CN111180750B - A kind of AgPdIr nano-alloy and preparation and use method thereof - Google Patents
A kind of AgPdIr nano-alloy and preparation and use method thereof Download PDFInfo
- Publication number
- CN111180750B CN111180750B CN202010003705.4A CN202010003705A CN111180750B CN 111180750 B CN111180750 B CN 111180750B CN 202010003705 A CN202010003705 A CN 202010003705A CN 111180750 B CN111180750 B CN 111180750B
- Authority
- CN
- China
- Prior art keywords
- agpdir
- oxidation reaction
- catalyst
- formate
- nano
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000956 alloy Substances 0.000 title claims abstract description 40
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 title claims abstract description 15
- 238000002360 preparation method Methods 0.000 title abstract description 8
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims abstract description 62
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 claims abstract description 57
- 239000003054 catalyst Substances 0.000 claims abstract description 54
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 51
- 230000003197 catalytic effect Effects 0.000 claims abstract description 24
- 238000012360 testing method Methods 0.000 claims abstract description 16
- 230000000694 effects Effects 0.000 claims abstract description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 5
- 239000001257 hydrogen Substances 0.000 claims abstract description 5
- 230000002441 reversible effect Effects 0.000 claims abstract description 3
- 239000000243 solution Substances 0.000 claims description 33
- 239000007864 aqueous solution Substances 0.000 claims description 21
- 238000006243 chemical reaction Methods 0.000 claims description 15
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 14
- 239000008367 deionised water Substances 0.000 claims description 14
- 229910021641 deionized water Inorganic materials 0.000 claims description 14
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 239000002243 precursor Substances 0.000 claims description 12
- 238000003756 stirring Methods 0.000 claims description 9
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 7
- 239000002253 acid Substances 0.000 claims description 7
- 235000010323 ascorbic acid Nutrition 0.000 claims description 7
- 229960005070 ascorbic acid Drugs 0.000 claims description 7
- 239000011668 ascorbic acid Substances 0.000 claims description 7
- 229910001961 silver nitrate Inorganic materials 0.000 claims description 7
- 229910052708 sodium Inorganic materials 0.000 claims description 7
- 239000011734 sodium Substances 0.000 claims description 7
- 239000002159 nanocrystal Substances 0.000 claims description 6
- 239000004094 surface-active agent Substances 0.000 claims description 6
- 239000007809 chemical reaction catalyst Substances 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 3
- 238000004108 freeze drying Methods 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 229960001927 cetylpyridinium chloride Drugs 0.000 claims 3
- YMKDRGPMQRFJGP-UHFFFAOYSA-M cetylpyridinium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+]1=CC=CC=C1 YMKDRGPMQRFJGP-UHFFFAOYSA-M 0.000 claims 3
- 238000004140 cleaning Methods 0.000 claims 1
- 238000000926 separation method Methods 0.000 claims 1
- 239000000446 fuel Substances 0.000 abstract description 13
- 230000003647 oxidation Effects 0.000 description 17
- OBFSQMXGZIYMMN-UHFFFAOYSA-N 3-chloro-2-hexadecylpyridine Chemical compound CCCCCCCCCCCCCCCCC1=NC=CC=C1Cl OBFSQMXGZIYMMN-UHFFFAOYSA-N 0.000 description 15
- 238000002484 cyclic voltammetry Methods 0.000 description 7
- 229920006395 saturated elastomer Polymers 0.000 description 7
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 6
- 238000000840 electrochemical analysis Methods 0.000 description 5
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 3
- 235000019253 formic acid Nutrition 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 231100000572 poisoning Toxicity 0.000 description 3
- 230000000607 poisoning effect Effects 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 238000005275 alloying Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 239000010411 electrocatalyst Substances 0.000 description 2
- 239000011943 nanocatalyst Substances 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000013112 stability test Methods 0.000 description 2
- CLWAXFZCVYJLLM-UHFFFAOYSA-N 1-chlorohexadecane Chemical compound CCCCCCCCCCCCCCCCCl CLWAXFZCVYJLLM-UHFFFAOYSA-N 0.000 description 1
- 239000011865 Pt-based catalyst Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- SWELZOZIOHGSPA-UHFFFAOYSA-N palladium silver Chemical compound [Pd].[Ag] SWELZOZIOHGSPA-UHFFFAOYSA-N 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/921—Alloys or mixtures with metallic elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Catalysts (AREA)
- Inert Electrodes (AREA)
Abstract
本发明涉及一种AgPdIr纳米合金及制备和使用方法,将Ir加入AgPd纳米合金,形成一种AgPdIr三元纳米合金。以AgPdIr三元纳米合金作为催化剂提高了甲酸盐氧化反应的催化活性和稳定性,使甲酸盐氧化反应的起始电位和峰电位位置向负电位方向移动,提高了直接甲酸盐燃料电池的放电电压和能量效率。以AgPdIr纳米合金作为甲酸盐氧化反应催化剂,甲酸盐氧化反应的起始电位在0.16‑0.2V,峰电位在0.5‑0.8V,电位参比于可逆氢电极。甲酸盐氧化反应的催化活性为2.09‑5.14A·mg‑1 Pd,甲酸盐氧化反应的催化活性在4000s耐久性测试后为0.82‑1.54A·mg‑1 Pd,是商业化Pd/C活性和耐久性的1.29‑3.17倍和7.45‑14倍。
The invention relates to an AgPdIr nano-alloy and a preparation and use method. Ir is added to the AgPd nano-alloy to form an AgPdIr ternary nano-alloy. The use of AgPdIr ternary nanoalloy as a catalyst improves the catalytic activity and stability of formate oxidation reaction, and moves the onset potential and peak potential position of formate oxidation reaction to the negative potential direction, which improves the direct formate fuel cell. discharge voltage and energy efficiency. Using AgPdIr nanoalloy as the catalyst for formate oxidation reaction, the onset potential of formate oxidation reaction is 0.16-0.2V, the peak potential is 0.5-0.8V, and the potential is referenced to the reversible hydrogen electrode. The catalytic activity of formate oxidation reaction is 2.09-5.14A·mg -1 Pd , and the catalytic activity of formate oxidation reaction is 0.82-1.54A·mg- 1 Pd after 4000s durability test, which is a commercialized Pd/C 1.29‑3.17 times and 7.45‑14 times the activity and durability.
Description
技术领域technical field
本发明属于燃料电池技术领域,涉及一种AgPdIr纳米合金及制备和使用方法,具体涉及直接甲酸盐燃料电池用阳极催化剂及其制备方法。The invention belongs to the technical field of fuel cells, relates to an AgPdIr nano-alloy and a preparation and use method thereof, in particular to an anode catalyst for a direct formate fuel cell and a preparation method thereof.
背景技术Background technique
随着日趋严重的能源危机和环境恶化问题,发展一种清洁的新能源用于替代传统的化石燃料已经迫在眉睫。直接甲酸盐燃料电池是一种绿色,高效的能源转换装置,具有无毒,转化效率高和安全性好等优点。一般地,直接甲酸燃料电池的工作环境碱性条件,阳极发生的是甲酸盐氧化反应,阴极发生的是氧气还原反应,其理论电压和理论功率密度高于其它类型的燃料电池。因此,近年来,直接甲酸盐燃料电池的研究越来越受到人们的关注。With the increasingly serious energy crisis and environmental deterioration, it is urgent to develop a new clean energy to replace traditional fossil fuels. Direct formate fuel cell is a green and efficient energy conversion device with the advantages of non-toxicity, high conversion efficiency and good safety. Generally, the working environment of the direct formic acid fuel cell is alkaline, the anode is formate oxidation reaction, and the cathode is oxygen reduction reaction, and its theoretical voltage and theoretical power density are higher than other types of fuel cells. Therefore, in recent years, the research of direct formate fuel cells has attracted more and more attention.
目前,制约直接甲酸盐燃料电池发展的难题是缺少一种催化活性高和稳定性好的甲酸盐氧化反应催化剂。当前,广泛使用的甲酸盐氧化反应催化剂为商业化Pt/C或者Pd/C。Pt/C催化剂对甲酸盐氧化反应的催化活性较低,且在催化反应过程中容易产生中毒现象。而相对于Pt/C,商业化的Pd/C催化剂价格低,催化活性高,且无中毒现象,成为甲酸盐氧化反应催化剂的研究热点。但是,金属Pd表面对甲酸盐氧化反应过程中产生的吸附氢有很强的结合能。吸附在Pd表面的中间产物氢占据了Pd/C的催化活性位点,使其催化活性迅速下降,导致较差的稳定性。因此,为了加快直接甲酸盐燃料电池的商业化进程,需要发展更高催化活性和稳定性的Pd基催化剂。At present, the problem that restricts the development of direct formate fuel cells is the lack of a formate oxidation catalyst with high catalytic activity and good stability. Currently, the widely used catalysts for formate oxidation are commercial Pt/C or Pd/C. Pt/C catalysts have low catalytic activity for formate oxidation, and are prone to poisoning during the catalytic reaction. Compared with Pt/C, commercial Pd/C catalysts have low price, high catalytic activity, and no poisoning phenomenon, which has become a research hotspot for formate oxidation catalysts. However, the metal Pd surface has a strong binding energy for the adsorbed hydrogen generated during the formate oxidation reaction. The intermediate product hydrogen adsorbed on the Pd surface occupies the catalytically active sites of Pd/C, causing its catalytic activity to drop rapidly, resulting in poor stability. Therefore, to accelerate the commercialization of direct formate fuel cells, it is necessary to develop Pd-based catalysts with higher catalytic activity and stability.
一般地,提高Pd基催化剂对甲酸盐氧化反应的催化活性和稳定性的主要方法为合金化。即通过将金属Pd与其它不同类型的金属结合,形成新型的Pd基纳米合金催化剂,从而提高Pd基甲酸盐氧化反应催化剂的催化活性和稳定性。Generally, the main method to improve the catalytic activity and stability of Pd-based catalysts for formate oxidation is alloying. That is, by combining metal Pd with other different types of metals, a new type of Pd-based nano-alloy catalyst is formed, thereby improving the catalytic activity and stability of the Pd-based formate oxidation catalyst.
中国发明专利CN107017409A公开了一种电碱盐联产直接甲酸盐燃料电池。在这种电池体系中,使用PdAu双金属作为阳极催化剂用来代替传统的Pt基催化剂。虽然PdAu双金属催化剂降低了电池的成本,但其成本依旧很高。Chinese invention patent CN107017409A discloses a direct formate fuel cell with electro-alkali-salt co-production. In this battery system, PdAu bimetallic catalysts were used as anode catalysts instead of traditional Pt-based catalysts. Although the PdAu bimetallic catalyst reduces the cost of the battery, its cost is still high.
中国专利CN108417854A公开了一种高效银钯纳米合金甲酸盐氧化反应电催化剂及制备方法。该发明中提出的AgPd纳米合金在保证高效甲酸盐氧化催化活性的同时,通过Ag的合金化改善了Pd中毒问题,从而提高了催化材料的稳定性,延长了材料的使用寿命。Chinese patent CN108417854A discloses a high-efficiency silver-palladium nano-alloy formate oxidation electrocatalyst and a preparation method. The AgPd nano-alloy proposed in the invention not only ensures the high-efficiency formate oxidation catalytic activity, but also improves the Pd poisoning problem through Ag alloying, thereby improving the stability of the catalytic material and prolonging the service life of the material.
中国发明专利CN108746659A公开了一种花状AgPd纳米合金及制备和使用方法。该发明中通过使用Apzc作为形貌控制剂,合成了形貌为花状的AgPd纳米合金催化剂,展现出优异的催化活性和稳定性。Chinese invention patent CN108746659A discloses a flower-shaped AgPd nano-alloy and its preparation and use methods. In this invention, by using Apzc as a morphology control agent, an AgPd nano-alloy catalyst with flower-like morphology is synthesized, which exhibits excellent catalytic activity and stability.
中国发明专利CN108598508A公开了一种AgPd纳米合金甲酸盐氧化催化剂及提高催化活性的无表面活性剂的处理方法。该发明中在合金化的Pd基纳米催化剂的基础上,提出了使用原位电化学电位循环方法来提高Ag-Pd纳米合金甲酸盐氧化催化活性。Chinese invention patent CN108598508A discloses an AgPd nano-alloy formate oxidation catalyst and a surfactant-free treatment method for improving catalytic activity. In the invention, on the basis of the alloyed Pd-based nano-catalyst, an in-situ electrochemical potential cycling method is proposed to improve the catalytic activity of Ag-Pd nano-alloy formate oxidation.
综上所述,尽管人们对于Pd基双金属纳米合金甲酸盐氧化催化剂进行了大量的研究,但目前的Pd基纳米催化剂还存在以下缺点:甲酸盐氧化反应的起始电位低,甲酸盐氧化反应的峰电位偏向正电位方向,在直接甲酸盐燃料电池工作时会导致电池输出电压低,燃料转化效率不高。In summary, although a lot of research has been done on Pd-based bimetallic nanoalloy formate oxidation catalysts, the current Pd-based nanocatalysts still have the following disadvantages: low onset potential for formate oxidation, and formic acid The peak potential of the salt oxidation reaction is biased towards the positive potential direction, which will lead to low cell output voltage and low fuel conversion efficiency when the direct formate fuel cell works.
发明内容SUMMARY OF THE INVENTION
要解决的技术问题technical problem to be solved
为了避免现有技术的不足之处,本发明提出一种AgPdIr纳米合金及制备和使用方法,克服现有技术中Pd基纳米甲酸盐氧化反应催化剂的不足。In order to avoid the deficiencies of the prior art, the present invention provides an AgPdIr nano-alloy and a preparation and use method, which overcomes the deficiencies of the Pd-based nano-formate oxidation reaction catalyst in the prior art.
技术方案Technical solutions
一种AgPdIr纳米合金,其特征在于:将Ir加入AgPd纳米合金,形成AgPdIr三元纳米合金催化剂,形貌为由纳米晶组装而成的三维多孔球形结构,其中:成分原子百分比范围为Ag:23~46,Pd:49~73,Ir:1~8。An AgPdIr nano-alloy, which is characterized in that: Ir is added to the AgPd nano-alloy to form an AgPdIr ternary nano-alloy catalyst, the morphology is a three-dimensional porous spherical structure assembled by nano-crystals, wherein: the composition atomic percentage range is Ag: 23 ~46, Pd: 49-73, Ir: 1-8.
所述三维多孔球形结构中球的直径为30~100纳米。The diameter of the balls in the three-dimensional porous spherical structure is 30-100 nanometers.
所述纳米晶尺寸为3~7纳米。The size of the nanocrystals is 3-7 nanometers.
一种制备所述AgPdIr纳米合金的方法,其特征在于步骤如下:A method for preparing the AgPdIr nano-alloy, characterized in that the steps are as follows:
步骤2:将浓度为0.01mol·L-1的0.2~0.3mL氯钯酸钠,0.12~0.32mL氯铱酸和0.1~0.2mL硝酸银前驱体溶液依次加入步骤1中得到的氯化十六烷吡啶溶液,并搅拌10~15分钟使其混合均匀Step 2: Add 0.2-0.3 mL of sodium chloropalladate, 0.12-0.32 mL of chloroiridic acid and 0.1-0.2 mL of silver nitrate precursor solution with a concentration of 0.01 mol·L -1 in sequence to the hexadecyl chloride obtained in step 1. Alkylpyridine solution, and stir for 10 to 15 minutes to make it evenly mixed
步骤3:将抗坏血酸溶液加入到步骤2中得到的溶液,然后停止搅拌,在25~50℃条件下静置反应2~4个小时;Step 3: add the ascorbic acid solution to the solution obtained in
步骤4:通过离心分离,去离子水清洗和冷冻干燥处理步骤3的溶液,得到AgPdIr纳米合金甲酸盐氧化反应催化剂;Step 4: by centrifuging, washing with deionized water, and freeze-drying the solution in
上述反应中的各组份比例为每份,按照需要成倍增加。The proportion of each component in the above reaction is each part, which is doubled as required.
一种所述AgPdIr纳米合金的使用方法,其特征在于:以AgPdIr纳米合金作为甲酸盐氧化反应催化剂,甲酸盐氧化反应的起始电位在0.16-0.2V,峰电位在0.5-0.8V,电位参比于可逆氢电极。甲酸盐氧化反应的催化活性为2.09-5.14A·mg-1 Pd,甲酸盐氧化反应的催化活性在4000s耐久性测试后为0.82-1.54A·mg-1 Pd,是商业化Pd/C活性和耐久性的1.29-3.17倍和7.45-14倍。A method for using the AgPdIr nano-alloy, characterized in that: using the AgPdIr nano-alloy as a formate oxidation reaction catalyst, the initial potential of the formate oxidation reaction is 0.16-0.2V, and the peak potential is 0.5-0.8V, The potential is referenced to a reversible hydrogen electrode. The catalytic activity of formate oxidation reaction is 2.09-5.14A·mg -1 Pd , and the catalytic activity of formate oxidation reaction is 0.82-1.54A·mg -1 Pd after 4000s durability test, which is a commercial Pd/C 1.29-3.17 times and 7.45-14 times the activity and durability.
有益效果beneficial effect
本发明提出的一种AgPdIr纳米合金及制备和使用方法,将Ir加入AgPd纳米合金,形成一种AgPdIr三元纳米合金。以AgPdIr三元纳米合金作为催化剂提高了甲酸盐氧化反应的催化活性和稳定性,使甲酸盐氧化反应的起始电位和峰电位位置向负电位方向移动,提高了直接甲酸盐燃料电池的放电电压和能量效率。The invention proposes an AgPdIr nano-alloy and a method for preparing and using the same. Ir is added to the AgPd nano-alloy to form an AgPdIr ternary nano-alloy. The use of AgPdIr ternary nanoalloy as a catalyst improves the catalytic activity and stability of formate oxidation reaction, and moves the onset potential and peak potential position of formate oxidation reaction to the negative potential direction, which improves the direct formate fuel cell. discharge voltage and energy efficiency.
本发明中,所述AgPdIr三元纳米合金催化剂具有优异的催化活性和稳定性,附图2表示了AgPdIr三元纳米合金催化剂与商业化Pd/C在N2饱和的1M KOH+1M KCOOH溶液中的循环伏安曲线,从图中可以看出AgPdIr三元纳米合金催化剂的催化活性高于商业化Pd/C催化剂,表现为负移的起始电位和峰电位。在0.5V(vs RHE)时,AgPdIr三元纳米合金催化剂的电流密度为5.14A·mg-1 Pd,是商业化Pd/C的3.17倍。图3表示了AgPdIr三元纳米合金催化剂对甲酸盐氧化反应的长程耐久性测试,通过测试结果可知,在电位为0.624V(vs RHE)的测试条件下,20000s长时间测试后,其甲酸盐氧化反应的电流密度依然为347mA·mg-1 Pd。图4表示了AgPdIr三元纳米合金催化剂对甲酸盐氧化反应的再生能力。由图可知,4000s测试过程结束后,将AgPdIr三元纳米合金催化剂用去离子水清洗并放入新电解液后,其甲酸盐氧化反应活性恢复到初始状态。图5为AgPdIr三元纳米合金催化剂对甲酸盐氧化反应的循环稳定性测试,由测试结果可知,500次循环后,其甲酸盐氧化反应活性为初始值的41%。In the present invention, the AgPdIr ternary nano-alloy catalyst has excellent catalytic activity and stability. Figure 2 shows the AgPdIr ternary nano-alloy catalyst and commercial Pd/C in N 2 saturated 1M KOH+1M KCOOH solution It can be seen from the figure that the catalytic activity of the AgPdIr ternary nanoalloy catalyst is higher than that of the commercial Pd/C catalyst, showing a negatively shifted onset potential and peak potential. At 0.5 V (vs RHE), the current density of the AgPdIr ternary nanoalloy catalyst is 5.14 A·mg -1 Pd , which is 3.17 times that of commercial Pd/C. Figure 3 shows the long-range durability test of AgPdIr ternary nanoalloy catalyst for formate oxidation reaction. The test results show that under the test condition of potential 0.624V (vs RHE), after 20000s long-term test, its formic acid The current density of the salt oxidation reaction is still 347 mA·mg -1 Pd . Figure 4 shows the regeneration ability of the AgPdIr ternary nanoalloy catalyst for the formate oxidation reaction. It can be seen from the figure that after the 4000s test process, the AgPdIr ternary nanoalloy catalyst was washed with deionized water and put into a new electrolyte, and its formate oxidation reaction activity returned to the initial state. Figure 5 shows the cycle stability test of AgPdIr ternary nanoalloy catalyst for formate oxidation reaction. From the test results, it can be seen that after 500 cycles, its formate oxidation reaction activity is 41% of the initial value.
附图说明Description of drawings
图1:AgPdIr三元纳米合金催化剂的制备流程图Figure 1: Flow chart of preparation of AgPdIr ternary nanoalloy catalyst
图2:不同种类催化剂在N2饱和的1M KOH+1M KCOOH溶液中的循环伏安曲线,图中曲线1是AgPdIr三元纳米合金催化剂的循环伏安曲线;曲线2是商业化Pd/C的循环伏安曲线。Figure 2: Cyclic voltammetry curves of different kinds of catalysts in N 2 saturated 1M KOH+1M KCOOH solution, curve 1 is the cyclic voltammetry curve of AgPdIr ternary nanoalloy catalyst;
图3:AgPdIr三元纳米合金催化剂的甲酸盐氧化反应长程耐久性测试,测试手段为时间-电流曲线,测试电位为0.624V(vs RHE),测试时间为20000s。Figure 3: Long-range durability test of formate oxidation reaction of AgPdIr ternary nanoalloy catalyst. The test method is time-current curve, the test potential is 0.624V (vs RHE), and the test time is 20000s.
图4:AgPdIr三元纳米合金催化剂对甲酸盐氧化反应的再生能力测试,测试手段为时间-电流曲线,测试电位为0.624V(vs RHE),测试时间为4000s。曲线1为第1次时间-电流曲线,曲线2为第2次时间-电流曲线,曲线3为第3次时间-电流曲线,曲线4为第4次时间-电流曲线。Figure 4: The regeneration ability test of AgPdIr ternary nanoalloy catalyst for formate oxidation reaction. The test method is time-current curve, the test potential is 0.624V (vs RHE), and the test time is 4000s. Curve 1 is the first time-current curve,
图5:AgPdIr三元纳米合金催化剂的循环稳定性测试,测试手段为循环伏安曲线,扫描速率为50mV/s。曲线1为第1圈的循环伏安曲线;曲线2为第200圈的循环伏安曲线;曲线3为第500圈的循环伏安曲线。Figure 5: Cyclic stability test of AgPdIr ternary nano-alloy catalyst. The test method is cyclic voltammetry curve and the scan rate is 50mV/s. Curve 1 is the cyclic voltammetry curve of the first circle;
具体实施方式Detailed ways
现结合实施例、附图对本发明作进一步描述:The present invention will now be further described in conjunction with the embodiments and accompanying drawings:
本发明的甲酸盐氧化反应电催化剂的主要成分是Ag,Pd和Ir,成分原子百分比范围为Ag:23-46,Pd:49-73,Ir:1-8。所述的AgPdIr纳米合金为单相固溶体合金。所述AgPdIr纳米合金的形貌为由纳米晶组装而成的三维多孔球形结构,球的直径为30-100纳米,纳米晶尺寸为3-7纳米。The main components of the electrocatalyst for formate oxidation reaction of the present invention are Ag, Pd and Ir, and the atomic percentages of the components are Ag: 23-46, Pd: 49-73, and Ir: 1-8. The AgPdIr nano-alloy is a single-phase solid solution alloy. The morphology of the AgPdIr nano-alloy is a three-dimensional porous spherical structure assembled by nano-crystals, the diameter of the sphere is 30-100 nanometers, and the size of the nano-crystals is 3-7 nanometers.
使用AgPdIr纳米合金作为甲酸盐氧化反应的催化剂,甲酸盐氧化反应的起始电位在0.16-0.2V(vs RHE),峰电位在0.5-0.8V(vs RHE),甲酸盐氧化反应的催化活性为2.09-5.14A·mg-1 Pd,甲酸盐氧化反应的催化活性在4000s耐久性测试后为0.82-1.54A·mg-1 Pd,是商业化Pd/C活性和耐久性的1.29-3.17倍和7.45-14倍。Using AgPdIr nanoalloy as the catalyst for formate oxidation reaction, the onset potential of formate oxidation reaction is 0.16-0.2V (vs RHE), and the peak potential is 0.5-0.8V (vs RHE). The catalytic activity is 2.09-5.14A·mg -1 Pd , and the catalytic activity of formate oxidation reaction is 0.82-1.54A·mg -1 Pd after 4000s durability test, which is 1.29% higher than commercial Pd/C activity and durability -3.17 times and 7.45-14 times.
具体实施例:Specific examples:
实施例1Example 1
将18mg的氯化十六烷吡啶表面活性剂溶于5mL去离子水中,超声10分钟,搅拌10分钟后形成氯化十六烷吡啶水溶液。依次分别取0.267mL氯钯酸钠(0.01mol·L-1),0.12mL氯铱酸(0.01mol·L-1)和0.13mL硝酸银(0.01mol·L-1)水溶液滴加到上述得到的氯化十六烷吡啶水溶液中,搅拌10分钟形成前驱体水溶液。配制0.3mL浓度为0.1mol·L-1的抗坏血酸水溶液,并快速滴加到上述得到的前驱体水溶液中,停止搅拌,在35℃条件下静置反应3个小时。待反应完毕后,将得到的黑色溶液进行离心并用去离子水清洗三次,最后冷冻干燥12小时候即可得到最终的Ag32Pd66Ir2三元纳米合金催化剂。在N2饱和的1M KOH+1M KCOOH溶液中的电化学测试结果表明,在0.5V(vs RHE)时,Ag32Pd66Ir2三元纳米合金催化剂对甲酸盐氧化反应的电流密度为商业化Pd/C催化剂的1.29倍。18 mg of cetylpyridine chloride surfactant was dissolved in 5 mL of deionized water, sonicated for 10 minutes, and stirred for 10 minutes to form an aqueous cetylpyridine chloride solution. 0.267mL sodium chloropalladate (0.01mol·L -1 ), 0.12mL chloroiridic acid (0.01mol·L -1 ) and 0.13mL silver nitrate (0.01mol·L -1 ) aqueous solution were respectively added dropwise to the above to obtain The aqueous solution of cetylpyridine chloride was stirred for 10 minutes to form an aqueous precursor solution. 0.3 mL of ascorbic acid aqueous solution with a concentration of 0.1 mol·L -1 was prepared, and quickly added dropwise to the above-obtained precursor aqueous solution, the stirring was stopped, and the reaction was allowed to stand at 35° C. for 3 hours. After the reaction is completed, the obtained black solution is centrifuged and washed three times with deionized water, and finally freeze-dried for 12 hours to obtain the final Ag 32 Pd 66 Ir 2 ternary nano-alloy catalyst. The electrochemical test results in N2 -saturated 1M KOH + 1M KCOOH solution show that the Ag32Pd66Ir2 ternary nanoalloy catalyst has a commercial current density for formate oxidation at 0.5V (vs RHE) 1.29 times that of the Pd/C catalyst.
实施例2Example 2
将18mg的氯化十六烷吡啶表面活性剂溶于5mL去离子水中,超声10分钟,搅拌10分钟后形成氯化十六烷吡啶水溶液。依次分别取0.267mL氯钯酸钠(0.01mol·L-1),0.2mL氯铱酸(0.01mol·L-1)和0.13mL硝酸银(0.01mol·L-1)水溶液滴加到上述得到的氯化十六烷吡啶水溶液中,搅拌10分钟形成前驱体水溶液。配制0.3mL浓度为0.1mol·L-1的抗坏血酸水溶液,并快速滴加到上述得到的前驱体水溶液中,停止搅拌,在35℃条件下静置反应3个小时。待反应完毕后,将得到的黑色溶液进行离心并用去离子水清洗三次,最后冷冻干燥12小时候即可得到最终的Ag30Pd66Ir4三元纳米合金催化剂。在N2饱和的1M KOH+1M KCOOH溶液中的电化学测试结果表明,在0.5V(vs RHE)时,Ag31Pd65Ir4三元纳米合金催化剂对甲酸盐氧化反应的电流密度为商业化Pd/C催化剂的3.17倍。18 mg of cetylpyridine chloride surfactant was dissolved in 5 mL of deionized water, sonicated for 10 minutes, and stirred for 10 minutes to form an aqueous cetylpyridine chloride solution. 0.267mL sodium chloropalladate (0.01mol·L -1 ), 0.2mL chloroiridic acid (0.01mol·L -1 ) and 0.13mL silver nitrate (0.01mol·L -1 ) aqueous solution were respectively added dropwise to the above to obtain The aqueous solution of cetylpyridine chloride was stirred for 10 min to form an aqueous precursor solution. 0.3 mL of ascorbic acid aqueous solution with a concentration of 0.1 mol·L -1 was prepared, and quickly added dropwise to the above-obtained precursor aqueous solution, the stirring was stopped, and the reaction was allowed to stand at 35° C. for 3 hours. After the reaction is completed, the obtained black solution is centrifuged, washed with deionized water three times, and finally freeze-dried for 12 hours to obtain the final Ag 30 Pd 66 Ir 4 ternary nano-alloy catalyst. The electrochemical test results in N2 -saturated 1M KOH + 1M KCOOH solution show that the Ag31Pd65Ir4 ternary nanoalloy catalyst has a commercial current density for formate oxidation at 0.5V (vs RHE) 3.17 times that of the Pd/C catalyst.
实施例3Example 3
将18mg的氯化十六烷吡啶表面活性剂溶于5mL去离子水中,超声10分钟,搅拌10分钟后形成氯化十六烷吡啶水溶液。依次分别取0.267mL氯钯酸钠(0.01mol·L-1),0.32mL氯铱酸(0.01mol·L-1)和0.13mL硝酸银(0.01mol·L-1)水溶液滴加到上述得到的氯化十六烷吡啶水溶液中,搅拌10分钟形成前驱体水溶液。配制0.3mL浓度为0.1mol·L-1的抗坏血酸水溶液,并快速滴加到上述得到的前驱体水溶液中,停止搅拌,在35℃条件下静置反应3个小时。待反应完毕后,将得到的黑色溶液进行离心并用去离子水清洗三次,最后冷冻干燥12小时候即可得到最终的Ag28Pd65Ir7三元纳米合金催化剂。在N2饱和的1M KOH+1M KCOOH溶液中的电化学测试结果表明,在0.5V(vs RHE)时,Ag28Pd65Ir7三元纳米合金催化剂对甲酸盐氧化反应的电流密度为商业化Pd/C催化剂的2.54倍。18 mg of cetylpyridine chloride surfactant was dissolved in 5 mL of deionized water, sonicated for 10 minutes, and stirred for 10 minutes to form an aqueous cetylpyridine chloride solution. 0.267mL of sodium chloropalladate (0.01mol·L -1 ), 0.32mL of chloroiridic acid (0.01mol·L -1 ) and 0.13mL of silver nitrate (0.01mol·L -1 ) aqueous solution were respectively added dropwise to the above to obtain The aqueous solution of cetylpyridine chloride was stirred for 10 minutes to form an aqueous precursor solution. 0.3 mL of ascorbic acid aqueous solution with a concentration of 0.1 mol·L -1 was prepared, and quickly added dropwise to the above-obtained precursor aqueous solution, the stirring was stopped, and the reaction was allowed to stand at 35° C. for 3 hours. After the reaction is completed, the obtained black solution is centrifuged and washed three times with deionized water, and finally freeze-dried for 12 hours to obtain the final Ag 28 Pd 65 Ir 7 ternary nano-alloy catalyst. The electrochemical test results in N2 - saturated 1M KOH+1M KCOOH solution show that the Ag28Pd65Ir7 ternary nanoalloy catalyst has a commercial current density for formate oxidation at 0.5V (vs RHE) 2.54 times that of the Pd/C catalyst.
实施例4Example 4
将18mg的氯化十六烷吡啶表面活性剂溶于5mL去离子水中,超声10分钟,搅拌10分钟后形成氯化十六烷吡啶水溶液。依次分别取0.3mL氯钯酸钠(0.01mol·L-1),0.2mL氯铱酸(0.01mol·L-1)和0.1mL硝酸银(0.01mol·L-1)水溶液滴加到上述得到的氯化十六烷吡啶水溶液中,搅拌10分钟形成前驱体水溶液。配制0.3mL浓度为0.1mol·L-1的抗坏血酸水溶液,并快速滴加到上述得到的前驱体水溶液中,停止搅拌,在35℃条件下静置反应3个小时。待反应完毕后,将得到的黑色溶液进行离心并用去离子水清洗三次,最后冷冻干燥12小时候即可得到最终的Ag23Pd73Ir4三元纳米合金催化剂。在N2饱和的1M KOH+1M KCOOH溶液中的电化学测试结果表明,在0.5V(vs RHE)时,Ag23Pd73Ir4三元纳米合金催化剂对甲酸盐氧化反应的电流密度为商业化Pd/C催化剂的2.41倍。18 mg of cetylpyridine chloride surfactant was dissolved in 5 mL of deionized water, sonicated for 10 minutes, and stirred for 10 minutes to form an aqueous cetylpyridine chloride solution. 0.3 mL of sodium chloropalladate (0.01 mol·L -1 ), 0.2 mL of chloroiridic acid (0.01 mol·L -1 ) and 0.1 mL of silver nitrate (0.01 mol·L -1 ) aqueous solution were sequentially added dropwise to the above obtained The aqueous solution of cetylpyridine chloride was stirred for 10 minutes to form an aqueous precursor solution. 0.3 mL of ascorbic acid aqueous solution with a concentration of 0.1 mol·L -1 was prepared, and quickly added dropwise to the above-obtained precursor aqueous solution, the stirring was stopped, and the reaction was allowed to stand at 35° C. for 3 hours. After the reaction is completed, the obtained black solution is centrifuged and washed three times with deionized water, and finally freeze-dried for 12 hours to obtain the final Ag 23 Pd 73 Ir 4 ternary nano-alloy catalyst. The electrochemical test results in N2 -saturated 1M KOH + 1M KCOOH solution show that the Ag23Pd73Ir4 ternary nanoalloy catalyst has a commercial current density for formate oxidation at 0.5V (vs RHE) 2.41 times that of the Pd/C catalyst.
实施例5Example 5
将18mg的氯化十六烷吡啶表面活性剂溶于5mL去离子水中,超声10分钟,搅拌10分钟后形成氯化十六烷吡啶水溶液。依次分别取0.2mL氯钯酸钠(0.01mol·L-1),0.2mL氯铱酸(0.01mol·L-1)和0.2mL硝酸银(0.01mol·L-1)水溶液滴加到上述得到的氯化十六烷吡啶水溶液中,搅拌10分钟形成前驱体水溶液。配制0.3mL浓度为0.1mol·L-1的抗坏血酸水溶液,并快速滴加到上述得到的前驱体水溶液中,停止搅拌,在35℃条件下静置反应3个小时。待反应完毕后,将得到的黑色溶液进行离心并用去离子水清洗三次,最后冷冻干燥12小时候即可得到最终的Ag46Pd49Ir5三元纳米合金催化剂。在N2饱和的1M KOH+1M KCOOH溶液中的电化学测试结果表明,在0.5V(vs RHE)时,Ag46Pd49Ir5三元纳米合金催化剂对甲酸盐氧化反应的电流密度为商业化Pd/C催化剂的1.89倍。18 mg of cetylpyridine chloride surfactant was dissolved in 5 mL of deionized water, sonicated for 10 minutes, and stirred for 10 minutes to form an aqueous cetylpyridine chloride solution. 0.2mL sodium chloropalladate (0.01mol·L -1 ), 0.2mL chloroiridic acid (0.01mol·L -1 ) and 0.2mL silver nitrate (0.01mol·L -1 ) aqueous solution were respectively added dropwise to the above obtained The aqueous solution of cetylpyridine chloride was stirred for 10 minutes to form an aqueous precursor solution. 0.3 mL of ascorbic acid aqueous solution with a concentration of 0.1 mol·L -1 was prepared, and quickly added dropwise to the above-obtained precursor aqueous solution, the stirring was stopped, and the reaction was allowed to stand at 35° C. for 3 hours. After the reaction is completed, the obtained black solution is centrifuged, washed with deionized water three times, and finally freeze-dried for 12 hours to obtain the final Ag 46 Pd 49 Ir 5 ternary nano-alloy catalyst. The electrochemical test results in N2 - saturated 1M KOH+1M KCOOH solution show that the Ag46Pd49Ir5 ternary nanoalloy catalyst has a commercial current density for formate oxidation at 0.5V (vs RHE) 1.89 times that of the Pd/C catalyst.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010003705.4A CN111180750B (en) | 2020-01-03 | 2020-01-03 | A kind of AgPdIr nano-alloy and preparation and use method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010003705.4A CN111180750B (en) | 2020-01-03 | 2020-01-03 | A kind of AgPdIr nano-alloy and preparation and use method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111180750A CN111180750A (en) | 2020-05-19 |
CN111180750B true CN111180750B (en) | 2022-08-12 |
Family
ID=70649238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010003705.4A Active CN111180750B (en) | 2020-01-03 | 2020-01-03 | A kind of AgPdIr nano-alloy and preparation and use method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111180750B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112421058B (en) * | 2020-11-26 | 2022-08-12 | 西北工业大学 | A kind of PdAgF nano-alloy formate oxidation catalyst and preparation and use method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005302527A (en) * | 2004-04-12 | 2005-10-27 | Nissan Motor Co Ltd | Electrode catalyst for fuel cell |
CN104630538A (en) * | 2015-02-12 | 2015-05-20 | 张忠华 | Multicomponent nano porous palladium-base alloy and preparation method thereof |
CN106784901A (en) * | 2016-12-27 | 2017-05-31 | 广西师范大学 | PdCd alloy catalysts and its preparation method and application are carried based on multi-walled carbon nano-tubes |
CN108526481A (en) * | 2018-03-28 | 2018-09-14 | 华侨大学 | A kind of preparation method of racemosus shape Nanoalloy elctro-catalyst |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3649009B2 (en) * | 1998-12-07 | 2005-05-18 | 日本電池株式会社 | Fuel cell electrode and method of manufacturing the same |
US20040077494A1 (en) * | 2002-10-22 | 2004-04-22 | Labarge William J. | Method for depositing particles onto a catalytic support |
US20050070109A1 (en) * | 2003-09-30 | 2005-03-31 | Feller A. Daniel | Novel slurry for chemical mechanical polishing of metals |
CN100472858C (en) * | 2005-03-09 | 2009-03-25 | 中国科学院大连化学物理研究所 | A kind of preparation method of proton exchange membrane fuel cell electrocatalyst |
CN103638925B (en) * | 2013-11-15 | 2015-08-26 | 华南理工大学 | A kind of fuel cell catalyst with core-casing structure and pulse electrodeposition preparation method thereof |
CN104741603B (en) * | 2015-04-11 | 2017-08-01 | 苏州大学 | A kind of asymmetric structure three metal nanoparticles, preparation method and application thereof |
CN108044127B (en) * | 2017-12-14 | 2020-11-06 | 中国科学院合肥物质科学研究院 | A three-dimensional porous gold-silver-platinum ternary alloy nanomaterial and its preparation method and application |
CN109411773A (en) * | 2018-10-22 | 2019-03-01 | 浙江工业大学 | A kind of palladium copper-golden nanometer thorn-like elctro-catalyst and preparation method thereof |
CN109382117A (en) * | 2018-10-22 | 2019-02-26 | 浙江工业大学 | A kind of tripod shape platinum palladium-copper alloy catalyst and preparation method thereof of catalytic oxidation-reduction reaction |
CN109174122B (en) * | 2018-10-31 | 2021-11-23 | 浙江工业大学 | Long needle sea urchin-shaped PdCuIr nitrogen reduction electrocatalyst and preparation method thereof |
CN109390594A (en) * | 2018-11-27 | 2019-02-26 | 浙江工业大学 | A kind of mesoporous platinum Pd-Co alloy nanosphere and preparation method thereof of catalysis Oxidation of Formic Acid reaction |
-
2020
- 2020-01-03 CN CN202010003705.4A patent/CN111180750B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005302527A (en) * | 2004-04-12 | 2005-10-27 | Nissan Motor Co Ltd | Electrode catalyst for fuel cell |
CN104630538A (en) * | 2015-02-12 | 2015-05-20 | 张忠华 | Multicomponent nano porous palladium-base alloy and preparation method thereof |
CN106784901A (en) * | 2016-12-27 | 2017-05-31 | 广西师范大学 | PdCd alloy catalysts and its preparation method and application are carried based on multi-walled carbon nano-tubes |
CN108526481A (en) * | 2018-03-28 | 2018-09-14 | 华侨大学 | A kind of preparation method of racemosus shape Nanoalloy elctro-catalyst |
Non-Patent Citations (1)
Title |
---|
Surface oxygen-mediated ultrathin PtRuM (Ni, Fe, and Co) nanowires boosting methanol oxidation reaction;Hongdong Li,et al.;《Journal of materials chemistry A》;20191128;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN111180750A (en) | 2020-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103357401B (en) | A kind of preparation method of palladium-based catalyst | |
CN111261886A (en) | A non-precious metal-modified platinum-based catalyst for fuel cells and its preparation method and application | |
CN103706355B (en) | Preparation method of carbon-supported palladium or palladium-platinum direct formic acid fuel cell electrocatalyst with auxiliary protection of inorganic salts | |
CN103078123B (en) | Fuel cell catalyst and preparation method thereof | |
CN113206260B (en) | Self-supporting M-N/C oxygen reduction catalyst and preparation method and application thereof | |
CN101667644B (en) | High-performance low-platinum catalyst for methanol fuel cell and preparation method thereof | |
CN101612566A (en) | A kind of low-platinum carbon-supported nano Pd-Pt alloy catalyst, preparation method and application thereof | |
CN106058277A (en) | PdAu electrocatalyst for fuel cell and preparation method thereof | |
CN105304913A (en) | Nitrogen/transition metal-codoped hierarchical-pore carbon oxygen reduction catalyst, and preparation method and application thereof | |
CN105817240A (en) | Pt doped phosphatizing cobalt bead catalyst carried by methanol carbon dioxide and preparation method of Pt doped phosphatizing cobalt bead catalyst | |
CN112436158B (en) | Anode catalyst of alcohol fuel cell | |
CN103028396A (en) | Preparation method of Pd@Pt core-shell structural catalyst for low-temperature fuel cell | |
CN102593474B (en) | Low-platinum fuel cell catalyst and preparation method thereof | |
CN102361089A (en) | PdNi/TiO2 Nanofiber Direct Methanol Fuel Cell Anode Catalyst and Preparation Method | |
CN103331172A (en) | A kind of preparation method of non-platinum hydrogen anode catalyst of proton exchange membrane fuel cell | |
CN107359356B (en) | A kind of anode catalysts for direct methanol fuel cell and preparation method | |
CN107863538A (en) | A kind of electrode and its application for alcohol catalysis | |
CN114520343A (en) | A kind of proton exchange membrane fuel cell anti-reverse electrode catalyst and preparation method thereof | |
CN101417242B (en) | Complex type non noble metal oxygen reduction catalyst | |
CN111180750B (en) | A kind of AgPdIr nano-alloy and preparation and use method thereof | |
CN108321402A (en) | A kind of preparation method of low-temp methanol fuel cell nanometer racemosus type alloy catalyst | |
CN102133543B (en) | Preparation of tin dioxide-carbon nitrogen composite material | |
CN108933265A (en) | A kind of alloy nano cage catalyst and its preparation method and application | |
CN107528070A (en) | The preparation method of cerium oxide bacteria cellulose supported palladium base fuel battery catalyst | |
CN108736030B (en) | Porous carbon-free catalyst for proton exchange membrane fuel cell and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |