CN111233337A - A kind of green light emitting glass-ceramic for wide color gamut backlight display and preparation method thereof - Google Patents
A kind of green light emitting glass-ceramic for wide color gamut backlight display and preparation method thereof Download PDFInfo
- Publication number
- CN111233337A CN111233337A CN202010137781.4A CN202010137781A CN111233337A CN 111233337 A CN111233337 A CN 111233337A CN 202010137781 A CN202010137781 A CN 202010137781A CN 111233337 A CN111233337 A CN 111233337A
- Authority
- CN
- China
- Prior art keywords
- mol
- glass
- color gamut
- sio
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002241 glass-ceramic Substances 0.000 title claims abstract description 67
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- 239000011521 glass Substances 0.000 claims abstract description 27
- 239000000843 powder Substances 0.000 claims abstract description 18
- 239000000463 material Substances 0.000 claims abstract description 15
- 229910052593 corundum Inorganic materials 0.000 claims abstract description 7
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract 18
- 229910052681 coesite Inorganic materials 0.000 claims abstract 15
- 229910052906 cristobalite Inorganic materials 0.000 claims abstract 15
- 239000000377 silicon dioxide Substances 0.000 claims abstract 15
- 229910052682 stishovite Inorganic materials 0.000 claims abstract 15
- 229910052905 tridymite Inorganic materials 0.000 claims abstract 15
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract 6
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims abstract 5
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum oxide Inorganic materials [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 claims abstract 5
- 239000011656 manganese carbonate Substances 0.000 claims abstract 5
- 229910000016 manganese(II) carbonate Inorganic materials 0.000 claims abstract 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract 3
- KTUFCUMIWABKDW-UHFFFAOYSA-N oxo(oxolanthaniooxy)lanthanum Chemical compound O=[La]O[La]=O KTUFCUMIWABKDW-UHFFFAOYSA-N 0.000 claims abstract 3
- 229910000029 sodium carbonate Inorganic materials 0.000 claims abstract 3
- 229910001845 yogo sapphire Inorganic materials 0.000 claims abstract 3
- 239000006064 precursor glass Substances 0.000 claims description 18
- 239000000156 glass melt Substances 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 10
- 238000000137 annealing Methods 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 238000002844 melting Methods 0.000 claims description 2
- 230000008018 melting Effects 0.000 claims description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims 2
- 238000000227 grinding Methods 0.000 claims 1
- 238000000465 moulding Methods 0.000 claims 1
- 239000013078 crystal Substances 0.000 abstract description 14
- 239000011159 matrix material Substances 0.000 abstract description 11
- 239000002131 composite material Substances 0.000 abstract description 8
- 238000005516 engineering process Methods 0.000 abstract description 6
- 230000032683 aging Effects 0.000 abstract description 5
- 239000000075 oxide glass Substances 0.000 abstract description 5
- 238000004528 spin coating Methods 0.000 abstract description 4
- 239000005416 organic matter Substances 0.000 abstract description 3
- 238000004806 packaging method and process Methods 0.000 abstract 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 21
- 239000012071 phase Substances 0.000 description 13
- 239000002096 quantum dot Substances 0.000 description 10
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 9
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 9
- 101100513612 Microdochium nivale MnCO gene Proteins 0.000 description 9
- 229910010413 TiO 2 Inorganic materials 0.000 description 9
- 230000035882 stress Effects 0.000 description 7
- 230000005284 excitation Effects 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- -1 B 2 O 3 Inorganic materials 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- 238000000498 ball milling Methods 0.000 description 4
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Inorganic materials [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 4
- 239000010431 corundum Substances 0.000 description 4
- 230000009102 absorption Effects 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000000295 emission spectrum Methods 0.000 description 3
- 238000000695 excitation spectrum Methods 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 239000002667 nucleating agent Substances 0.000 description 2
- 238000000103 photoluminescence spectrum Methods 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229910052596 spinel Inorganic materials 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910019990 cerium-doped yttrium aluminum garnet Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 239000013335 mesoporous material Substances 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 238000012536 packaging technology Methods 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009103 reabsorption Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
- C03C10/0009—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing silica as main constituent
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B32/00—Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
- C03B32/02—Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/12—Compositions for glass with special properties for luminescent glass; for fluorescent glass
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Geochemistry & Mineralogy (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Ceramic Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Glass Compositions (AREA)
Abstract
Description
技术领域technical field
本发明涉及固体发光材料技术领域,更具体地说,涉及一种用于宽色域背光显示绿光发射微晶玻璃及其制备方法。The invention relates to the technical field of solid luminescent materials, and more particularly, to a green light-emitting glass-ceramic for wide color gamut backlight display and a preparation method thereof.
背景技术Background technique
LED作为新一代照明光源,其体积小、节能环保、响应快等优点在液晶显示(LCD)领域有着重要的应用。LCD技术对图像质量和色彩饱和度有着严苛的要求,这就对背光源器件的色域覆盖率提出了更高的要求。目前,行业中一般以NTSC(美国国家电视标准委员会)标准来表示,NTSC色域值越高,显示设备能够显示物体的颜色就越鲜艳,越接近真实物体的颜色。因此,开发出光谱谱形应尽量窄(保证其波长与滤波片最大透过区域相匹配)的荧光材料在制备宽色域背光源中就显得格外重要。As a new generation of lighting source, LED has important applications in the field of liquid crystal display (LCD) due to its advantages of small size, energy saving and environmental protection, and fast response. LCD technology has strict requirements on image quality and color saturation, which puts forward higher requirements on the color gamut coverage of backlight devices. At present, the industry generally uses the NTSC (National Television Standards Committee) standard. Therefore, it is very important to develop a fluorescent material whose spectral shape should be as narrow as possible (to ensure that its wavelength matches the maximum transmission area of the filter) in the preparation of wide color gamut backlights.
目前显示用宽色域背光源技术还存在以下优缺点:At present, the wide color gamut backlight technology for display still has the following advantages and disadvantages:
1、基于传统“InGaN蓝光芯片+YAG:Ce3+黄色荧光粉”方案的白光LED由于谱形宽无法匹配商用滤波片造成能量浪费,同时缺乏红光成分使得显色性不够高,其在CIE1931色度空间中的色域仅为~68%NTSC,不足以满足LCD对背光源质量的苛刻要求。1. The white light LED based on the traditional "InGaN blue chip + YAG:Ce 3 + yellow phosphor" solution wastes energy due to the spectral width that cannot match the commercial filter, and the lack of red light component makes the color rendering not high enough. It is listed in CIE1931 The color gamut in the chromaticity space is only ~68% NTSC, which is not enough to meet the stringent requirements of LCD for backlight quality.
2、近些年,研究者更倾向于采用“蓝光芯片+绿色/红色荧光粉”的方案,其中,人们采用“InGaN蓝光芯片+β-sialon:Eu2+绿粉+CaAlSiN3:Eu2+红粉”,已成功将白光LED基背光源的色域拓展至~82%NTSC。但所使用的绿粉和红粉的谱带都无法满足更高色域覆盖率的要求,同时氮化物制备工艺复杂,价格高昂,红粉与绿粉之间存在着严重的重吸收问题,因而不能满足宽色域LCD的要求。2. In recent years, researchers are more inclined to adopt the "blue light chip + green/red phosphor" solution, among which, people use "InGaN blue light chip + β-sialon: Eu 2 + green powder + CaAlSiN 3 : Eu 2 + "Red Pink" has successfully expanded the color gamut of white LED-based backlights to ~82% NTSC. However, the spectral bands of the green powder and red powder used cannot meet the requirements of higher color gamut coverage. At the same time, the preparation process of nitrides is complicated, the price is high, and there is a serious reabsorption problem between the red powder and the green powder. Requirements for wide color gamut LCDs.
3、蓝光LED耦合钙钛矿量子点CsPbX3(X=Cl,Br,I),例如发光效率高、色纯度高、窄带发射等优点逐渐成为显示领域的研究热点,但是唯一的缺点就是对环境不友好。为提高量子点的稳定性,研究者们采用介孔材料包覆、高分子材料包裹等方法致力于将量子点与外界进行隔离以提升其稳定性。然而,这些方法不能从根本上提高CsPbX3量子点的稳定性。3. Blue LED coupled perovskite quantum dots CsPbX 3 (X=Cl, Br, I), such as high luminous efficiency, high color purity, narrow-band emission and other advantages have gradually become a research hotspot in the field of display, but the only disadvantage is the environmental impact Not friendly. In order to improve the stability of quantum dots, researchers have used methods such as mesoporous material coating and polymer material coating to isolate quantum dots from the outside world to improve their stability. However, these methods cannot fundamentally improve the stability of CsPbX QDs.
4、当下,荧光粉封装材料的可靠性也一直是白光LED领域所关注的焦点。传统有机硅胶在大功率蓝光芯片的长时间辐照下易发生老化和黄化,造成光源的色衰和色漂移,进而大幅度降低了器件的使用寿命。4. At present, the reliability of phosphor packaging materials has always been the focus of attention in the field of white LEDs. Traditional silicone is prone to aging and yellowing under long-term irradiation of high-power blue light chips, resulting in color decay and color drift of the light source, which greatly reduces the service life of the device.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明提供了一种用于宽色域背光显示绿光发射微晶玻璃及其制备方法,以解决现有荧光材料物化性能不稳定且色纯度低的缺陷。In view of this, the present invention provides a green light emitting glass-ceramic for wide color gamut backlight display and a preparation method thereof, so as to solve the defects of unstable physicochemical properties and low color purity of existing fluorescent materials.
本发明目的之一是提供一种物化性能稳定、色纯度高、长寿命以及色纯度高的用于宽色域背光显示绿光发射微晶玻璃。One of the objectives of the present invention is to provide a green light-emitting glass-ceramic for wide color gamut backlight display with stable physical and chemical properties, high color purity, long life and high color purity.
本发明目的之二是提供上述用于宽色域背光显示绿光发射微晶玻璃的制备方法。The second objective of the present invention is to provide the above-mentioned preparation method for green light-emitting glass-ceramic for wide color gamut backlight display.
本发明目的之三是提供上述用于宽色域背光显示绿光发射微晶玻璃的应用,将上述用于宽色域背光显示绿光发射微晶玻璃作为复合荧光材料的显示用宽色域背光源。The third object of the present invention is to provide the application of the above-mentioned green light-emitting glass-ceramic for wide-color gamut backlight display, using the above-mentioned wide-color-gamut backlight display green light-emitting glass-ceramic as a composite fluorescent material for display with wide color gamut backlight source.
本发明所公开的技术方案如下:The technical scheme disclosed by the present invention is as follows:
一种用于宽色域背光显示绿光发射微晶玻璃,其组分摩尔百分比含量如下:20-35mol%SiO2;10-30mol% Al2O3;10-25mol% La2O3;0-15 mol% MO;0-15 mol% BaO;0-10 mol% B2O3;0-5mol% TiO2;0-3 mol% Na2CO3;0.05-0.5 mol% MnCO3;其中,M为Mg或Zn。A green light emitting glass-ceramic for wide color gamut backlight display, the molar percentage of its components is as follows: 20-35mol% SiO 2 ; 10-30mol% Al 2 O 3 ; 10-25mol% La 2 O 3 ; 0 -15 mol% MO; 0-15 mol% BaO; 0-10 mol% B 2 O 3 ; 0-5 mol % TiO 2 ; 0-3 mol % Na 2 CO 3 ; 0.05-0.5 mol % MnCO 3 ; wherein, M is Mg or Zn.
进一步地,作为本发明的优选方案,所述用于宽色域背光显示绿光发射微晶玻璃的化学式为LaMAl11O19:Mn2+。Further, as a preferred solution of the present invention, the chemical formula of the green light-emitting glass-ceramic for wide color gamut backlight display is LaMAl 11 O 19 :Mn 2+ .
一种用于宽色域背光显示绿光发射微晶玻璃的制备方法,包括以下步骤:A preparation method of green light emitting glass-ceramic for wide color gamut backlight display, comprising the following steps:
S1、将SiO2、Al2O3、La2O3、MO、BaO、B2O3、TiO2、Na2CO3和MnCO3粉体置于球磨机中研磨混合均匀后置放入坩埚中,采用球磨方式可以使原料进行充分的混匀,高温熔融时保持各部分组分均一;S1. Place the SiO 2 , Al 2 O 3 , La 2 O 3 , MO, BaO, B 2 O 3 , TiO 2 , Na 2 CO 3 and MnCO 3 powders in a ball mill to grind and mix evenly, and then put them into a crucible , the raw materials can be fully mixed by ball milling, and the components of each part can be kept uniform during high temperature melting;
S2、将坩埚放入电阻炉中加热到1450-1600℃后保温1-4小时使之熔融得到玻璃熔体,而后,将玻璃熔体取出导入模具中成形,本发明中采用石墨模具或者铜模,并放入电阻炉中于600-900℃退火5小时以消除内应力,消除内应力主要是增强玻璃的机械强度和热稳定性,保证前驱玻璃不出现自裂现象;S2. Put the crucible into a resistance furnace and heat it to 1450-1600° C. and keep it for 1-4 hours to melt it to obtain a glass melt. Then, the glass melt is taken out and introduced into a mold for forming. In the present invention, a graphite mold or a copper mold is used. , and put it into a resistance furnace for annealing at 600-900 °C for 5 hours to eliminate internal stress. Eliminating internal stress is mainly to enhance the mechanical strength and thermal stability of the glass, and to ensure that the precursor glass does not self-crack;
S3、将块状前驱玻璃放入电阻炉中加热到950-1150℃后,进行4小时等温热处理,当温度达到形核温度后,玻璃基质中会形成晶核,随着温度的延长晶核逐渐长大,出现目标物相,经过晶化,获得镶嵌晶粒块状微晶玻璃,此时玻璃的透明性下降。S3. Put the bulk precursor glass into a resistance furnace and heat it to 950-1150°C, and then perform isothermal heat treatment for 4 hours. When the temperature reaches the nucleation temperature, crystal nuclei will be formed in the glass matrix. The nucleus gradually grows up, and the target phase appears. After crystallization, a bulk glass-ceramic inlaid with crystal grains is obtained. At this time, the transparency of the glass decreases.
进一步地,作为本发明的优选方案,所述步骤S2的具体步骤包括有:将坩埚放入电阻炉中加热到1500℃后保温3小时使之熔融得到玻璃熔体,而后,将玻璃熔体快速取出导入模具中成形,并放入电阻炉中于750℃退火5小时以消除内应力,从而得到块状前驱玻璃。Further, as a preferred solution of the present invention, the specific steps of step S2 include: placing the crucible in a resistance furnace and heating it to 1500° C. and then holding it for 3 hours to melt the glass melt to obtain a glass melt; It was taken out and introduced into a mold for forming, and then placed in a resistance furnace for annealing at 750° C. for 5 hours to eliminate internal stress, thereby obtaining a bulk precursor glass.
进一步地,作为本发明的优选方案,步骤S3的具体步骤包括有:将块状前驱玻璃放入电阻炉中加热到1100℃后,进行4小时等温热处理,使之发生部分晶化,获得块状微晶玻璃。Further, as a preferred solution of the present invention, the specific steps of step S3 include: placing the bulk precursor glass in a resistance furnace and heating to 1100° C., and then performing isothermal heat treatment for 4 hours to partially crystallize it to obtain Bulk glass-ceramic.
进一步地,作为本发明的优选方案,所述SiO2的摩尔百分比含量为24-35mol%,SiO2作为玻璃的主要网络骨架成分;所述Al2O3SiO2的摩尔百分比含量为15-28mol%,Al2O3既作为玻璃的网络骨架成分,也作为目标析出晶相的组成成分;所述La2O3SiO2的摩尔百分比含量为10-20mol%,La2O3是目标析出晶相的组成成分;所述MOSiO2的摩尔百分比含量为10-15mol%,MO是目标析出晶相的组成成分;所述BaOSiO2的摩尔百分比含量为6-8mol%,BaO作为玻璃网络修饰体;所述B2O3SiO2的摩尔百分比含量为7-9mol%,B2O3作为玻璃网络修饰体;所述TiO2SiO2的摩尔百分比含量为2-3mol%,TiO2作为玻璃的成核剂;所述Na2CO3SiO2的摩尔百分比含量为2-3mol%,Na2CO3作为玻璃的成核剂;所述MnCO3SiO2的摩尔百分比含量为0.2mol%,MnCO3是目标析出晶相的组成成分。Further, as a preferred solution of the present invention, the molar percentage content of the SiO 2 is 24-35 mol %, and SiO 2 is used as the main network framework component of the glass; the molar percentage content of the Al 2 O 3 SiO 2 is 15-28 mol % %, Al 2 O 3 is used as both the network framework component of the glass and the composition of the target precipitation crystal phase; the molar percentage content of the La 2 O 3 SiO 2 is 10-20mol%, and La 2 O 3 is the target precipitation crystal. The composition of the phase; the molar percentage content of the MOSiO 2 is 10-15 mol %, and MO is the composition of the target precipitation crystal phase; the molar percentage content of the BaOSiO 2 is 6-8 mol %, and BaO is used as a glass network modifier; The molar content of the B 2 O 3 SiO 2 is 7-9 mol %, and B 2 O 3 is used as a glass network modifier; the molar content of the TiO 2 SiO 2 is 2-3 mol %, and TiO 2 is used as a glass component. Nucleating agent; the molar content of the Na 2 CO 3 SiO 2 is 2-3 mol%, and Na 2 CO 3 is used as a nucleating agent for the glass; the molar content of the MnCO 3 SiO 2 is 0.2 mol %, and the MnCO 3 is The composition of the target precipitated crystal phase.
进一步地,作为本发明的优选方案,所述SiO2的摩尔百分比含量为30-35mol%;所述Al2O3SiO2的摩尔百分比含量为18-26mol%;所述La2O3SiO2的摩尔百分比含量为12-20mol%;所述MOSiO2的摩尔百分比含量为12-15mol%;所述BaOSiO2的摩尔百分比含量为6-8mol%;所述B2O3SiO2的摩尔百分比含量为7-9mol%;所述TiO2SiO2的摩尔百分比含量为2-3mol%;所述Na2CO3SiO2的摩尔百分比含量为2-3mol%;所述MnCO3SiO2的摩尔百分比含量为0.2mol%。Further, as a preferred solution of the present invention, the molar percentage content of the SiO 2 is 30-35 mol%; the molar percentage content of the Al 2 O 3 SiO 2 is 18-26 mol %; the La 2 O 3 SiO 2 The molar percentage content of the BaOSiO 2 is 12-20 mol%; the molar percentage content of the MOSiO 2 is 12-15 mol %; the molar percentage content of the BaOSiO 2 is 6-8 mol %; the molar percentage content of the B 2 O 3 SiO 2 is 7-9 mol%; the molar content of the TiO 2 SiO 2 is 2-3 mol %; the molar content of the Na 2 CO 3 SiO 2 is 2-3 mol %; the molar content of the MnCO 3 SiO 2 is 2-3 mol % is 0.2 mol%.
一种用于宽色域背光显示绿光发射微晶玻璃的应用,所述用于宽色域背光显示绿光发射微晶玻璃作为LCD用荧光材料。An application of green light emitting glass-ceramic for wide color gamut backlight display, said green light emitting glass-ceramic for wide color gamut backlight display is used as a fluorescent material for LCD.
进一步地,作为本发明的优选方案,所述用于宽色域背光显示绿光发射微晶玻璃用于构建蓝光芯片激发的宽色域LCD。Further, as a preferred solution of the present invention, the green light-emitting glass-ceramic for wide color gamut backlight display is used to construct a wide color gamut LCD excited by blue light chips.
本发明中,采用以上材料组分和制备方法,可以获得在氧化物玻璃基体中均匀镶嵌LaMAl11O19:Mn2+晶粒的透明微晶玻璃,即得到用于宽色域背光显示绿光发射微晶玻璃。其中,Mn离子为绿色发光中心;LaMAl11O19基质结构为磁铁铅矿结构,M离子可以为Zn或Mg,M离子的配位环境为四配位形成的尖晶石结构;Mn2+是过渡族金属离子四配位,离子半径较小,与四配位Zn2+/Mg2+离子半径较为接近,且Mn2+置换Mg2+/Zn2+不会造成电荷失衡;Mn2+离子进入四配位尖晶石结构中,其荧光发射源于d层电子4T1(4G)→6A1(6S)的跃迁,属于3d-3d跃迁行为,故LaMAl11O19是Mn2+离子的掺杂基质材料。In the present invention, by adopting the above material components and preparation method, transparent glass-ceramics with LaMAl 11 O 19 :Mn 2+ crystal grains uniformly embedded in the oxide glass matrix can be obtained, that is, the green light for wide color gamut backlight display can be obtained Emitting glass-ceramic. Among them, the Mn ion is the green luminescent center; the matrix structure of LaMAl 11 O 19 is magnetite structure, the M ion can be Zn or Mg, and the coordination environment of the M ion is a spinel structure formed by four coordination; Mn 2+ is The transition metal ions are four-coordinated and have a small ionic radius, which is close to the four-coordinated Zn 2+ /Mg 2+ ionic radius, and the replacement of Mg 2+ /Zn 2+ by Mn 2+ will not cause charge imbalance; Mn 2+ The ion enters the four-coordinate spinel structure, and its fluorescence emission originates from the transition of the d-layer electron 4 T 1 ( 4 G) → 6 A 1 ( 6 S), which belongs to the 3d-3d transition behavior, so LaMAl 11 O 19 is Doped host material for Mn 2+ ions.
本发明所制备的用于宽色域背光显示绿光发射微晶玻璃,在蓝光LED的激发下该材料发射明亮的绿光,其量子效率达70.5%,色纯度为76.8%。将KSF:Mn4+红粉旋涂于绿光发射透明微晶玻璃表面,并将之与蓝光芯片耦合,经过标准商用红绿蓝三色滤波片滤光后,其在CIE1931色度空间中的最大色域高达118%NTSC。The green light-emitting glass-ceramic for wide color gamut backlight display prepared by the invention emits bright green light under the excitation of blue LED, and the quantum efficiency reaches 70.5% and the color purity is 76.8%. The KSF:Mn 4+ red powder was spin-coated on the surface of green light-emitting transparent glass-ceramic, and coupled with the blue light chip. After filtering by standard commercial red, green and blue filters, its maximum value in the CIE1931 chromaticity space was obtained. The color gamut is as high as 118% NTSC.
并且,本发明所制备的用于宽色域背光显示绿光发射微晶玻璃,在氧化物玻璃基体中均匀镶嵌LaMAl11O19:Mn2+晶粒的透明微晶玻璃,是一种在无机玻璃基体中均匀镶嵌了微/纳米晶的复合材料,具有制备工艺简单、热稳定好和化学稳定性高的优势,得益于玻璃的可塑性高,微晶玻璃液可非常方便的加工成平板状或者灯泡状,并远离芯片进行封装,并结合红色KSF:Mn4+荧光粉应用于白光LED背光源,将具有十分显著的应用价值,有望推动液晶显示产业的快速发展。此外,本发明所制备的用于宽色域背光显示绿光发射微晶玻璃通过包覆等手段有效的解决了其耐候性问题,可以极大地提升液晶显示的色域覆盖率,得到了一种低色温、高显色性、高稳定性、高光效的荧光材料。In addition, the transparent glass-ceramic with LaMAl 11 O 19 :Mn 2+ crystal grains evenly embedded in the oxide glass matrix for wide color gamut backlight display green light emission prepared by the present invention is a kind of transparent glass-ceramic in inorganic The composite material in which the micro/nano crystals are evenly embedded in the glass matrix has the advantages of simple preparation process, good thermal stability and high chemical stability. Thanks to the high plasticity of the glass, the glass-ceramic liquid can be easily processed into a flat plate. Or bulb-shaped, and packaged away from the chip, and combined with red KSF:Mn 4+ phosphors for white LED backlights, it will have very significant application value and is expected to promote the rapid development of the liquid crystal display industry. In addition, the green light-emitting glass-ceramic for wide color gamut backlight display prepared by the present invention effectively solves the problem of weather resistance through coating and other means, can greatly improve the color gamut coverage of liquid crystal display, and obtains a Fluorescent material with low color temperature, high color rendering, high stability and high light efficiency.
从上述的技术方案可以看出,本发明的有益效果为:As can be seen from the above-mentioned technical solutions, the beneficial effects of the present invention are:
1、本发明所制备的一种用于宽色域背光显示绿光发射微晶玻璃,其结构特征是氧化物玻璃基体中镶嵌LaMAl11O19:Mn2+晶粒微米晶化相,并且与现有LED背光源技术兼容,性能有着显著提升;在微晶玻璃上旋涂红色荧光薄膜形成的复合荧光材料,在实际背光源系统中采用远程封装,有效降低了有机物老化问题。1. A kind of glass-ceramic for wide color gamut backlight display green light emission prepared by the present invention, its structural feature is that LaMAl 11 O 19 :Mn 2+ crystal grain microcrystalline phase is embedded in the oxide glass matrix, and it is The existing LED backlight technology is compatible, and the performance has been significantly improved; the composite fluorescent material formed by spin-coating the red fluorescent film on the glass-ceramics is remotely packaged in the actual backlight system, which effectively reduces the problem of organic matter aging.
2、本发明提供的用于宽色域背光显示绿光发射微晶玻璃,其中涉及的微晶玻璃能有效吸收紫外、近紫外和蓝光并能发出高效绿光,其光致发光光谱窄且高度对称,色纯度高,红色荧光薄膜对于近紫外和蓝光也有高效的吸收,且发射窄带红光,色纯度高,通过调整红色荧光薄和量子点微晶玻璃的厚度可以得到多色荧光复合材料,与LED激发光源结合,非常适合显示用宽色域背光源。2. The glass-ceramics provided by the present invention for wide color gamut backlight display green light emission, the glass-ceramics involved can effectively absorb ultraviolet, near-ultraviolet and blue light and can emit high-efficiency green light, and its photoluminescence spectrum is narrow and high. Symmetrical, high color purity, the red fluorescent film also has efficient absorption for near-ultraviolet and blue light, and emits narrow-band red light with high color purity. By adjusting the thickness of the red fluorescent film and the quantum dot glass-ceramic, a multicolor fluorescent composite material can be obtained. Combined with LED excitation light source, it is very suitable for wide color gamut backlight for display.
3、本发明提供的蓝光LED用微晶玻璃荧光材料的显示用宽色域背光源,所涉及的微晶玻璃具有很高的发光量子效率(~85%),色纯度高(半峰宽~18m);所涉及的红色荧光薄膜有很高的发光量子效率(~95%),色纯度非常高(半峰宽~8nm)。3. The wide color gamut backlight source for the display of the glass-ceramic fluorescent material for blue-light LED provided by the present invention, the glass-ceramic involved has high luminous quantum efficiency (~85%) and high color purity (half width ~ 18m); the red fluorescent film involved has high luminescence quantum efficiency (~95%) and very high color purity (half width ~8nm).
4、本发明提供的蓝光LED用微晶玻璃荧光材料的显示用宽色域背光源,所涉及微晶玻璃采用的高温固相法,量微晶相均匀镶嵌在玻璃基质中,适合做成多种形状,工艺简单、制备成本低;复合荧光材料中红色荧光薄膜采用的是旋涂法,工艺简单、制备成本低。4. The wide color gamut backlight source for the display of the glass-ceramic fluorescent material for blue LEDs provided by the present invention, the high-temperature solid-phase method used for the glass-ceramics involved, and the amount of crystallites are evenly embedded in the glass matrix, which is suitable for making multiple The red fluorescent film in the composite fluorescent material adopts the spin coating method, the process is simple and the preparation cost is low.
综上,应用本发明可有效解决现有显示技术中存在色域低、光效低、性能老化、需要特殊的防护措施以及成本高的问题。结合钙钛矿量子点微晶玻璃及红色荧光薄膜的远程封装技术可获得性能优异,适合应用于宽色域、高效率、低成本、稳定性好及响应速度快的显示用LED背光源。In conclusion, the application of the present invention can effectively solve the problems of low color gamut, low light efficiency, performance aging, special protective measures and high cost in the existing display technology. The remote packaging technology combining perovskite quantum dot glass-ceramics and red fluorescent films can achieve excellent performance and is suitable for display LED backlights with wide color gamut, high efficiency, low cost, good stability and fast response speed.
基于上述理由本发明可在彩色电视机、计算机、仪器仪表、大屏显示等显示应用领域广泛推广。Based on the above reasons, the present invention can be widely promoted in display application fields such as color TV sets, computers, instruments and meters, and large-screen displays.
附图说明Description of drawings
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:The accompanying drawings are used to provide a further understanding of the present invention, and constitute a part of the specification, and together with the embodiments of the present invention, are used to explain the present invention, and not to limit the present invention. In the attached image:
图1是实施例1中一种用于宽色域背光显示绿光发射微晶玻璃样品的X射线衍射图谱;Fig. 1 is a kind of X-ray diffraction pattern used for wide color gamut backlight display green light emitting glass-ceramic sample in embodiment 1;
图2是实施例1中一种用于宽色域背光显示绿光发射微晶玻璃样品的XRF照片;Fig. 2 is a kind of XRF photograph of the glass-ceramic sample for wide color gamut backlight display green light emission in Example 1;
图3是实施例1中一种用于宽色域背光显示绿光发射微晶玻璃样品的激发、发射光谱;Fig. 3 is a kind of excitation and emission spectra of a glass-ceramic sample for wide color gamut backlight display green light emission in Example 1;
图4是实施例1中一种用于宽色域背光显示绿光发射微晶玻璃样品的衰减寿命图;Fig. 4 is a kind of decay lifetime diagram of a kind of glass-ceramic sample for wide color gamut backlight display green light emission in Example 1;
图5是实施例1中一种用于宽色域背光显示绿光发射微晶玻璃样品的内量子效率测试曲线;Fig. 5 is a kind of internal quantum efficiency test curve used for wide color gamut backlight display green light-emitting glass-ceramic sample in Example 1;
图6是实施例1中LCD原型器件模型及白光LED光源的电致发光图;6 is an electroluminescence diagram of an LCD prototype device model and a white LED light source in Example 1;
图7是实施例1中光源在CIE1931色度空间中的色域。FIG. 7 is the color gamut of the light source in the CIE1931 chromaticity space in Example 1.
图中:1、蓝光LED;2、反射杯;3、红光薄膜;4、钙钛矿量子点微晶玻璃;5、扩散膜;6、增亮膜;7、双增亮膜;8、LCD面板In the picture: 1. Blue LED; 2. Reflector cup; 3. Red light film; 4. Perovskite quantum dot glass-ceramic; 5. Diffusion film; 6. Brightness enhancement film; 7. Double brightness enhancement film; 8. LCD panel
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所述的附图作简单地介绍,显而易见,下面的描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the following will briefly introduce the drawings in the description of the embodiments or the prior art. Obviously, the drawings in the following description are only For some embodiments of the present invention, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without creative efforts.
具体实施方式Detailed ways
以下所述是通过实施例对本发明的上述内容的具体说明,特别指出,在基于本发明原理之下,还可以作出若干的调整和改进,这些调整和改进也视为本发明实施例的保护范围。The following is a specific description of the above-mentioned content of the present invention through embodiments, and it is particularly pointed out that some adjustments and improvements can be made based on the principles of the present invention, and these adjustments and improvements are also regarded as the protection scope of the embodiments of the present invention. .
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明中实施例中的附图,对本发明实施例中的技术方案进行清晰、完整的阐述,显然,所描述的实施例也紧紧是本发明的一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,绝不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有做出任何创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。In order to make the purposes, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be described clearly and completely below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described implementation Examples are also only some, but not all, embodiments of the present invention. The following description of at least one exemplary embodiment is merely illustrative in nature and is in no way intended to limit the invention, its application, or uses in any way. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without any creative work shall fall within the protection scope of the present invention.
实施例1:将分析纯的SiO2、Al2O3、La2O3、ZnO、BaO、B2O3、TiO2、Na2CO3和MnCO3粉体,按照38SiO2:20Al2O3:15La2O3:14.98ZnO:3BaO:5B2O3:2TiO2:2Na2CO3:0.02MnCO3(摩尔比)的配比精确称量后置于球磨机中球磨,混合均匀后置于刚玉坩埚中,放入电阻炉中加热到1550℃保温2小时使之熔融,而后,将玻璃熔体取出并快速导入石墨模具中成形,接着放入780℃的电阻炉退火4小时以消除玻璃的内应力,从而获得块状前驱玻璃。将获得的前驱玻璃放入1100℃电阻炉中,进行4小时等温热处理,使之发射部分晶化,获得LaZnAl11O19:Mn2+晶相的块状微晶玻璃。Example 1: Analytical pure SiO 2 , Al 2 O 3 , La 2 O 3 , ZnO, BaO, B 2 O 3 , TiO 2 , Na 2 CO 3 and MnCO 3 powders were prepared according to 38SiO 2 : 20Al 2 O 3 : 15La2O3 : 14.98ZnO :3BaO: 5B2O3 : 2TiO2 : 2Na2CO3 : 0.02MnCO3 ( molar ratio) In the corundum crucible, put it in a resistance furnace and heat it to 1550 °C for 2 hours to melt it. Then, take out the glass melt and quickly introduce it into a graphite mold to form, and then put it into a resistance furnace at 780 °C for 4 hours to eliminate the glass melt. internal stress to obtain bulk precursor glass. The obtained precursor glass was placed in a resistance furnace at 1100° C. and subjected to isothermal heat treatment for 4 hours to crystallize the emission part to obtain a bulk glass-ceramic with LaZnAl 11 O 19 :Mn 2+ crystal phase.
X射线衍射数据表明在玻璃基体中析出了LaMAl11O19:Mn2+微米晶相(如图1所示)。XRF扫描结果表明LaMAl11O19:Mn2+微米晶相均匀分布在玻璃基体中(如图2所示)。样品经过表明抛光后,用FLS980荧光光谱仪测量其室温激发和发射光谱(如图3所示)。在450纳米激发的发射谱上,出现对应于Mn2+4T1(4G)→6A1(6S)的跃迁的窄带绿光发射,中心波长为518纳米;在监测Mn2+绿光发射的激发谱上,探测到从紫外到蓝光波段的吸收;由寿命衰减曲线(如图4所示),微晶玻璃样品的衰减寿命为毫秒级(约4.6毫秒)。在450纳米激发下,测得样品的内量子效率为70.5%(如图5所示)。将KSF红色荧光粉旋涂在绿色微晶玻璃一面,并将之与蓝光芯片耦合,经过标准商用红绿蓝三色滤光片滤光,构建出LED背光源原型器件(如图6所示),该LED背光源原型器件从内到外依次设置有蓝光LED、反射杯、红光薄膜、钙钛矿量子点微晶玻璃、扩散膜、增亮膜、双增亮膜以及LCD面板;其中,钙钛矿量子点微晶玻璃为本发明所制备的用于宽色域背光显示绿光发射微晶玻璃经蓝光LED耦合钙钛矿量子点而形成的微晶玻璃,经计算,其在CIE1931色度空间中的色域为118%NTSC(如图7所示)。The X-ray diffraction data indicated that the LaMAl 11 O 19 :Mn 2+ microcrystalline phase was precipitated in the glass matrix (as shown in Figure 1). The XRF scanning results show that the LaMAl 11 O 19 :Mn 2+ microcrystalline phase is uniformly distributed in the glass matrix (as shown in Fig. 2). After the samples were surface polished, their room temperature excitation and emission spectra were measured with a FLS980 fluorescence spectrometer (as shown in Figure 3). On the emission spectrum excited at 450 nm, a narrow-band green emission corresponding to the transition of Mn 2+4 T 1 ( 4 G) → 6 A 1 ( 6 S) appears with a central wavelength of 518 nm; when monitoring the green emission of
实施例2:将分析纯的SiO2、Al2O3、La2O3、ZnO、MgO、BaO、B2O3、TiO2、Na2CO3和MnCO3粉体,按照36SiO2:20Al2O3:15La2O3:6MgO:10.98ZnO:2BaO:6B2O3:2TiO2:2Na2CO3:0.02MnCO3(摩尔比)的配比精确称量后置于球磨机中球磨,混合均匀后置于刚玉坩埚中,放入电阻炉中加热到1500℃保温2小时使之熔融,而后,将玻璃熔体取出并快速导入石墨模具中成形,接着放入760℃的电阻炉退火6小时以消除玻璃的内应力,从而获得块状前驱玻璃。将获得的前驱玻璃放入1100℃电阻炉中,进行4小时等温热处理,使之发射部分晶化。经测试玻璃陶瓷中析出了获得La(Zn,Mg)Al11O19:Mn2+晶相的块状微晶玻璃,测得其荧光量子效率为68.6%。将KSF红粉旋涂于该绿色微晶玻璃表面,并将之与蓝光芯片耦合,经过标准商用红绿蓝三色滤波片绿光,构建LED背光源原型器件,经计算,其在CIE1931色度空间中的色域为110%NTSC。Example 2: Analytical pure SiO 2 , Al 2 O 3 , La 2 O 3 , ZnO, MgO, BaO, B 2 O 3 , TiO 2 , Na 2 CO 3 and MnCO 3 powders were prepared according to 36SiO 2 : 20Al The ratio of 2 O 3 : 15La 2 O 3 : 6MgO: 10.98ZnO: 2BaO: 6B 2 O 3 : 2TiO 2 : 2Na 2 CO 3 : 0.02MnCO 3 (molar ratio) was accurately weighed and then placed in a ball mill for ball milling and mixing. After uniform, put it in a corundum crucible, put it in a resistance furnace and heat it to 1500 °C for 2 hours to make it melt. Then, take out the glass melt and quickly introduce it into a graphite mold to form, and then put it into a resistance furnace at 760 °C for 6 hours annealing In order to eliminate the internal stress of the glass, the bulk precursor glass can be obtained. The obtained precursor glass was placed in a resistance furnace at 1100° C. and subjected to isothermal heat treatment for 4 hours to crystallize the emission part. The bulk glass-ceramic with La(Zn,Mg)Al 11 O 19 :Mn 2+ crystal phase was precipitated in the tested glass ceramics, and the fluorescence quantum efficiency was measured to be 68.6%. The KSF red powder was spin-coated on the surface of the green glass-ceramic, coupled with the blue light chip, and passed through the standard commercial red, green and blue three-color filter green light to build a prototype LED backlight device. After calculation, it is in the CIE1931 chromaticity space. The color gamut in 110% NTSC.
实施例3:将分析纯的SiO2、Al2O3、La2O3、ZnO、MgO、BaO、B2O3、TiO2、Na2CO3和MnCO3粉体,按照37SiO2:22Al2O3:13La2O3:7MgO:10.98ZnO:3BaO:5B2O3:1TiO2:3Na2CO3:0.02MnCO3(摩尔比)的配比精确称量后置于球磨机中球磨,混合均匀后置于刚玉坩埚中,放入电阻炉中加热到1500℃保温2小时使之熔融,而后,将玻璃熔体取出并快速导入石墨模具中成形,接着放入750℃的电阻炉退火6小时以消除玻璃的内应力,从而获得块状前驱玻璃。将获得的前驱玻璃放入1100℃电阻炉中,进行4小时等温热处理,使之发射部分晶化。经测试玻璃陶瓷中析出了获得La(Zn,Mg)Al11O19:Mn2+晶相的块状微晶玻璃,测得其荧光量子效率为66%。将KSF红粉旋涂于该绿色微晶玻璃表面,并将之与蓝光芯片耦合,经过标准商用红绿蓝三色滤波片绿光,构建LED背光源原型器件,经计算,其在CIE1931色度空间中的色域为109%NTSC。Example 3: Analytical pure SiO 2 , Al 2 O 3 , La 2 O 3 , ZnO, MgO, BaO, B 2 O 3 , TiO 2 , Na 2 CO 3 and MnCO 3 powders were prepared according to 37SiO 2 : 22Al The ratio of 2 O 3 : 13La 2 O 3 : 7MgO: 10.98ZnO: 3BaO: 5B 2 O 3 : 1TiO 2 : 3Na 2 CO 3 : 0.02MnCO 3 (molar ratio) was accurately weighed and then placed in a ball mill for ball milling and mixing. After evenly placing it in a corundum crucible, put it in a resistance furnace and heat it to 1500 °C for 2 hours to melt it. Then, take out the glass melt and quickly introduce it into a graphite mold to form, and then put it into a resistance furnace at 750 °C for 6 hours annealing. In order to eliminate the internal stress of the glass, the bulk precursor glass can be obtained. The obtained precursor glass was placed in a resistance furnace at 1100° C. and subjected to isothermal heat treatment for 4 hours to crystallize the emission part. The bulk glass-ceramic with La(Zn,Mg)Al 11 O 19 :Mn 2+ crystal phase was precipitated in the tested glass ceramics, and its fluorescence quantum efficiency was measured to be 66%. The KSF red powder was spin-coated on the surface of the green glass-ceramic, coupled with the blue light chip, and passed through the standard commercial red, green and blue three-color filter green light to build a prototype LED backlight device. After calculation, it is in the CIE1931 chromaticity space. The color gamut in 109% NTSC.
实施例4:将分析纯的SiO2、Al2O3、La2O3、BaO、B2O3、TiO2、Na2CO3和MnCO3粉体,按照36SiO2:20Al2O3:15La2O3:16.98MgO:2BaO:6B2O3:2TiO2:2Na2CO3:0.02MnCO3(摩尔比)的配比精确称量后置于球磨机中球磨,混合均匀后置于刚玉坩埚中,放入电阻炉中加热到1550℃保温1.5小时使之熔融,而后,将玻璃熔体取出并快速导入石墨模具中成形,接着放入760℃的电阻炉退火6小时以消除玻璃的内应力,从而获得块状前驱玻璃。将获得的前驱玻璃放入1100℃电阻炉中,进行4小时等温热处理,使之发射部分晶化。经测试玻璃陶瓷中析出了获得LaMgAl11O19:Mn2+晶相的块状微晶玻璃,测得其荧光量子效率为60%。将KSF红粉旋涂于该绿色微晶玻璃表面,并将之与蓝光芯片耦合,经过标准商用红绿蓝三色滤波片绿光,构建LED背光源原型器件,经计算,其在CIE1931色度空间中的色域为106%NTSC。Example 4: The analytically pure SiO 2 , Al 2 O 3 , La 2 O 3 , BaO, B 2 O 3 , TiO 2 , Na 2 CO 3 and MnCO 3 powders were prepared according to 36SiO 2 : 20Al 2 O 3 : The ratio of 15La 2 O 3 : 16.98MgO: 2BaO: 6B 2 O 3 : 2TiO 2 : 2Na 2 CO 3 : 0.02MnCO 3 (molar ratio) was accurately weighed and then placed in a ball mill for ball milling, mixed evenly and placed in a corundum crucible , put it into a resistance furnace and heat it to 1550 °C for 1.5 hours to melt it. Then, take out the glass melt and quickly introduce it into a graphite mold to form, and then put it into a resistance furnace at 760 °C for 6 hours to eliminate the internal stress of the glass. , so as to obtain bulk precursor glass. The obtained precursor glass was placed in a resistance furnace at 1100° C. and subjected to isothermal heat treatment for 4 hours to crystallize the emission part. The bulk glass-ceramic obtained LaMgAl 11 O 19 :Mn 2+ crystal phase was precipitated in the glass-ceramic after testing, and its fluorescence quantum efficiency was measured to be 60%. The KSF red powder was spin-coated on the surface of the green glass-ceramic, coupled with the blue light chip, and passed through the standard commercial red, green and blue three-color filter green light to build a prototype LED backlight device. After calculation, it is in the CIE1931 chromaticity space. The color gamut in 106% NTSC.
显然,依据上述发明实施例可知,本发明利用所公开的制备方法,可以快速制备出来高质量的用于宽色域背光显示绿光发射微晶玻璃,所述用于宽色域背光显示绿光发射微晶玻璃的结构特征是氧化物玻璃基体中镶嵌LaMAl11O19:Mn2+晶粒微米晶化相,并且与现有LED背光源技术兼容,性能有着显著提升;在微晶玻璃上旋涂红色荧光薄膜形成的复合荧光材料,在实际背光源系统中采用远程封装,有效降低了有机物老化问题。本发明提供的用于宽色域背光显示绿光发射微晶玻璃,其中涉及的微晶玻璃能有效吸收紫外、近紫外和蓝光并能发出高效绿光,其光致发光光谱窄且高度对称,色纯度高,红色荧光薄膜对于近紫外和蓝光也有高效的吸收,且发射窄带红光,色纯度高,通过调整红色荧光薄和量子点微晶玻璃的厚度可以得到多色荧光复合材料,与LED激发光源结合,非常适合显示用宽色域背光源。Obviously, according to the above-mentioned embodiments of the invention, the disclosed preparation method can quickly prepare high-quality glass-ceramics for wide-color gamut backlight display green light emission, and the green light emission glass-ceramic for wide color gamut backlight display can be quickly prepared. The structural feature of the glass-ceramic is that LaMAl 11 O 19 :Mn 2+ grain microcrystalline phase is embedded in the oxide glass matrix, and it is compatible with the existing LED backlight technology, and the performance is significantly improved; spin coating on the glass-ceramic The composite fluorescent material formed by the red fluorescent film is remotely packaged in the actual backlight system, which effectively reduces the problem of organic matter aging. The invention provides a green light-emitting glass-ceramic for wide color gamut backlight display, wherein the glass-ceramic can effectively absorb ultraviolet, near-ultraviolet and blue light and emit high-efficiency green light, and its photoluminescence spectrum is narrow and highly symmetrical. High color purity, the red fluorescent film also has efficient absorption for near-ultraviolet and blue light, and emits narrow-band red light with high color purity. By adjusting the thickness of the red fluorescent film and the quantum dot glass-ceramic, a multicolor fluorescent composite material can be obtained, which is compatible with LEDs. Combined with excitation light source, it is very suitable for wide color gamut backlight source for display.
对所公开的实施例的上述说明,使本领域专业技术人员能够实现本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。The above description of the disclosed embodiments enables those skilled in the art to practice the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010137781.4A CN111233337B (en) | 2020-03-03 | 2020-03-03 | Green light emitting microcrystalline glass for wide color gamut backlight display and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010137781.4A CN111233337B (en) | 2020-03-03 | 2020-03-03 | Green light emitting microcrystalline glass for wide color gamut backlight display and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111233337A true CN111233337A (en) | 2020-06-05 |
CN111233337B CN111233337B (en) | 2022-03-22 |
Family
ID=70880186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010137781.4A Expired - Fee Related CN111233337B (en) | 2020-03-03 | 2020-03-03 | Green light emitting microcrystalline glass for wide color gamut backlight display and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111233337B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114133141A (en) * | 2021-12-28 | 2022-03-04 | 海南大学 | Perovskite quantum dot glass ceramic and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101483945A (en) * | 2008-01-11 | 2009-07-15 | 上海广电电子股份有限公司 | Green inorganic thin-film electrofluorescence display |
US20130293099A1 (en) * | 2007-07-19 | 2013-11-07 | Quarkstar Llc | Light Emitting Device |
CN107140823A (en) * | 2017-06-13 | 2017-09-08 | 中国科学院福建物质结构研究所 | One kind is used for wide colour gamut backlight and shows red emission glass ceramics and its technology of preparing |
CN110534631A (en) * | 2019-09-05 | 2019-12-03 | 大连海事大学 | Wide color gamut backlight source for display of LED combined perovskite quantum dot glass ceramics |
-
2020
- 2020-03-03 CN CN202010137781.4A patent/CN111233337B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130293099A1 (en) * | 2007-07-19 | 2013-11-07 | Quarkstar Llc | Light Emitting Device |
CN101483945A (en) * | 2008-01-11 | 2009-07-15 | 上海广电电子股份有限公司 | Green inorganic thin-film electrofluorescence display |
CN107140823A (en) * | 2017-06-13 | 2017-09-08 | 中国科学院福建物质结构研究所 | One kind is used for wide colour gamut backlight and shows red emission glass ceramics and its technology of preparing |
CN110534631A (en) * | 2019-09-05 | 2019-12-03 | 大连海事大学 | Wide color gamut backlight source for display of LED combined perovskite quantum dot glass ceramics |
Non-Patent Citations (1)
Title |
---|
詹望成等: "稀土催化材料的制备、结构及催化性能", 《中国科学:化学》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114133141A (en) * | 2021-12-28 | 2022-03-04 | 海南大学 | Perovskite quantum dot glass ceramic and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN111233337B (en) | 2022-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110294597B (en) | Cesium-lead-bromine perovskite quantum dot fluorescent glass for wide color gamut display and preparation method and application thereof | |
CN105271760A (en) | Glass ceramics for AC-LED and preparation method thereof | |
CN102730975B (en) | Glass-ceramic and preparation method thereof | |
CN105778913B (en) | A kind of list matrix three adulterates white light phosphor and preparation method and application | |
CN103160278A (en) | Red long-lasting phosphor material and preparation method thereof | |
CN114437724B (en) | Gallate-based multicolor long-afterglow luminescent material and preparation method thereof | |
CN104529165B (en) | A kind of yellow afterglow glass-ceramic for AC-LED and its preparation technology | |
CN102093888A (en) | Preparation method and application of warm white fluorescent powder | |
CN102690062A (en) | Luminescent glass and microcrystalline glass and preparation method thereof | |
CN106833636A (en) | Can be by near ultraviolet and blue light activated red fluorescence powder, preparation method and application | |
Wang et al. | High color rendering index of warm WLED based on LuAG: Ce3+ PiG coated CaAlSiN3: Eu2+ phosphor film for residential lighting applications | |
WO2018170975A1 (en) | High-power fluorescent glass ceramic for illumination and display, preparation method therefor, and application thereof | |
CN102584015B (en) | White light-emitting glass and preparation method thereof | |
WO2010105424A1 (en) | Germanate luminescence material and its preparation | |
CN111233337B (en) | Green light emitting microcrystalline glass for wide color gamut backlight display and preparation method thereof | |
CN107325813B (en) | A kind of blue-green fluorescent material and preparation method thereof | |
EP2565253B1 (en) | Silicate luminescent material and production method thereof | |
CN104059640B (en) | A kind of borate fluorescent powder substrate and the preparation method of fluorescent material | |
CN103602335B (en) | Blue fluorescent powder for white light LED and preparation method thereof | |
CN102092952A (en) | Transparent glass ceramic with tunable light emitting colors and preparation technique thereof | |
CN104629759A (en) | Method for enhancing emission intensity of strontium aluminate fluorescent powder | |
CN104277851B (en) | A kind of silicate green-light emitting phosphor and preparation method thereof | |
CN111410427A (en) | Microcrystalline glass for high-power white light L ED, preparation method and L ED device | |
CN102020989B (en) | A fluorescent material, its manufacturing method, and a light-emitting device comprising the fluorescent material | |
CN106010528A (en) | Bismuth-manganese-doped blue fluorescent powder and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220322 |
|
CF01 | Termination of patent right due to non-payment of annual fee |