CN111200062B - Miniaturized inductor manufacturing method based on nanoparticle filling process and inductor - Google Patents
Miniaturized inductor manufacturing method based on nanoparticle filling process and inductor Download PDFInfo
- Publication number
- CN111200062B CN111200062B CN201911388134.4A CN201911388134A CN111200062B CN 111200062 B CN111200062 B CN 111200062B CN 201911388134 A CN201911388134 A CN 201911388134A CN 111200062 B CN111200062 B CN 111200062B
- Authority
- CN
- China
- Prior art keywords
- substrate
- interconnection structure
- inductor
- groove
- magnetic core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 22
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 21
- 238000005429 filling process Methods 0.000 title claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 44
- 229910052751 metal Inorganic materials 0.000 claims abstract description 22
- 239000002184 metal Substances 0.000 claims abstract description 22
- 239000000758 substrate Substances 0.000 claims description 47
- 239000004020 conductor Substances 0.000 claims description 26
- 239000000696 magnetic material Substances 0.000 claims description 21
- 238000005553 drilling Methods 0.000 claims description 12
- 229920002120 photoresistant polymer Polymers 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 9
- 239000002245 particle Substances 0.000 claims description 7
- 238000001312 dry etching Methods 0.000 claims description 6
- 238000010329 laser etching Methods 0.000 claims description 6
- 238000005488 sandblasting Methods 0.000 claims description 6
- 238000001039 wet etching Methods 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 239000010949 copper Substances 0.000 claims description 5
- 238000007650 screen-printing Methods 0.000 claims description 5
- 229910052709 silver Inorganic materials 0.000 claims description 5
- 239000004332 silver Substances 0.000 claims description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 4
- 239000007789 gas Substances 0.000 claims description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 239000010931 gold Substances 0.000 claims description 4
- 238000000059 patterning Methods 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 4
- 230000001681 protective effect Effects 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- 229910001316 Ag alloy Inorganic materials 0.000 claims description 3
- 229910000838 Al alloy Inorganic materials 0.000 claims description 3
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims description 3
- 229910001020 Au alloy Inorganic materials 0.000 claims description 3
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 3
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- 229910001128 Sn alloy Inorganic materials 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims description 3
- 229910052732 germanium Inorganic materials 0.000 claims description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 3
- 239000003353 gold alloy Substances 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 239000011261 inert gas Substances 0.000 claims description 2
- 239000002861 polymer material Substances 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 13
- 238000004377 microelectronic Methods 0.000 abstract description 8
- 238000005530 etching Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 6
- 238000009713 electroplating Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000007772 electroless plating Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 239000006247 magnetic powder Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 230000005476 size effect Effects 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D1/00—Resistors, capacitors or inductors
- H10D1/20—Inductors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Coils Or Transformers For Communication (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
本发明公开了一种基于纳米颗粒填充工艺的微型化电感制作方法和电感,包括:精密磁芯的制作工艺;三维互联通道刻蚀及填充;双面互联结构的制作工艺等。本发明采用微电子的工艺实现了带磁芯的三维电感器件,实现小型化电感器件的同时,保留了较高的电感量,解决了小型化电感感值无法做大的矛盾;同时还提出了一种新的工艺解决方法,解决了高深宽比微槽、微孔结构的金属填充难题。
The invention discloses a miniaturized inductor manufacturing method and inductor based on a nanoparticle filling process, including: a precision magnetic core manufacturing process; three-dimensional interconnection channel etching and filling; a double-sided interconnection structure manufacturing process, etc. The present invention uses microelectronic technology to realize a three-dimensional inductor device with a magnetic core. While miniaturizing the inductor device, it retains a high inductance and solves the problem that the inductance value of the miniaturized inductor cannot be increased. At the same time, it also proposes A new process solution solves the metal filling problem of high aspect ratio micro-grooves and micro-hole structures.
Description
技术领域Technical field
本发明涉及电子元器件、微电子工艺技术等领域,具体涉及一种带磁芯微型化电感的制作方法和电感,利用微电子工艺技术实现精密磁芯的制作和三维互联,实现了高容量的小型化电容器件。The invention relates to the fields of electronic components, microelectronics process technology and other fields, and specifically relates to a manufacturing method and inductor of a miniaturized inductor with a magnetic core. The invention utilizes microelectronics process technology to realize the production and three-dimensional interconnection of precision magnetic cores, thereby realizing high-capacity Miniaturized capacitor devices.
背景技术Background technique
随着人们对电子产品的要求向小型化、多功能化等方向的发展,人们努力寻求将电子系统越做越小,集成度越来越高,但是由于磁性材料与半导体工艺不易兼容,磁性元件在电子设备小型化进程中落后于其他元器件的发展,无法实现高水平的小型化。As people's requirements for electronic products develop in the direction of miniaturization and multi-function, people strive to make electronic systems smaller and smaller and more integrated. However, because magnetic materials are not easily compatible with semiconductor processes, magnetic components In the process of miniaturization of electronic equipment, it lags behind the development of other components and cannot achieve a high level of miniaturization.
为了解决这一问题,研发人员开发出了多种沉积磁芯薄膜的加工方法,例如筛网印刷、溅射和电镀等。但是用筛网印刷成膜的铁氧体层要在900~1000℃的温度下烧结,这是与标准型集成电路制造工艺不相容的;用溅射工艺制作的磁芯厚度有限,成本较高,限制了该技术的产业化发展;使用电镀成膜的磁性材料磁芯的电感Q值一般比用溅射技术或用筛网印制技术成膜材料的Q值低,主要原因是由磁性材料的电导率引起的,在电感器的工作频率增高时,磁芯的涡流损耗将增大。除了磁性材料与微电子工艺的兼容性外,半导体工艺一般都是平面工艺,只能实现片式电感,很大程度上限制了电感的性能。In order to solve this problem, researchers have developed a variety of processing methods for depositing magnetic core films, such as screen printing, sputtering and electroplating. However, the ferrite layer printed with a screen needs to be sintered at a temperature of 900 to 1000°C, which is incompatible with the standard integrated circuit manufacturing process; the thickness of the magnetic core produced by the sputtering process is limited and the cost is relatively high. High, which limits the industrial development of this technology; the Q value of the inductor of magnetic material cores formed by electroplating is generally lower than the Q value of materials formed by sputtering technology or screen printing technology. The main reason is that the magnetic Caused by the conductivity of the material, when the operating frequency of the inductor increases, the eddy current loss of the magnetic core will increase. In addition to the compatibility between magnetic materials and microelectronic processes, semiconductor processes are generally planar processes and can only realize chip inductors, which greatly limits the performance of the inductor.
发明内容Contents of the invention
本发明的主要目的在于克服小型化电感感值无法做大、电感性能优化难度大的难题,提出一种基于纳米颗粒填充工艺的微型化电感制作方法和电感。The main purpose of the present invention is to overcome the problems that the inductance value of a miniaturized inductor cannot be increased and the inductance performance optimization is difficult, and a miniaturized inductor manufacturing method and inductor based on a nanoparticle filling process are proposed.
本发明采用如下技术方案:The present invention adopts the following technical solutions:
一种基于纳米颗粒填充工艺的微型化电感制作方法,其特征在于,包括如下步骤:A method for manufacturing a miniaturized inductor based on a nanoparticle filling process, which is characterized by including the following steps:
1)在衬底第一表面制作磁芯模腔;1) Make a magnetic core mold cavity on the first surface of the substrate;
2)将微纳尺寸的磁性材料填充至磁芯模腔中,使磁性材料致密形成磁芯;2) Fill the micro-nano-sized magnetic material into the magnetic core mold cavity to make the magnetic material dense to form a magnetic core;
3)在衬底第一表面的磁芯模腔外周制作纵向互联结构;3) Make a longitudinal interconnection structure on the periphery of the magnetic core mold cavity on the first surface of the substrate;
4)采用减薄工艺使得衬底第二表面露出导电材料;4) Use a thinning process to expose the conductive material on the second surface of the substrate;
5)分别在衬底第一表面和第二表面制作横向互联结构,该横向互联结构与纵向互联结构电性连接以形成电感线圈。5) Make lateral interconnection structures on the first surface and the second surface of the substrate respectively, and the lateral interconnection structure is electrically connected to the vertical interconnection structure to form an inductor coil.
优选的,所述衬底的材料为硅、锗、砷化镓或磷化铟中任一种,或者玻璃、陶瓷或高分子材料中任一种。Preferably, the material of the substrate is any one of silicon, germanium, gallium arsenide or indium phosphide, or any one of glass, ceramics or polymer materials.
优选的,步骤1)中,采用超声波钻孔、喷砂法、湿法刻蚀、干法刻蚀、激光刻蚀或机械钻孔在所述衬底上制作第一凹槽,该第一凹槽构成所述磁芯模腔,其深度为0.1微米到3毫米。Preferably, in step 1), ultrasonic drilling, sandblasting, wet etching, dry etching, laser etching or mechanical drilling are used to make a first groove on the substrate, and the first groove is Grooves form the core mold cavity, with a depth ranging from 0.1 microns to 3 millimeters.
优选的,所述第一凹槽横截面为长方形或圆环或回字形。Preferably, the cross section of the first groove is rectangular, circular, or zigzag-shaped.
优选的,步骤3)具体为:Preferably, step 3) is specifically:
3.1)先采用超声波钻孔、喷砂法、湿法刻蚀、干法刻蚀、激光刻蚀或机械钻孔在衬底材料上制作多个第二凹槽;3.1) First use ultrasonic drilling, sandblasting, wet etching, dry etching, laser etching or mechanical drilling to make multiple second grooves on the substrate material;
3.2)往第二凹槽填充导电材料;3.2) Fill the second groove with conductive material;
3.3)利用压力或超声波振动方式使第二凹槽内的导电材料致密,去除第二凹槽外的导电材料。3.3) Use pressure or ultrasonic vibration to densify the conductive material in the second groove and remove the conductive material outside the second groove.
优选的,所述导电材料为粉末或微粒形态,材质为纯铜、铜合金、纯锡、锡合金、纯银、银合金、纯铝、铝合金、纯金或金合金中的一种或多种。Preferably, the conductive material is in the form of powder or particles, and is made of one or more of pure copper, copper alloy, pure tin, tin alloy, pure silver, silver alloy, pure aluminum, aluminum alloy, pure gold or gold alloy. kind.
优选的,所述步骤3)增加热处理步骤:在真空环境或惰性气体或还原性气体保护氛围下,对衬底进行高温处理。Preferably, step 3) adds a heat treatment step: subjecting the substrate to high temperature treatment in a vacuum environment or under a protective atmosphere of inert gas or reducing gas.
优选的,步骤5)中,所述横向互联结构可采用丝网印刷工艺制作金属线路。Preferably, in step 5), the horizontal interconnection structure can be made of metal circuits using a screen printing process.
优选的,所述横向互联结构可采用制作种子层,在种子层上涂光刻胶并完成光刻图形化,在光刻胶打开的区域沉积金属,去除光刻胶形成金属互联。Preferably, the lateral interconnection structure can be made by making a seed layer, applying photoresist on the seed layer and completing photolithography patterning, depositing metal in the area where the photoresist is opened, and removing the photoresist to form a metal interconnection.
一种基于纳米颗粒填充工艺的微型化三维电感,其特征在于,包括衬底、磁芯和电感线圈;该衬底设有第一凹槽和若干通孔,该若干通孔位于第一凹槽外周;该磁芯为采用微纳尺寸的磁性材料填充于第一凹槽内形成;该通孔内填充有导电材料构成纵向互联结构;该衬底第一表面和第二表面分别设有横向互联结构,该横向互联结构与纵向互联结构电性连接以形成电感线圈。A miniaturized three-dimensional inductor based on nanoparticle filling technology, characterized by including a substrate, a magnetic core and an inductor coil; the substrate is provided with a first groove and a number of through holes, the number of through holes are located in the first groove Perimeter; the magnetic core is formed by filling the first groove with micro-nano-sized magnetic material; the through hole is filled with conductive material to form a vertical interconnection structure; the first surface and the second surface of the substrate are respectively provided with lateral interconnections structure, the horizontal interconnection structure and the vertical interconnection structure are electrically connected to form an inductor coil.
由上述对本发明的描述可知,与现有技术相比,本发明具有如下有益效果:From the above description of the present invention, it can be seen that compared with the prior art, the present invention has the following beneficial effects:
1、本发明的方法,采用微电子的工艺实现了带磁芯的三维电感器件,实现小型化电感器件的同时,保留了较高的电感量,解决了小型化电感感值无法做大的矛盾;同时还提出了一种新的工艺解决方法,解决了高深宽比微槽、微孔结构的金属填充难题。1. The method of the present invention uses microelectronics technology to realize a three-dimensional inductor device with a magnetic core. While miniaturizing the inductor device, it retains a high inductance and solves the problem that the inductance value of the miniaturized inductor cannot be increased. ; At the same time, a new process solution was also proposed to solve the metal filling problem of high aspect ratio micro-grooves and micro-hole structures.
2、本发明的方法,在制作纵向互联结构时,利用超声振动提高纳米颗粒填隙效果,改善微孔填充效果。利用惰性或还原性气体保护氛围下的高温处理,改善纳米颗粒填充后的微观结构,抑制纳米导电颗粒量子尺寸效应、表面效应,以及抑制纳米磁性材料的小尺寸效应、宏观量子隧道效应;改善纳米颗粒填充效果。2. The method of the present invention uses ultrasonic vibration to improve the gap-filling effect of nanoparticles and improve the filling effect of micropores when making longitudinal interconnected structures. Utilize high-temperature treatment under an inert or reducing gas protective atmosphere to improve the microstructure after filling with nanoparticles, suppress the quantum size effect and surface effect of nanoconductive particles, and suppress the small size effect and macroscopic quantum tunneling effect of nanomagnetic materials; improve nanometer Particle filling effect.
3、本发明的方法,采用微电子工艺制作第一凹槽即构成磁芯模具,以供制作磁芯;并在衬底上制作第二凹槽形成模具,以制作纵向互联结构和横向互联结构,构成嵌入式三维互联导线,实现高集成化、大负载的微型电容结构。3. The method of the present invention uses microelectronics technology to make a first groove to form a magnetic core mold for making a magnetic core; and makes a second groove to form a mold on the substrate to make a vertical interconnection structure and a lateral interconnection structure. , forming an embedded three-dimensional interconnection wire to achieve a highly integrated, large-load micro-capacitor structure.
附图说明Description of drawings
图1(a)为衬底剖面图;Figure 1(a) is a cross-sectional view of the substrate;
图1(b)为圆形衬底俯视图;Figure 1(b) is a top view of the circular substrate;
图1(c)为方形衬底俯视图;Figure 1(c) is a top view of a square substrate;
图2为衬底上制作第一凹槽示意图;Figure 2 is a schematic diagram of making the first groove on the substrate;
图3为第一凹槽内填充磁性材料示意图;Figure 3 is a schematic diagram of filling the first groove with magnetic material;
图4为去除第一凹槽外磁性材料示意图;Figure 4 is a schematic diagram of removing the magnetic material outside the first groove;
图5为衬底上制作第二凹槽示意图;Figure 5 is a schematic diagram of making a second groove on the substrate;
图6为往第二凹槽填充导电材料示意图;Figure 6 is a schematic diagram of filling the second groove with conductive material;
图7为去除第二凹槽外的导电材料示意图;Figure 7 is a schematic diagram of removing the conductive material outside the second groove;
图8为制作第一表面横向互联结构示意图;Figure 8 is a schematic diagram of making a first surface lateral interconnection structure;
图9为减薄示意图;Figure 9 is a schematic diagram of thinning;
图10为装置第二表面横向互联结构示意图;Figure 10 is a schematic diagram of the lateral interconnection structure of the second surface of the device;
图11为本发明电感俯视图(实施例一);Figure 11 is a top view of the inductor of the present invention (Embodiment 1);
图12为本发明电感俯视图(实施例二);Figure 12 is a top view of the inductor of the present invention (Embodiment 2);
图13为本发明电感俯视图(实施例三);Figure 13 is a top view of the inductor of the present invention (Embodiment 3);
其中:10、衬底,11、第一凹槽,12、第二凹槽,20、磁芯,21、磁性材料,30、纵向互联结构,31、导电材料,40、横向互联结构。Among them: 10. Substrate, 11. First groove, 12. Second groove, 20. Magnetic core, 21. Magnetic material, 30. Vertical interconnection structure, 31. Conductive material, 40. Horizontal interconnection structure.
具体实施方式Detailed ways
以下通过具体实施方式对本发明作进一步的描述。The present invention will be further described below through specific embodiments.
实施例一Embodiment 1
一种基于纳米颗粒填充工艺的微型化电感制作方法,包括如下步骤:A method for manufacturing a miniaturized inductor based on nanoparticle filling technology, including the following steps:
1)准备衬底10的材料,其可以是硅、锗、砷化镓、磷化铟等单晶半导体或化合物半导体材料的任一种,也可以是玻璃、陶瓷等绝缘体材料的任一种。参见图1(a)-图1(c),衬底10可以是圆形或方形的薄片,在衬底10第一表面制作磁芯模腔。1) Prepare a material for the substrate 10 , which may be any single crystal semiconductor or compound semiconductor material such as silicon, germanium, gallium arsenide, or indium phosphide, or any insulating material such as glass or ceramic. Referring to FIGS. 1(a) to 1(c) , the substrate 10 can be a circular or square sheet, and a magnetic core mold cavity is made on the first surface of the substrate 10 .
参见图2,用超声波钻孔、喷砂法、湿法刻蚀、干法刻蚀、激光刻蚀、机械钻孔等工艺在衬底10上制作特定形状的第一凹槽11作为磁芯模腔,根据电感器件的尺寸、型号不同,第一凹槽的尺寸和形状可以不同,第一凹槽11的深度可以为0.1微米到3毫米,其截面可以是长方形或圆形等。Referring to Figure 2, ultrasonic drilling, sandblasting, wet etching, dry etching, laser etching, mechanical drilling and other processes are used to make a first groove 11 of a specific shape on the substrate 10 as a magnetic core mold. Cavity, depending on the size and model of the inductor device, the size and shape of the first groove may be different. The depth of the first groove 11 may be 0.1 micron to 3 mm, and its cross-section may be rectangular or circular.
2)将微纳尺寸磁性材料填充到磁芯模腔内,该磁性材料可以是磁性粉末、微粒,磁性粉末等状态的磁性材料,微纳尺寸是指10nm-20um之间。选择导嘴、导管等方式将磁性材料传输到衬底表面,参见图3、图4。利用压力、超声波振动等方式使第一凹槽11内的磁性材料致密,然后去除第一凹槽11外的磁性材料,构成磁芯20。2) Fill the magnetic core mold cavity with micro-nano sized magnetic material. The magnetic material can be magnetic powder, particles, magnetic powder and other magnetic materials. The micro-nano size refers to between 10nm and 20um. Select guide nozzles, conduits, etc. to transfer the magnetic material to the substrate surface, see Figure 3 and Figure 4. The magnetic material in the first groove 11 is made dense by pressure, ultrasonic vibration, etc., and then the magnetic material outside the first groove 11 is removed to form the magnetic core 20 .
3)在衬底10第一表面的磁芯模腔外周制作纵向互联结构30,该纵向互联结构30与衬底10的第一表面和第二表面不平行。该步骤具体包括如如下:3) Make a longitudinal interconnection structure 30 on the periphery of the magnetic core mold cavity on the first surface of the substrate 10 , and the longitudinal interconnection structure 30 is not parallel to the first surface and the second surface of the substrate 10 . This step specifically includes the following:
3.1)先采用超声波钻孔、喷砂法、湿法刻蚀、干法刻蚀、激光刻蚀或机械钻孔在衬底10第一表面制作两组第二凹槽12,分别位于第一凹槽11的两相对侧,每组设有数量相同的第二凹槽12,例如位于长方形的第一凹槽11两相对侧,参见图5。3.1) First use ultrasonic drilling, sandblasting, wet etching, dry etching, laser etching or mechanical drilling to make two sets of second grooves 12 on the first surface of the substrate 10, respectively located in the first groove. Each group is provided with the same number of second grooves 12 on two opposite sides of the groove 11, for example, located on two opposite sides of the rectangular first groove 11, see Figure 5.
3.2)往该两组第二凹槽12内填充导电材料31。该导电材料31可以是导电粉末、微粒或浆料,导电材料31包括:纯铜、铜合金、纯锡、锡合金、纯银、银合金、纯铝、铝合金、纯金或金合金等。利用压力、等方式进行填实,参见图6。3.2) Fill the two sets of second grooves 12 with conductive material 31 . The conductive material 31 can be conductive powder, particles or slurry. The conductive material 31 includes: pure copper, copper alloy, pure tin, tin alloy, pure silver, silver alloy, pure aluminum, aluminum alloy, pure gold or gold alloy, etc. Use pressure, etc. to fill in, see Figure 6.
3.3)利用压力或超声振动方式使第二凹槽12内的导电材料致密,去除第二凹槽12外的导电材料31,参见图7。3.3) Use pressure or ultrasonic vibration to densify the conductive material in the second groove 12, and remove the conductive material 31 outside the second groove 12, see Figure 7.
当产品对粉末或微粒填充的要求较高时,可增加热处理步骤:在真空环境,也可以选择在惰性或还原性气体保护氛围下,对衬底10进行高温处理,使磁性材料及导电材料致密化,根据烧结效果的需求不同,工艺温度范围为150-1200度。When the product has high requirements for powder or particle filling, a heat treatment step can be added: in a vacuum environment, you can also choose to perform high-temperature treatment on the substrate 10 under an inert or reducing gas protective atmosphere to make the magnetic materials and conductive materials dense. According to the different requirements of sintering effect, the process temperature range is 150-1200 degrees.
4)采用减薄工艺使得衬底10第二表面露出导电材料31,该步工艺可以采用背面研磨、抛光工艺实现,参见图9。4) A thinning process is used to expose the conductive material 31 on the second surface of the substrate 10. This process can be achieved by back grinding and polishing processes, see Figure 9.
5)参见图8,图10,分别在衬底10第一表面和第二表面制作横向互联结构40,该横向互联结构40与纵向互联结构30电性连接以形成电感线圈。其中,两组的多个第二凹槽12一一对应,横向互联结构40包括多个金属线路,每个金属线路连接于两组的中对应的第二凹槽12之间,参见图11。5) Referring to Figures 8 and 10, a horizontal interconnection structure 40 is formed on the first surface and the second surface of the substrate 10 respectively. The horizontal interconnection structure 40 is electrically connected to the vertical interconnection structure 30 to form an inductor coil. The plurality of second grooves 12 in the two groups correspond one to one, and the lateral interconnection structure 40 includes a plurality of metal lines, and each metal line is connected between the corresponding second grooves 12 in the two groups, see FIG. 11 .
横向互联结构40可采用如下多种方法实现:The horizontal interconnection structure 40 can be implemented using a variety of methods as follows:
a该横向互联结构40可采用丝网印刷工艺制作金属线路。aThe horizontal interconnection structure 40 can be made of metal circuits using a screen printing process.
b采用蒸发或物理气相淀积工艺制作种子层,在种子层上涂光刻胶并完成光刻图形化,在光刻胶打开的区域用化学镀或电镀工艺沉积金属,最后去胶,完成种子层刻蚀形成金属互联。b Use evaporation or physical vapor deposition process to make a seed layer, apply photoresist on the seed layer and complete photolithography patterning, deposit metal using electroless plating or electroplating process in the area where the photoresist is opened, and finally remove the glue to complete the seed layer The layers are etched to form metal interconnects.
c采用蒸发或物理气相淀积工艺制作种子层,然后用化学镀或电镀工艺沉积金属,在金属层上涂光刻胶并完成光刻图形化,去掉光刻胶打开区域的金属,最后去胶形成金属互联。c Use evaporation or physical vapor deposition process to make a seed layer, then use electroless plating or electroplating process to deposit metal, apply photoresist on the metal layer and complete photolithography patterning, remove the metal in the photoresist open area, and finally remove the glue Form metal interconnections.
步骤b或c中,种子层的材料为钛、氮化钛、钽、氮化钽、铜、银等金属的一种或几种的组合,金属为铜、钛、镍、锡、银、金等金属的一种或几种的组合。In step b or c, the material of the seed layer is one or a combination of metals such as titanium, titanium nitride, tantalum, tantalum nitride, copper, and silver. The metal is copper, titanium, nickel, tin, silver, gold. One or a combination of several other metals.
本发明方法中的方法步骤顺序不限于此,可根据需要调整,磁芯模腔、纵向互联结构30的制作和填充步骤的先后顺序可以调换,制作第一凹槽11和第二凹槽12的步骤可以合并或对调。衬底减薄的步骤可以在导电材料31填充完毕后,或在衬底10第一表面的横向互联结构40制作完成后进行。The order of the method steps in the method of the present invention is not limited to this and can be adjusted as needed. The order of the manufacturing and filling steps of the magnetic core mold cavity and the longitudinal interconnection structure 30 can be exchanged. The steps of manufacturing the first groove 11 and the second groove 12 can be changed. Steps can be combined or reversed. The substrate thinning step can be performed after the conductive material 31 is filled, or after the lateral interconnection structure 40 on the first surface of the substrate 10 is formed.
本发明采用微电子工艺制作磁芯模具并利用磁芯模具制作嵌入式磁芯;并在衬底上制作三维互联结构,并利用三维互联结构做模具制作嵌入式三维互联导线,实现高集成化、大负载的微型电容结构。本发明突破了微电子工艺无法实现较大尺寸和厚度的磁芯制作的瓶颈,极大地提高了电感容量和性能优化空间,同时提出了一种实现低成本三维互联结构的工艺方法,可以获得更高的电感品质因数和感值,解决了微型电感无法同时获得大感值、大电流负载、高品质因数的难题。The invention uses microelectronic technology to make a magnetic core mold and uses the magnetic core mold to make an embedded magnetic core; and makes a three-dimensional interconnection structure on a substrate, and uses the three-dimensional interconnection structure as a mold to make embedded three-dimensional interconnection wires, achieving high integration. Micro capacitor structure for large loads. The invention breaks through the bottleneck of microelectronics technology being unable to produce magnetic cores of larger size and thickness, greatly improves the inductor capacity and performance optimization space, and at the same time proposes a process method for realizing a low-cost three-dimensional interconnection structure, which can obtain more The high inductor quality factor and inductance value solve the problem that micro inductors cannot obtain large inductance value, large current load and high quality factor at the same time.
采用本发明方法制作的一种基于纳米颗粒填充工艺的微型化三维电感,包括衬底10、磁芯20和电感线圈等。该衬底10设有第一凹槽11和若干通孔,该第一凹槽11位于第一表面。该若干通孔为两组第二凹槽12经过衬底减薄后形成的通孔,其位于第一凹槽11外周。A miniaturized three-dimensional inductor based on nanoparticle filling technology produced by the method of the present invention includes a substrate 10, a magnetic core 20 and an inductor coil. The substrate 10 is provided with a first groove 11 and a plurality of through holes. The first groove 11 is located on the first surface. The plurality of through holes are through holes formed by two groups of second grooves 12 after substrate thinning, and are located on the outer periphery of the first groove 11 .
该磁芯20通过采用微纳尺寸的磁性材料填充于第一凹槽11内,并利用压力、超声波振动使其致密所形成的。该通孔内填充有导电材料31构成纵向互联结构30。该衬底10第一表面和第二表面分别设有横向互联结构40,该横向互联结构40与纵向互联结构30电性连接以形成电感线圈。The magnetic core 20 is formed by filling the first groove 11 with micro-nano-sized magnetic material, and using pressure and ultrasonic vibration to make it dense. The through hole is filled with conductive material 31 to form a vertical interconnection structure 30 . The first surface and the second surface of the substrate 10 are respectively provided with lateral interconnection structures 40, and the lateral interconnection structures 40 are electrically connected to the vertical interconnection structures 30 to form an inductor coil.
实施例二Embodiment 2
一种基于纳米颗粒填充工艺的微型化电感制作方法和电感,其主要特征与实施例一相同,区别在于:第一凹槽11为回字形,参见图12,一组第二凹槽12位于第一凹槽11内周,一组第二凹槽12位于第二凹槽12外周。A method for manufacturing a miniaturized inductor and an inductor based on a nanoparticle filling process. Its main features are the same as those of Embodiment 1. The difference is that the first groove 11 is in the shape of a zigzag, see Figure 12, and a set of second grooves 12 are located in the first embodiment. A groove 11 is located on the inner circumference, and a set of second grooves 12 is located on the outer circumference of the second groove 12 .
实施例三Embodiment 3
一种基于纳米颗粒填充工艺的微型化电感制作方法和电感,其主要特征与实施例一相同,区别在于:第一凹槽11为圆环形,参见图13,一组第二凹槽12位于第一凹槽11内周,且为圆周分布,一组第二凹槽12位于第二凹槽12外周,也为圆周分布。A miniaturized inductor manufacturing method and inductor based on a nanoparticle filling process, the main features of which are the same as those of Embodiment 1, except that the first groove 11 is annular, see Figure 13, and a set of second grooves 12 are located The first grooves 11 are on the inner circumference and are distributed in a circumferential manner, and a set of second grooves 12 are located on the outer circumference of the second grooves 12 and are also distributed in a circumferential manner.
上述仅为本发明的具体实施方式,但本发明的设计构思并不局限于此,凡利用此构思对本发明进行非实质性的改动,均应属于侵犯本发明保护范围的行为。The above are only specific embodiments of the present invention, but the design concept of the present invention is not limited thereto. Any non-substantive changes to the present invention using this concept shall constitute an infringement of the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911388134.4A CN111200062B (en) | 2019-12-30 | 2019-12-30 | Miniaturized inductor manufacturing method based on nanoparticle filling process and inductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911388134.4A CN111200062B (en) | 2019-12-30 | 2019-12-30 | Miniaturized inductor manufacturing method based on nanoparticle filling process and inductor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111200062A CN111200062A (en) | 2020-05-26 |
CN111200062B true CN111200062B (en) | 2023-11-03 |
Family
ID=70747125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911388134.4A Active CN111200062B (en) | 2019-12-30 | 2019-12-30 | Miniaturized inductor manufacturing method based on nanoparticle filling process and inductor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111200062B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102789967A (en) * | 2012-08-16 | 2012-11-21 | 中国电子科技集团公司第五十五研究所 | Manufacturing method for soft magnetic core spiral micro-inductor |
JP2015201481A (en) * | 2014-04-04 | 2015-11-12 | Necトーキン株式会社 | Powder-compact magnetic core arranged by use of nanocrystal soft magnetic alloy powder, and manufacturing method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8436707B2 (en) * | 2010-01-12 | 2013-05-07 | Infineon Technologies Ag | System and method for integrated inductor |
US8470612B2 (en) * | 2010-10-07 | 2013-06-25 | Infineon Technologies Ag | Integrated circuits with magnetic core inductors and methods of fabrications thereof |
US9159778B2 (en) * | 2014-03-07 | 2015-10-13 | International Business Machines Corporation | Silicon process compatible trench magnetic device |
-
2019
- 2019-12-30 CN CN201911388134.4A patent/CN111200062B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102789967A (en) * | 2012-08-16 | 2012-11-21 | 中国电子科技集团公司第五十五研究所 | Manufacturing method for soft magnetic core spiral micro-inductor |
JP2015201481A (en) * | 2014-04-04 | 2015-11-12 | Necトーキン株式会社 | Powder-compact magnetic core arranged by use of nanocrystal soft magnetic alloy powder, and manufacturing method thereof |
Non-Patent Citations (1)
Title |
---|
纳米晶磁芯螺线管微电感的模拟研究;周庆华,周勇,周志敏,曹莹,丁文;《电子元件与材料》;20080905;14-17页 * |
Also Published As
Publication number | Publication date |
---|---|
CN111200062A (en) | 2020-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101701737B1 (en) | Multilayer electronic structures with embedded filters | |
JP6296331B2 (en) | Thin film capacitor embedded in polymer dielectric, and method for producing the capacitor | |
CN101483149B (en) | A kind of preparation method of through-silicon via interconnection structure | |
JP6079993B2 (en) | Process for making multilayer holes | |
CN101834178B (en) | Integrated passive component and manufacturing method thereof | |
US10553358B2 (en) | Electronic substrates and interposers made from nanoporous films | |
JP2013247356A (en) | Multilayer electronic structure with vias having different dimensions | |
CN101656249A (en) | Multilayer interconnection structure of wafer level package, manufacturing method and application | |
KR101409801B1 (en) | Multilayer electronic structures with integral vias extending in in-plane direction | |
CN102956540A (en) | Method for manufacturing interconnection structure containing polymer material and metal through hole | |
CN111200062B (en) | Miniaturized inductor manufacturing method based on nanoparticle filling process and inductor | |
CN111292950A (en) | Manufacturing method and inductance of an embedded magnetic core miniaturized three-dimensional inductor | |
CN110010493B (en) | Manufacturing method of interconnected inductor | |
CN111490004A (en) | Method for preparing rewiring layer and semiconductor structure | |
CN106298735B (en) | A kind of the three dimensional inductor structure and its manufacture craft of high quality factor | |
CN112802821B (en) | Aluminum-based adapter plate with double-sided multilayer wiring and preparation method thereof | |
CN209804649U (en) | Semiconductor structure | |
SE520714C2 (en) | Micro replicated miniaturized electrical components | |
CN105679734B (en) | Integrated passive components pinboard and preparation method thereof | |
CN112086274B (en) | Manufacturing method and transformer of micro-transformer with magnetic core | |
CN113644020B (en) | Semiconductor bonding structure and preparation method thereof | |
CN112086282B (en) | Manufacturing method and structure of a miniaturized three-dimensional inductor with magnetic core | |
CN119232102A (en) | Filter and preparation method thereof, and electronic equipment | |
CN108604584A (en) | Restructural magnetic induction connection substrate and restructural magnetic device | |
CN116996036A (en) | Silicon-based MEMS radio frequency filter and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |