CN111211055B - Semiconductor structures and methods of forming them - Google Patents
Semiconductor structures and methods of forming them Download PDFInfo
- Publication number
- CN111211055B CN111211055B CN201811391839.7A CN201811391839A CN111211055B CN 111211055 B CN111211055 B CN 111211055B CN 201811391839 A CN201811391839 A CN 201811391839A CN 111211055 B CN111211055 B CN 111211055B
- Authority
- CN
- China
- Prior art keywords
- layer
- region
- forming
- dummy gate
- dielectric layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/01—Manufacture or treatment
- H10D64/017—Manufacture or treatment using dummy gates in processes wherein at least parts of the final gates are self-aligned to the dummy gates, i.e. replacement gate processes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/66—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
- H10D64/665—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes the conductor comprising a layer of elemental metal contacting the insulator, e.g. tungsten or molybdenum
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
- H10D84/0172—Manufacturing their gate conductors
- H10D84/0177—Manufacturing their gate conductors the gate conductors having different materials or different implants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
- H10D84/0186—Manufacturing their interconnections or electrodes, e.g. source or drain electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/03—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
- H10D84/038—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
一种半导体结构及其形成方法,其中形成方法包括:提供基底,所述基底包括第一区,所述第一区基底表面具有介质层,所述第一区介质层内具有伪栅开口,所述伪栅开口两侧的基底内具有源漏掺杂区,且所述介质层覆盖源漏掺杂区的表面;去除部分介质层,直至暴露出源漏掺杂区顶部,在介质层内形成接触孔;在所述接触孔底部的源漏掺杂区表面形成金属硅化物层;形成所述金属硅化物层之后,在所述第一区的伪栅开口底部形成第一功函数层。所述方法形成的半导体器件的性能较好。
A semiconductor structure and its forming method, wherein the forming method includes: providing a base, the base includes a first region, the first region has a dielectric layer on the surface of the substrate, the first region has a dummy gate opening in the dielectric layer, the There are source and drain doped regions in the substrate on both sides of the dummy gate opening, and the dielectric layer covers the surface of the source and drain doped regions; part of the dielectric layer is removed until the top of the source and drain doped regions are exposed, forming a A contact hole; forming a metal silicide layer on the surface of the source-drain doped region at the bottom of the contact hole; after forming the metal silicide layer, forming a first work function layer at the bottom of the dummy gate opening in the first region. The performance of the semiconductor device formed by the method is better.
Description
技术领域technical field
本发明涉及半导体制造领域,尤其涉及一种半导体结构及其形成方法。The invention relates to the field of semiconductor manufacturing, in particular to a semiconductor structure and a forming method thereof.
背景技术Background technique
互补式金属氧化物半导体(CMOS)晶体管作为半导体制造中的最基本器件,常被广泛适用于各种集成电路中。根据主要载流子以及制造时的掺杂类型不同,将互补式金属氧化物半导体分为NMOS晶体管和PMOS晶体管。以所述NMOS晶体管为例,所述NMOS晶体管包括:源漏掺杂区。Complementary metal-oxide-semiconductor (CMOS) transistors, as the most basic devices in semiconductor manufacturing, are often widely used in various integrated circuits. Complementary metal oxide semiconductors are divided into NMOS transistors and PMOS transistors according to the main carrier and the doping type during manufacture. Taking the NMOS transistor as an example, the NMOS transistor includes: source and drain doped regions.
现有互补式金属氧化物半导体工艺中,为了改善源漏掺杂区与源漏掺杂区上插塞的接触电阻,通常在源漏掺杂区的顶部表面形成金属硅化物层。In the existing CMOS process, in order to improve the contact resistance between the source-drain doped region and the plug on the source-drain doped region, a metal silicide layer is usually formed on the top surface of the source-drain doped region.
然而,现有技术形成的晶体管的性能仍较差。However, the performance of transistors formed by the prior art is still poor.
发明内容Contents of the invention
本发明解决的技术问题是提供一种半导体结构及其形成方法,以提高半导体器件的性能。The technical problem solved by the invention is to provide a semiconductor structure and its forming method to improve the performance of semiconductor devices.
为解决上述技术问题,本发明实施例提供一种半导体结构的形成方法,包括:提供基底,所述基底包括第一区,所述第一区基底表面具有介质层,所述第一区介质层内具有伪栅开口,所述伪栅开口两侧的基底内具有源漏掺杂区,且所述介质层覆盖源漏掺杂区的表面;去除部分介质层,直至暴露出源漏掺杂区的顶部表面,在所述介质层内形成接触孔;在所述接触孔内形成金属硅化物层;形成所述金属硅化物层之后,在所述第一区的伪栅开口底部形成第一功函数层。In order to solve the above technical problems, an embodiment of the present invention provides a method for forming a semiconductor structure, including: providing a substrate, the substrate includes a first region, the surface of the substrate in the first region has a dielectric layer, and the dielectric layer in the first region There is a dummy gate opening inside, the substrate on both sides of the dummy gate opening has a source-drain doping region, and the dielectric layer covers the surface of the source-drain doping region; part of the dielectric layer is removed until the source-drain doping region is exposed A contact hole is formed in the dielectric layer; a metal silicide layer is formed in the contact hole; after the metal silicide layer is formed, a first function is formed at the bottom of the dummy gate opening in the first region function layer.
可选的,所述金属硅化物层的形成方法包括:在所述接触孔底部的源漏掺杂区表面形成金属层;进行第一退火处理,使金属层与源漏掺杂区的顶部进行反应形成金属硅化物层。Optionally, the method for forming the metal silicide layer includes: forming a metal layer on the surface of the source-drain doped region at the bottom of the contact hole; performing a first annealing treatment to make the metal layer and the top of the source-drain doped region The reaction forms a metal silicide layer.
可选的,所述金属层的材料包括镍或者钛。Optionally, the material of the metal layer includes nickel or titanium.
可选的,所述第一退火工艺包括:激光退火工艺;所述激光退火工艺的参数包括:850摄氏度~1000摄氏度。Optionally, the first annealing process includes: a laser annealing process; parameters of the laser annealing process include: 850 degrees Celsius to 1000 degrees Celsius.
可选的,所述第一区用于形成NMOS晶体管时,所述第一功函数层的材料包括钛铝。Optionally, when the first region is used to form an NMOS transistor, the material of the first work function layer includes titanium aluminum.
可选的,形成所述接触孔之前,所述形成方法包括:在所述第一区的伪栅开口底部形成栅介质层和位于栅介质层表面的第一牺牲层;在所述第一牺牲层表面形成第二牺牲层;所述第一牺牲层的材料包括非晶硅;所述第二牺牲层的材料包括非晶硅。Optionally, before forming the contact hole, the forming method includes: forming a gate dielectric layer and a first sacrificial layer on the surface of the gate dielectric layer at the bottom of the dummy gate opening in the first region; A second sacrificial layer is formed on the surface of the layer; the material of the first sacrificial layer includes amorphous silicon; the material of the second sacrificial layer includes amorphous silicon.
可选的,形成所述栅介质层之后,形成第一牺牲层之前,还包括:进行第二退火工艺;所述第二退火工艺包括尖峰退火工艺;所述尖峰退火工艺的参数包括:800摄氏度~950摄氏度。Optionally, after forming the gate dielectric layer and before forming the first sacrificial layer, further include: performing a second annealing process; the second annealing process includes a spike annealing process; parameters of the spike annealing process include: 800 degrees Celsius ~950 degrees Celsius.
可选的,形成第一牺牲层之后,形成第二牺牲层之前,所述形成方法还包括:进行第三退火工艺;所述第三退火工艺包括尖峰退火工艺;所述尖峰退火工艺的参数包括:850摄氏度~1000摄氏度。Optionally, after forming the first sacrificial layer and before forming the second sacrificial layer, the forming method further includes: performing a third annealing process; the third annealing process includes a spike annealing process; parameters of the spike annealing process include : 850 degrees Celsius to 1000 degrees Celsius.
可选的,所述基底还包括第二区,所述介质层还位于第二区基底表面,所述伪栅开口还位于所述第二区介质层内,所述伪源漏掺杂区还位于第二区伪栅开口两侧的基底内;所述栅介质层还位于第二区的伪栅开口底部;形成所述栅介质层之后,形成第一牺牲层之前,所述形成方法还包括:在所述第一区和第二区伪栅开口底部形成第二功函数膜。Optionally, the substrate further includes a second region, the dielectric layer is also located on the substrate surface of the second region, the dummy gate opening is also located in the dielectric layer of the second region, and the dummy source-drain doped region is also Located in the substrate on both sides of the dummy gate opening in the second region; the gate dielectric layer is also located at the bottom of the dummy gate opening in the second region; after forming the gate dielectric layer and before forming the first sacrificial layer, the forming method further includes : forming a second work function film at the bottom of the dummy gate openings in the first region and the second region.
可选的,所述第二区用于形成PMOS晶体管;所述第二功函数膜的材料包括氮化钛。Optionally, the second region is used to form a PMOS transistor; the material of the second work function film includes titanium nitride.
可选的,形成所述金属硅化物层之后,形成第一功函数层之前,所述形成方法包括:在所述接触孔内形成插塞,所述插塞充满伪栅开口;形成所述插塞之后,去除第二牺牲层和第一牺牲层;去除第二牺牲层和第一牺牲层之后,去除第一区的第二功函数膜,在所述第二区伪栅开口底部形成第二功函数层。Optionally, after forming the metal silicide layer and before forming the first work function layer, the forming method includes: forming a plug in the contact hole, the plug filling the dummy gate opening; forming the plug After the plug, remove the second sacrificial layer and the first sacrificial layer; after removing the second sacrificial layer and the first sacrificial layer, remove the second work function film in the first region, and form a second work function layer.
可选的,形成所述第一功函数层之后,所述形成方法包括:在所述伪栅开口内形成栅极层,所述栅极层充满伪栅开口。Optionally, after forming the first work function layer, the forming method includes: forming a gate layer in the dummy gate opening, the gate layer filling the dummy gate opening.
相应的,本发明还提供一种半导体结构,包括:基底,所述基底包括第一区,所述第一区基底表面具有介质层,所述第一区介质层内具有伪栅开口,所述伪栅开口两侧的基底内具有源漏掺杂区,且所述介质层覆盖源漏掺杂区的表面;位于所述介质层内的接触孔,所述接触孔底部暴露出源漏掺杂区的顶部表面;位于所述接触孔底部源漏掺杂区顶部的金属硅化物层;位于所述伪栅开口底部表面的第一功函数层。Correspondingly, the present invention also provides a semiconductor structure, including: a base, the base includes a first region, the first region has a dielectric layer on the surface of the substrate, the first region has a dummy gate opening in the dielectric layer, the There are source and drain doped regions in the substrate on both sides of the dummy gate opening, and the dielectric layer covers the surface of the source and drain doped regions; the contact hole located in the dielectric layer, the bottom of the contact hole exposes the source and drain doped regions. The top surface of the region; the metal silicide layer on the top of the source-drain doping region at the bottom of the contact hole; the first work function layer on the bottom surface of the dummy gate opening.
可选的,所述第一区用于形成NMOS晶体管,所述第一功函数层的材料包括钛铝。Optionally, the first region is used to form an NMOS transistor, and the material of the first work function layer includes titanium aluminum.
可选的,所述基底还包括第二区,所述介质层还位于第二区基底表面,所述伪栅开口还位于第二区介质层内,所述源漏掺杂区还位于第二区伪栅开口两侧的基底内。Optionally, the substrate further includes a second region, the dielectric layer is also located on the substrate surface of the second region, the dummy gate opening is also located in the dielectric layer of the second region, and the source-drain doped region is also located in the second region. In the substrate on both sides of the dummy gate opening.
可选的,还包括:位于第一区伪栅开口和第二区伪栅开口底部的栅介质层;位于所述第二区栅介质层表面的第二功函数层;所述第二区用于形成PMOS晶体管,所述第二功函数层的材料包括氮化钛。Optionally, it also includes: a gate dielectric layer located at the bottom of the dummy gate opening in the first region and the dummy gate opening in the second region; a second work function layer located on the surface of the gate dielectric layer in the second region; For forming a PMOS transistor, the material of the second work function layer includes titanium nitride.
可选的,所述半导体结构还包括:位于所述接触孔内金属硅化物层表面的插塞,所述插塞充满接触孔;位于所述伪栅开口底部第一功函数层表面的栅极层,所述栅极层充满伪栅开口。Optionally, the semiconductor structure further includes: a plug located on the surface of the metal silicide layer in the contact hole, the plug filling the contact hole; a gate located on the surface of the first work function layer at the bottom of the dummy gate opening layer, the gate layer is filled with dummy gate openings.
与现有技术相比,本发明实施例的技术方案具有以下有益效果:Compared with the prior art, the technical solutions of the embodiments of the present invention have the following beneficial effects:
本发明技术方案提供的半导体结构的形成方法中,形成所述金属硅化物层之后,形成第一功函数层,使得第一功函数层内的离子不受金属硅化物层高温制程工艺中的高温影响,因此,能够防止第一功函数层内离子的扩散,有利于提高半导体器件的性能。In the method for forming a semiconductor structure provided by the technical solution of the present invention, after forming the metal silicide layer, a first work function layer is formed, so that the ions in the first work function layer are not affected by the high temperature in the high temperature process of the metal silicide layer. Therefore, the diffusion of ions in the first work function layer can be prevented, which is beneficial to improve the performance of the semiconductor device.
进一步,形成所述栅介质层之后,形成第一牺牲层之前,还包括进行第二退火工艺。而所述第一牺牲层在形成接触孔之前形成,因此,第二退火工艺在形成第一功函数层之前进行,使得第一功函数层内的离子受第二退火工艺的影响较小,有利于进一步减小第一功函数层内离子的扩散。Further, after forming the gate dielectric layer and before forming the first sacrificial layer, performing a second annealing process is also included. The first sacrificial layer is formed before the contact hole is formed, therefore, the second annealing process is performed before the formation of the first work function layer, so that the ions in the first work function layer are less affected by the second annealing process. It is beneficial to further reduce the diffusion of ions in the first work function layer.
进一步,形成第一牺牲层之后,形成第二功函数层之前,还包括进行第三退火工艺。由于第二功函数层在在形成接触孔之前形成,因此,第三退火工艺在形成第一功函数层之前进行,使得第一功函数层内的离子受第三退火工艺的影响较小,有利于进一步减小第一功函数层内离子的扩散。Further, after forming the first sacrificial layer and before forming the second work function layer, performing a third annealing process is also included. Since the second work function layer is formed before forming the contact hole, the third annealing process is performed before forming the first work function layer, so that the ions in the first work function layer are less affected by the third annealing process. It is beneficial to further reduce the diffusion of ions in the first work function layer.
附图说明Description of drawings
图1至图3是一种半导体结构的形成方法的各步骤的结构示意图;1 to 3 are structural schematic diagrams of each step of a method for forming a semiconductor structure;
图4至图16是本发明一实施例的半导体结构的形成方法的各步骤的结构示意图。FIG. 4 to FIG. 16 are structural schematic diagrams of each step of a method for forming a semiconductor structure according to an embodiment of the present invention.
具体实施方式Detailed ways
正如背景技术所述,半导体器件的性能较差。As mentioned in the background, semiconductor devices perform poorly.
图1至图3是一种半导体结构的结构示意图。1 to 3 are structural schematic diagrams of a semiconductor structure.
请参考图1,提供基底100,所述基底100包括NMOS区,所述NMOS区基底100表面具有伪栅结构(图中未示出),所述伪栅结构两侧的基底100内具有源漏掺杂区101,所述基底100和源漏掺杂区101表面、以及伪栅结构的侧壁具有介质层102,所述介质层102暴露出伪栅结构的顶部表面;去除所述伪栅结构,在所述介质层102内形成伪栅开口103。Please refer to FIG. 1 , a substrate 100 is provided, the substrate 100 includes an NMOS region, the surface of the NMOS region substrate 100 has a dummy gate structure (not shown in the figure), and the substrate 100 on both sides of the dummy gate structure has a source drain The doped region 101, the substrate 100 and the surface of the source and drain doped region 101, and the sidewall of the dummy gate structure have a dielectric layer 102, and the dielectric layer 102 exposes the top surface of the dummy gate structure; remove the dummy gate structure , forming a dummy gate opening 103 in the dielectric layer 102 .
请参考图2,在所述伪栅开口103(见图1)的底部表面形成栅介质层104;在所述栅介质层104表面形成第一功函数层105和位于第一功函数层105表面的栅极层106,所述栅极层106充满伪栅开口103。Please refer to FIG. 2 , a gate dielectric layer 104 is formed on the bottom surface of the dummy gate opening 103 (see FIG. 1 ); a first work function layer 105 is formed on the surface of the gate dielectric layer 104 and a The gate layer 106 is filled with dummy gate openings 103 .
请参考图3,形成所述栅极层103之后,去除部分介质层102,直至暴露出源漏掺杂区101的顶部表面,在所述介质层102内形成接触孔106;在所述接触孔106底部的源漏掺杂区101表面形成金属硅化物层107。Please refer to FIG. 3 , after the gate layer 103 is formed, part of the dielectric layer 102 is removed until the top surface of the source-drain doped region 101 is exposed, and a contact hole 106 is formed in the dielectric layer 102; A metal silicide layer 107 is formed on the surface of the source-drain doped region 101 at the bottom of 106 .
上述方法中,所述NMOS区用于形成NMOS晶体管,所述第一功函数层105的材料包括钛铝,所述第一功函数层105用于调节NMOS晶体管的阈值电压。所述金属硅化物层107的形成方法包括:在所述接触孔106的侧壁和底部表面形成金属层;进行退火处理,使所述金属层与源漏掺杂区101顶部反应形成金属硅化物层107。In the above method, the NMOS region is used to form an NMOS transistor, the material of the first work function layer 105 includes titanium aluminum, and the first work function layer 105 is used to adjust the threshold voltage of the NMOS transistor. The method for forming the metal silicide layer 107 includes: forming a metal layer on the sidewall and bottom surface of the contact hole 106; performing annealing treatment to make the metal layer react with the top of the source-drain doped region 101 to form a metal silicide Layer 107.
然而,所述退火处理易驱动铝离子向栅介质层104内扩散,使得栅介质层104的介电常数降低,使得栅介质层104易被击穿,不利于提高半导体器件的性能。However, the annealing treatment tends to drive aluminum ions to diffuse into the gate dielectric layer 104 , so that the dielectric constant of the gate dielectric layer 104 is reduced, and the gate dielectric layer 104 is easily broken down, which is not conducive to improving the performance of the semiconductor device.
并且,基底100还包括其他器件,如:PMOS晶体管(图中未示出),若铝离子扩散至PMOS晶体管,将影响PMOS晶体管的阈值电压,不利于提高PMOS晶体管的性能。Moreover, the substrate 100 also includes other devices, such as: PMOS transistors (not shown in the figure), if aluminum ions diffuse into the PMOS transistors, the threshold voltage of the PMOS transistors will be affected, which is not conducive to improving the performance of the PMOS transistors.
为解决所述技术问题,本发明提供了一种半导体结构的形成方法,包括:形成所述金属硅化物层之后,在所述第一区伪栅开口内的底部表面形成第一功函数层。所述方法能够降低第一功函数层中离子的扩散,提高半导体器件的性能。To solve the technical problem, the present invention provides a method for forming a semiconductor structure, comprising: after forming the metal silicide layer, forming a first work function layer on the bottom surface of the dummy gate opening in the first region. The method can reduce the diffusion of ions in the first work function layer and improve the performance of the semiconductor device.
为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and beneficial effects of the present invention more comprehensible, specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.
图4至图16是本发明一实施例的半导体结构的形成方法的各步骤的结构示意图。FIG. 4 to FIG. 16 are structural schematic diagrams of each step of a method for forming a semiconductor structure according to an embodiment of the present invention.
请参考图4,提供基底200,所述基底200包括第一区A,所述第一区A的基底200表面具有伪栅结构203,所述伪栅结构203两侧的基底200内具有源漏掺杂区206,所述基底200和源漏掺杂区206的表面、以及伪栅结构203的侧壁具有介质层208,所述介质层208暴露出伪栅结构203的顶部表面。4, a substrate 200 is provided, the substrate 200 includes a first region A, the surface of the substrate 200 in the first region A has a dummy gate structure 203, and the substrate 200 on both sides of the dummy gate structure 203 has a source drain The doped region 206 , the substrate 200 , the surfaces of the source and drain doped regions 206 , and the sidewalls of the dummy gate structure 203 have a dielectric layer 208 , and the dielectric layer 208 exposes the top surface of the dummy gate structure 203 .
在本实施例中,所述基底200包括:衬底201和位于衬底201上的鳍部202。In this embodiment, the base 200 includes: a substrate 201 and a fin 202 on the substrate 201 .
在其它实施例中,当所述半导体器件为平面式的MOS晶体管时,所述基底为平面式的半导体基底。In other embodiments, when the semiconductor device is a planar MOS transistor, the substrate is a planar semiconductor substrate.
在本实施例中,所述基底200的形成步骤包括:提供初始衬底,所述初始基底上具有第一掩膜层,所述第一掩膜层暴露出部分初始衬底的顶部表面;以所述第一掩膜层为掩膜,刻蚀所述初始衬底,形成衬底201和位于衬底201上的鳍部202。In this embodiment, the step of forming the substrate 200 includes: providing an initial substrate, the initial substrate has a first mask layer, and the first mask layer exposes part of the top surface of the initial substrate; The first mask layer is a mask, and the initial substrate is etched to form a substrate 201 and fins 202 on the substrate 201 .
在其他实施例中,所述基底的形成方法包括:提供衬底;在所述衬底表面外延形成所述鳍部。In other embodiments, the method for forming the base includes: providing a substrate; and epitaxially forming the fin on the surface of the substrate.
在本实施例中,所述初始衬底的材料为硅。相应的,所述衬底201和鳍部202的材料为硅。在其他实施例中,所述初始衬底的材料包括:锗、硅锗、绝缘体上硅或绝缘体上锗。相应的,衬底的材料包括:锗、硅锗、绝缘体上硅或绝缘体上锗。鳍部的材料包括:锗、硅锗、绝缘体上硅或绝缘体上锗。In this embodiment, the material of the initial substrate is silicon. Correspondingly, the material of the substrate 201 and the fin portion 202 is silicon. In other embodiments, the material of the initial substrate includes: germanium, silicon germanium, silicon-on-insulator, or germanium-on-insulator. Correspondingly, the material of the substrate includes: germanium, silicon germanium, silicon-on-insulator or germanium-on-insulator. Materials for the fins include germanium, silicon germanium, silicon-on-insulator, or germanium-on-insulator.
所述第一掩膜层的材料包括氮化硅,所述第一掩膜层的形成工艺包括:化学气相沉积工艺。所述第一掩膜层用于形成衬底201和鳍部202的掩膜。The material of the first mask layer includes silicon nitride, and the formation process of the first mask layer includes: a chemical vapor deposition process. The first mask layer is used to form a mask for the substrate 201 and the fin portion 202 .
以所述第一掩膜层为掩膜,刻蚀所述初始衬底的工艺包括:干法刻蚀工艺和湿法刻蚀工艺中的一种或者两种。Using the first mask layer as a mask, the process of etching the initial substrate includes: one or both of a dry etching process and a wet etching process.
所述基底200上还具有覆盖部分所述鳍部202的隔离结构(图中未标出),所述隔离结构的顶部表面低于所述鳍部202的顶部表面,且覆盖鳍部202的部分侧壁。The base 200 also has an isolation structure (not shown) covering part of the fin 202 , the top surface of the isolation structure is lower than the top surface of the fin 202 and covers part of the fin 202 side wall.
所述隔离结构的材料包括:氧化硅。在其他实施例中,所述隔离结构的材料还可以为氮氧化硅、氮化硅。The material of the isolation structure includes: silicon oxide. In other embodiments, the material of the isolation structure may also be silicon oxynitride, silicon nitride.
所述隔离结构用于实现半导体不同器件之间的电绝缘。The isolation structure is used to realize electrical isolation between different semiconductor devices.
所述第一区A用于形成NMOS晶体管。The first region A is used to form NMOS transistors.
在本实施例中,所述基底200还包括第二区B,所述第二区B用于形成PMOS晶体管,所述介质层208还位于第二区B基底200表面,所述伪栅结构203还位于第二区B,所述源漏掺杂区206还位于第二区B伪栅结构203两侧的基底200内。In this embodiment, the substrate 200 further includes a second region B for forming a PMOS transistor, the dielectric layer 208 is also located on the surface of the substrate 200 in the second region B, and the dummy gate structure 203 Also located in the second region B, the source-drain doped region 206 is also located in the substrate 200 on both sides of the dummy gate structure 203 in the second region B.
在其他实施例中,所述基底仅包括第一区。所述伪栅结构203横跨鳍部202,所述伪栅结构203包括伪栅介质层(图中未标出)和位于所述伪栅介质层表面的伪栅极层(图中未标出)。In other embodiments, the substrate includes only the first region. The dummy gate structure 203 spans the fin portion 202, and the dummy gate structure 203 includes a dummy gate dielectric layer (not shown in the figure) and a dummy gate layer (not shown in the figure) located on the surface of the dummy gate dielectric layer. ).
所述伪栅介质层的材料包括氧化硅,所述伪栅极层的材料包括硅。The material of the dummy gate dielectric layer includes silicon oxide, and the material of the dummy gate layer includes silicon.
所述伪栅结构203的侧壁具有第一侧墙204,所述第一侧墙204用于定义轻掺杂区的位置。所述第一侧墙204的材料包括氮化硅。The sidewall of the dummy gate structure 203 has a first sidewall 204, and the first sidewall 204 is used to define the position of the lightly doped region. The material of the first sidewall 204 includes silicon nitride.
所述第一侧墙204的侧壁具有第二侧墙205,所述第二侧墙205用于源漏掺杂区206的位置。The sidewall of the first sidewall 204 has a second sidewall 205 , and the second sidewall 205 is used for the location of the source-drain doping region 206 .
所述源漏掺杂区206的形成方法包括:在所述伪栅结构203、第一侧墙204和第二侧墙205两侧的鳍部202内形成源漏开口;在所述源漏开口内形成外延层;在所述外延层内掺入掺杂离子,形成源漏掺杂区206。The method for forming the source-drain doped region 206 includes: forming source-drain openings in the fins 202 on both sides of the dummy gate structure 203, the first sidewall 204 and the second sidewall 205; An epitaxial layer is formed in the epitaxial layer; doping ions are doped into the epitaxial layer to form a source-drain doped region 206 .
所述外延层的材料和掺杂离子的导电类型与晶体管的类型相关。The material of the epitaxial layer and the conductivity type of dopant ions are related to the type of transistor.
在本实施例中,所述第一区A用于形成NMOS晶体管,所述外延层的材料包括碳化硅或者硅,所述掺杂离子为N型离子。所述第二区B用于形成PMOS晶体管,所述外延层的材料包括硅锗或者硅,所述掺杂离子为P型离子。In this embodiment, the first region A is used to form an NMOS transistor, the material of the epitaxial layer includes silicon carbide or silicon, and the dopant ions are N-type ions. The second region B is used to form a PMOS transistor, the material of the epitaxial layer includes silicon germanium or silicon, and the dopant ions are P-type ions.
形成所述源漏掺杂区206之后,形成介质层208之前,所述形成方法还包括:在所述源漏掺杂区206的顶部形成停止层207。After forming the source-drain doped region 206 and before forming the dielectric layer 208 , the forming method further includes: forming a stop layer 207 on the top of the source-drain doped region 206 .
所述停止层207的材料包括氮化硅,所述停止层207用于作为后续在源漏掺杂区206顶部的介质层208内形成接触孔的停止层,有利于保护源漏掺杂区206的顶部表面。The material of the stop layer 207 includes silicon nitride, and the stop layer 207 is used as a stop layer for subsequent formation of contact holes in the dielectric layer 208 on the top of the source-drain doped region 206, which is beneficial to protect the source-drain doped region 206 of the top surface.
在本实施例中,所述停止层207还覆盖隔离结构表面、以及第二侧墙205的侧壁。In this embodiment, the stop layer 207 also covers the surface of the isolation structure and the sidewall of the second sidewall 205 .
在其他实施例中,所述停止层仅覆盖源漏掺杂区的顶部表面。In other embodiments, the stop layer only covers the top surface of the source-drain doped region.
所述介质层208的形成方法包括:在所述停止层207和伪栅结构203的顶部表面形成介质膜;平坦化所述介质膜,直至暴露出伪栅极层的顶部表面,形成介质层208。The forming method of the dielectric layer 208 includes: forming a dielectric film on the top surface of the stop layer 207 and the dummy gate structure 203; planarizing the dielectric film until the top surface of the dummy gate layer is exposed to form a dielectric layer 208 .
所述介质膜的材料包括氧化硅或者氮氧化硅。相应的,所述介质层208的材料包括氧化硅或者氮氧化硅。所述介质膜的形成工艺包括物理气相沉积工艺或者化学气相沉积工艺。The material of the dielectric film includes silicon oxide or silicon oxynitride. Correspondingly, the material of the dielectric layer 208 includes silicon oxide or silicon oxynitride. The forming process of the dielectric film includes a physical vapor deposition process or a chemical vapor deposition process.
平坦化所述介质膜的工艺包括:化学机械研磨工艺。The process of planarizing the dielectric film includes: a chemical mechanical polishing process.
请参考图5,去除所述伪栅结构203(见图4),在所述介质层208内形成伪栅开口209。Referring to FIG. 5 , the dummy gate structure 203 (see FIG. 4 ) is removed, and a dummy gate opening 209 is formed in the dielectric layer 208 .
去除伪栅结构203的方法包括:去除伪栅极层;去除所述伪栅极层之后,去除伪栅介质层。The method for removing the dummy gate structure 203 includes: removing the dummy gate layer; after removing the dummy gate layer, removing the dummy gate dielectric layer.
去除伪栅极层的工艺包括:干法刻蚀工艺和湿法刻蚀工艺中的一种或者两种组合。The process of removing the dummy gate layer includes: one or a combination of dry etching process and wet etching process.
去除伪栅介质层的工艺包括:干法刻蚀工艺和湿法刻蚀工艺中的一种或者两种组合。The process for removing the dummy gate dielectric layer includes: one or a combination of dry etching process and wet etching process.
所述第一区A伪栅开口209用于后续容纳栅介质层、位于栅介质层上的第一功函数层、以及位于第一功函数层表面的栅极层;所述第二区B伪栅开口209用于后续容纳栅介质层、位于栅介质层表面的第二功函数层、以及位于第二功函数层表面的栅极层。The dummy gate opening 209 in the first region A is used to subsequently accommodate the gate dielectric layer, the first work function layer on the gate dielectric layer, and the gate layer on the surface of the first work function layer; the dummy gate opening 209 in the second region B The gate opening 209 is used to subsequently accommodate the gate dielectric layer, the second work function layer on the surface of the gate dielectric layer, and the gate layer on the surface of the second work function layer.
请参考图6,在所述伪栅开口209底部的鳍部202表面形成界面层(图中未标出);在所述界面层表面形成栅介质层210。Referring to FIG. 6 , an interface layer (not shown in the figure) is formed on the surface of the fin portion 202 at the bottom of the dummy gate opening 209 ; a gate dielectric layer 210 is formed on the surface of the interface layer.
所述界面层的材料包括氧化硅。所述界面层的形成工艺包括化学氧化工艺,所述化学氧化工艺的参数包括:氧化剂包括双氧水。The material of the interface layer includes silicon oxide. The formation process of the interface layer includes a chemical oxidation process, and the parameters of the chemical oxidation process include: the oxidizing agent includes hydrogen peroxide.
所述界面层用于改善栅介质层210与鳍部202之间的界面态。The interface layer is used to improve the interface state between the gate dielectric layer 210 and the fin portion 202 .
所述栅介质层210的材料为高介电常数(介电常数K大于3.9)材料。在本实施例中,所述栅介质层210的材料为氧化铪。在其他实施例中,所述栅介质层的材料包括:La2O3、HfSiON、HfAlO2、ZrO2、Al2O3或HfSiO4。The gate dielectric layer 210 is made of high dielectric constant (dielectric constant K greater than 3.9) material. In this embodiment, the material of the gate dielectric layer 210 is hafnium oxide. In other embodiments, the material of the gate dielectric layer includes: La 2 O 3 , HfSiON, HfAlO 2 , ZrO 2 , Al 2 O 3 or HfSiO 4 .
形成所述栅介质层210之后,还包括进行第二退火处理。所述第二退火工艺包括尖峰退火工艺,所述尖峰退火工艺的参数包括:800摄氏度~950摄氏度。After the gate dielectric layer 210 is formed, a second annealing treatment is also performed. The second annealing process includes a spike annealing process, and parameters of the spike annealing process include: 800 degrees Celsius to 950 degrees Celsius.
采用化学氧化工艺形成的界面层的缺陷较多,所述第二退火处理用于修复界面层内的缺陷,从而使得界面层与栅介质层210、以及界面层与鳍部202之间的界面态均较好,有利于提高半导体器件的性能。The interface layer formed by the chemical oxidation process has many defects, and the second annealing treatment is used to repair the defects in the interface layer, so that the interface state between the interface layer and the gate dielectric layer 210, and the interface layer and the fin 202 All are good, which is conducive to improving the performance of semiconductor devices.
请参考图7,在所述栅介质层210表面形成第二功函数膜211。Referring to FIG. 7 , a second work function film 211 is formed on the surface of the gate dielectric layer 210 .
所述第二功函数膜211用于后续在第二区B伪栅开口209底部的栅介质层210表面形成第二功函数层。所述第二功函数层用于调节PMOS晶体管的阈值电压。The second work function film 211 is used to subsequently form a second work function layer on the surface of the gate dielectric layer 210 at the bottom of the dummy gate opening 209 in the second region B. The second work function layer is used to adjust the threshold voltage of the PMOS transistor.
所述第二功函数膜211的材料包括氮化钛。The material of the second work function film 211 includes titanium nitride.
请参考图8,在所述第二功函数膜211表面形成第一牺牲层212。Referring to FIG. 8 , a first sacrificial layer 212 is formed on the surface of the second work function film 211 .
所述第一牺牲层212的材料包括非晶硅,所述第一牺牲层212的形成工艺包括:化学气相沉积工艺或者物理气相沉积工艺。The material of the first sacrificial layer 212 includes amorphous silicon, and the formation process of the first sacrificial layer 212 includes: a chemical vapor deposition process or a physical vapor deposition process.
形成所述第一牺牲层212之后,还包括:进行第三退火处理,所述第三退火处理的工艺包括:尖峰退火工艺,所述尖峰退火工艺的参数包括:850摄氏度~1000摄氏度。After forming the first sacrificial layer 212 , it further includes: performing a third annealing treatment, the process of the third annealing treatment includes: a spike annealing process, and the parameters of the spike annealing process include: 850 degrees Celsius to 1000 degrees Celsius.
所述第三退火工艺有利于第一牺牲层212吸附栅介质层210内的氧气,有利于确保栅介质层210的介电常数,进而防止栅介质层210被击穿,有利于提高半导体器件的性能。The third annealing process is beneficial for the first sacrificial layer 212 to absorb oxygen in the gate dielectric layer 210, which is conducive to ensuring the dielectric constant of the gate dielectric layer 210, thereby preventing the gate dielectric layer 210 from being broken down, and is conducive to improving the performance of the semiconductor device. performance.
所述第一牺牲层212的厚度为35埃~110埃。The thickness of the first sacrificial layer 212 is 35 Ř110 Å.
选择所述第一牺牲层212的厚度意义在于:若第一牺牲层212的厚度太薄,使得第一牺牲层212平衡栅介质层210内氧含量的能力较弱,使得栅介质层210的介电常数难以确保,因此,不利于半导体器件的性能;若第一牺牲层212的厚度太厚,由于非晶硅材料容易在第三退火工艺过程中发生原子团聚,不利于后续工艺将其去除。The significance of selecting the thickness of the first sacrificial layer 212 is: if the thickness of the first sacrificial layer 212 is too thin, the ability of the first sacrificial layer 212 to balance the oxygen content in the gate dielectric layer 210 is weak, so that the dielectric layer 210 It is difficult to ensure the electrical constant, which is not conducive to the performance of semiconductor devices; if the thickness of the first sacrificial layer 212 is too thick, since the amorphous silicon material is prone to atomic agglomeration during the third annealing process, it is not conducive to subsequent process removal.
请参考图9,在所述第一牺牲层212表面形成第二牺牲层213,所述第二牺牲层213充满伪栅开口209(见图8)。Referring to FIG. 9 , a second sacrificial layer 213 is formed on the surface of the first sacrificial layer 212 , and the second sacrificial layer 213 is filled with the dummy gate opening 209 (see FIG. 8 ).
所述第二牺牲层213的形成方法包括:在所述第一牺牲层212表面形成第二牺牲膜;平坦化所述第二牺牲膜,直至暴露出介质层208的顶部表面,在所述伪栅开口209内形成第二牺牲层213。The forming method of the second sacrificial layer 213 includes: forming a second sacrificial film on the surface of the first sacrificial layer 212; planarizing the second sacrificial film until the top surface of the dielectric layer 208 is exposed, and A second sacrificial layer 213 is formed in the gate opening 209 .
所述第二牺牲膜的材料包括非晶硅,相应的,所述第二牺牲层213的材料包括非晶硅。所述第二牺牲膜的形成工艺包括化学气相沉积工艺或者物理气相沉积工艺。The material of the second sacrificial film includes amorphous silicon, and correspondingly, the material of the second sacrificial layer 213 includes amorphous silicon. The formation process of the second sacrificial film includes a chemical vapor deposition process or a physical vapor deposition process.
平坦化所述第二牺牲膜的工艺包括:化学机械研磨工艺。The process of planarizing the second sacrificial film includes: a chemical mechanical polishing process.
在平坦化所述第二牺牲膜的过程中,介质层208表面的第一牺牲层212、第二功函数膜211和栅介质层210也被去除。During the process of planarizing the second sacrificial film, the first sacrificial layer 212 , the second work function film 211 and the gate dielectric layer 210 on the surface of the dielectric layer 208 are also removed.
请参考图10,形成所述第二牺牲层213之后,去除部分介质层208,直至暴露出源漏掺杂区206的顶部表面,在所述介质层208内形成接触孔214。Referring to FIG. 10 , after forming the second sacrificial layer 213 , part of the dielectric layer 208 is removed until the top surface of the source-drain doped region 206 is exposed, and a contact hole 214 is formed in the dielectric layer 208 .
所述接触孔214的形成方法包括:在所述介质层208和第二牺牲层213的表面形成第二掩膜层(图中未示出),所述第二掩膜层暴露出源漏掺杂区206顶部的部分介质层208;以所述第二掩膜层为掩膜,刻蚀所述介质层208和停止层207,直至暴露出源漏掺杂区的顶部表面,在所述介质层208和停止层207内形成接触孔214。The method for forming the contact hole 214 includes: forming a second mask layer (not shown in the figure) on the surface of the dielectric layer 208 and the second sacrificial layer 213, and the second mask layer exposes source-drain doping Part of the dielectric layer 208 on the top of the impurity region 206; using the second mask layer as a mask, etch the dielectric layer 208 and the stop layer 207 until the top surface of the source-drain doped region is exposed. A contact hole 214 is formed in layer 208 and stop layer 207 .
所述第二掩膜层的材料包括氮化硅或者氮化钛,所述第二掩膜层用于定义接触孔214的尺寸和位置。The material of the second mask layer includes silicon nitride or titanium nitride, and the second mask layer is used to define the size and position of the contact hole 214 .
所述接触孔214用于后续容纳金属硅化物层和位于金属硅化物层表面的插塞。The contact hole 214 is used for subsequently accommodating the metal silicide layer and a plug located on the surface of the metal silicide layer.
请参考图11,在所述接触孔214底部的源漏掺杂区206顶部形成金属硅化物层215。Referring to FIG. 11 , a metal silicide layer 215 is formed on top of the source-drain doped region 206 at the bottom of the contact hole 214 .
所述金属硅化物层215的形成方法包括:在所述接触孔214底部的源漏掺杂区206表面形成金属层(图中未示出);进行第一退火工艺,使所述金属层与源漏掺杂区206顶部发生反应形成金属硅化物层215。The method for forming the metal silicide layer 215 includes: forming a metal layer (not shown in the figure) on the surface of the source-drain doped region 206 at the bottom of the contact hole 214; performing a first annealing process to make the metal layer and The top of the source-drain doped region 206 reacts to form a metal silicide layer 215 .
所述金属层的材料包括镍或者钛,相应的,金属硅化物层215的材料包括:镍硅化合物或者钛硅化合物。所述金属硅化物层215用于降低后续插塞与源漏掺杂区206之间的接触电阻。The material of the metal layer includes nickel or titanium, and correspondingly, the material of the metal silicide layer 215 includes nickel silicon compound or titanium silicon compound. The metal silicide layer 215 is used to reduce the contact resistance between the subsequent plug and the source-drain doped region 206 .
所述金属层的形成工艺包括:化学气相沉积工艺或者物理气相沉积工艺。The forming process of the metal layer includes: a chemical vapor deposition process or a physical vapor deposition process.
所述第一退火工艺包括:激光退火工艺,所述激光退火工艺的参数包括:850摄氏度~1000摄氏度。The first annealing process includes: a laser annealing process, and the parameters of the laser annealing process include: 850 degrees Celsius to 1000 degrees Celsius.
进行第一退火工艺时,未在第一区A伪栅开口209底部的伪栅介质层210表面形成第一功函数层,因此,后续第一功函数层不受第一退火工艺的影响,使得第一功函数层内的离子不易受第一退火工艺的影响,则第一功函数层内的离子不易扩散至栅介质层210内,有利于确保栅介质层210的介电常数,防止栅介质层210被击穿。并且,所述第一功函数层内的离子也不易扩散至第二区B内,使得第二区B器件的阈值电压不受第一功函数层内离子的影响,有利于提高第二区B器件的性能。When performing the first annealing process, the first work function layer is not formed on the surface of the dummy gate dielectric layer 210 at the bottom of the dummy gate opening 209 in the first region A, therefore, the subsequent first work function layer is not affected by the first annealing process, so that The ions in the first work function layer are not easily affected by the first annealing process, so the ions in the first work function layer are not easy to diffuse into the gate dielectric layer 210, which is beneficial to ensure the dielectric constant of the gate dielectric layer 210 and prevent the gate dielectric Layer 210 is broken down. Moreover, the ions in the first work function layer are not easy to diffuse into the second region B, so that the threshold voltage of the device in the second region B is not affected by the ions in the first work function layer, which is conducive to improving the second region B. device performance.
请参考图12,形成所述金属硅化物层215之后,在所述接触孔214(见图11)内形成插塞216,所述插塞216充满接触孔214。Referring to FIG. 12 , after the metal silicide layer 215 is formed, a plug 216 is formed in the contact hole 214 (see FIG. 11 ), and the plug 216 fills the contact hole 214 .
所述插塞216的形成方法包括:在所述介质层208表面以及接触孔214内形成插塞膜;去除部分插塞膜,在所述接触孔214内形成所述插塞216。The method for forming the plug 216 includes: forming a plug film on the surface of the dielectric layer 208 and in the contact hole 214 ; removing part of the plug film, and forming the plug 216 in the contact hole 214 .
所述插塞膜的材料为金属。所述插塞膜用于形成插塞216,因此,所述插塞216的材料为金属。The material of the plug film is metal. The plug film is used to form the plug 216, therefore, the material of the plug 216 is metal.
在本实施例中,所述插塞膜的材料为钨,相应的,所述插塞216的材料为钨。在其他实施例中,所述插塞膜的材料包括铝或者铜,相应的,所述插塞的材料包括铝或者铜。In this embodiment, the material of the plug film is tungsten, and correspondingly, the material of the plug 216 is tungsten. In other embodiments, the material of the plug film includes aluminum or copper, and correspondingly, the material of the plug includes aluminum or copper.
所述插塞膜的形成工艺包括:化学气相沉积工艺或者物理气相沉积工艺。The formation process of the plug film includes: a chemical vapor deposition process or a physical vapor deposition process.
去除部分插塞膜的工艺包括化学机械研磨工艺。The process of removing part of the plug film includes a chemical mechanical polishing process.
请参考图13,形成所述插塞216之后,去除第二牺牲层213和第一牺牲层212。Referring to FIG. 13 , after the plug 216 is formed, the second sacrificial layer 213 and the first sacrificial layer 212 are removed.
去除第二牺牲层213和第一牺牲层212的工艺包括干法刻蚀工艺和湿法刻蚀工艺中的一种或者两种组合。The process of removing the second sacrificial layer 213 and the first sacrificial layer 212 includes one or a combination of a dry etching process and a wet etching process.
去除第二牺牲层213和第一牺牲层212,有利于后续形成第二功函数层和栅极层。Removing the second sacrificial layer 213 and the first sacrificial layer 212 facilitates subsequent formation of the second work function layer and the gate layer.
请参考图14,去除第二牺牲层213和第一牺牲层212之后,在所述第二区B伪栅开口209内形成第三牺牲层250;形成所述第三牺牲层250之后,去除第一区A伪栅开口209侧壁和底部的第二功函数膜211,在所述第二区B伪栅开口209侧壁和底部形成第二功函数层251。Please refer to FIG. 14, after removing the second sacrificial layer 213 and the first sacrificial layer 212, a third sacrificial layer 250 is formed in the dummy gate opening 209 in the second region B; after forming the third sacrificial layer 250, the first sacrificial layer is removed The second work function film 211 is formed on the sidewall and bottom of the dummy gate opening 209 in the first region A, and the second work function layer 251 is formed on the sidewall and bottom of the dummy gate opening 209 in the second region B.
所述第三牺牲层250的材料包括底部抗反射材料。所述第三牺牲层250用于使第二区B的第二功函数膜211不被去除,有利于后续在第二区B伪栅开口209底部的栅介质层210表面形成第二功函数层251。The material of the third sacrificial layer 250 includes bottom anti-reflection material. The third sacrificial layer 250 is used to prevent the second work function film 211 in the second region B from being removed, which is conducive to the subsequent formation of a second work function layer on the surface of the gate dielectric layer 210 at the bottom of the dummy gate opening 209 in the second region B 251.
去除第一区A伪栅开口209侧壁和底部的第二功函数膜211的工艺包括:干法刻蚀工艺和湿法刻蚀工艺中的一种或者两种组合。The process of removing the second work function film 211 on the sidewall and bottom of the dummy gate opening 209 in the first region A includes: one or a combination of a dry etching process and a wet etching process.
所述第二功函数层251用于改善第二区B器件的阈值电压。The second work function layer 251 is used to improve the threshold voltage of the device in the second region B.
请参考图15,在所述第二功函数层251和栅介质层210表面形成第一功函数层217。Referring to FIG. 15 , the first work function layer 217 is formed on the surface of the second work function layer 251 and the gate dielectric layer 210 .
形成所述第二功函数层251之后,形成第一功函数层217之前,所述形成方法还包括:去除所述第三牺牲层250。After forming the second work function layer 251 and before forming the first work function layer 217 , the forming method further includes: removing the third sacrificial layer 250 .
去除所述第三牺牲层250的工艺包括:灰化工艺。The process of removing the third sacrificial layer 250 includes: an ashing process.
所述第一功函数层217的材料包括钛铝。所述第一功函数层217用于改善第一区A器件的阈值电压,所述第一区A用于形成NMOS晶体管。The material of the first work function layer 217 includes titanium aluminum. The first work function layer 217 is used to improve the threshold voltage of the device in the first region A, and the first region A is used to form an NMOS transistor.
请参考图16,在所述第一功函数层217表面形成栅极层218,所述栅极层218充满伪栅开口209(见图15)。Referring to FIG. 16 , a gate layer 218 is formed on the surface of the first work function layer 217 , and the gate layer 218 is filled with dummy gate openings 209 (see FIG. 15 ).
所述栅极层218的形成方法包括:在所述介质层208和第一功函数层217表面形成栅极材料膜,所述栅极材料膜充满伪栅开口209;去除部分栅极材料膜,直至暴露出介质层208的顶部表面,在所述伪栅开口209内形成栅极层218。The forming method of the gate layer 218 includes: forming a gate material film on the surface of the dielectric layer 208 and the first work function layer 217, the gate material film filling the dummy gate opening 209; removing part of the gate material film, A gate layer 218 is formed in the dummy gate opening 209 until the top surface of the dielectric layer 208 is exposed.
所述栅极材料膜的材料为金属,相应的,栅极层218的材料为金属。在本实施例中,所述栅极材料膜的材料为铝,相应的,栅极层218的材料为铝。在其他实施例中,所述栅极材料膜的材料包括:Al、Cu、Ag、Au、Ni、Ti、W、WN或WSi,相应的,所述栅极层的材料包括:Al、Cu、Ag、Au、Ni、Ti、W、WN或WSi。The material of the gate material film is metal, and correspondingly, the material of the gate layer 218 is metal. In this embodiment, the material of the gate material film is aluminum, and correspondingly, the material of the gate layer 218 is aluminum. In other embodiments, the material of the gate material film includes: Al, Cu, Ag, Au, Ni, Ti, W, WN or WSi, and correspondingly, the material of the gate layer includes: Al, Cu, Ag, Au, Ni, Ti, W, WN or WSi.
相应的,本发明还提供一种半导体结构,请继续参考图15,包括:Correspondingly, the present invention also provides a semiconductor structure, please continue to refer to FIG. 15, including:
基底200,所述基底200包括第一区A,所述第一区A基底200表面具有介质层208,所述第一区A介质层208内具有伪栅开口209,所述伪栅开口209两侧的基底200内具有源漏掺杂区206,且所述介质层208覆盖源漏掺杂区206的表面;The substrate 200, the substrate 200 includes a first region A, the surface of the substrate 200 in the first region A has a dielectric layer 208, and the dielectric layer 208 in the first region A has a dummy gate opening 209, and the dummy gate opening 209 has two There is a source-drain doped region 206 in the substrate 200 on the side, and the dielectric layer 208 covers the surface of the source-drain doped region 206;
位于所述介质层208内的接触孔214(见图11),所述接触孔214底部暴露出源漏掺杂区206的顶部表面;A contact hole 214 (see FIG. 11 ) located in the dielectric layer 208, the bottom of the contact hole 214 exposes the top surface of the source-drain doped region 206;
位于所述接触孔214底部源漏掺杂区206顶部的金属硅化物层215;a metal silicide layer 215 located on the top of the source-drain doped region 206 at the bottom of the contact hole 214;
位于所述伪栅开口209底部表面的第一功函数层217。The first work function layer 217 is located on the bottom surface of the dummy gate opening 209 .
所述第一区A用于形成NMOS晶体管,所述第一功函数层217的材料包括钛铝。The first region A is used to form an NMOS transistor, and the material of the first work function layer 217 includes titanium aluminum.
所述基底200还包括第二区B,所述介质层208还位于第二区B基底200表面,所述伪栅开口209还位于第二区B介质层208内,所述源漏掺杂区206还位于第二区B伪栅开口209两侧的基底200内。The substrate 200 also includes a second region B, the dielectric layer 208 is also located on the surface of the substrate 200 in the second region B, the dummy gate opening 209 is also located in the dielectric layer 208 in the second region B, and the source-drain doped region 206 is also located in the substrate 200 on both sides of the dummy gate opening 209 in the second region B.
还包括:位于第一区A伪栅开口209和第二区B伪栅开口209底部的栅介质层210;所述第二区B栅介质层210与第一功函数层217之间具有第二功函数层251;所述第二区B用于形成PMOS晶体管,所述第二功函数层211的材料包括氮化钛。It also includes: a gate dielectric layer 210 located at the bottom of the dummy gate opening 209 in the first region A and the dummy gate opening 209 in the second region B; a second Work function layer 251 ; the second region B is used to form a PMOS transistor, and the material of the second work function layer 211 includes titanium nitride.
所述半导体结构还包括:位于所述接触孔214底部金属硅化物层215表面的插塞216;位于所述伪栅开口209底部第一功函数层217表面的栅极层218。The semiconductor structure further includes: a plug 216 located on the surface of the metal silicide layer 215 at the bottom of the contact hole 214 ; and a gate layer 218 located on the surface of the first work function layer 217 at the bottom of the dummy gate opening 209 .
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined in the claims.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811391839.7A CN111211055B (en) | 2018-11-21 | 2018-11-21 | Semiconductor structures and methods of forming them |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811391839.7A CN111211055B (en) | 2018-11-21 | 2018-11-21 | Semiconductor structures and methods of forming them |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111211055A CN111211055A (en) | 2020-05-29 |
CN111211055B true CN111211055B (en) | 2023-08-22 |
Family
ID=70787649
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811391839.7A Active CN111211055B (en) | 2018-11-21 | 2018-11-21 | Semiconductor structures and methods of forming them |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111211055B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113903665B (en) * | 2020-07-06 | 2025-01-14 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and method for forming the same |
CN117790318B (en) * | 2024-02-27 | 2024-05-24 | 合肥晶合集成电路股份有限公司 | Semiconductor device and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103311247A (en) * | 2012-03-14 | 2013-09-18 | 中国科学院微电子研究所 | Semiconductor device and method for manufacturing the same |
CN104347417A (en) * | 2013-08-05 | 2015-02-11 | 中芯国际集成电路制造(上海)有限公司 | Forming method of MOS (Metal Oxide Semiconductor) transistor |
CN104821277A (en) * | 2014-01-30 | 2015-08-05 | 中芯国际集成电路制造(上海)有限公司 | Method for forming transistor |
CN105336688A (en) * | 2014-05-28 | 2016-02-17 | 中芯国际集成电路制造(上海)有限公司 | Formation method of semiconductor structure |
CN105990341A (en) * | 2015-01-30 | 2016-10-05 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
-
2018
- 2018-11-21 CN CN201811391839.7A patent/CN111211055B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103311247A (en) * | 2012-03-14 | 2013-09-18 | 中国科学院微电子研究所 | Semiconductor device and method for manufacturing the same |
CN104347417A (en) * | 2013-08-05 | 2015-02-11 | 中芯国际集成电路制造(上海)有限公司 | Forming method of MOS (Metal Oxide Semiconductor) transistor |
CN104821277A (en) * | 2014-01-30 | 2015-08-05 | 中芯国际集成电路制造(上海)有限公司 | Method for forming transistor |
CN105336688A (en) * | 2014-05-28 | 2016-02-17 | 中芯国际集成电路制造(上海)有限公司 | Formation method of semiconductor structure |
CN105990341A (en) * | 2015-01-30 | 2016-10-05 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN111211055A (en) | 2020-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10121700B2 (en) | Semiconductor device and fabrication method thereof | |
CN104835780B (en) | Semiconductor structure and its manufacturing method | |
CN101714508B (en) | Method for manufacturing semiconductor device | |
US9601593B2 (en) | Semiconductor device structure and method for forming the same | |
CN102222692B (en) | Semiconductor device and method for manufacturing the same | |
TWI775982B (en) | Semiconductor device structure and method for forming the same | |
CN107958872A (en) | Semiconductor devices and forming method thereof | |
CN105225937A (en) | The formation method of semiconductor device | |
CN110571192A (en) | Semiconductor structures and methods of forming them | |
CN106328540B (en) | Semiconductor device structure and method of forming the same | |
CN107346783B (en) | Semiconductor structure and manufacturing method thereof | |
CN110534433A (en) | Semiconductor structure and forming method thereof | |
CN110164767B (en) | Semiconductor device and method of forming the same | |
CN108231762A (en) | Semiconductor devices and forming method thereof | |
CN108281477B (en) | Fin-type field effect transistor and method of forming the same | |
CN111211055B (en) | Semiconductor structures and methods of forming them | |
CN110047741A (en) | Semiconductor structure and forming method thereof | |
CN107437562A (en) | The forming method of semiconductor devices | |
US9564332B2 (en) | Mechanism for forming metal gate structure | |
CN107591370B (en) | Semiconductor device and method of forming the same | |
CN108155235B (en) | Semiconductor structure and forming method thereof | |
CN111755513B (en) | Semiconductor structure and forming method thereof | |
CN108206157A (en) | Semiconductor structure and forming method thereof | |
CN108269847A (en) | Semiconductor structure and forming method thereof | |
CN110391285B (en) | Semiconductor structures and methods of forming them |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |