CN111235633A - A method for preparing self-supporting silicon carbide wafers by CVD on the surface of silicon melt - Google Patents
A method for preparing self-supporting silicon carbide wafers by CVD on the surface of silicon melt Download PDFInfo
- Publication number
- CN111235633A CN111235633A CN202010050175.9A CN202010050175A CN111235633A CN 111235633 A CN111235633 A CN 111235633A CN 202010050175 A CN202010050175 A CN 202010050175A CN 111235633 A CN111235633 A CN 111235633A
- Authority
- CN
- China
- Prior art keywords
- silicon
- silicon carbide
- melt
- self
- steps
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 78
- 239000010703 silicon Substances 0.000 title claims abstract description 78
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 78
- 229910010271 silicon carbide Inorganic materials 0.000 title claims abstract description 74
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims abstract description 72
- 238000000034 method Methods 0.000 title claims abstract description 28
- 235000012431 wafers Nutrition 0.000 title abstract description 13
- 239000000758 substrate Substances 0.000 claims abstract description 43
- 239000013078 crystal Substances 0.000 claims abstract description 18
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 15
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 15
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 15
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910052990 silicon hydride Inorganic materials 0.000 claims abstract description 9
- 238000001816 cooling Methods 0.000 claims abstract description 4
- 239000010410 layer Substances 0.000 claims description 27
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims description 8
- 239000000243 solution Substances 0.000 claims description 8
- 238000001039 wet etching Methods 0.000 claims description 7
- 238000005530 etching Methods 0.000 claims description 4
- 239000001294 propane Substances 0.000 claims description 4
- 239000002344 surface layer Substances 0.000 claims description 4
- 239000007864 aqueous solution Substances 0.000 claims description 3
- 229910000077 silane Inorganic materials 0.000 claims description 3
- 239000003513 alkali Substances 0.000 claims description 2
- 239000012670 alkaline solution Substances 0.000 claims description 2
- 229910052594 sapphire Inorganic materials 0.000 abstract description 3
- 239000010980 sapphire Substances 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 38
- 239000007789 gas Substances 0.000 description 19
- 239000000463 material Substances 0.000 description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 12
- 229910052799 carbon Inorganic materials 0.000 description 12
- 238000010586 diagram Methods 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- -1 propane Chemical compound 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000001017 electron-beam sputter deposition Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B28/00—Production of homogeneous polycrystalline material with defined structure
- C30B28/12—Production of homogeneous polycrystalline material with defined structure directly from the gas state
- C30B28/14—Production of homogeneous polycrystalline material with defined structure directly from the gas state by chemical reaction of reactive gases
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/36—Carbides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02381—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02529—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
一种在硅熔体表面通过CVD制备自支撑碳化硅晶圆的方法,包括在一图形衬底上制备硅膜;在生长炉中升高温度使硅膜熔化形成硅熔体;保持温度不变,向生长炉中通入碳氢化合物气体,一段时间后形成悬浮于硅熔体表层的碳化硅籽晶层;向生长炉中通入碳氢化合物气体和硅氢化合物气体,在碳化硅籽晶层上同质外延生长,形成碳化硅自支撑层;将含有碳化硅自支撑层的图形衬底降温后去除所述硅膜,得到剥离的碳化硅自支撑层,将之研磨抛光并整形后,即得到所述碳化硅晶圆。本方法避免了传统方法的劣势,具有简便易行,容易推广等优点;本发明可以使用价格低廉的蓝宝石衬底,衬底还可以重复使用,进一步降低成本。
A method for preparing self-supporting silicon carbide wafers on the surface of silicon melt by CVD, comprising: preparing a silicon film on a patterned substrate; raising the temperature in a growth furnace to melt the silicon film to form a silicon melt; keeping the temperature unchanged , pass hydrocarbon gas into the growth furnace, and form a silicon carbide seed crystal layer suspended on the surface of the silicon melt after a period of time; pass hydrocarbon gas and silicon hydride gas into the growth furnace, in the silicon carbide seed crystal layer Homoepitaxial growth on the layer to form a silicon carbide self-supporting layer; after cooling the pattern substrate containing the silicon carbide self-supporting layer, the silicon film is removed to obtain a peeled silicon carbide self-supporting layer, which is ground, polished and shaped. That is, the silicon carbide wafer is obtained. The method avoids the disadvantages of the traditional method, and has the advantages of simplicity, practicability, and easy popularization; the invention can use a low-cost sapphire substrate, and the substrate can be reused, thereby further reducing the cost.
Description
技术领域technical field
本发明属于碳化硅半导体材料领域,尤其涉及一种在硅熔体表面通过CVD制备自支撑碳化硅晶圆的方法。The invention belongs to the field of silicon carbide semiconductor materials, in particular to a method for preparing self-supporting silicon carbide wafers on the surface of silicon melt by CVD.
背景技术Background technique
碳化硅半导体材料(4H-SiC)是新型第三代半导体材料,在大功率电力电子领域具有十分重要的用途。其中,在碳化硅衬底上进行同质外延生长碳化硅厚膜是实现碳化硅功率器件的关键步骤。目前所用的制备方案有两个不足之处:一是需要用到碳化硅衬底,由于衬底极难制备,所以增加了制作碳化硅功率器件的难度;二是需要将衬底减薄,才能使器件电阻大幅下降。上述不足之处既增加了器件制备成本又造成了原材料的浪费。Silicon carbide semiconductor material (4H-SiC) is a new third-generation semiconductor material, which has a very important application in the field of high-power power electronics. Among them, homoepitaxial growth of silicon carbide thick films on silicon carbide substrates is a key step to realize silicon carbide power devices. The current preparation scheme has two shortcomings: one is that a silicon carbide substrate is required, which increases the difficulty of making silicon carbide power devices because the substrate is extremely difficult to prepare; the other is that the substrate needs to be thinned so that greatly reduces the device resistance. The above shortcomings not only increase the cost of device fabrication but also cause waste of raw materials.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明的主要目的之一在于提出一种在硅熔体表面通过CVD制备自支撑碳化硅晶圆的方法,以期至少部分地解决上述技术问题中的至少之一。In view of this, one of the main purposes of the present invention is to provide a method for preparing self-supporting silicon carbide wafers on the surface of silicon melt by CVD, in order to at least partially solve at least one of the above technical problems.
为了实现上述目的,作为本发明的一个方面,提供了一种在硅熔体表面通过CVD制备自支撑碳化硅晶圆的方法,包括:In order to achieve the above object, as an aspect of the present invention, a method for preparing a self-supporting silicon carbide wafer by CVD on a silicon melt surface is provided, comprising:
(1)在一图形衬底上制备硅膜;(1) prepare a silicon film on a pattern substrate;
(2)在生长炉中升高温度使硅膜熔化形成硅熔体;(2) raising the temperature in the growth furnace to melt the silicon film to form a silicon melt;
(3)保持温度不变,向生长炉中通入碳氢化合物气体,一段时间后形成悬浮于硅熔体表层的碳化硅籽晶层;(3) keeping the temperature constant, feeding hydrocarbon gas into the growth furnace, and forming a silicon carbide seed crystal layer suspended in the silicon melt surface layer after a period of time;
(4)向生长炉中通入碳氢化合物气体和硅氢化合物气体,在步骤(3)形成的碳化硅籽晶层上同质外延生长,形成碳化硅自支撑层;(4) feeding hydrocarbon gas and silicon hydride gas into the growth furnace, and homoepitaxially growing on the silicon carbide seed crystal layer formed in step (3) to form a silicon carbide self-supporting layer;
(5)将步骤(4)得到的含有碳化硅自支撑层的图形衬底降温后去除所述硅膜,得到剥离的碳化硅自支撑层,将之研磨抛光并整形后,即得到所述碳化硅晶圆。(5) cooling the patterned substrate containing the silicon carbide self-supporting layer obtained in step (4) and removing the silicon film to obtain a peeled silicon carbide self-supporting layer, which is ground, polished and shaped to obtain the carbide silicon wafer.
基于上述技术方案可知,本发明在硅熔体表面通过CVD制备自支撑碳化硅晶圆的方法相对于现有技术至少具有以下优势之一:Based on the above technical solutions, the method for preparing self-supporting silicon carbide wafers by CVD on the silicon melt surface of the present invention has at least one of the following advantages over the prior art:
1、本方法避免了传统方法的劣势,具有简便易行,容易推广等优点;1. This method avoids the disadvantages of traditional methods, and has the advantages of simplicity and ease of implementation, and easy promotion;
2、本发明不再必需使用昂贵难得的碳化硅衬底,而是可以使用价格低廉的蓝宝石衬底,使之只承担支撑的作用,采用硅熔体作为转化床,通入硅和碳的生长气体后在此转化床上通过化合反应生成碳化硅结晶层,在一定时间之后即可以生长出具有一定厚度的自支撑碳化硅厚膜材料,随后可以通过湿法腐蚀残硅层的办法将厚膜碳化硅层剥离下来,形成制作碳化硅功率器件的起始材料。此外,前述衬底还可以重复使用,进一步降低成本。2. In the present invention, it is no longer necessary to use expensive and rare silicon carbide substrates, but low-cost sapphire substrates can be used, so that they only bear the role of support, and silicon melt is used as a transformation bed to feed the growth of silicon and carbon. After a certain amount of time, a self-supporting silicon carbide thick film material with a certain thickness can be grown, and then the thick film can be carbonized by wet etching the residual silicon layer. The silicon layer is peeled off to form a starting material for making silicon carbide power devices. In addition, the aforementioned substrate can also be reused, further reducing the cost.
附图说明Description of drawings
图1是本发明实施例中图形衬底其台阶表面和截面形状示意图;1 is a schematic diagram of the stepped surface and cross-sectional shape of a graphic substrate in an embodiment of the present invention;
图2是本发明实施例中图形衬底表面波纹形状及其分布示意图;2 is a schematic diagram of the shape of the surface corrugation of the graphic substrate and its distribution in the embodiment of the present invention;
图3是本发明实施例中制备碳化硅外延厚膜全过程示意图;3 is a schematic diagram of the whole process of preparing a silicon carbide epitaxial thick film in an embodiment of the present invention;
图4是本发明实施例中硅膜熔化和碳化硅生长过程示意图。FIG. 4 is a schematic diagram of a process of melting a silicon film and growing silicon carbide in an embodiment of the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。In order to make the objectives, technical solutions and advantages of the present invention more clearly understood, the present invention will be further described in detail below in conjunction with specific embodiments and with reference to the accompanying drawings.
本发明公开了一种在硅熔体表面通过CVD制备自支撑碳化硅晶圆的方法,包括:The invention discloses a method for preparing a self-supporting silicon carbide wafer on the surface of silicon melt by CVD, comprising:
(1)在一图形衬底上制备硅膜;(1) prepare a silicon film on a pattern substrate;
(2)在生长炉中升高温度使硅膜熔化形成硅熔体;(2) raising the temperature in the growth furnace to melt the silicon film to form a silicon melt;
(3)保持温度不变,向生长炉中通入碳氢化合物气体,一段时间后形成悬浮于硅熔体表层的碳化硅籽晶层;(3) keeping the temperature constant, feeding hydrocarbon gas into the growth furnace, and forming a silicon carbide seed crystal layer suspended in the silicon melt surface layer after a period of time;
(4)向生长炉中通入碳氢化合物气体和硅氢化合物气体,在步骤(3)形成的碳化硅籽晶层上同质外延生长,形成碳化硅自支撑层;(4) feeding hydrocarbon gas and silicon hydride gas into the growth furnace, and homoepitaxially growing on the silicon carbide seed crystal layer formed in step (3) to form a silicon carbide self-supporting layer;
(5)将步骤(4)得到的含有碳化硅自支撑层的图形衬底降温后去除所述硅膜,得到剥离的碳化硅自支撑层,将之研磨抛光并整形后,即得到所述碳化硅晶圆。(5) cooling the patterned substrate containing the silicon carbide self-supporting layer obtained in step (4) and removing the silicon film to obtain a peeled silicon carbide self-supporting layer, which is ground, polished and shaped to obtain the carbide silicon wafer.
在本发明的一些实施例中,步骤(2)中所述升高温度步骤中升高温度至1500至1800摄氏度。In some embodiments of the present invention, the temperature is increased to 1500 to 1800 degrees Celsius in the step of increasing the temperature in step (2).
在本发明的一些实施例中,步骤(2)中所述硅熔体为表面具有台阶或者波纹的硅熔体。In some embodiments of the present invention, the silicon melt in step (2) is a silicon melt with steps or corrugations on the surface.
在本发明的一些实施例中,步骤(3)中所述碳化硅籽晶层生长时间为1至2小时。In some embodiments of the present invention, the growth time of the silicon carbide seed layer in step (3) is 1 to 2 hours.
在本发明的一些实施例中,步骤(3)中所述生长炉中的压力为600至760托。In some embodiments of the present invention, the pressure in the growth furnace in step (3) is 600 to 760 Torr.
在本发明的一些实施例中,步骤(4)中所述碳氢化合物气体和硅氢化合物气体中硅元素和碳元素的摩尔质量比为1∶(0.8至1.5);In some embodiments of the present invention, the molar mass ratio of silicon element and carbon element in the hydrocarbon gas and the silicon hydride gas in the step (4) is 1:(0.8 to 1.5);
在本发明的一些实施例中,步骤(4)中所述碳化硅层的生长时间为3至8小时。In some embodiments of the present invention, the growth time of the silicon carbide layer in step (4) is 3 to 8 hours.
在本发明的一些实施例中,步骤(4)中所述碳氢化合物气体包括丙烷,所述硅氢化合物气体包括硅烷。In some embodiments of the present invention, the hydrocarbon gas in step (4) includes propane, and the silicon hydride gas includes silane.
在本发明的一些实施例中,步骤(1)中所述的图形衬底上的图形包括台阶;In some embodiments of the present invention, the pattern on the pattern substrate described in step (1) includes steps;
在本发明的一些实施例中,所述台阶的形状包括微纳米台阶、连续波纹状台阶或者断续波纹状台阶;In some embodiments of the present invention, the shape of the steps includes micro-nano steps, continuous corrugated steps or discontinuous corrugated steps;
在本发明的一些实施例中,所述台阶是由于衬底倾角形成的或通过图形刻蚀形成的。In some embodiments of the present invention, the steps are formed due to substrate inclination or by pattern etching.
在本发明的一些实施例中,步骤(1)中所述硅膜的厚度为200至1000纳米。In some embodiments of the present invention, the thickness of the silicon film in step (1) is 200 to 1000 nanometers.
在本发明的一些实施例中,步骤(5)中去除所述硅膜的方法包括湿法腐蚀;In some embodiments of the present invention, the method for removing the silicon film in step (5) includes wet etching;
在本发明的一些实施例中,所述湿法腐蚀具体包括:In some embodiments of the present invention, the wet etching specifically includes:
将制备好碳化硅膜的图形衬底放入碱溶液中,保持温度在80至100摄氏度,经过2至4小时后,所述硅膜被去除;Putting the prepared silicon carbide film pattern substrate into an alkaline solution, keeping the temperature at 80 to 100 degrees Celsius, and after 2 to 4 hours, the silicon film is removed;
在本发明的一些实施例中,所述的碱溶液包括KOH水溶液,所述KOH水溶液的浓度为40wt%至60wt%。In some embodiments of the present invention, the alkali solution includes an aqueous KOH solution, and the concentration of the aqueous KOH solution is 40 wt % to 60 wt %.
在一个示例性实施例中,本发明的自支撑碳化硅晶圆的制备方法包括以下步骤:In an exemplary embodiment, the method for preparing a self-supporting silicon carbide wafer of the present invention includes the following steps:
步骤一、取一图形衬底,作为支撑基板;
步骤二、采用溅射或者电子束蒸发的方法在图形衬底上制备硅膜,硅膜厚度为200纳米至1微米,然后在生长炉中升高温度达1500-1800摄氏度将其熔化形成熔体,此液相作为后续碳化硅生长的母相和流化床;在高温下硅熔体表面受图形衬底影响,具有细微台阶,或者形成细微波纹,图形衬底台阶处硅分子更易于向表面运动,使熔体表面对应处形成细微台阶或者波纹,这使得硅熔体表面积增大,其台阶或波纹尖端处、相临小平面处更易与碳源接触。Step 2: Prepare a silicon film on the pattern substrate by sputtering or electron beam evaporation. The thickness of the silicon film is 200 nanometers to 1 micrometer, and then the temperature is raised in the growth furnace to 1500-1800 degrees Celsius to melt it to form a melt , this liquid phase is used as the parent phase and fluidized bed for the subsequent growth of silicon carbide; at high temperature, the surface of silicon melt is affected by the pattern substrate, and has fine steps or fine ripples, and silicon molecules at the steps of the pattern substrate are more likely to move to the surface The movement causes fine steps or corrugations to be formed on the melt surface correspondingly, which increases the surface area of the silicon melt, and the tips of the steps or corrugations and the adjacent facets are more likely to contact the carbon source.
步骤三、向生长炉中通入含有碳元素的碳氢化合物气体,在1500-1800摄氏度高温下碳元素溶解于硅熔体近表面层,与硅元素化合形成一定密度的碳化硅籽晶粒悬浮液,持续1~2小时后,籽晶粒长大并相互融合,形成一碳化硅籽晶层,厚度100纳米~300纳米,悬浮于硅熔体表层并成为硅熔体的封盖层;控制硅蒸气压和生长炉压力,并使两种压力平衡,从而控制籽晶悬浮于硅熔体表面,不至于下沉,也不至于被熔体中的硅分子搅动、拆分。一定时间之后,籽晶粒长大并与相临籽晶粒融合,在硅熔融表面形成碳化硅籽晶膜。Step 3: Pour the hydrocarbon gas containing carbon element into the growth furnace, and at a high temperature of 1500-1800 degrees Celsius, the carbon element is dissolved in the near-surface layer of the silicon melt, and combined with the silicon element to form a suspension of silicon carbide seed grains with a certain density After 1 to 2 hours, the seed grains grow and fuse with each other to form a silicon carbide seed layer with a thickness of 100 nanometers to 300 nanometers, which is suspended on the surface of the silicon melt and becomes the capping layer of the silicon melt; control The silicon vapor pressure and the growth furnace pressure are balanced, so as to control the seed crystal to be suspended on the surface of the silicon melt, so that it will not sink, and will not be stirred and split by the silicon molecules in the melt. After a certain period of time, the seed grains grow and merge with the adjacent seed grains, forming a silicon carbide seed crystal film on the molten silicon surface.
步骤四、向生长炉中同时通入含有碳元素的碳氢化合物气体以及含有硅元素的简单硅氢化合物气体,高温下以碳化硅籽晶层为衬底进行同质外延生长,持续3-8小时时间后,使同质外延层的厚度为50-200微米,形成碳化硅自支撑厚膜材料;其中,碳氢化合物气体以及硅氢化合物气体中碳元素和硅元素的摩尔质量比例为1∶(0.8-1.5);
步骤五、生长炉降温至室温后取出具有碳化硅自支撑厚膜材料的图形衬底,然后采用湿法腐蚀清除残留硅膜,让自支撑厚膜材料自行从图形衬底表面脱落,即可将碳化硅自支撑材料剥离;
步骤六、将所得碳化硅自支撑材料进行双面磨抛及圆周整形处理,使其双面平坦光亮,即制备得到所述碳化硅晶圆。In step 6, the obtained silicon carbide self-supporting material is subjected to double-sided grinding and polishing and circumferential shaping treatment, so that both sides are flat and bright, that is, the silicon carbide wafer is prepared.
以下通过具体实施例结合附图对本发明的技术方案做进一步阐述说明。需要注意的是,下述的具体实施例仅是作为举例说明,本发明的保护范围并不限于此。The technical solutions of the present invention will be further described below through specific embodiments and accompanying drawings. It should be noted that the following specific embodiments are only for illustration, and the protection scope of the present invention is not limited thereto.
下述实施例中使用的化学药品和原料均为市售所得或通过公知的制备方法自制得到。The chemicals and raw materials used in the following examples are either commercially available or self-made by known preparation methods.
本实施例的碳化硅外延膜的制备方法中,采用纳米图形衬底,材质为蓝宝石(sapphire)或者4H-SiC,表面晶向为(0001)或者(000-1),且与<11-20>或者其它方向如<1100>方向具有一定夹角,形成衬底倾角,如0度、4度、8度等,形成微纳米条状台阶,如图1所示,与参考边具有特定夹角或角度,如0度、30度、45度、90度等,图1中为0度。表面台阶也可以是其他形状,如图2所示,为连续波纹状或者断续波纹状,其波纹之间以及与参考边之间具有特定夹角或角度,如0度、30度、45度、90度等。台阶高度为50纳米至1微米,其台面宽度100纳米至2微米,如图1所示。表面微纳米台阶可以是由于衬底倾角形成的,也可以是通过图形刻蚀形成的。In the preparation method of the silicon carbide epitaxial film of this embodiment, a nano-patterned substrate is used, the material is sapphire or 4H-SiC, the surface crystal orientation is (0001) or (000-1), and the difference is <11-20 >Or other directions such as the <1100> direction have a certain angle to form a substrate inclination angle, such as 0 degrees, 4 degrees, 8 degrees, etc., to form micro-nano strip-like steps, as shown in Figure 1, with a specific angle to the reference edge Or an angle, such as 0 degrees, 30 degrees, 45 degrees, 90 degrees, etc., which is 0 degrees in Figure 1. The surface steps can also be in other shapes, as shown in Figure 2, which are continuous corrugated or intermittent corrugations, with specific angles or angles between the corrugations and the reference edge, such as 0 degrees, 30 degrees, 45 degrees , 90 degrees, etc. The step height is 50 nanometers to 1 micrometer, and the mesa width is 100 nanometers to 2 micrometers, as shown in Figure 1. The micro-nano steps on the surface can be formed due to the inclination of the substrate, or can be formed by pattern etching.
采用电子束或者磁控溅射的方法在图形衬底表面制备一薄层硅膜。硅膜厚度为200纳米至1微米。如图3中第2步骤所示。A thin layer of silicon film is prepared on the surface of the pattern substrate by electron beam or magnetron sputtering. The silicon film thickness is 200 nanometers to 1 micrometer. As shown in
在碳化硅外延生长炉中将硅膜熔融。如图4中第1步骤所示。将炉温升温至1500-1800摄氏度左右将硅膜熔融并使之具有一定的蒸气压。The silicon film is melted in a silicon carbide epitaxial growth furnace. As shown in
硅熔体表面受图形衬底影响,具有相似性,也有细微台阶,或者形成细微波纹,因为在高温下,衬底台阶处硅分子更易于向表面运动,使熔体表面对应处形成细微台阶或者波纹,这使得硅熔体表面积增大,其台阶或波纹尖端处、相临小平面处易与碳源接触,化合反应生成籽晶,从而形成高密度籽晶区,悬浮于硅熔体表面,一定条件下籽晶长大并相互融合,形成封盖层,也即籽晶膜超薄层,也具有细微表面台阶,利于后续化学气相沉积采用台阶流生长模式进行同持外延碳化硅生长。The surface of the silicon melt is affected by the pattern substrate and has similarities, and also has fine steps, or forms fine ripples, because at high temperature, the silicon molecules at the steps of the substrate are more likely to move to the surface, so that the corresponding parts of the melt surface form fine steps or The corrugation increases the surface area of the silicon melt, and the steps or corrugated tips and adjacent facets are easy to contact with the carbon source, and the compound reaction generates seed crystals, thereby forming a high-density seed crystal region, suspended on the surface of the silicon melt, Under certain conditions, the seed crystals grow and merge with each other to form a capping layer, that is, an ultra-thin seed crystal film layer, which also has fine surface steps, which is beneficial to the subsequent chemical vapor deposition using the step flow growth mode for co-sustained epitaxial silicon carbide growth.
此时通入载气氢气氛,流量为1slm-30slm不等,生长室压力为600-760托。此时,在载气氢气氛中通入碳的反应源气体(即碳氢化合物气体),如丙烷,保持生长室压力不变,丙烷流量为100sccm-500sccm不等,碳源溶解在硅熔体表面形成高密度碳化硅籽晶粒,可作为籽晶用于生长碳化硅,1-2小时之后,籽晶粒长大并与相临籽晶粒融合,在熔融硅膜表面形成碳化硅籽晶超薄膜。如图4第2步骤所示。At this time, a carrier gas hydrogen atmosphere is introduced, the flow rate is 1 slm-30 slm, and the pressure of the growth chamber is 600-760 Torr. At this time, the reaction source gas of carbon (ie, hydrocarbon gas), such as propane, is introduced into the carrier gas hydrogen atmosphere, keeping the pressure of the growth chamber unchanged, the flow rate of propane is 100sccm-500sccm, and the carbon source is dissolved in the silicon melt. High-density silicon carbide seed grains are formed on the surface, which can be used as seed crystals to grow silicon carbide. After 1-2 hours, the seed grains grow and merge with the adjacent seed grains, forming silicon carbide seed crystals on the surface of the molten silicon film. Ultra thin film. As shown in Figure 4,
此时通入硅源(即硅氢化合物气体),如硅烷,使碳硅摩尔质量比例为1∶(0.8-1.5),进行同质外延生长,3-8小时后等碳化硅膜长到50-200微米即可关闭硅和碳的反应源气体,并在氢气氛中降温至室温,结束生长,如图4第3步骤所示。At this time, a silicon source (ie, silicon hydride compound gas), such as silane, is introduced to make the molar mass ratio of carbon and silicon to be 1: (0.8-1.5), and homoepitaxial growth is carried out. After 3-8 hours, the silicon carbide film grows to 50 The reaction source gas of silicon and carbon can be turned off at -200 microns, and the temperature is lowered to room temperature in a hydrogen atmosphere to end the growth, as shown in the third step in Figure 4.
取出带有生长了碳化硅膜的衬底,采用湿法腐蚀的方法小心地将残留硅层消除,如图3中第5步骤所示。将生长了碳化硅膜的衬底放于质量百分比为40%-60%的KOH水溶液中,温度保持在80-100摄氏度左右,经2-4小时后即可以将碳化硅膜和衬底之间残留的硅膜腐蚀去除,从而将所生长的碳化硅膜从图形衬底上剥离下来,形成自支撑碳化硅厚膜材料。Take out the substrate with the grown silicon carbide film, and carefully remove the residual silicon layer by wet etching, as shown in
采用研磨抛光的方法将自支撑碳化硅厚膜材料双面进行平坦化,将碳化硅材料表面的毛刺去除并使表面粗糙度降至1纳米以下,然后对自支撑碳化硅厚膜材料进行整形处理,即可完成自支撑碳化硅晶圆的制备,如图3中第6步骤所示。The self-supporting silicon carbide thick film material is flattened on both sides by the method of grinding and polishing, the burr on the surface of the silicon carbide material is removed and the surface roughness is reduced to less than 1 nanometer, and then the self-supporting silicon carbide thick film material is shaped. , the preparation of the self-supporting silicon carbide wafer can be completed, as shown in the sixth step in FIG. 3 .
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above further describe the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above-mentioned specific embodiments are only specific embodiments of the present invention, and are not intended to limit the present invention. Within the spirit and principle of the present invention, any modifications, equivalent replacements, improvements, etc. made should be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010050175.9A CN111235633A (en) | 2020-01-16 | 2020-01-16 | A method for preparing self-supporting silicon carbide wafers by CVD on the surface of silicon melt |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010050175.9A CN111235633A (en) | 2020-01-16 | 2020-01-16 | A method for preparing self-supporting silicon carbide wafers by CVD on the surface of silicon melt |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111235633A true CN111235633A (en) | 2020-06-05 |
Family
ID=70878378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010050175.9A Pending CN111235633A (en) | 2020-01-16 | 2020-01-16 | A method for preparing self-supporting silicon carbide wafers by CVD on the surface of silicon melt |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111235633A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115101584A (en) * | 2022-08-25 | 2022-09-23 | 青禾晶元(天津)半导体材料有限公司 | Composite silicon carbide substrate and preparation method thereof |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5381069A (en) * | 1976-12-27 | 1978-07-18 | Hitachi Ltd | Production of susceptor in cvd device |
CN1167511A (en) * | 1994-11-30 | 1997-12-10 | 克里研究公司 | Epitaxial growth of silicon carbide and resulting silicon carbide structure |
CN1369904A (en) * | 2001-02-14 | 2002-09-18 | 西安电子科技大学 | Heteroepitavy technology for growing silicon carbide film on sapphire substrate |
US6849561B1 (en) * | 2003-08-18 | 2005-02-01 | Asm Japan K.K. | Method of forming low-k films |
CN101150055A (en) * | 2006-09-18 | 2008-03-26 | 中国科学院半导体研究所 | Preparation method of large-area 3C-SiC thin film for MEMS devices |
CN102597338A (en) * | 2010-05-28 | 2012-07-18 | 住友电气工业株式会社 | Silicon carbide substrate and method for producing same |
CN105140106A (en) * | 2015-08-11 | 2015-12-09 | 中国科学院半导体研究所 | Method for realizing silicon carbide epitaxy on zero-deflection substrate |
CN108231950A (en) * | 2016-12-22 | 2018-06-29 | 中国科学院上海高等研究院 | Semiconductor homo-substrate and preparation method thereof, the preparation method of homogeneity epitaxial layer |
CN109797374A (en) * | 2019-01-15 | 2019-05-24 | 芜湖启迪半导体有限公司 | A kind of preparation method and its batch preparation of silicon carbide substrates |
-
2020
- 2020-01-16 CN CN202010050175.9A patent/CN111235633A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5381069A (en) * | 1976-12-27 | 1978-07-18 | Hitachi Ltd | Production of susceptor in cvd device |
CN1167511A (en) * | 1994-11-30 | 1997-12-10 | 克里研究公司 | Epitaxial growth of silicon carbide and resulting silicon carbide structure |
CN1369904A (en) * | 2001-02-14 | 2002-09-18 | 西安电子科技大学 | Heteroepitavy technology for growing silicon carbide film on sapphire substrate |
US6849561B1 (en) * | 2003-08-18 | 2005-02-01 | Asm Japan K.K. | Method of forming low-k films |
CN101150055A (en) * | 2006-09-18 | 2008-03-26 | 中国科学院半导体研究所 | Preparation method of large-area 3C-SiC thin film for MEMS devices |
CN102597338A (en) * | 2010-05-28 | 2012-07-18 | 住友电气工业株式会社 | Silicon carbide substrate and method for producing same |
CN105140106A (en) * | 2015-08-11 | 2015-12-09 | 中国科学院半导体研究所 | Method for realizing silicon carbide epitaxy on zero-deflection substrate |
CN108231950A (en) * | 2016-12-22 | 2018-06-29 | 中国科学院上海高等研究院 | Semiconductor homo-substrate and preparation method thereof, the preparation method of homogeneity epitaxial layer |
CN109797374A (en) * | 2019-01-15 | 2019-05-24 | 芜湖启迪半导体有限公司 | A kind of preparation method and its batch preparation of silicon carbide substrates |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115101584A (en) * | 2022-08-25 | 2022-09-23 | 青禾晶元(天津)半导体材料有限公司 | Composite silicon carbide substrate and preparation method thereof |
CN115101584B (en) * | 2022-08-25 | 2022-11-15 | 青禾晶元(天津)半导体材料有限公司 | Composite silicon carbide substrate and preparation method thereof |
WO2024040880A1 (en) * | 2022-08-25 | 2024-02-29 | 青禾晶元(天津)半导体材料有限公司 | Composite silicon carbide substrate and preparation method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0120738B1 (en) | Manufacturing method of large diamond single crystal | |
JP6109028B2 (en) | Silicon carbide single crystal ingot | |
CN105914139B (en) | A kind of method of self-organizing nucleation extension GaN material on graphene | |
JP4719314B2 (en) | Epitaxial silicon carbide single crystal substrate and manufacturing method thereof | |
CN101052754B (en) | Method of surface reconstruction for silicon carbide substrate | |
KR101666596B1 (en) | Sic single crystal and method for producing same | |
WO2006115148A1 (en) | Silicon carbide single-crystal wafer and process for producing the same | |
CN104078331B (en) | Monocrystalline 4H SiC substrate and its manufacture method | |
KR20040097175A (en) | METHOD FOR PREPARING SiC CRYSTAL AND SiC CRYSTAL | |
CN104981892A (en) | Method for manufacturing sic single-crystal substrate for epitaxial sic wafer, and sic single-crystal substrate for epitaxial sic wafer | |
WO2006022282A1 (en) | Silicon carbide single crystal wafer and method for manufacturing the same | |
CN109461644A (en) | The preparation method and substrate of transparent single crystal AlN, ultraviolet light emitting device | |
CN104350187A (en) | Method for manufacturing silicon carbide substrate | |
JP2009012998A (en) | Method for manufacturing single crystal silicon carbide substrate | |
WO2023016158A1 (en) | Sic step flow rapid growth method based on growth monomer chemical potential regulation under non-equilibrium condition | |
CN108987257B (en) | Growth of Ga on Si substrate by halide vapor phase epitaxy2O3Method for making thin film | |
JP4664464B2 (en) | Silicon carbide single crystal wafer with small mosaic | |
CN110112060A (en) | A method of III-V race's semiconductor nanowires direction of growth of high-performance is controlled using gas-solid-solid growth pattern | |
JP5614387B2 (en) | Silicon carbide single crystal manufacturing method and silicon carbide single crystal ingot | |
JP2007119273A (en) | Method for growing silicon carbide single crystal | |
CN111235633A (en) | A method for preparing self-supporting silicon carbide wafers by CVD on the surface of silicon melt | |
CN101535533A (en) | Process for producing group iii element nitride crystal | |
CN113089093B (en) | Method for forming diamond semiconductor structure | |
CN112490112A (en) | Gallium oxide thin film and its heteroepitaxial growth method and application | |
CN101684568B (en) | Epitaxy method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200605 |
|
RJ01 | Rejection of invention patent application after publication |