals, IV-VI group nanocrystals, I-III-VI group nanocrystals, Mononuclear structure formed by II-IV-VI group nanocrystals and IV group nanocrystals.

所述核壳结构的情况包括:II-VI族纳米晶、II-V族纳米晶、III-VI族纳米晶、III-V族纳米晶、IV-VI族纳米晶、I-III-VI组纳米晶、II-IV-VI族纳米晶、IV族纳米晶中的至少一种形成核,而II-VI族纳米晶、II-V族纳米晶、III-VI族纳米晶、III-V族纳米晶、IV-VI族纳米晶、I-III-VI组纳米晶、II-IV-VI族纳米晶、IV族纳米晶中的至少一种形成壳的结构,如可以是由II-VI族纳米晶形成核而II-V族纳米晶、III-VI族纳米晶、III-V族纳米晶、IV-VI族纳米晶、I-III-VI组纳米晶、II-IV-VI族纳米晶、IV族纳米晶中的至少一种形成壳的核壳结构;The cases of the core-shell structure include: group II-VI nanocrystals, group II-V nanocrystals, group III-VI nanocrystals, group III-V nanocrystals, group IV-VI nanocrystals, group I-III-VI At least one of nanocrystals, group II-IV-VI nanocrystals, group IV nanocrystals forms a nucleus, and group II-VI nanocrystals, group II-V nanocrystals, group III-VI nanocrystals, group III-V nanocrystals At least one of nanocrystals, IV-VI group nanocrystals, I-III-VI group nanocrystals, II-IV-VI group nanocrystals, and IV group nanocrystals form a shell structure, such as can be made of II-VI group Nanocrystals form the nucleus and II-V nanocrystals, III-VI nanocrystals, III-V nanocrystals, IV-VI nanocrystals, I-III-VI nanocrystals, II-IV-VI nanocrystals , at least one of the group IV nanocrystals forms a core-shell structure of a shell;

II-V族纳米晶形成核而II-VI族纳米晶、III-VI族纳米晶、III-V族纳米晶、IV-VI族纳米晶、I-III-VI组纳米晶、II-IV-VI族纳米晶、IV族纳米晶中的至少一种形成壳的核壳结构;II-V nanocrystals form the nucleus while II-VI nanocrystals, III-VI nanocrystals, III-V nanocrystals, IV-VI nanocrystals, I-III-VI nanocrystals, II-IV- At least one of group VI nanocrystals and group IV nanocrystals forms a core-shell structure of a shell;

III-VI族纳米晶形成核而II-VI族纳米晶、II-V族纳米晶、III-V族纳米晶、IV-VI族纳米晶、I-III-VI组纳米晶、II-IV-VI族纳米晶、IV族纳米晶中的至少一种形成壳的核壳结构;Group III-VI nanocrystals form the nucleus while group II-VI nanocrystals, group II-V nanocrystals, group III-V nanocrystals, group IV-VI nanocrystals, group I-III-VI nanocrystals, II-IV- At least one of group VI nanocrystals and group IV nanocrystals forms a core-shell structure of a shell;

III-V族纳米晶形成核而II-VI族纳米晶、II-V族纳米晶、III-VI族纳米晶、IV-VI族纳米晶、I-III-VI组纳米晶、II-IV-VI族纳米晶、IV族纳米晶中的至少一种形成壳的核壳结构;Group III-V nanocrystals form the nucleus while group II-VI nanocrystals, group II-V nanocrystals, group III-VI nanocrystals, group IV-VI nanocrystals, group I-III-VI nanocrystals, II-IV- At least one of group VI nanocrystals and group IV nanocrystals forms a core-shell structure of a shell;

IV-VI族纳米晶形成核而II-VI族纳米晶、II-V族纳米晶、III-VI族纳米晶、III-V族纳米晶、I-III-VI组纳米晶、II-IV-VI族纳米晶、IV族纳米晶中的至少一种形成壳的核壳结构;Group IV-VI nanocrystals form the nucleus while group II-VI nanocrystals, group II-V nanocrystals, group III-VI nanocrystals, group III-V nanocrystals, group I-III-VI nanocrystals, II-IV- At least one of group VI nanocrystals and group IV nanocrystals forms a core-shell structure of a shell;

I-III-VI族纳米晶形成核而II-VI族纳米晶、II-V族纳米晶、III-VI族纳米晶、III-V族纳米晶、IV-VI族纳米晶、II-IV-VI族纳米晶、IV族纳米晶中的至少一种形成壳的核壳结构;Group I-III-VI nanocrystals form the nucleus and II-VI nanocrystals, II-V nanocrystals, III-VI nanocrystals, III-V nanocrystals, IV-VI nanocrystals, II-IV- At least one of group VI nanocrystals and group IV nanocrystals forms a core-shell structure of a shell;

II-IV-VI族纳米晶形成核而II-VI族纳米晶、II-V族纳米晶、III-VI族纳米晶、III-V族纳米晶、IV-VI族纳米晶、I-III-VI组纳米晶、IV族纳米晶中的至少一种形成壳的核壳结构;II-IV-VI nanocrystals form the nucleus and II-VI nanocrystals, II-V nanocrystals, III-VI nanocrystals, III-V nanocrystals, IV-VI nanocrystals, I-III- At least one of group VI nanocrystals and group IV nanocrystals forms a core-shell structure of a shell;

IV族纳米晶形成核而II-VI族纳米晶、II-V族纳米晶、III-VI族纳米晶、III-V族纳米晶、IV-VI族纳米晶、I-III-VI组纳米晶、II-IV-VI族纳米晶中的至少一种形成壳的核壳结构;等等。Group IV nanocrystals form the nucleus while group II-VI nanocrystals, group II-V nanocrystals, group III-VI nanocrystals, group III-V nanocrystals, group IV-VI nanocrystals, group I-III-VI nanocrystals , a core-shell structure in which at least one of II-IV-VI nanocrystals forms a shell; and the like.

上述量子点具体可以是CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、HgS、HgSe、HgTe、PbS、PbSe、PbTe、GaP、GaAs、InP、InAs中的至少一种。当然,本发明的量子点并不局限于所列的这几种,其他能够实现发光效果的量子点也属于本发明的范畴。Specifically, the quantum dots may be at least one of CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, PbS, PbSe, PbTe, GaP, GaAs, InP, and InAs. Of course, the quantum dots of the present invention are not limited to the listed ones, and other quantum dots that can achieve luminescence effects also belong to the scope of the present invention.

上述子像素单元包括红色子像素单元(即红色发光器件)、绿色子像素单元(即绿色发光器件)、蓝色子像素单元(即蓝色发光器件)。如以量子点作为核心功能层15的材料时,三个连续或者相邻的像素槽14内,应当有发红光的量子点(RED QDs)、发绿光的量子点(GREEN QDs)、发蓝光的量子点(BLUE QDs),由这三个颜色的量子点所在的子像素单元构成一个像素单元,最终发出白光。比如图3或图4所示的局部结构示意图中,自左向右的顺序,第一个像素槽的核心功能层15材料为红光量子点,中间像素槽的核心功能层15材料为绿光量子点,右边像素槽的核心功能层15材料为蓝光量子点。当然,其他结构的量子点排布也是可行的,比如相邻三个像素槽的中心连线构成三角形,那么这三个像素槽中,分别为红光量子点、绿光量子点、蓝光量子点。本发明的量子点排布形式不局限于前述所述的结构,也可以是其他可以实现出光的排布形式。The above-mentioned sub-pixel unit includes a red sub-pixel unit (ie, a red light-emitting device), a green sub-pixel unit (ie, a green light-emitting device), and a blue sub-pixel unit (ie, a blue light-emitting device). For example, when quantum dots are used as the material of the core functional layer 15, in three consecutive or adjacent pixel slots 14, there should be red light-emitting quantum dots (RED QDs), green light-emitting quantum dots (GREEN QDs), Blue light quantum dots (BLUE QDs) are composed of sub-pixel units where the quantum dots of these three colors are located to form a pixel unit, which finally emits white light. For example, in the schematic diagram of the partial structure shown in FIG. 3 or FIG. 4, in order from left to right, the material of the core functional layer 15 of the first pixel slot is red light quantum dots, and the material of the core functional layer 15 of the middle pixel slot is green light quantum dots , and the material of the core functional layer 15 of the pixel slot on the right is blue light quantum dots. Of course, the arrangement of quantum dots of other structures is also feasible. For example, the center connection of three adjacent pixel slots forms a triangle, then the three pixel slots are respectively red light quantum dots, green light quantum dots, and blue light quantum dots. The arrangement form of the quantum dots of the present invention is not limited to the aforementioned structure, and can also be other arrangement forms that can realize light extraction.

当所述核心功能层15的材料是纳米发光材料和绝缘材料的混合物时,纳米发光材料的质量百分含量为1%~50%,纳米发光材料中添加绝缘材料后,可以增加纳米发光材料之间的距离,从而减少量子点之间因为能量转移而造成的淬灭,提高材料的发光效率。同时,纳米发光材料与绝缘材料的界面可以作为激子解离的中心,在电场作用下激子解离。此时,所述绝缘材料优选的绝缘材料为无机绝缘材料和/或有机聚合物绝缘材料。When the material of the core functional layer 15 is a mixture of nano-luminescent materials and insulating materials, the mass percentage of the nano-luminescent materials is 1% to 50%. Therefore, the quenching caused by energy transfer between quantum dots is reduced, and the luminous efficiency of the material is improved. At the same time, the interface between the nanoluminescent material and the insulating material can serve as the center of exciton dissociation, and the exciton dissociates under the action of the electric field. At this time, the preferred insulating material of the insulating material is an inorganic insulating material and/or an organic polymer insulating material.

进一步优选地,所述无机绝缘材料如SiO2、Al2O3等;和/或所述有机聚合物绝缘材料如甲基丙烯酸甲酯、甲基丙烯酸月桂酯、环氧丙烯酸酯、环氧树脂、改性环氧树脂等。Further preferably, the inorganic insulating material such as SiO 2 , Al 2 O 3 , etc.; and/or the organic polymer insulating material such as methyl methacrylate, lauryl methacrylate, epoxy acrylate, epoxy resin , modified epoxy resin, etc.

此外,核心功能层15的材料还可以是纳米发光材料与半导体材料的混合物。当核心功能层15的材料为纳米发光材料与半导体材料的混合物时,所述纳米发光材料的质量百分含量为1%~50%,纳米发光材料中光致产生的激子在电场下会转移到纳米发光材料与半导体材料的界面,生成的激子会在该界面湮灭(电子、空穴解离导致淬灭),或者能量转移到半导体材料中而最终湮灭。在发电器件中,产生的激子会在纳米发光材料与半导体材料的界面解离,由于太阳光强度大,解离的电子、空穴能形成电流回路,从而发电。即,包括衬底11、阳极12、核心功能层15、阴极16的结构,且核心功能层15的材料为纳米颗粒与半导体材料的混合物时,在太阳光的照射下可以作为一种发电装置,该发电装置的具体结构示意图可以如图22所示。In addition, the material of the core functional layer 15 can also be a mixture of nano-luminescent materials and semiconductor materials. When the material of the core functional layer 15 is a mixture of nano-luminescent material and semiconductor material, the mass percentage of the nano-luminescent material is 1% to 50%, and the photo-generated excitons in the nano-luminescent material will be transferred under the electric field At the interface between the nano-luminescent material and the semiconductor material, the generated excitons will be annihilated at the interface (quenching due to dissociation of electrons and holes), or the energy will be transferred to the semiconductor material and finally annihilated. In the power generation device, the generated excitons will dissociate at the interface between the nano-luminescent material and the semiconductor material. Due to the high intensity of sunlight, the dissociated electrons and holes can form a current loop to generate electricity. That is, when the structure including the substrate 11, the anode 12, the core functional layer 15, and the cathode 16, and the material of the core functional layer 15 is a mixture of nanoparticles and semiconductor materials, it can be used as a power generation device under the irradiation of sunlight, A schematic diagram of the specific structure of the power generation device can be shown in FIG. 22 .

涉及的所述半导体材料包括但不限于无机半导体材料、有机半导体材料、有机-无机杂化钙钛矿型半导体材料中的至少一种。The semiconductor materials involved include, but are not limited to, at least one of inorganic semiconductor materials, organic semiconductor materials, and organic-inorganic hybrid perovskite semiconductor materials.

优选地,所述无机半导体材料包括但不限于ZnO、NiOx、MoOx、WOx、CrOx、CuO、MoS2、MoSe2、WS2、WSe2、CuS、石墨烯、C60等,或者是掺杂或非掺杂的无机钙钛矿型半导体。Preferably, the inorganic semiconductor material includes but is not limited to ZnO, NiO x , MoO x , WO x , CrO x , CuO, MoS 2 , MoSe 2 , WS 2 , WSe 2 , CuS, graphene, C 60 , etc., or It is a doped or undoped inorganic perovskite semiconductor.

进一步优选地,所述无机钙钛矿型半导体材料的结构通式为AMX3,其中A为Cs+离子,M为二价金属阳离子,包括但不限于Pb2+、Sn2+、Cu2+、Ni2+、Cd2+、Cr2+、Mn2+、Co2+、Fe2+、Ge2+、Yb2+、Eu2+,X为卤素阴离子,包括但不限于Cl-、Br-、I-Further preferably, the general structural formula of the inorganic perovskite semiconductor material is AMX 3 , wherein A is a Cs + ion, and M is a divalent metal cation, including but not limited to Pb 2+ , Sn 2+ , Cu 2+ , Ni 2+ , Cd 2+ , Cr 2+ , Mn 2+ , Co 2+ , Fe 2+ , Ge 2+ , Yb 2+ , Eu 2+ , X is a halogen anion, including but not limited to Cl - , Br - , I - .

优选地,所述有机半导体材料包括但不限于(9,9-二辛基芴-CO-N-(4-丁基苯基)二苯胺)、聚乙烯咔唑、聚(N,N'双(4-丁基苯基)-N,N'-双(苯基)联苯胺)、聚(9,9-二辛基芴-共-双-N,N-苯基-1,4-苯二胺)、4,4’,4”-三(咔唑-9-基)三苯胺、4,4'-二(9-咔唑)联苯、N,N’-二苯基-N,N’-二(3-甲基苯基)-1,1’-联苯-4,4’-二胺、N,N’-二苯基-N,N’-(1-萘基)-1,1’-联苯-4,4’-二胺等。Preferably, the organic semiconductor material includes but is not limited to (9,9-dioctylfluorene-CO-N-(4-butylphenyl)diphenylamine), polyvinylcarbazole, poly(N,N'bis (4-butylphenyl)-N,N'-bis(phenyl)benzidine), poly(9,9-dioctylfluorene-co-bis-N,N-phenyl-1,4-benzene) diamine), 4,4',4"-tris(carbazol-9-yl)triphenylamine, 4,4'-bis(9-carbazole)biphenyl, N,N'-diphenyl-N, N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine, N,N'-diphenyl-N,N'-(1-naphthyl)- 1,1'-biphenyl-4,4'-diamine, etc.

进一步优选地,所述有机-无机杂化钙钛矿型半导体材料的结构通式为BNY3,其中B为有机胺阳离子,包括但不限于CH3(CH2)n-2NH3 +(n≥2)或NH3(CH2)nNH3 2+(n≥2),当n=2时,无机金属卤化物八面体NY6 4-通过共顶的方式连接,金属阳离子N位于卤素八面体的体心,有机胺阳离子B填充在八面体间的空隙内,形成无限延伸的三维结构;当n>2时,以共顶的方式连接的无机金属卤化物八面体NY6 4-在二维方向延伸形成层状结构,层间插入有机胺阳离子双分子层(质子化单胺)或有机胺阳离子单分子层(质子化双胺),有机层与无机层相互交叠形成稳定的二维层状结构;N为二价金属阳离子,包括但不限于Pb2+、Sn2+、Cu2+、Ni2+、Cd2+、Cr2+、Mn2+、Co2+、Fe2+、Ge2+、Yb2+、Eu2+;Y为卤素阴离子,包括但不限于Cl-、Br-、I-Further preferably, the general structural formula of the organic-inorganic hybrid perovskite semiconductor material is BNY 3 , wherein B is an organic amine cation, including but not limited to CH 3 (CH 2 ) n-2 NH 3 + (n ≥ 2) or NH 3 (CH 2 ) n NH 3 2+ (n≥ 2), when n=2, the inorganic metal halide octahedron NY 6 4- is connected by a common top, and the metal cation N is located in the halogen octahedron In the body center of the hexahedron, the organic amine cation B fills the voids between the octahedrons to form an infinitely extended three-dimensional structure; when n>2, the inorganic metal halide octahedrons NY 6 4- connected in a co-top manner are in two The dimensional direction extends to form a layered structure, and the organic amine cation bilayer (protonated monoamine) or organic amine cationic monolayer (protonated bisamine) is inserted between the layers, and the organic layer and the inorganic layer overlap each other to form a stable two-dimensional Layered structure; N is a divalent metal cation, including but not limited to Pb 2+ , Sn 2+ , Cu 2+ , Ni 2+ , Cd 2+ , Cr 2+ , Mn 2+ , Co 2+ , Fe 2+ , Ge 2+ , Yb 2+ , Eu 2+ ; Y is a halogen anion, including but not limited to Cl - , Br - , I - .

核心功能层15的材料为纳米发光材料与半导体材料的混合物,且结构包括传输层(如第二传输层18和/或第一传输层19)、同时无光源17时,在阳光照射的情况下,可以产生光致电,也就是本发明的结构可以作为太阳能电池。本发明中应以透明的电极作为当阴极16,保证出光效果。具体使用的材料可以是薄层金属、碳材料、金属氧化物中的任一种,这几种材料具有良好的透光特性,保证提供优质的透光效果,而作为光致电装置时,也可以保证太阳光进入核心功能层15的总量。当然阴极16的材料也可以是所列举材料以外的其他透明材料。The material of the core functional layer 15 is a mixture of nano-luminescent materials and semiconductor materials, and the structure includes a transmission layer (such as the second transmission layer 18 and/or the first transmission layer 19), and when there is no light source 17, in the case of sunlight , can generate photoelectricity, that is, the structure of the present invention can be used as a solar cell. In the present invention, a transparent electrode should be used as the cathode 16 to ensure the light extraction effect. The specific material used can be any one of thin-layer metal, carbon material, and metal oxide. These materials have good light-transmitting properties and ensure high-quality light-transmitting effects. When used as a photoelectric device, they can also The total amount of sunlight entering the core functional layer 15 is guaranteed. Of course, the material of the cathode 16 may also be other transparent materials other than the listed materials.

当阴极16的材料为薄层金属时,优选地,所述薄层金属包括Al、Ag、Cu、Mo、Au中的一种或多种。When the material of the cathode 16 is a thin-layer metal, preferably, the thin-layer metal includes one or more of Al, Ag, Cu, Mo, and Au.

当阴极16的材料为碳材料时,优选地,所述碳材料包括石墨、碳纳米管、石墨烯、碳纤维中的一种或多种。When the material of the cathode 16 is a carbon material, preferably, the carbon material includes one or more of graphite, carbon nanotube, graphene, and carbon fiber.

当阴极16的材料为金属氧化物时,其可以是不掺杂的金属氧化物,也可以是掺杂的金属氧化物。如优选地包括ITO、FTO、ATO、AZO、GZO、IZO、MZO、AMO中的一种或多种。When the material of the cathode 16 is a metal oxide, it can be an undoped metal oxide or a doped metal oxide. Such as preferably include one or more of ITO, FTO, ATO, AZO, GZO, IZO, MZO, AMO.

此外,当阴极16还可以是包括掺杂或非掺杂透明金属氧化物之间夹着薄层金属的复合电极。当为复合电极时,所述复合电极包括AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO2/Ag/TiO2、TiO2/Al/TiO2、ZnS/Ag/ZnS、ZnS/Al/ZnS、TiO2/Ag/TiO2、TiO2/Al/TiO2中的一种或多种。In addition, the cathode 16 may also be a composite electrode comprising a thin layer of metal sandwiched between doped or undoped transparent metal oxides. When it is a composite electrode, the composite electrode includes AZO/Ag/AZO, AZO/Al/AZO, ITO/Ag/ITO, ITO/Al/ITO, ZnO/Ag/ZnO, ZnO/Al/ZnO, TiO 2 / One or more of Ag/TiO 2 , TiO 2 /Al/TiO 2 , ZnS/Ag/ZnS, ZnS/Al/ZnS, TiO 2 /Ag/TiO 2 , TiO 2 /Al/TiO 2 .

优选地,所述光源17为蓝光光源、紫外光光源中的任一种,当然也可以是其他颜色的光源。Preferably, the light source 17 is any one of a blue light source and an ultraviolet light source, and of course it can also be a light source of other colors.

请参阅图5,该图显示的结构是包括衬底11、阳极12、像素界定层13、第二传输层18、核心功能层15、阴极16及光源17的显示装置,该显示装置具有发光效果,可作为发光显示装置,所述第二传输层18叠设于阳极12与核心功能层15之间。Please refer to FIG. 5 , the structure shown in the figure is a display device including a substrate 11 , an anode 12 , a pixel defining layer 13 , a second transmission layer 18 , a core functional layer 15 , a cathode 16 and a light source 17 , and the display device has a light-emitting effect , can be used as a light-emitting display device, the second transmission layer 18 is stacked between the anode 12 and the core functional layer 15 .

请参阅图6,该图显示的结构是包括衬底11、阳极12、像素界定层13、核心功能层15、第一传输层19、阴极16及光源17的显示装置,该装置具有发光效果,可以作为发光显示装置,其所述第一传输层19叠设于核心功能层15与阴极16之间。Referring to FIG. 6, the structure shown in the figure is a display device including a substrate 11, an anode 12, a pixel defining layer 13, a core functional layer 15, a first transmission layer 19, a cathode 16 and a light source 17, and the device has a light-emitting effect, As a light-emitting display device, the first transmission layer 19 is stacked between the core functional layer 15 and the cathode 16 .

请参阅图7,该图显示的结构是包括衬底11、阳极12、第二传输层18、像素界定层13、核心功能层15、第一传输层19、阴极16及光源17的显示装置,该显示装置具有发光效果,可以作为发光显示装置。其所述第二传输层18叠设于阳极12与核心功能层15之间,所述第一传输层19叠设于核心功能层15与阴极16之间。Referring to FIG. 7 , the structure shown in the figure is a display device including a substrate 11 , an anode 12 , a second transmission layer 18 , a pixel definition layer 13 , a core functional layer 15 , a first transmission layer 19 , a cathode 16 and a light source 17 , The display device has a light-emitting effect and can be used as a light-emitting display device. The second transport layer 18 is stacked between the anode 12 and the core functional layer 15 , and the first transport layer 19 is stacked between the core functional layer 15 and the cathode 16 .

在上述图5~7所示的显示装置结构中,第二传输层18具有传递空穴的作用;第一传输层19具有传递电子的作用。In the structure of the display device shown in FIGS. 5 to 7 , the second transport layer 18 has the function of transporting holes; the first transport layer 19 has the function of transporting electrons.

优选地,上述任一包括第二传输层18显示装置的结构中,所述的第二传输层18选自聚(9,9-二辛基芴-CO-N-(4-丁基苯基)二苯胺)、聚乙烯咔唑、聚(N,N'双(4-丁基苯基)-N,N'-双(苯基)联苯胺)、聚(9,9-二辛基芴-共-双-N,N-苯基-1,4-苯二胺)、4,4’,4”-三(咔唑-9-基)三苯胺、4,4'-二(9-咔唑)联苯、N,N’-二苯基-N,N’-二(3-甲基苯基)-1,1’-联苯-4,4’-二胺、N,N’-二苯基-N,N’-(1-萘基)-1,1’-联苯-4,4’-二胺中的至少一种。作为另一个实施例,所述第二传输层18还可以包括但不限于NiOx、MoS2、MoSe2、WS2、WSe2中的至少一种。优选地,第二传输层18的厚度为5~200nm。Preferably, in any of the above structures of the display device including the second transmission layer 18, the second transmission layer 18 is selected from poly(9,9-dioctylfluorene-CO-N-(4-butylphenyl) ) diphenylamine), polyvinylcarbazole, poly(N,N'bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine), poly(9,9-dioctylfluorene) -Co-bis-N,N-phenyl-1,4-phenylenediamine), 4,4',4"-tris(carbazol-9-yl)triphenylamine, 4,4'-bis(9- carbazole) biphenyl, N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine, N,N' -at least one of diphenyl-N,N'-(1-naphthyl)-1,1'-biphenyl-4,4'-diamine. As another embodiment, the second transmission layer 18 may also include, but is not limited to, at least one of NiO x , MoS 2 , MoSe 2 , WS 2 , and WSe 2. Preferably, the thickness of the second transmission layer 18 is 5˜200 nm.

优选地,上述任一包括第一传输层19显示装置的结构中,所述的第一传输层19选自ZnO、TiO2、SnO2、Ta2O3、AlZnO、ZnSnO、InSnO、Ca、Ba、CsF、LiF、Cs2CO3等无机材料中的一种或多种。优选地,第一传输层19的厚度为5~200nm。Preferably, in any of the above structures of the display device including the first transport layer 19, the first transport layer 19 is selected from ZnO, TiO 2 , SnO 2 , Ta 2 O 3 , AlZnO, ZnSnO, InSnO, Ca, Ba , CsF, LiF, Cs 2 CO 3 and other inorganic materials one or more. Preferably, the thickness of the first transmission layer 19 is 5˜200 nm.

请参阅图8,该图显示的结构是包括衬底11、阳极12、像素界定层13、第二辅助功能层20、第二传输层18、核心功能层15、第一传输层19、阴极16及光源17的显示装置,所述第二辅助功能层20叠设于第二传输层18和与阳极12之间。Please refer to FIG. 8 , which shows a structure including a substrate 11 , an anode 12 , a pixel defining layer 13 , a second auxiliary functional layer 20 , a second transmission layer 18 , a core functional layer 15 , a first transmission layer 19 , and a cathode 16 And the display device of the light source 17 , the second auxiliary function layer 20 is stacked between the second transmission layer 18 and the anode 12 .

请参阅图9,该图显示的结构是包括衬底11、阳极12、像素界定层13、第二传输层18、核心功能层15、第一传输层19、第一辅助功能层21、阴极16及光源17的显示装置,所述第一辅助功能层21叠设于阴极16与第一传输层19之间。Please refer to FIG. 9 , which shows a structure including a substrate 11 , an anode 12 , a pixel definition layer 13 , a second transmission layer 18 , a core functional layer 15 , a first transmission layer 19 , a first auxiliary functional layer 21 , and a cathode 16 And the display device of the light source 17 , the first auxiliary function layer 21 is stacked between the cathode 16 and the first transmission layer 19 .

请参阅图10,该图显示的结构是包括衬底11、阳极12、第二辅助功能层20、第二传输层18、像素界定层13、核心功能层15、第一传输层19、第一辅助功能层21、阴极16及光源17的显示装置,所述第二辅助功能层20叠设于第二传输层18和与阳极12之间,所述第一辅助功能层21叠设于阴极16与第一传输层19之间。Please refer to FIG. 10, which shows a structure including a substrate 11, an anode 12, a second auxiliary functional layer 20, a second transfer layer 18, a pixel definition layer 13, a core functional layer 15, a first transfer layer 19, a first A display device with auxiliary function layer 21 , cathode 16 and light source 17 , the second auxiliary function layer 20 is stacked between the second transmission layer 18 and the anode 12 , and the first auxiliary function layer 21 is stacked on the cathode 16 and the first transport layer 19 .

在上述图8~10所示的显示装置结构中,第二辅助功能层20具有促进空穴传输的作用;第一辅助功能层21具有促进电子传输的作用。In the structure of the display device shown in FIGS. 8 to 10 , the second auxiliary functional layer 20 has the function of promoting hole transport; the first auxiliary functional layer 21 has the function of promoting electron transport.

上述任一包括第二辅助功能层20的显示装置的结构中,所述的第二辅助功能层20选自聚乙撑二氧噻吩-聚(苯乙烯磺酸盐)、MoOx、WOx、CrOx、CuO、CuS等中的一种或多种。优选地,第二辅助功能层20的厚度为1~50nm。In any of the above-mentioned structures of the display device including the second auxiliary function layer 20, the second auxiliary function layer 20 is selected from polyethylene dioxythiophene-poly(styrene sulfonate), MoO x , WO x , One or more of CrO x , CuO, CuS, etc. Preferably, the thickness of the second auxiliary function layer 20 is 1˜50 nm.

上述任一包括第一辅助功能层21的显示装置的结构中,所述的第一辅助功能层21选自三(8-羟基喹啉)铝、1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯、2,9-二甲基-4,7-联苯-1,10-菲罗啉、4,7-二苯基-1,10-菲啰啉等材料中的一种或者多种。优选地,第一辅助功能层21的厚度为1~50nm。In any of the above structures of the display device including the first auxiliary function layer 21, the first auxiliary function layer 21 is selected from the group consisting of tris(8-hydroxyquinoline)aluminum, 1,3,5-tris(1-phenyl) -1H-benzimidazol-2-yl)benzene, 2,9-dimethyl-4,7-biphenyl-1,10-phenanthroline, 4,7-diphenyl-1,10-phenanthroline One or more of materials such as linoline. Preferably, the thickness of the first auxiliary function layer 21 is 1˜50 nm.

当然,本发明中包括衬底11、核心功能单元且核心功能单元中核心功能层15的材料为纳米发光材料和半导体材料的混合物时,或者包括衬底11以及包括第二传输层18、第一传输层19、第二辅助功能层20、第一辅助功能层21中的至少一层结构且核心功能层15的材料为纳米发光材料和半导体材料的混合物时,形成的上述显示装置还可以作为发电器件,如作为太阳能电池,太阳光在衬底11一侧或者核心功功能单元一侧照射,均可以实现发电。Of course, when the present invention includes the substrate 11, the core functional unit, and the material of the core functional layer 15 in the core functional unit is a mixture of nano-luminescent materials and semiconductor materials, or includes the substrate 11 and the second transport layer 18, the first When at least one of the transmission layer 19, the second auxiliary function layer 20, and the first auxiliary function layer 21 has a structure and the material of the core function layer 15 is a mixture of nano-luminescent materials and semiconductor materials, the above-mentioned display device formed can also be used as a power generator. The device, such as a solar cell, can generate electricity when sunlight is irradiated on the side of the substrate 11 or the side of the core functional unit.

此时,其工作原理为:太阳光照射至核心功能层15后被吸收,激发纳米发光材料产生激子,由于太阳光强度大,激子产生速率、数量大,通过控制两电极之间的电场,使电子、空穴解离,并形成电流回路,从而达到发电的效果。At this time, the working principle is: sunlight is absorbed after irradiating the core functional layer 15, and the nano-luminescent material is excited to generate excitons. Due to the high intensity of sunlight, the rate and number of excitons are large. By controlling the electric field between the two electrodes , dissociate electrons and holes, and form a current loop, so as to achieve the effect of power generation.

相应地,本发明还进一步提供上述任一种显示装置的制造方法。Correspondingly, the present invention further provides a manufacturing method of any of the above-mentioned display devices.

请参阅图11~21,在一实施例中,所述显示装置的制造方法包括以下步骤:Referring to FIGS. 11-21 , in one embodiment, the manufacturing method of the display device includes the following steps:

a).提供衬底11,具体如图11所示,该衬底11具有第一表面和正背对于所述第一表面的第二表面;a). Provide a substrate 11, specifically as shown in FIG. 11, the substrate 11 has a first surface and a second surface facing away from the first surface;

b).在所述衬底11的第一表面上形成像素界定层13和第一电极,由所述像素界定层13围合成若干像素槽14,所述第一电极设于所述像素槽14中;b). A pixel defining layer 13 and a first electrode are formed on the first surface of the substrate 11 , and a plurality of pixel grooves 14 are formed by the pixel defining layer 13 , and the first electrodes are arranged in the pixel grooves 14 middle;

c).在所述像素槽14中的第一电极上形成核心功能层15;c). Forming the core functional layer 15 on the first electrode in the pixel groove 14;

d).在所述核心功能层15上形成第二电极;d). Forming a second electrode on the core functional layer 15;

e).在所述衬底11背对所述核心功能层15的一侧设置光源17,使得光源17在发光时,发出的光能够射向所述衬底11,光源17可以与衬底11的第二表面直接接触,当然,所述光源17也可以与所述衬底11有一定的间距。e). A light source 17 is provided on the side of the substrate 11 facing away from the core functional layer 15 , so that when the light source 17 emits light, the emitted light can be directed to the substrate 11 , and the light source 17 can be connected to the substrate 11 In direct contact with the second surface of the light source 17, of course, the light source 17 can also have a certain distance from the substrate 11.

其中,若所述第一电极为阳极12,所述第二电极为阴极16时,在所述核心功能层15上形成第二电极之前,还包括在所述核心功能层15上形成第一传输层19的步骤,所述第二电极形成于所述第一传输层19上;Wherein, if the first electrode is the anode 12 and the second electrode is the cathode 16, before forming the second electrode on the core functional layer 15, it also includes forming a first transmission on the core functional layer 15 The step of layer 19, the second electrode is formed on the first transmission layer 19;

或者若所述第一电极为阴极16,所述第二电极为阳极12时,在所述像素槽14中的第一电极上形成核心功能层15之前,还包括在所述第一电极上形成第一传输层19的步骤,所述核心功能层15形成于所述第一传输层19上。如果上述显示装置还包括第二传输层18、第二辅助功能层20、第一辅助功能层21中的任一种,那么相应地,可以在a)~e)步骤中增加相应的步骤。如包括第二传输层18时,在阳极12上先形成第二传输层18,再于第二传输层18上形成核心功能层15,其余层结构按照同样的方式处理,为节约篇幅,这里不再展开赘述。Or if the first electrode is the cathode 16 and the second electrode is the anode 12, before forming the core functional layer 15 on the first electrode in the pixel groove 14, it also includes forming on the first electrode In the step of the first transmission layer 19 , the core functional layer 15 is formed on the first transmission layer 19 . If the above-mentioned display device further includes any one of the second transmission layer 18 , the second auxiliary function layer 20 , and the first auxiliary function layer 21 , corresponding steps may be added to steps a) to e). If the second transport layer 18 is included, the second transport layer 18 is first formed on the anode 12, and then the core functional layer 15 is formed on the second transport layer 18, and the rest of the layer structures are handled in the same way. Expand further.

上述阳极12和像素界定层13的形成顺序可以互换,如也可以先在衬底11的第一表面上形成像素界定层13,由像素界定层13围合成若干像素槽14,再于像素界定槽14内形成阳极12。The order of forming the anode 12 and the pixel defining layer 13 can be interchanged. For example, the pixel defining layer 13 can be formed on the first surface of the substrate 11 first, and a plurality of pixel grooves 14 are formed by the pixel defining layer 13, and then the pixel defining layer 13 can be formed on the pixel defining layer 13. The anode 12 is formed in the tank 14 .

上述核心功能层15可以通过喷墨打印的方法将发光材料打印至指定像素槽14中,干燥后获得像素化的核心功能层15。也可以应用化学或者物理方法制备核心功能层15,然后通过光刻的方法形成像素化的纳米核心功能层15。其中化学法包括但不限于化学气相沉积法、连续离子层吸附与反应法、阳极氧化法、电解沉积法、共沉淀法中的一种或多种;物理法包括但不限于物理镀膜法或溶液法,其中物理镀膜法包括但不限于热蒸发镀膜法、电子束蒸发镀膜法、磁控溅射法、多弧离子镀膜法、物理气相沉积法、原子层沉积法、脉冲激光沉积法中的一种或多种;溶液法包括但不限于旋涂法、印刷法、刮涂法、浸渍提拉法、浸泡法、喷涂法、滚涂法、浇铸法、狭缝式涂布法、条状涂布法。The above-mentioned core functional layer 15 can print the luminescent material into the designated pixel groove 14 by the method of inkjet printing, and obtain the pixelated core functional layer 15 after drying. The core functional layer 15 can also be prepared by chemical or physical methods, and then the pixelated nano-core functional layer 15 can be formed by photolithography. The chemical method includes but is not limited to one or more of chemical vapor deposition method, continuous ion layer adsorption and reaction method, anodization method, electrolytic deposition method and co-precipitation method; physical method includes but not limited to physical coating method or solution The physical coating method includes but is not limited to one of thermal evaporation coating method, electron beam evaporation coating method, magnetron sputtering method, multi-arc ion coating method, physical vapor deposition method, atomic layer deposition method, pulsed laser deposition method. One or more; solution methods include but are not limited to spin coating, printing, blade coating, dip-pulling, dipping, spraying, roll coating, casting, slot coating, strip coating Buffa.

本发明发光显示装置的制造方法中,涉及的衬底11、阳极12、像素界定层13、核心功能层15、阴极16、第二传输层18、第一传输层19、第二辅助功能层20、第一辅助功能层21所使用的材料,均与前文所述的显示装置的材料一致,为节约篇幅,在此不再展开赘述。In the manufacturing method of the light-emitting display device of the present invention, the involved substrate 11 , anode 12 , pixel defining layer 13 , core functional layer 15 , cathode 16 , second transmission layer 18 , first transmission layer 19 , second auxiliary function layer 20 . The materials used for the first auxiliary function layer 21 are all the same as the materials of the display device described above. In order to save space, they will not be repeated here.

为了更好的说明本发明的技术方案,下面结合具体实施例进行说明。In order to better illustrate the technical solutions of the present invention, the following description is made with reference to specific embodiments.

实施例1Example 1

如图6所示,一种显示装置,包括光源17、衬底11、阳极12、像素界定层13、核心功能层15、第一传输层19、阴极16;其中,衬底11为透明玻璃板,阳极12的材料为ITO;像素界定层13的材料为二氧化硅,第一传输层19的材料为石墨烯,核心功能层15的材料为CdSe/ZnS量子点和ZnO的混合物,阴极16的材料为AZO。As shown in FIG. 6, a display device includes a light source 17, a substrate 11, an anode 12, a pixel defining layer 13, a core functional layer 15, a first transmission layer 19, and a cathode 16; wherein, the substrate 11 is a transparent glass plate , the material of the anode 12 is ITO; the material of the pixel defining layer 13 is silicon dioxide, the material of the first transmission layer 19 is graphene, the material of the core functional layer 15 is a mixture of CdSe/ZnS quantum dots and ZnO, the material of the cathode 16 is The material is AZO.

该显示装置的制作方法如下:The manufacturing method of the display device is as follows:

S1.提供衬底11,该衬底11具有相对的第一表面和第二表面,在衬底11的第一表面制备若干相互并排并且有间隔的阳极12,在所述阳极12的边沿和由间隔而露出的所述衬底11的第一表面位置上制备像素界定层13,由所述像素界定层13围合形成像素槽,形成的所述像素槽的底部平面为外露的所述阳极12。S1. Provide a substrate 11, the substrate 11 has an opposite first surface and a second surface, on the first surface of the substrate 11 a number of anodes 12 are prepared side by side and spaced apart from each other, on the edge of the anode 12 and by A pixel defining layer 13 is prepared on the exposed first surface of the substrate 11 at intervals, and a pixel groove is formed by surrounding the pixel defining layer 13, and the bottom plane of the formed pixel groove is the exposed anode 12 .

S2.利用喷墨打印方法,将CdSe/ZnS量子点和ZnO混合后打印进入位于所述像素槽底部的阳极12表面,并通过真空加热方法进行干燥成核心功能层15;S2. Using the inkjet printing method, the CdSe/ZnS quantum dots and ZnO are mixed and printed into the surface of the anode 12 at the bottom of the pixel tank, and dried by vacuum heating to form the core functional layer 15;

S3.在所述核心功能层15上涂覆形成石墨烯层,由石墨烯层形成第一传输层19。S3. A graphene layer is formed by coating on the core functional layer 15, and the first transport layer 19 is formed from the graphene layer.

S4.在第一传输层19上利用溅射的方法制备阴极16,并且阴极16覆盖所述像素界定层13的顶部。S4. The cathode 16 is prepared on the first transfer layer 19 by sputtering, and the cathode 16 covers the top of the pixel defining layer 13 .

S5.在上述形成的显示装置衬底的第二表面上设置光源。S5. Disposing a light source on the second surface of the above-formed display device substrate.

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention shall be included in the protection of the present invention. within the range.

Claims (22)

1. A light emitting device includes a light source, a substrate, a core function unit; the core function unit comprises an anode, a core function layer and a cathode, wherein the core function layer is arranged between the anode and the cathode; a first transmission layer is also arranged between the core functional layer and the cathode;
the material of the core functional layer is formed by mixing nano particles and semiconductor materials;
the light source is arranged on one side of the substrate opposite to the core function unit.
2. A light emitting device according to claim 1, further comprising a first auxiliary functional layer disposed between the cathode and the first transport layer.
3. A light emitting device according to claim 1, further comprising a second transport layer between the anode and the core functional layer.
4. A light emitting device according to claim 3, further comprising a second auxiliary functional layer between the anode and the second transport layer.
5. The light-emitting device according to claim 1, wherein the nanoparticle is a quantum dot or a nanorod or a nanosheet;
the semiconductor material is at least one of an inorganic semiconductor material, an organic semiconductor material and an organic-inorganic hybrid perovskite type semiconductor material.
6. The light-emitting device according to claim 1, wherein the substrate is a transparent substrate; the anode and the cathode are both transparent electrodes.
7. The light emitting device of claim 1, wherein the material of the first transport layer is selected from ZnO, TiO2、SnO2、Ta2O3、AlZnO、ZnSnO、InSnO、Ca、Ba、CsF、LiF、Cs2CO3At least one of (1).
8. The light-emitting device according to claim 2, wherein a material of the first auxiliary functional layer is at least one selected from the group consisting of aluminum tris (8-hydroxyquinoline), 1,3, 5-tris (1-phenyl-1H-benzimidazol-2-yl) benzene, 2, 9-dimethyl-4, 7-biphenyl-1, 10-phenanthroline, and 4, 7-diphenyl-1, 10-phenanthroline.
9. A light emitting device according to claim 3, wherein the material of the second transport layer is selected from poly (9, 9-dioctylfluorene-CO-N- (4-butylphenyl) diphenylamine), polyvinylcarbazole, poly (N, N ' bis (4-butylphenyl) -N, N ' -bis (phenyl) benzidine), poly (9, 9-dioctylfluorene-CO-bis-N, N-phenyl-1, 4-phenylenediamine), 4', 4 ″ -tris (carbazol-9-yl) triphenylamine, 4' -bis (9-carbazole) biphenyl, N ' -diphenyl-N, N ' -bis (3-methylphenyl) -1,1 ' -biphenyl-4, 4' -diamine, poly (t-butyl-phenyl) diphenylamine), poly (t-butyl-phenyl) -N, N ' -bis (carbazol-9-yl) triphenylamine, poly (t-butyl-phenyl) -1,1 ' -biphenyl-4, 4' -diamine, n, N '-diphenyl-N, N' - (1-naphthyl) -1,1 '-biphenyl-4, 4' -diamine, NiOx、MoS2、MoSe2、WS2、WSe2At least one of (1). .
10. A light-emitting device as claimed in claim 4, characterized in that the material of the second auxiliary functional layer is selected from the group consisting of polyethylenedioxythiophene-poly (styrenesulfonate), MoOx、WOx、CrOxAt least one of CuO and CuS.
11. A display device includes a plurality of pixel units arranged repeatedly; the pixel cell comprises the light emitting device of any one of claims 1-10, the light emitting devices sharing the same substrate, the light sources all being located on the same side of the substrate.
12. The display device of claim 11, wherein the pixel cells include a red sub-pixel cell, a green sub-pixel cell, and a blue sub-pixel cell; the red sub-pixel unit is a red light emitting device, the green sub-pixel unit is a green light emitting device, and the blue sub-pixel unit is a blue light emitting device.
13. The display device of claim 11, further comprising a pixel definition layer disposed on the substrate, the pixel definition layer being located between adjacent ones of the core functional units.
14. A method of manufacturing a display device, comprising the steps of:
providing a substrate;
forming a pixel defining layer and a first electrode on one surface of the substrate, wherein the pixel defining layer is enclosed into a plurality of pixel grooves, and the first electrode is arranged in the pixel grooves;
forming a core function layer on the first electrode in the pixel groove;
forming a second electrode on the core functional layer;
arranging a light source on one side of the substrate, which is opposite to the core functional layer;
if the first electrode is an anode and the second electrode is a cathode, before forming the second electrode on the core functional layer, a step of forming a first transmission layer on the core functional layer is further included, and the second electrode is formed on the first transmission layer;
or if the first electrode is a cathode and the second electrode is an anode, before forming a core functional layer on the first electrode in the pixel groove, the method further comprises a step of forming a first transmission layer on the first electrode, wherein the core functional layer is formed on the first transmission layer.
15. The method of manufacturing a display device according to claim 14, further comprising forming a first auxiliary functional layer between the cathode and the first transfer layer.
16. The method for manufacturing a display device according to claim 14, wherein a material of the core functional layer is a mixture of nanoparticles and a semiconductor material;
the nano particles are quantum dots, nano rods or nano sheets;
the semiconductor material is at least one of an inorganic semiconductor material, an organic semiconductor material and an organic-inorganic hybrid perovskite type semiconductor material.
17. The method for manufacturing a display device according to claim 14, wherein materials forming the substrate, the cathode, and the anode are all transparent materials.
18. The method of manufacturing a display device according to claim 14, wherein a material of the first transport layer is selected from ZnO, TiO2、SnO2、Ta2O3、AlZnO、ZnSnO、InSnO、Ca、Ba、CsF、LiF、Cs2CO3At least one of (1).
19. The method for manufacturing a display device according to claim 15, wherein a material of the first auxiliary functional layer is at least one selected from the group consisting of tris (8-hydroxyquinoline) aluminum, 1,3, 5-tris (1-phenyl-1H-benzimidazol-2-yl) benzene, 2, 9-dimethyl-4, 7-biphenyl-1, 10-phenanthroline, and 4, 7-diphenyl-1, 10-phenanthroline.
20. A power generation device is characterized by comprising a substrate and a core function unit arranged on one side of the substrate, wherein the core function unit comprises an anode, a core function layer and a cathode, and the core function layer is arranged between the anode and the cathode; a first transmission layer is also arranged between the core functional layer and the cathode;
the material of the core functional layer is formed by mixing nano particles and semiconductor materials.
21. The power generation apparatus of claim 20, wherein the nanoparticles are quantum dots or nanorods or nanoplatelets;
the semiconductor material is at least one of an inorganic semiconductor material, an organic semiconductor material and an organic-inorganic hybrid perovskite type semiconductor material.
22. The power generation device of claim 20, wherein the material of the first transport layer is selected from ZnO, TiO2、SnO2、Ta2O3、AlZnO、ZnSnO、InSnO、Ca、Ba、CsF、LiF、Cs2CO3At least one of (1).
CN201811445903.5A 2018-11-29 2018-11-29 Light emitting device, display device, method for manufacturing display device, and power generation device Pending CN111244200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811445903.5A CN111244200A (en) 2018-11-29 2018-11-29 Light emitting device, display device, method for manufacturing display device, and power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811445903.5A CN111244200A (en) 2018-11-29 2018-11-29 Light emitting device, display device, method for manufacturing display device, and power generation device

Publications (1)

Publication Number Publication Date
CN111244200A true CN111244200A (en) 2020-06-05

Family

ID=70869577

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811445903.5A Pending CN111244200A (en) 2018-11-29 2018-11-29 Light emitting device, display device, method for manufacturing display device, and power generation device

Country Status (1)

Country Link
CN (1) CN111244200A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1643702A (en) * 2002-03-19 2005-07-20 加利福尼亚大学董事会 Semiconductor-nanocrystal/conjugated polymer thin films
CN1698088A (en) * 2001-08-30 2005-11-16 剑桥显示技术公司 Photoelectric display
CN1743361A (en) * 2005-09-22 2006-03-08 复旦大学 A hybrid material of inorganic semiconductor nanocrystal and conjugated polymer and its preparation method
CN101012372A (en) * 2007-02-13 2007-08-08 中国科学院上海技术物理研究所 Method of assembling quantum dot in mesoporous silica dioxide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1698088A (en) * 2001-08-30 2005-11-16 剑桥显示技术公司 Photoelectric display
CN1643702A (en) * 2002-03-19 2005-07-20 加利福尼亚大学董事会 Semiconductor-nanocrystal/conjugated polymer thin films
CN1743361A (en) * 2005-09-22 2006-03-08 复旦大学 A hybrid material of inorganic semiconductor nanocrystal and conjugated polymer and its preparation method
CN101012372A (en) * 2007-02-13 2007-08-08 中国科学院上海技术物理研究所 Method of assembling quantum dot in mesoporous silica dioxide

Similar Documents

Publication Publication Date Title
CN105097878B (en) Organic EL display panel and preparation method, display device
CN106784392B (en) Composite quantum dot light-emitting diode device and preparation method thereof
Ji et al. Highly efficient flexible quantum-dot light emitting diodes with an ITO/Ag/ITO cathode
CN106409995A (en) Preparation method of QLED
CN106549109A (en) A kind of QLED devices based on p i n structures and preparation method thereof
CN105261709A (en) Organic light emitting device of doping quantum dots and manufacturing method thereof
CN105098084B (en) Quantum dot-based light-emitting diode and display device
CN111244305A (en) Light emitting device, display apparatus, and method of manufacturing display apparatus
CN107994124B (en) Light-emitting diode and preparation method thereof, array substrate, and electronic device
CN101222026B (en) Organic LED display device and manufacture method thereof
CN111384279A (en) Quantum dot light-emitting diode
CN109285947B (en) LED thin film LED substrate for printing, LED thin film LED device and preparation method thereof
CN111384280A (en) A kind of quantum dot light-emitting diode and preparation method thereof
CN111477756A (en) Light-emitting device and manufacturing method thereof
CN111384303B (en) Preparation method of film layer and quantum dot light-emitting diode
CN111244200A (en) Light emitting device, display device, method for manufacturing display device, and power generation device
CN109390477B (en) Multi-channel hole transport layer, electrical device and QLED device
WO2023093494A1 (en) Electroluminescent device and preparation method therefor, and photoelectric apparatus
CN111244303A (en) Light emitting device, display device, method for manufacturing display device, and power generation device
CN111244304A (en) Light emitting device, display apparatus, and method of manufacturing display apparatus
WO2022143566A1 (en) Light-emitting device and preparation method therefor
US20250048911A1 (en) Light-emitting device preparation method, light-emitting device, and display apparatus
WO2023051197A1 (en) Light-emitting device, preparation method therefor, and display apparatus
WO2020093310A1 (en) Display panel, display device and manufacturing method
WO2023051317A1 (en) Tungsten oxide nanomaterial and preparation method therefor, and optoelectronic device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200605

RJ01 Rejection of invention patent application after publication