[go: up one dir, main page]

CN111222248B - Method and device for determining hysteresis phenomenon of piezoelectric ceramic actuators - Google Patents

Method and device for determining hysteresis phenomenon of piezoelectric ceramic actuators Download PDF

Info

Publication number
CN111222248B
CN111222248B CN202010031466.3A CN202010031466A CN111222248B CN 111222248 B CN111222248 B CN 111222248B CN 202010031466 A CN202010031466 A CN 202010031466A CN 111222248 B CN111222248 B CN 111222248B
Authority
CN
China
Prior art keywords
order derivative
hysteresis
input voltage
derivative
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010031466.3A
Other languages
Chinese (zh)
Other versions
CN111222248A (en
Inventor
钟博文
王陈俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN202010031466.3A priority Critical patent/CN111222248B/en
Publication of CN111222248A publication Critical patent/CN111222248A/en
Application granted granted Critical
Publication of CN111222248B publication Critical patent/CN111222248B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0084Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring voltage only

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

The application relates to a hysteresis determining method and a device of a piezoelectric ceramic actuator, belonging to the technical field of piezoelectric ceramics, wherein the method comprises the following steps: acquiring an input voltage of a piezoelectric ceramic actuator; determining a first derivative and a second derivative of the input voltage; inputting the first derivative and the second derivative of the input voltage into a preset hysteresis model to obtain a hysteresis result of the pressure point ceramic actuator; the method comprises the steps that a preset hysteresis model comprises a first derivative of a hysteresis component of input displacement, the first derivative of the hysteresis component comprises a shape control function, the shape control function is a parameter taking the first derivative and the second derivative of input voltage as variables, and the first derivative and the second derivative of the input voltage enable the value of the shape control function to be in non-central symmetrical change along with time; the problem that the error between the theoretical output displacement and the actual output displacement of the existing hysteresis model established based on the Bouc-Wen model is larger can be solved; and the modeling precision of the hysteresis model is improved.

Description

压电陶瓷致动器的迟滞现象确定方法和装置Method and device for determining hysteresis phenomenon of piezoelectric ceramic actuators

技术领域Technical field

本申请涉及一种压电陶瓷致动器的迟滞现象确定方法和装置,属于压电陶瓷技术领域。The present application relates to a method and device for determining the hysteresis phenomenon of a piezoelectric ceramic actuator, which belongs to the technical field of piezoelectric ceramics.

背景技术Background technique

压电陶瓷致动器是一种理想的微动系统驱动元件,但是它存在着迟滞现象。这给压电陶瓷微位移系统的建模和控制带来困难。压电陶瓷的迟滞非线性属于非局部存储型迟滞非线性,是压电陶瓷固有的特性。其主要特点是:系统下一时刻的输出不仅取决于当前时刻的输入和输出,还取决于输入的历史状态。The piezoelectric ceramic actuator is an ideal driving element for micro-motion systems, but it suffers from hysteresis. This brings difficulties to the modeling and control of piezoelectric ceramic micro-displacement systems. The hysteresis nonlinearity of piezoelectric ceramics belongs to the non-local storage type hysteresis nonlinearity, which is an inherent characteristic of piezoelectric ceramics. Its main feature is that the output of the system at the next moment not only depends on the input and output at the current moment, but also depends on the historical state of the input.

现有的压电陶瓷致动器的建模装置包括:基于Bouc-Wen模型进行建模。其中,Bouc-Wen模型通过下式表示:Existing modeling devices for piezoelectric ceramic actuators include: modeling based on the Bouc-Wen model. Among them, the Bouc-Wen model is expressed by the following formula:

其中,y(t)是输出位移随时间变化的函数;x(t)是输出位移的线性分量随时间变化的函数;h(t)是输出位移的迟滞分量随时间变化的函数;u(t)是输入电压随时间变化的函数;“.”表示对应函数的一阶导数;k、A、β、γ是模型参数,n为预设常数,比如:n=1。Among them, y(t) is the function of the output displacement changing with time; x(t) is the function of the linear component of the output displacement changing with time; h(t) is the function of the hysteresis component of the output displacement changing with time; u(t) ) is a function of the input voltage changing with time; "." represents the first derivative of the corresponding function; k, A, β, and γ are model parameters, and n is a preset constant, such as: n=1.

然而,基于Bouc-Wen模型建立的迟滞模型输出的理论输出位移与实际输出位移之间的误差仍然较大。However, the error between the theoretical output displacement and the actual output displacement output by the hysteresis model based on the Bouc-Wen model is still large.

发明内容Contents of the invention

本申请提供了一种压电陶瓷致动器的迟滞现象确定方法和装置,可以解决现有的基于Bouc-Wen模型建立的迟滞模型,该模型输出的理论输出位移与实际输出位移之间的误差较大的问题。本申请提供如下技术方案:This application provides a method and device for determining the hysteresis phenomenon of a piezoelectric ceramic actuator, which can solve the error between the theoretical output displacement and the actual output displacement of the existing hysteresis model based on the Bouc-Wen model. Bigger question. This application provides the following technical solutions:

第一方面,提供了一种压电陶瓷致动器的迟滞现象确定方法,所述方法包括:In a first aspect, a method for determining the hysteresis phenomenon of a piezoelectric ceramic actuator is provided, and the method includes:

获取所述压电陶瓷致动器的输入电压;Obtain the input voltage of the piezoelectric ceramic actuator;

确定所述输入电压的一阶导数和二阶导数;determining the first-order derivative and the second-order derivative of the input voltage;

将所述输入电压的一阶导数和二阶导数输入预设迟滞模型,得到所述压电陶瓷致动器的迟滞结果;Input the first-order derivative and the second-order derivative of the input voltage into the preset hysteresis model to obtain the hysteresis result of the piezoelectric ceramic actuator;

其中,所述预设迟滞模型是对Bouc-Wen模型进行改进得到的,所述预设迟滞模型包括输入位移的迟滞分量的一阶导数,所述迟滞分量的一阶导数包括形状控制函数,所述形状控制函数为以所述输入电压的一阶导数和二阶导数为变量的参数,所述输入电压的一阶导数和二阶导数使所述形状控制函数的取值随时间呈非中心对称变化。Wherein, the preset hysteresis model is obtained by improving the Bouc-Wen model. The preset hysteresis model includes the first-order derivative of the hysteresis component of the input displacement, and the first-order derivative of the hysteresis component includes the shape control function, so The shape control function is a parameter with the first-order derivative and the second-order derivative of the input voltage as variables. The first-order derivative and the second-order derivative of the input voltage make the value of the shape control function non-centrally symmetrical over time. Variety.

可选地,所述形状控制函数包括以所述输入电压的一阶导数为参数的分量、以所述输入电压的二阶导数为参数的分量和以所述输入电压的一阶导数乘以二阶导数为参数的分量。Optionally, the shape control function includes a component with a first-order derivative of the input voltage as a parameter, a component with a second-order derivative of the input voltage as a parameter, and a component with the first-order derivative of the input voltage multiplied by two. Derivatives are components of parameters.

可选地,所述预设迟滞模型通过下式表示:Optionally, the preset hysteresis model is expressed by the following formula:

其中,y(t)是输出位移随时间变化的函数;x(t)是输出位移的线性分量随时间变化的函数;h(t)是输出位移的迟滞分量随时间变化的函数;uAmong them, y(t) is the function of the output displacement changing with time; x(t) is the function of the linear component of the output displacement changing with time; h(t) is the function of the hysteresis component of the output displacement changing with time; u

(t)是输入电压随时间变化的函数;“.”表示对应函数的一阶导数;“..”表示对应函数的二阶导数k、A、β1、β2、β3、β4、β5、β6、γ是模型参数,n为预设常数。(t) is the function of the input voltage changing with time; "." represents the first-order derivative of the corresponding function; ".." represents the second-order derivative of the corresponding function k, A, β 1 , β 2 , β 3 , β 4 , β 5 , β 6 , and γ are model parameters, and n is a preset constant.

第二方面,提供了一种压电陶瓷致动器的迟滞现象确定装置,所述装置包括:In a second aspect, a device for determining the hysteresis phenomenon of a piezoelectric ceramic actuator is provided, and the device includes:

电压获取模块,用于获取所述压电陶瓷致动器的输入电压;A voltage acquisition module, used to acquire the input voltage of the piezoelectric ceramic actuator;

导数确定模块,用于确定所述输入电压的一阶导数和二阶导数;A derivative determination module, used to determine the first-order derivative and the second-order derivative of the input voltage;

迟滞确定模块,用于将所述输入电压的一阶导数和二阶导数输入预设迟滞模型,得到所述压电陶瓷致动器的迟滞结果;A hysteresis determination module, configured to input the first-order derivative and the second-order derivative of the input voltage into a preset hysteresis model to obtain the hysteresis result of the piezoelectric ceramic actuator;

其中,所述预设迟滞模型是对Bouc-Wen模型进行改进得到的,所述预设迟滞模型包括输入位移的迟滞分量的一阶导数,所述迟滞分量的一阶导数包括形状控制函数,所述形状控制函数为以所述输入电压的一阶导数和二阶导数为变量的参数,所述输入电压的一阶导数和二阶导数使所述形状控制函数的取值随时间呈非中心对称变化。Wherein, the preset hysteresis model is obtained by improving the Bouc-Wen model. The preset hysteresis model includes the first-order derivative of the hysteresis component of the input displacement, and the first-order derivative of the hysteresis component includes the shape control function, so The shape control function is a parameter with the first-order derivative and the second-order derivative of the input voltage as variables. The first-order derivative and the second-order derivative of the input voltage make the value of the shape control function non-centrally symmetrical over time. Variety.

可选地,所述形状控制函数包括以所述输入电压的一阶导数为参数的分量、以所述输入电压的二阶导数为参数的分量和以所述输入电压的一阶导数乘以二阶导数为参数的分量。Optionally, the shape control function includes a component with a first-order derivative of the input voltage as a parameter, a component with a second-order derivative of the input voltage as a parameter, and a component with the first-order derivative of the input voltage multiplied by two. Derivatives are components of parameters.

可选地,所述预设迟滞模型通过下式表示:Optionally, the preset hysteresis model is expressed by the following formula:

其中,y(t)是输出位移随时间变化的函数;x(t)是输出位移的线性分量随时间变化的函数;h(t)是输出位移的迟滞分量随时间变化的函数;u(t)是输入电压随时间变化的函数;“.”表示对应函数的一阶导数;“..”表示对应函数的二阶导数k、A、β1、β2、β3、β4、β5、β6、γ是模型参数,n为预设常数。Among them, y(t) is the function of the output displacement changing with time; x(t) is the function of the linear component of the output displacement changing with time; h(t) is the function of the hysteresis component of the output displacement changing with time; u(t) ) is a function of the input voltage changing with time; "." represents the first-order derivative of the corresponding function; ".." represents the second-order derivative of the corresponding function k, A, β 1 , β 2 , β 3 , β 4 , β 5 , β 6 , and γ are model parameters, and n is a preset constant.

本申请的有益效果在于:通过获取压电陶瓷致动器的输入电压;确定输入电压的一阶导数和二阶导数;将输入电压的一阶导数和二阶导数输入预设迟滞模型,得到压电陶瓷致动器的迟滞结果;可以解决现有的基于Bouc-Wen模型建立的迟滞模型,该模型输出的理论输出位移与实际输出位移之间的误差较大的问题;由于预设迟滞模型是对Bouc-Wen模型进行改进得到的,预设迟滞模型包括输入位移的迟滞分量的一阶导数,迟滞分量的一阶导数包括形状控制函数,形状控制函数为以输入电压的一阶导数和二阶导数为变量的参数,输入电压的一阶导数和二阶导数使形状控制函数的取值随时间呈非中心对称变化,因此,更加符合形状控制函数的实际变化情况,从而提高迟滞模型的建模精度。The beneficial effects of this application are: by obtaining the input voltage of the piezoelectric ceramic actuator; determining the first-order derivative and second-order derivative of the input voltage; inputting the first-order derivative and second-order derivative of the input voltage into the preset hysteresis model to obtain the voltage Hysteresis results of electroceramic actuators; it can solve the existing hysteresis model based on the Bouc-Wen model, which has a large error between the theoretical output displacement and the actual output displacement; because the preset hysteresis model is Obtained by improving the Bouc-Wen model, the preset hysteresis model includes the first-order derivative of the hysteresis component of the input displacement. The first-order derivative of the hysteresis component includes the shape control function. The shape control function is the first-order derivative of the input voltage and the second-order The derivative is the parameter of the variable. The first-order derivative and the second-order derivative of the input voltage cause the value of the shape control function to change non-centrosymmetrically with time. Therefore, it is more consistent with the actual changes of the shape control function, thereby improving the modeling of the hysteresis model. Accuracy.

上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,并可依照说明书的内容予以实施,以下以本申请的较佳实施例并配合附图详细说明如后。The above description is only an overview of the technical solutions of the present application. In order to have a clearer understanding of the technical means of the present application and implement them according to the contents of the specification, the preferred embodiments of the present application are described in detail below with reference to the accompanying drawings.

附图说明Description of the drawings

图1是本申请一个实施例提供的压电陶瓷致动器的迟滞现象确定方法的流程图;Figure 1 is a flow chart of a method for determining the hysteresis phenomenon of a piezoelectric ceramic actuator provided by an embodiment of the present application;

图2是本申请一个实施例提供的Bouc-Wen模型与预设迟滞模型随时间变化的误差曲线示意图;Figure 2 is a schematic diagram of the error curve of the Bouc-Wen model and the preset hysteresis model as a function of time provided by an embodiment of the present application;

图3是本申请一个实施例提供的压电陶瓷致动器的迟滞现象确定装置的框图。FIG. 3 is a block diagram of a device for determining the hysteresis phenomenon of a piezoelectric ceramic actuator provided by an embodiment of the present application.

具体实施方式Detailed ways

下面结合附图和实施例,对本申请的具体实施方式作进一步详细描述。以下实施例用于说明本申请,但不用来限制本申请的范围。Specific implementations of the present application will be described in further detail below with reference to the accompanying drawings and examples. The following examples are used to illustrate the present application but are not intended to limit the scope of the present application.

可选地,本申请以各个实施例的执行主体为电子设备为例进行说明,该电子设备包括但不限于:计算机、手机、平板电脑或者服务器等,本实施例不对电子设备的类型作限定。Optionally, this application uses an example in which the execution subject of each embodiment is an electronic device. The electronic device includes but is not limited to: a computer, a mobile phone, a tablet, or a server. This embodiment does not limit the type of electronic device.

图1是本申请一个实施例提供的压电陶瓷致动器的迟滞现象确定方法的流程图。该方法至少包括以下几个步骤:Figure 1 is a flow chart of a method for determining the hysteresis phenomenon of a piezoelectric ceramic actuator provided by an embodiment of the present application. This method includes at least the following steps:

步骤101,获取压电陶瓷致动器的输入电压;Step 101, obtain the input voltage of the piezoelectric ceramic actuator;

步骤102,确定输入电压的一阶导数和二阶导数;Step 102, determine the first-order derivative and second-order derivative of the input voltage;

步骤103,将输入电压的一阶导数和二阶导数输入预设迟滞模型,得到压电陶瓷致动器的迟滞结果;其中,预设迟滞模型是对Bouc-Wen模型进行改进得到的,预设迟滞模型包括输入位移的迟滞分量的一阶导数,迟滞分量的一阶导数包括形状控制函数,形状控制函数为以输入电压的一阶导数和二阶导数为变量的参数,输入电压的一阶导数和二阶导数使形状控制函数的取值随时间呈非中心对称变化。Step 103, input the first-order derivative and the second-order derivative of the input voltage into the preset hysteresis model to obtain the hysteresis result of the piezoelectric ceramic actuator; wherein, the preset hysteresis model is obtained by improving the Bouc-Wen model, and the preset hysteresis model is The hysteresis model includes the first-order derivative of the hysteresis component of the input displacement. The first-order derivative of the hysteresis component includes the shape control function. The shape control function is a parameter with the first-order derivative and the second-order derivative of the input voltage as variables. The first-order derivative of the input voltage and second-order derivatives make the value of the shape control function change non-centrosymmetrically with time.

其中,压电陶瓷致动器的迟滞结果用于指示压电陶瓷致动器随时间变化的输入位移。Among them, the hysteresis result of the piezoelectric ceramic actuator is used to indicate the input displacement of the piezoelectric ceramic actuator changing with time.

对于现有的Bouc-Wen模型,可以通过下表示:For the existing Bouc-Wen model, it can be expressed as follows:

上式中的等价写成如下:in the above formula The equivalent is written as follows:

其中,y(t)是输出位移随时间变化的函数;x(t)是输出位移的线性分量随时间变化的函数;h(t)是输出位移的迟滞分量随时间变化的函数;u(t)是输入电压随时间变化的函数;“.”表示对应函数的一阶导数;k、A、β、γ是模型参数,n为预设常数,比如:n=1。Among them, y(t) is the function of the output displacement changing with time; x(t) is the function of the linear component of the output displacement changing with time; h(t) is the function of the hysteresis component of the output displacement changing with time; u(t) ) is a function of the input voltage changing with time; "." represents the first derivative of the corresponding function; k, A, β, and γ are model parameters, and n is a preset constant, such as: n=1.

在Bouc-Wen模型中形状控制函数的函数值随时间呈中心对称变化。然而,在实际实现时,形状控制函数的函数值随时间呈非中心对称变化。基于此,本申请提供的预设迟滞模型在现有的Bouc-Wen模型的基础上,引入了输入电压的二阶导数,以使形状控制函数的函数值随时间呈非中心对称变化,更加符合形状控制函数的实际变化情况,提高迟滞模型的建模精度。Shape control functions in the Bouc-Wen model The function value changes centrally symmetrically with time. However, in actual implementation, the function value of the shape control function changes non-centrosymmetrically with time. Based on this, the preset hysteresis model provided by this application introduces the second-order derivative of the input voltage on the basis of the existing Bouc-Wen model, so that the function value of the shape control function changes non-centrosymmetrically with time, which is more consistent with The actual changes of the shape control function improve the modeling accuracy of the hysteresis model.

可选地,形状控制函数包括以输入电压的一阶导数为参数的分量、以输入电压的二阶导数为参数的分量和以输入电压的一阶导数乘以二阶导数为参数的分量。Optionally, the shape control function includes a component with a first-order derivative of the input voltage as a parameter, a component with a second-order derivative of the input voltage as a parameter, and a component with the first-order derivative multiplied by the second-order derivative of the input voltage as a parameter.

可选对,预设迟滞模型通过下式表示:Optional, the preset hysteresis model is expressed by:

其中,y(t)是输出位移随时间变化的函数;x(t)是输出位移的线性分量随时间变化的函数;h(t)是输出位移的迟滞分量随时间变化的函数;u(t)是输入电压随时间变化的函数;“.”表示对应函数的一阶导数;“..”表示对应函数的二阶导数k、A、β1、β2、β3、β4、β5、β6、γ是模型参数,n为预设常数。Among them, y(t) is the function of the output displacement changing with time; x(t) is the function of the linear component of the output displacement changing with time; h(t) is the function of the hysteresis component of the output displacement changing with time; u(t) ) is a function of the input voltage changing with time; "." represents the first-order derivative of the corresponding function; ".." represents the second-order derivative of the corresponding function k, A, β 1 , β 2 , β 3 , β 4 , β 5 , β 6 , and γ are model parameters, and n is a preset constant.

参考图2所示的Bouc-Wen模型与预设迟滞模型随时间变化的误差曲线,根据图2可知,预设迟滞模型的迟滞误差低于Bouc-Wen模型的迟滞误差。Referring to the time-varying error curves of the Bouc-Wen model and the preset hysteresis model shown in Figure 2, it can be seen from Figure 2 that the hysteresis error of the preset hysteresis model is lower than that of the Bouc-Wen model.

综上所述,本实施例提供的压电陶瓷致动器的迟滞现象确定方法,通过获取压电陶瓷致动器的输入电压;确定输入电压的一阶导数和二阶导数;将输入电压的一阶导数和二阶导数输入预设迟滞模型,得到压电陶瓷致动器的迟滞结果;可以解决现有的基于Bouc-Wen模型建立的迟滞模型,该模型输出的理论输出位移与实际输出位移之间的误差较大的问题;由于预设迟滞模型是对Bouc-Wen模型进行改进得到的,预设迟滞模型包括输入位移的迟滞分量的一阶导数,迟滞分量的一阶导数包括形状控制函数,形状控制函数为以输入电压的一阶导数和二阶导数为变量的参数,输入电压的一阶导数和二阶导数使形状控制函数的取值随时间呈非中心对称变化,因此,更加符合形状控制函数的实际变化情况,从而提高迟滞模型的建模精度。In summary, this embodiment provides a method for determining the hysteresis phenomenon of a piezoelectric ceramic actuator by obtaining the input voltage of the piezoelectric ceramic actuator; determining the first-order derivative and second-order derivative of the input voltage; The first-order derivative and the second-order derivative are input into the preset hysteresis model to obtain the hysteresis result of the piezoelectric ceramic actuator; it can solve the existing hysteresis model based on the Bouc-Wen model. The theoretical output displacement output by this model is different from the actual output displacement. The problem of large errors between the two; because the preset hysteresis model is an improvement of the Bouc-Wen model, the preset hysteresis model includes the first-order derivative of the hysteresis component of the input displacement, and the first-order derivative of the hysteresis component includes the shape control function , the shape control function is a parameter with the first-order derivative and the second-order derivative of the input voltage as variables. The first-order derivative and the second-order derivative of the input voltage cause the value of the shape control function to change non-centrosymmetrically with time. Therefore, it is more consistent with The shape control function actually changes, thereby improving the modeling accuracy of the hysteresis model.

图3是本申请一个实施例提供的压电陶瓷致动器的迟滞现象确定装置的框图。该装置至少包括以下几个模块:电压获取模块310、导数确定模块320和迟滞确定模块330。FIG. 3 is a block diagram of a device for determining the hysteresis phenomenon of a piezoelectric ceramic actuator provided by an embodiment of the present application. The device includes at least the following modules: voltage acquisition module 310, derivative determination module 320 and hysteresis determination module 330.

电压获取模块310,用于获取所述压电陶瓷致动器的输入电压;Voltage acquisition module 310, used to acquire the input voltage of the piezoelectric ceramic actuator;

导数确定模块320,用于确定所述输入电压的一阶导数和二阶导数;The derivative determination module 320 is used to determine the first-order derivative and the second-order derivative of the input voltage;

迟滞确定模块330,用于将所述输入电压的一阶导数和二阶导数输入预设迟滞模型,得到所述压电陶瓷致动器的迟滞结果;The hysteresis determination module 330 is used to input the first-order derivative and the second-order derivative of the input voltage into a preset hysteresis model to obtain the hysteresis result of the piezoelectric ceramic actuator;

其中,所述预设迟滞模型是对Bouc-Wen模型进行改进得到的,所述预设迟滞模型包括输入位移的迟滞分量的一阶导数,所述迟滞分量的一阶导数包括形状控制函数,所述形状控制函数为以所述输入电压的一阶导数和二阶导数为变量的参数,所述输入电压的一阶导数和二阶导数使所述形状控制函数的取值随时间呈非中心对称变化。Wherein, the preset hysteresis model is obtained by improving the Bouc-Wen model. The preset hysteresis model includes the first-order derivative of the hysteresis component of the input displacement, and the first-order derivative of the hysteresis component includes the shape control function, so The shape control function is a parameter with the first-order derivative and the second-order derivative of the input voltage as variables. The first-order derivative and the second-order derivative of the input voltage make the value of the shape control function non-centrally symmetrical over time. Variety.

可选地,所述形状控制函数包括以所述输入电压的一阶导数为参数的分量、以所述输入电压的二阶导数为参数的分量和以所述输入电压的一阶导数乘以二阶导数为参数的分量。Optionally, the shape control function includes a component with a first-order derivative of the input voltage as a parameter, a component with a second-order derivative of the input voltage as a parameter, and a component with the first-order derivative of the input voltage multiplied by two. Derivatives are components of parameters.

可选地,所述预设迟滞模型通过下式表示:Optionally, the preset hysteresis model is expressed by the following formula:

其中,y(t)是输出位移随时间变化的函数;x(t)是输出位移的线性分量随时间变化的函数;h(t)是输出位移的迟滞分量随时间变化的函数;uAmong them, y(t) is the function of the output displacement changing with time; x(t) is the function of the linear component of the output displacement changing with time; h(t) is the function of the hysteresis component of the output displacement changing with time; u

(t)是输入电压随时间变化的函数;“.”表示对应函数的一阶导数;“..”表示对应函数的二阶导数k、A、β1、β2、β3、β4、β5、β6、γ是模型参数,n为预设常数。(t) is the function of the input voltage changing with time; "." represents the first-order derivative of the corresponding function; ".." represents the second-order derivative of the corresponding function k, A, β 1 , β 2 , β 3 , β 4 , β 5 , β 6 , and γ are model parameters, and n is a preset constant.

相关细节参考上述装置实施例。For relevant details, refer to the above device embodiments.

需要说明的是:上述实施例中提供的压电陶瓷致动器的迟滞现象确定装置在进行压电陶瓷致动器的迟滞现象时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将压电陶瓷致动器的迟滞现象确定装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的压电陶瓷致动器的迟滞现象确定装置与压电陶瓷致动器的迟滞现象确定方法实施例属于同一构思,其具体实现过程详见装置实施例,这里不再赘述。It should be noted that when the device for determining the hysteresis phenomenon of the piezoelectric ceramic actuator provided in the above embodiments determines the hysteresis phenomenon of the piezoelectric ceramic actuator, the division of the above functional modules is only used as an example. In practical applications, , the above function allocation can be completed by different functional modules as needed, that is, the internal structure of the device for determining the hysteresis phenomenon of the piezoelectric ceramic actuator is divided into different functional modules to complete all or part of the functions described above. In addition, the device for determining the hysteresis phenomenon of the piezoelectric ceramic actuator provided in the above embodiments and the embodiment of the method for determining the hysteresis phenomenon of the piezoelectric ceramic actuator belong to the same concept. The specific implementation process can be found in the device embodiment for details, and will not be described again here. .

可选地,本申请还提供有一种计算机可读存储介质,所述计算机可读存储介质中存储有程序,所述程序由处理器加载并执行以实现上述装置实施例的压电陶瓷致动器的迟滞现象确定装置。Optionally, this application also provides a computer-readable storage medium in which a program is stored, and the program is loaded and executed by a processor to implement the piezoelectric ceramic actuator of the above device embodiment. Hysteresis phenomenon determination device.

可选地,本申请还提供有一种计算机产品,该计算机产品包括计算机可读存储介质,所述计算机可读存储介质中存储有程序,所述程序由处理器加载并执行以实现上述装置实施例的压电陶瓷致动器的迟滞现象确定装置。Optionally, this application also provides a computer product. The computer product includes a computer-readable storage medium. A program is stored in the computer-readable storage medium. The program is loaded and executed by a processor to implement the above device embodiments. Device for determining the hysteresis phenomenon of piezoelectric ceramic actuators.

以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above-described embodiments can be combined in any way. To simplify the description, not all possible combinations of the technical features in the above-described embodiments are described. However, as long as there is no contradiction in the combination of these technical features, All should be considered to be within the scope of this manual.

以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。The above-described embodiments only express several implementation modes of the present application, and their descriptions are relatively specific and detailed, but they should not be construed as limiting the scope of the invention patent. It should be noted that, for those of ordinary skill in the art, several modifications and improvements can be made without departing from the concept of the present application, and these all fall within the protection scope of the present application. Therefore, the protection scope of this patent application should be determined by the appended claims.

Claims (6)

1.一种压电陶瓷致动器的迟滞现象确定方法,其特征在于,所述方法包括:1. A method for determining the hysteresis phenomenon of a piezoelectric ceramic actuator, characterized in that the method includes: 获取所述压电陶瓷致动器的输入电压;Obtain the input voltage of the piezoelectric ceramic actuator; 确定所述输入电压的一阶导数和二阶导数;determining the first-order derivative and the second-order derivative of the input voltage; 将所述输入电压的一阶导数和二阶导数输入预设迟滞模型,得到所述压电陶瓷致动器的迟滞结果;Input the first-order derivative and the second-order derivative of the input voltage into the preset hysteresis model to obtain the hysteresis result of the piezoelectric ceramic actuator; 其中,所述预设迟滞模型是对Bouc-Wen模型进行改进得到的,所述预设迟滞模型包括输入位移的迟滞分量的一阶导数,所述迟滞分量的一阶导数包括形状控制函数,所述形状控制函数为以所述输入电压的一阶导数和二阶导数为变量的参数,所述输入电压的一阶导数和二阶导数使所述形状控制函数的取值随时间呈非中心对称变化。Wherein, the preset hysteresis model is obtained by improving the Bouc-Wen model. The preset hysteresis model includes the first-order derivative of the hysteresis component of the input displacement, and the first-order derivative of the hysteresis component includes the shape control function, so The shape control function is a parameter with the first-order derivative and the second-order derivative of the input voltage as variables. The first-order derivative and the second-order derivative of the input voltage make the value of the shape control function non-centrally symmetrical over time. Variety. 2.根据权利要求1所述的方法,其特征在于,所述形状控制函数包括以所述输入电压的一阶导数为参数的分量、以所述输入电压的二阶导数为参数的分量和以所述输入电压的一阶导数乘以二阶导数为参数的分量。2. The method of claim 1, wherein the shape control function includes a component with a first-order derivative of the input voltage as a parameter, a component with a second-order derivative of the input voltage as a parameter, and a component with the second-order derivative of the input voltage as a parameter. The first derivative of the input voltage multiplied by the second derivative is a component of the parameter. 3.根据权利要求1所述的方法,其特征在于,所述预设迟滞模型通过下式表示:3. The method according to claim 1, characterized in that the preset hysteresis model is expressed by the following formula: 其中,y(t)是输出位移随时间变化的函数;x(t)是输出位移的线性分量随时间变化的函数;h(t)是输出位移的迟滞分量随时间变化的函数;u(t)是输入电压随时间变化的函数;“.”表示对应函数的一阶导数;“..”表示对应函数的二阶导数k、A、β1、β2、β3、β4、β5、β6、γ是模型参数,n为预设常数。Among them, y(t) is the function of the output displacement changing with time; x(t) is the function of the linear component of the output displacement changing with time; h(t) is the function of the hysteresis component of the output displacement changing with time; u(t) ) is a function of the input voltage changing with time; "." represents the first-order derivative of the corresponding function; ".." represents the second-order derivative of the corresponding function k, A, β 1 , β 2 , β 3 , β 4 , β 5 , β 6 , and γ are model parameters, and n is a preset constant. 4.一种压电陶瓷致动器的迟滞现象确定装置,其特征在于,所述装置包括:4. A device for determining the hysteresis phenomenon of a piezoelectric ceramic actuator, characterized in that the device includes: 电压获取模块,用于获取所述压电陶瓷致动器的输入电压;A voltage acquisition module, used to acquire the input voltage of the piezoelectric ceramic actuator; 导数确定模块,用于确定所述输入电压的一阶导数和二阶导数;A derivative determination module, used to determine the first-order derivative and the second-order derivative of the input voltage; 迟滞确定模块,用于将所述输入电压的一阶导数和二阶导数输入预设迟滞模型,得到所述压电陶瓷致动器的迟滞结果;A hysteresis determination module, configured to input the first-order derivative and the second-order derivative of the input voltage into a preset hysteresis model to obtain the hysteresis result of the piezoelectric ceramic actuator; 其中,所述预设迟滞模型是对Bouc-Wen模型进行改进得到的,所述预设迟滞模型包括输入位移的迟滞分量的一阶导数,所述迟滞分量的一阶导数包括形状控制函数,所述形状控制函数为以所述输入电压的一阶导数和二阶导数为变量的参数,所述输入电压的一阶导数和二阶导数使所述形状控制函数的取值随时间呈非中心对称变化。Wherein, the preset hysteresis model is obtained by improving the Bouc-Wen model. The preset hysteresis model includes the first-order derivative of the hysteresis component of the input displacement, and the first-order derivative of the hysteresis component includes the shape control function, so The shape control function is a parameter with the first-order derivative and the second-order derivative of the input voltage as variables. The first-order derivative and the second-order derivative of the input voltage make the value of the shape control function non-centrally symmetrical over time. Variety. 5.根据权利要求4所述的装置,其特征在于,所述形状控制函数包括以所述输入电压的一阶导数为参数的分量、以所述输入电压的二阶导数为参数的分量和以所述输入电压的一阶导数乘以二阶导数为参数的分量。5. The device of claim 4, wherein the shape control function includes a component with a first-order derivative of the input voltage as a parameter, a component with a second-order derivative of the input voltage as a parameter, and a component with the second-order derivative of the input voltage as a parameter. The first derivative of the input voltage multiplied by the second derivative is a component of the parameter. 6.根据权利要求4所述的装置,其特征在于,所述预设迟滞模型通过下式表示:6. The device according to claim 4, characterized in that the preset hysteresis model is expressed by the following formula: 其中,y(t)是输出位移随时间变化的函数;x(t)是输出位移的线性分量随时间变化的函数;h(t)是输出位移的迟滞分量随时间变化的函数;u(t)是输入电压随时间变化的函数;“.”表示对应函数的一阶导数;“..”表示对应函数的二阶导数k、A、β1、β2、β3、β4、β5、β6、γ是模型参数,n为预设常数。Among them, y(t) is the function of the output displacement changing with time; x(t) is the function of the linear component of the output displacement changing with time; h(t) is the function of the hysteresis component of the output displacement changing with time; u(t) ) is a function of the input voltage changing with time; "." represents the first-order derivative of the corresponding function; ".." represents the second-order derivative of the corresponding function k, A, β 1 , β 2 , β 3 , β 4 , β 5 , β 6 , and γ are model parameters, and n is a preset constant.
CN202010031466.3A 2020-01-13 2020-01-13 Method and device for determining hysteresis phenomenon of piezoelectric ceramic actuators Active CN111222248B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010031466.3A CN111222248B (en) 2020-01-13 2020-01-13 Method and device for determining hysteresis phenomenon of piezoelectric ceramic actuators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010031466.3A CN111222248B (en) 2020-01-13 2020-01-13 Method and device for determining hysteresis phenomenon of piezoelectric ceramic actuators

Publications (2)

Publication Number Publication Date
CN111222248A CN111222248A (en) 2020-06-02
CN111222248B true CN111222248B (en) 2023-12-01

Family

ID=70831148

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010031466.3A Active CN111222248B (en) 2020-01-13 2020-01-13 Method and device for determining hysteresis phenomenon of piezoelectric ceramic actuators

Country Status (1)

Country Link
CN (1) CN111222248B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113191025B (en) * 2021-05-31 2023-11-10 苏州大学 Piezoelectric driven rate-dependent hysteresis modeling method, device, system and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310773A (en) * 1993-02-26 1994-11-04 Tokin Corp Driving method for piezoelectric ceramic actuator
JP2008245339A (en) * 2007-03-23 2008-10-09 Honda Motor Co Ltd Control method of piezoelectric actuator
CN105159069A (en) * 2015-08-03 2015-12-16 北京理工大学 Displacement control method of piezoelectric ceramics actuator
CN106707760A (en) * 2017-02-17 2017-05-24 南京理工大学 Nonlinear inverse control method used for dynamic hysteresis compensation of piezoelectric actuator
CN107017770A (en) * 2017-05-24 2017-08-04 重庆大学 The Second Order Sliding Mode Control and striding capacitance balance of voltage method of three level DC DC buck converters

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310773A (en) * 1993-02-26 1994-11-04 Tokin Corp Driving method for piezoelectric ceramic actuator
JP2008245339A (en) * 2007-03-23 2008-10-09 Honda Motor Co Ltd Control method of piezoelectric actuator
CN105159069A (en) * 2015-08-03 2015-12-16 北京理工大学 Displacement control method of piezoelectric ceramics actuator
CN106707760A (en) * 2017-02-17 2017-05-24 南京理工大学 Nonlinear inverse control method used for dynamic hysteresis compensation of piezoelectric actuator
CN107017770A (en) * 2017-05-24 2017-08-04 重庆大学 The Second Order Sliding Mode Control and striding capacitance balance of voltage method of three level DC DC buck converters

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
压电陶瓷作动器非对称迟滞建模与内模控制;王贞艳;贾高欣;;光学精密工程(第10期);全文 *

Also Published As

Publication number Publication date
CN111222248A (en) 2020-06-02

Similar Documents

Publication Publication Date Title
CN107544241B (en) Nonlinear PID Inverse Compensation Control Method for Piezoelectric Ceramic Actuator Hysteresis
CN110032073B (en) 1/2 power attraction repetitive control method with equivalent disturbance compensation
CN111222248B (en) Method and device for determining hysteresis phenomenon of piezoelectric ceramic actuators
CN110661449A (en) Hysteresis error compensation control system and control method of vibration-assisted cutting device
CN104076830A (en) Mass flow control device, system and method used for integrated gas delivery system
CN113900473B (en) High-precision reference generation method and system
CN110336484B (en) A Polynomial Fitting Correction Method for Hysteresis Nonlinearity of Piezoelectric Ceramics
CN113315413B (en) Design method of filter type second-order terminal discrete sliding mode controller of piezoelectric linear motor
CN106940524B (en) Vibration and nonlinear suppression method of piezoelectric positioning device
CN110334386B (en) Planar motor control method based on parameter regression and terminal equipment
CN115962768B (en) A method, device and equipment for phase shift control of harmonic oscillator closed-loop excitation
CN107340714A (en) A kind of adaptive inverse control of nanometer of servo-drive system
CN114253138B (en) Nanometer positioning platform compensation control method and system based on dynamic delay PI model
Liu et al. An inversion-free model predictive control with error compensation for piezoelectric actuators
CN110635710A (en) An Active Disturbance Rejection Repetitive Control Method for High Precision Period Tracking of Piezoelectric Actuators
CN113031444B (en) Design method of tilting mirror controller based on index optimization
CN116300421A (en) Adaptive parameter estimation method and system based on input and output data of linear time-varying system
Wu et al. A high precision software compensation algorithm for silicon piezoresistive pressure sensor
CN106533252A (en) High-precision piezoelectric ceramic power driver based on nonlinear charge control
CN110765658B (en) A method for modeling asymmetric hysteresis characteristics of piezoelectric ceramic actuators
CN110022137B (en) Simple complementary fusion filtering and differential estimation method
CN107688292B (en) A flexible nano-positioning method, device and system based on piezoelectric ceramics
CN100508233C (en) Method for the operation of a piezoelectric actuator unit
CN109765785A (en) A RDPI modeling method for piezoelectric ceramic drive components under variable load environment
CN110768569A (en) An anti-hysteresis driving method for piezoelectric ceramics based on cutting rate

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant