CN111234899A - Organic nano friction reducing agent and preparation method and application thereof - Google Patents
Organic nano friction reducing agent and preparation method and application thereof Download PDFInfo
- Publication number
- CN111234899A CN111234899A CN202010155267.3A CN202010155267A CN111234899A CN 111234899 A CN111234899 A CN 111234899A CN 202010155267 A CN202010155267 A CN 202010155267A CN 111234899 A CN111234899 A CN 111234899A
- Authority
- CN
- China
- Prior art keywords
- reducing agent
- nano
- wear
- friction
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003638 chemical reducing agent Substances 0.000 title claims abstract description 29
- 238000002360 preparation method Methods 0.000 title claims abstract description 6
- 239000006185 dispersion Substances 0.000 claims abstract description 14
- 239000003921 oil Substances 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- 239000000654 additive Substances 0.000 claims description 8
- ZUNYMXPJGBXUCI-UHFFFAOYSA-N dioctoxy-sulfanyl-sulfanylidene-$l^{5}-phosphane Chemical compound CCCCCCCCOP(S)(=S)OCCCCCCCC ZUNYMXPJGBXUCI-UHFFFAOYSA-N 0.000 claims description 7
- 125000003700 epoxy group Chemical group 0.000 claims description 7
- 239000000377 silicon dioxide Substances 0.000 claims description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 6
- 230000000996 additive effect Effects 0.000 claims description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 3
- 239000012043 crude product Substances 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 3
- 238000003760 magnetic stirring Methods 0.000 claims description 3
- 239000003208 petroleum Substances 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 2
- 239000005543 nano-size silicon particle Substances 0.000 claims description 2
- NAGJZTKCGNOGPW-UHFFFAOYSA-N dithiophosphoric acid Chemical compound OP(O)(S)=S NAGJZTKCGNOGPW-UHFFFAOYSA-N 0.000 claims 1
- 239000000314 lubricant Substances 0.000 claims 1
- APSBXTVYXVQYAB-UHFFFAOYSA-M sodium docusate Chemical group [Na+].CCCCC(CC)COC(=O)CC(S([O-])(=O)=O)C(=O)OCC(CC)CCCC APSBXTVYXVQYAB-UHFFFAOYSA-M 0.000 claims 1
- 239000002199 base oil Substances 0.000 abstract description 18
- 239000010687 lubricating oil Substances 0.000 abstract description 15
- 230000001050 lubricating effect Effects 0.000 abstract description 3
- 239000000463 material Substances 0.000 abstract description 3
- 239000000047 product Substances 0.000 description 10
- 230000007774 longterm Effects 0.000 description 7
- 230000001603 reducing effect Effects 0.000 description 6
- 239000002086 nanomaterial Substances 0.000 description 5
- 238000005461 lubrication Methods 0.000 description 4
- 150000005690 diesters Chemical class 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000002480 mineral oil Substances 0.000 description 3
- 235000010446 mineral oil Nutrition 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 238000001394 phosphorus-31 nuclear magnetic resonance spectrum Methods 0.000 description 2
- 229920013639 polyalphaolefin Polymers 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000003831 antifriction material Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 239000010705 motor oil Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M139/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing atoms of elements not provided for in groups C10M127/00 - C10M137/00
- C10M139/04—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing atoms of elements not provided for in groups C10M127/00 - C10M137/00 having a silicon-to-carbon bond, e.g. silanes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/06—Phosphorus compounds without P—C bonds
- C07F9/16—Esters of thiophosphoric acids or thiophosphorous acids
- C07F9/165—Esters of thiophosphoric acids
- C07F9/1651—Esters of thiophosphoric acids with hydroxyalkyl compounds with further substituents on alkyl
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/06—Phosphorus compounds without P—C bonds
- C07F9/16—Esters of thiophosphoric acids or thiophosphorous acids
- C07F9/165—Esters of thiophosphoric acids
- C07F9/17—Esters of thiophosphoric acids with hydroxyalkyl compounds without further substituents on alkyl
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2227/00—Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
- C10M2227/04—Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions having a silicon-to-carbon bond, e.g. organo-silanes
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Lubricants (AREA)
Abstract
Description
技术领域technical field
本发明涉及润滑材料技术领域,具体是润滑油减磨剂。The invention relates to the technical field of lubricating materials, in particular to a lubricating oil anti-friction agent.
背景技术Background technique
目前润滑油节能技术提高燃料经济性的主要研究方向是适当采用含有高性能减磨剂的低粘度油品,因为在流体润滑和弹性流体润滑状态下降低油品粘度级别可减少流体动力学阻力,降低能耗。在边界润滑和混合润滑状态下,加入高效减磨剂是降低边界摩擦损耗最有效的办法。At present, the main research direction of lubricating oil energy-saving technology to improve fuel economy is to appropriately use low-viscosity oil containing high-performance friction reducer, because reducing the oil viscosity level in the state of fluid lubrication and elastic fluid lubrication can reduce the hydrodynamic resistance, Reduce energy consumption. In the state of boundary lubrication and mixed lubrication, adding high-efficiency friction reducer is the most effective way to reduce boundary friction loss.
随着纳米材料和纳米摩擦学的不断发展,近年来国内外学者在开发优异的摩擦学性能添加剂的过程中注意到了许多纳米材料所具有的优异的减摩性能,并对纳米固体润滑材料的应用进行了系列研究,例如石墨烯,二硫化物等纳米粒子的加入能明显降低油品的摩擦系数(CN108587729A,CN108517239A,CN104531272A)。虽然纳米材料具有优异的摩擦学性能,但由于纳米材料本身具有较大的表面能和比表面积,处于能量不稳定状态,很容易发生团聚而在润滑油中形成沉淀,尤其难以在低粘度润滑油中良好的分散并保持长期稳定,因此无法提供长期有效的减小和控制摩擦从而实现油品的长效节能,这在很大程度上限制了纳米颗粒在未来发动机润滑油中的应用。With the continuous development of nanomaterials and nanotribology, in recent years, scholars at home and abroad have noticed the excellent antifriction properties of many nanomaterials in the process of developing excellent tribological performance additives, and the application of nanometer solid lubricating materials A series of studies have been carried out, for example, the addition of graphene, disulfide and other nanoparticles can significantly reduce the friction coefficient of oil (CN108587729A, CN108517239A, CN104531272A). Although nanomaterials have excellent tribological properties, due to their large surface energy and specific surface area, nanomaterials are in a state of energy instability and are prone to agglomeration and form precipitation in lubricating oils, especially in low-viscosity lubricating oils. Therefore, it cannot provide long-term effective friction reduction and control to achieve long-term energy saving of oil products, which largely limits the application of nanoparticles in engine lubricants in the future.
针对现有技术中纳米减摩添加剂在低粘度润滑油中的分散稳定性差,长效减摩能力的不足,本发明的目的是提供适用于低粘度油品的新型有机纳米润滑油减摩添加剂,它能够长期均匀的分散在低粘度润滑油中,具有长效减摩效果。Aiming at the poor dispersion stability of nanometer antifriction additives in low-viscosity lubricating oil in the prior art, and the lack of long-term antifriction ability, the purpose of the present invention is to provide a novel organic nanometer lubricating oil antifriction additive suitable for low-viscosity oil products, It can be uniformly dispersed in low-viscosity lubricating oil for a long time and has a long-term anti-friction effect.
发明内容SUMMARY OF THE INVENTION
本发明提供一种有机纳米减磨剂及其制备方法与应用,解决了现有技术中纳米减摩添加剂在低粘度润滑油中的分散稳定性差,长效减摩能力不足的技术问题。The invention provides an organic nano-friction reducing agent and a preparation method and application thereof, which solve the technical problems of poor dispersion stability and insufficient long-term friction reducing ability of the nano-friction reducing additive in low-viscosity lubricating oil in the prior art.
本发明是这样实现的:该减磨剂包括具有如下分子结构的化合物:The present invention is achieved in this way: the friction reducing agent comprises a compound having the following molecular structure:
其中,R1=R2=n·C8H17。Here, R 1 =R 2 =n·C 8 H 17 .
该减磨剂是由含环氧基团的纳米二氧化硅与二辛基二硫代硫磷酸发生接枝反应制备而成。The friction reducing agent is prepared by grafting reaction between nano-silica containing epoxy group and dioctyl dithiophosphoric acid.
一种有机纳米减磨剂的制备方法,包括如下步骤:将含有环氧基团的纳米二氧化硅置于石油醚中,磁力搅拌分散,加入二辛基二硫代硫磷酸加入分散体系中,直接升温至100℃,回流反应4h,反应结束后在室温条件下过滤收集到粗产物,使用无水乙醇冲洗三次,干燥后得到减磨剂。A preparation method of an organic nano-friction reducing agent, comprising the following steps: placing nano-silicon dioxide containing an epoxy group in petroleum ether, magnetic stirring and dispersing, adding dioctyl dithiophosphoric acid into a dispersion system, The temperature was directly heated to 100°C, and the reaction was refluxed for 4 hours. After the reaction, the crude product was collected by filtration at room temperature, washed three times with absolute ethanol, and dried to obtain a friction reducing agent.
作为一种优选的实施方案,所述含有环氧基团的纳米二氧化硅与二辛基二硫代硫磷酸的质量比为1:3。As a preferred embodiment, the mass ratio of the epoxy group-containing nano-silica to dioctyl dithiophosphoric acid is 1:3.
有机纳米减磨剂的应用,作为润滑油添加剂,添加量为0.2wt.%-0.3wt.%。The application of the organic nano-wear reducing agent, as a lubricating oil additive, is added in an amount of 0.2wt.%-0.3wt.%.
作为一种优选的实施方案,所述减磨剂的添加量为0.25wt.%。As a preferred embodiment, the added amount of the friction reducing agent is 0.25 wt.%.
本发明的有益效果:本发明所得的减磨剂适用于低粘度润滑油基础油(≤10cSt@100℃),具有优异分散稳定性及长效减摩性能。Beneficial effects of the present invention: the friction reducing agent obtained by the present invention is suitable for low viscosity lubricating oil base oil (≤10cSt@100°C), and has excellent dispersion stability and long-term friction reducing performance.
附图说明Description of drawings
图1中实施例1的产物(Nano-DPP)的31P NMR谱图; 31 P NMR spectrum of the product of Example 1 (Nano-DPP) in Figure 1;
图2是实施例1的产物(Nano-DPP)与纳米二氧化硅(Nano-Si)的热失重对比图;Fig. 2 is the thermogravimetric comparison diagram of the product (Nano-DPP) of embodiment 1 and nano-silica (Nano-Si);
图3是实施例1所得的减磨剂用于润滑油添加剂的摩擦系数图,图中PAO10代表纯基础油;PAO10+JP代表JP在PAO10中的质量分数为0.25%,JP为商品化有机纳米减磨剂;PAO10+Nano-DDDP代表Nano-DDDP在PAO10中的质量分数为0.25%。Figure 3 is a graph of the friction coefficient of the friction reducing agent obtained in Example 1 used for lubricating oil additives, in which PAO10 represents pure base oil; PAO10+JP represents that the mass fraction of JP in PAO10 is 0.25%, and JP is a commercial organic nanometer Wear reducing agent; PAO10+Nano-DDDP represents that the mass fraction of Nano-DDDP in PAO10 is 0.25%.
具体实施方式Detailed ways
实施例1Example 1
将5g含有环氧基团的纳米二氧化硅(河南河大纳米材料工程研究中心,粒径7-25nm,Nano-SiO2)在30mL石油醚中(沸点:60-90℃),磁力搅拌分散。随后将15g二辛基二硫代硫磷酸(DDP)加入到上述分散体系中,直接升温至100℃,回流反应4h,反应结束后在室温条件下进行过滤收集到粗产物,用无水乙醇冲洗三次,每次用量均为20g,烘箱干燥后得到本发明产物(Nano-DDP)。参阅附图1和附图2,通过产物31P NMR谱图以及对比发明产物与纳米二氧化硅的热失重测试结果,可以判断所得产物为目标接枝产物。Disperse 5g of nano-silica containing epoxy groups (Henan Heda Nanomaterials Engineering Research Center, particle size 7-25nm, Nano-SiO 2 ) in 30mL of petroleum ether (boiling point: 60-90°C) with magnetic stirring . Subsequently, 15g of dioctyldithiophosphoric acid (DDP) was added to the above dispersion system, the temperature was directly heated to 100°C, and the reaction was refluxed for 4h. After the reaction was completed, the crude product was collected by filtration at room temperature, and rinsed with absolute ethanol. Three times, the dosage of each time is 20 g, and the product of the present invention (Nano-DDP) is obtained after drying in an oven. Referring to Figure 1 and Figure 2, it can be judged that the obtained product is the target graft product by comparing the 31 P NMR spectrum of the product and the thermal weight loss test results comparing the invention product and nano-silica.
反应过程:reaction process:
其中,R1=R2=n·C8H17。Here, R 1 =R 2 =n·C 8 H 17 .
该减磨剂用作润滑油的添加剂,添加量为0.2wt.%-0.3wt.%,质量分数,优选添加量0.25wt.%。The wear reducing agent is used as an additive of lubricating oil, and the addition amount is 0.2wt.%-0.3wt.%, the mass fraction, preferably the addition amount is 0.25wt.%.
实验例1Experimental example 1
将得到的Nano-DDP按照浓度分别为0.25wt.%添加到低粘度聚α烯烃基础油(PAO10,9.8cSt@100℃)中机械搅拌10min,之后再超声10min,然后评价其在基础油中的分散稳定性及减摩性能。采用微动摩擦磨损试验机(SRV)对油品的减摩性能进行了考察,摩擦系数越低减摩性能越好。载荷:50N,时间:1800s,振幅:1mm,频率:50Hz,摩擦系数参阅附图3。The obtained Nano-DDP was added to a low-viscosity polyalphaolefin base oil (PAO10, 9.8cSt@100°C) at a concentration of 0.25 wt. Dispersion stability and anti-friction properties. The friction-reducing performance of the oil was investigated by fretting friction and wear tester (SRV). The lower the friction coefficient, the better the friction-reducing performance. Load: 50N, Time: 1800s, Amplitude: 1mm, Frequency: 50Hz, see Figure 3 for friction coefficient.
测试结果表明:JP和Nano-DDP的存在均能够起到降低基础油摩擦系数的作用;Nano-DDP的减摩效果优于同添加量下JP的减摩效果;当测试时间大于100s时PAO10+JP的摩擦系数随着时间的延长呈现出快速升高的趋势,说明JP在油品中的减摩性失效,相同条件下PAO10+Nano-DDP仍然保持较低的摩擦系数,Nano-DDP表现出长效减摩效果。The test results show that the existence of JP and Nano-DDP can reduce the friction coefficient of base oil; the friction reducing effect of Nano-DDP is better than that of JP under the same amount of addition; when the test time is more than 100s, PAO10+ The friction coefficient of JP showed a rapid increase trend with the prolongation of time, indicating that the friction reduction of JP in oil products failed. Long-lasting anti-friction effect.
将实施例1得到的Nano-DDP按照浓度分别为0.25wt.%添加到矿物油,PAO10和双酯基础油中,机械搅拌10min,之后再超声10min,然后评价其在油品中的分散稳定性,结果参阅表1。The Nano-DDP obtained in Example 1 was added to mineral oil, PAO10 and diester base oil according to the concentration of 0.25wt.%, mechanically stirred for 10min, and then ultrasonicated for 10min, and then evaluated its dispersion stability in oil. , see Table 1 for the results.
表1有机纳米减磨剂在不同类型基础油中的分散稳定性(室温),0.25wt.%Table 1 Dispersion stability of organic nano-friction reducer in different types of base oils (room temperature), 0.25wt.%
其中,矿物油基础油购自大庆炼化公司;双酯基础油和PAO10购自ExxonMobil公司。由表1可见,本发明的有机纳米减磨剂在润滑油中具有优异分散稳定性。Among them, mineral oil base oil was purchased from Daqing Refinery Company; diester base oil and PAO10 were purchased from ExxonMobil Company. It can be seen from Table 1 that the organic nano-wear reducing agent of the present invention has excellent dispersion stability in lubricating oil.
实验例2Experimental example 2
将实施例1得到的Nano-DDP按照浓度分别为0.20wt.%和0.30wt.%添加到低粘度聚α烯烃基础油(PAO10,9.8cSt@100℃)中机械搅拌10min,之后再超声10min,然后评价其在基础油中的减摩性能,载荷:50N,时间:1800s,振幅:1mm,频率:50Hz,结果参见表2。The Nano-DDP obtained in Example 1 was added to a low-viscosity polyalphaolefin base oil (PAO10, 9.8cSt@100°C) according to the concentrations of 0.20wt.% and 0.30wt.%, respectively, and mechanically stirred for 10min, and then ultrasonicated for 10min. Then evaluate its antifriction performance in base oil, load: 50N, time: 1800s, amplitude: 1mm, frequency: 50Hz, see Table 2 for the results.
表2不同浓度Nano-DDP对PAO10减摩性能的影响Table 2 Effects of different concentrations of Nano-DDP on the antifriction performance of PAO10
由表2可见,Nano-DDP在基础油中的添加量为0.20wt.%、0.25wt.%、0.30wt.%时,基础油的摩擦系数分别为0.071、0.069、0.073,明显低于未添加减磨剂的基础油的摩擦系数。It can be seen from Table 2 that when the addition amount of Nano-DDP in the base oil is 0.20wt.%, 0.25wt.%, and 0.30wt.%, the friction coefficients of the base oil are 0.071, 0.069, and 0.073, respectively, which are significantly lower than those without the addition of Nano-DDP. Friction coefficient of the base oil of the wear reducer.
将实施例1得到的Nano-DDP按照浓度分别为0.20wt.%和0.30wt.%添加到矿物油,PAO10和双酯基础油中,机械搅拌10min,之后再超声10min,然后评价其在油品中的分散稳定性,结果参见表3。The Nano-DDP obtained in Example 1 was added to mineral oil, PAO10 and diester base oil according to the concentration of 0.20wt.% and 0.30wt.%, mechanically stirred for 10min, and then ultrasonicated for 10min, and then evaluated its performance in oil. Dispersion stability in , see Table 3 for the results.
表3Nano-DDP在不同类型基础油中的分散稳定性(室温)Table 3. Dispersion stability of Nano-DDP in different types of base oils (room temperature)
由表3可见,实施例1所得的Nano-DDP在不同基础油中均具有优异的稳定性。It can be seen from Table 3 that the Nano-DDP obtained in Example 1 has excellent stability in different base oils.
本发明的有益效果:本发明所得的减磨剂适用于低粘度润滑油基础油(≤10cSt@100℃),具有优异分散稳定性及长效减摩性能。Beneficial effects of the present invention: the friction reducing agent obtained by the present invention is suitable for low viscosity lubricating oil base oil (≤10cSt@100°C), and has excellent dispersion stability and long-term friction reducing performance.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010155267.3A CN111234899A (en) | 2020-03-06 | 2020-03-06 | Organic nano friction reducing agent and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010155267.3A CN111234899A (en) | 2020-03-06 | 2020-03-06 | Organic nano friction reducing agent and preparation method and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111234899A true CN111234899A (en) | 2020-06-05 |
Family
ID=70871627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010155267.3A Pending CN111234899A (en) | 2020-03-06 | 2020-03-06 | Organic nano friction reducing agent and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111234899A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0633084A (en) * | 1992-07-16 | 1994-02-08 | Ishikawajima Harima Heavy Ind Co Ltd | Anti-corrosion grease for open gears |
CN101148628A (en) * | 2007-09-19 | 2008-03-26 | 北京伟熙华高新科技有限公司 | Nano lubricating oil additive |
CN105176629A (en) * | 2015-10-29 | 2015-12-23 | 中国科学院新疆理化技术研究所 | Preparation method of modified nanometer-silicon dioxide lubricating oil additive |
CN108907182A (en) * | 2018-07-09 | 2018-11-30 | 河南大学 | A kind of water solubility Cu@SiO2Nanoparticle and its preparation method and application |
CN110776973A (en) * | 2019-10-29 | 2020-02-11 | 中国科学院兰州化学物理研究所 | Amine nano lubricating oil additive and application thereof |
-
2020
- 2020-03-06 CN CN202010155267.3A patent/CN111234899A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0633084A (en) * | 1992-07-16 | 1994-02-08 | Ishikawajima Harima Heavy Ind Co Ltd | Anti-corrosion grease for open gears |
CN101148628A (en) * | 2007-09-19 | 2008-03-26 | 北京伟熙华高新科技有限公司 | Nano lubricating oil additive |
CN105176629A (en) * | 2015-10-29 | 2015-12-23 | 中国科学院新疆理化技术研究所 | Preparation method of modified nanometer-silicon dioxide lubricating oil additive |
CN108907182A (en) * | 2018-07-09 | 2018-11-30 | 河南大学 | A kind of water solubility Cu@SiO2Nanoparticle and its preparation method and application |
CN110776973A (en) * | 2019-10-29 | 2020-02-11 | 中国科学院兰州化学物理研究所 | Amine nano lubricating oil additive and application thereof |
Non-Patent Citations (3)
Title |
---|
乔玉林: "《纳米微粒的润滑和自修复技术》", 30 September 2005, 国防工业出版社 * |
李春风等: "基于功能化聚甲基丙烯酸酯开发多功能润滑油添加剂的现状及设想", 《润滑油》 * |
陈爽等: "DDP修饰PbO纳米微粒的摩擦学性能研究", 《吉林化工学院学报》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103242948A (en) | Water-based synthetic metal machining liquid containing graphene dispersion liquid and preparation method thereof | |
CN110157516B (en) | Nano titanium dioxide/black phosphorus nanosheet composite lubricant and preparation method thereof | |
CN111944585B (en) | Lipophilic carbon quantum dot-based nano-lubricating oil additive and preparation method thereof | |
CN109536240B (en) | Lubricating oil additive containing lipophilic graphene and mesocarbon microbeads and preparation method thereof | |
CN113956911B (en) | Perfluoropolyether lubricating grease of composite thickening agent and preparation method thereof | |
CN105602649A (en) | Graphene oxide modified nano additive and application thereof to lubricating oil | |
Lu et al. | Oleylamine-modified carbon nanoparticles as a kind of efficient lubricating additive of polyalphaolefin | |
CN101698808B (en) | Plate-strip steel cold-rolling emulsified oil containing nanometer hexagonal boron nitride particles, and preparation method | |
CN113652278B (en) | Graphene-based modified lubricating oil with good heat conductivity and preparation method thereof | |
WO2019041843A1 (en) | Specialized lubricant for carbon film engines and preparation method therefor | |
CN114317086A (en) | A kind of anti-wear and anti-friction graphene lubricating oil and preparation method thereof | |
CN116083137A (en) | Method for preparing graphene/molybdenum disulfide/ionic liquid lubricating oil additive through microwave hydrothermal method | |
CN111234899A (en) | Organic nano friction reducing agent and preparation method and application thereof | |
CN107118826B (en) | Compound lubricating oil anti-friction and anti-wear additive, compound lubricating oil and preparation method thereof | |
CN109609249B (en) | Micro-pitting-resistant efficient antifriction wear-resistant wind power graphite gear oil and preparation method thereof | |
CN113493713B (en) | Water-based ionic liquid lubricating liquid and preparation method thereof | |
CN110776973B (en) | A kind of amine nano lubricating oil additive and its application | |
CN107955682B (en) | Environment-friendly synthetic lubricating oil and preparation method thereof | |
CN111676085B (en) | Graphene lubricating oil for robot and preparation method and application thereof | |
CN104450007A (en) | High temperature-resistant lubricating grease for electric conduction and preparation method thereof | |
CN103160362A (en) | Ionic liquid synthetic lubricating oil composition | |
CN108359516B (en) | Engine lubricating oil antiwear agent and preparation method and application thereof | |
CN109504519B (en) | Sulfur-phosphorus-free extreme pressure lubricant and preparation method and application thereof | |
CN110760363A (en) | Low-temperature-resistant graphene lubricating oil and preparation method thereof | |
CN112500907A (en) | Polyether calcium phosphate quantum dot and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200605 |
|
RJ01 | Rejection of invention patent application after publication |