CN111180686B - 一种柔性自支撑硅基锂离子电池负极材料的制备方法 - Google Patents
一种柔性自支撑硅基锂离子电池负极材料的制备方法 Download PDFInfo
- Publication number
- CN111180686B CN111180686B CN201911385725.6A CN201911385725A CN111180686B CN 111180686 B CN111180686 B CN 111180686B CN 201911385725 A CN201911385725 A CN 201911385725A CN 111180686 B CN111180686 B CN 111180686B
- Authority
- CN
- China
- Prior art keywords
- silicon
- ion battery
- nano
- negative electrode
- supporting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 68
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 68
- 239000010703 silicon Substances 0.000 title claims abstract description 68
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 34
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 33
- 238000002360 preparation method Methods 0.000 title claims abstract description 21
- 239000007773 negative electrode material Substances 0.000 title claims description 23
- 239000002131 composite material Substances 0.000 claims abstract description 34
- 239000000463 material Substances 0.000 claims abstract description 29
- 238000010438 heat treatment Methods 0.000 claims abstract description 25
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 20
- 239000005543 nano-size silicon particle Substances 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 19
- 229920002678 cellulose Polymers 0.000 claims abstract description 16
- 239000001913 cellulose Substances 0.000 claims abstract description 16
- 239000004094 surface-active agent Substances 0.000 claims abstract description 6
- 239000011230 binding agent Substances 0.000 claims abstract description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 28
- 229920001046 Nanocellulose Polymers 0.000 claims description 26
- 239000013078 crystal Substances 0.000 claims description 22
- 239000012528 membrane Substances 0.000 claims description 22
- 239000000243 solution Substances 0.000 claims description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- 238000003756 stirring Methods 0.000 claims description 16
- 239000007788 liquid Substances 0.000 claims description 15
- 229920000742 Cotton Polymers 0.000 claims description 14
- 239000006185 dispersion Substances 0.000 claims description 12
- 239000008367 deionised water Substances 0.000 claims description 11
- 229910021641 deionized water Inorganic materials 0.000 claims description 11
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims description 9
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 9
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 9
- 239000007864 aqueous solution Substances 0.000 claims description 8
- 238000012546 transfer Methods 0.000 claims description 8
- 238000010790 dilution Methods 0.000 claims description 7
- 239000012895 dilution Substances 0.000 claims description 7
- 239000011259 mixed solution Substances 0.000 claims description 6
- 238000009210 therapy by ultrasound Methods 0.000 claims description 4
- 239000004020 conductor Substances 0.000 claims description 2
- 238000003760 magnetic stirring Methods 0.000 claims description 2
- 239000002245 particle Substances 0.000 claims description 2
- 239000004615 ingredient Substances 0.000 claims 1
- 239000004810 polytetrafluoroethylene Substances 0.000 claims 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims 1
- 239000002904 solvent Substances 0.000 abstract description 7
- 239000010405 anode material Substances 0.000 abstract description 6
- 238000000802 evaporation-induced self-assembly Methods 0.000 abstract description 2
- 239000010406 cathode material Substances 0.000 abstract 3
- YZSKZXUDGLALTQ-UHFFFAOYSA-N [Li][C] Chemical compound [Li][C] YZSKZXUDGLALTQ-UHFFFAOYSA-N 0.000 abstract 1
- 239000006258 conductive agent Substances 0.000 abstract 1
- 239000000758 substrate Substances 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 12
- 239000007772 electrode material Substances 0.000 description 8
- 238000007599 discharging Methods 0.000 description 7
- 239000006228 supernatant Substances 0.000 description 7
- 239000012300 argon atmosphere Substances 0.000 description 6
- 238000005119 centrifugation Methods 0.000 description 6
- 229910052744 lithium Inorganic materials 0.000 description 6
- 238000002525 ultrasonication Methods 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- 239000010408 film Substances 0.000 description 5
- 239000002210 silicon-based material Substances 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 239000011856 silicon-based particle Substances 0.000 description 1
- 238000007581 slurry coating method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明属于锂离子电池负极材料制备技术领域,涉及一种柔性自支撑硅基锂离子电池负极材料的制备方法。通过将纳米硅材料、纳米纤维素和表面活性剂共同分散在溶剂中,经蒸发诱导自组装过程,得到硅/纳米纤维素复合薄膜;将硅/纳米纤维素复合薄膜进行高温热处理得到柔性自支撑硅/多孔炭锂离子负极材料。本发明将纳米硅材料引入柔性炭基底薄膜中,得到机械柔韧性能优异的自支撑负极材料,避免了粘结剂和导电剂的加入,可直接作为锂离子电池电极,缩减了制备工艺的同时保证了锂离子电池的性能。本发明方法操作简单,所制备柔性薄膜材料的容量高、循环稳定性好,在锂离子电池负极材料领域有广泛的应用前景。
Description
技术领域
本发明属于锂离子电池负极材料制备技术领域,涉及一种柔性自支撑硅基锂离子电池负极材料的制备方法。
背景技术
锂离子电池作为新一代的二次化学电源,由于其具有能量密度高、循环寿命长、绿色环保等诸多优点受到广泛青睐。随着电子产品的快速发展,市场也对锂离子电池的能量密度提出了更高的需求。而目前商用锂离子电池的负极材料主要为石墨,理论比容量低(372mAh/g),容量提升空间已达到极限。
硅材料由于具有较高的理论比容量(4200mAh/g),是作为石墨负极的理想替代材料。然而,硅材料在充放电过程中伴随着极大的体积膨胀,会导致电极材料的破碎、粉化、剥落,使得容量快速衰退;同时,粉碎的硅颗粒不断暴露于电解液中连续形成SEI膜,对电解液和正极中的锂离子形成不可逆消耗,这些都抑制了硅负极的发展。碳复合是改善硅负极材料性能的一种有效方法。碳材料具有一定的机械柔韧性和高的导电率,能有效缓解硅材料体积膨胀效应的同时增加电极的导电性。碳复合结构可以减少硅材料与电解液接触,有利于生成稳定的SEI膜,提高电池的循环寿命。
通常,锂离子电池电极片的制备通常需要添加粘结剂使得粉末材料牢固地粘附在集流体表面上,这极大地阻碍了电子的传输。同时,制备工序复杂、冗长,增加工业化成本。将电极材料薄膜化,不仅可以大大缩减制备工艺流程,而且可以有效缓解电极的体积膨胀效应,提高循环稳定性。
鉴于上述情况,研究自支撑和更高比容量的柔性硅负极材料已成为亟需解决的问题,同时对降低成本和规模化生产也提出了更高的挑战。
发明内容
本发明的目的为了克服上述现有技术存在的不足而提供一种低成本、易规模化的制备柔性自支撑硅基锂离子电池负极材料的方法。
本发明的目的可以通过以下技术方案来实现:
一种柔性自支撑硅基锂离子电池负极材料的制备方法,所述方法包括以下步骤:
将脱脂棉花加入硫酸溶液中,60℃条件下不断搅拌,30min后停止加热,并加入去离子水(通常500mL)稀释,冷却至室温。水解产物经多次离心、洗涤至上层清液不再透明,再次分散于去离子水中,得到纳米纤维素晶体分散液;
将纳米硅颗粒和表面活性剂加入步骤(1)中得到的纳米纤维素晶体分散液中,并进行磁力搅拌和超声处理,形成混合溶液;
将步骤(2)中得到的混合溶液转移至干净的聚四氟培养皿中,置于平整通风处,室温条件下,静置18-24小时后,得到硅/纳米纤维素复合薄膜;
将步骤(3)中得到的硅/纳米纤维素复合薄膜材料经高温热处理,得到柔性自支撑硅/多孔炭负极材料。
本发明提供的硅基柔性自支撑复合电极的制备方法,该方法利用纳米纤维素的自组装成膜特性,将纳米硅材料引入纤维骨架中,得到机械柔韧性能良好的柔性自支撑硅/多孔炭负极材料。该方法制备的复合膜电极避免了粘结剂的加入和搅浆涂覆工艺,简化了制备工序,同时保证锂离子电池高容量性能和使用寿命。
上述的一种柔性自支撑硅基锂离子电池负极材料的制备方法,步骤(1)中所述脱脂棉花和硫酸溶液使用比例为10g棉花/400g硫酸溶液,硫酸溶液质量分数为65%。上述优选配比的条件有利于将脱脂棉的非结晶处破坏,保留晶体区,得到表面带羟基的棒状晶体结构,易稳定分散在水中。
上述的一种柔性自支撑硅基锂离子电池负极材料的制备方法,步骤(2)中所述表面活性剂为聚乙烯醇,其水溶液浓度为5%;十六烷基三甲基溴化铵,其浓度为1mmol/L。表面活性剂的加入,使得纳米硅颗粒在纳米纤维素晶体分散液中形成亚稳定状态,形成均匀分散液。
上述的一种柔性自支撑硅基锂离子电池负极材料的制备方法,步骤(2)中所述纳米硅颗粒的尺寸为<100nm;所述的搅拌时间为0.5~1h,超声处理时间为20~30min。通过控制超声时间使纳米颗粒均匀的分在溶液中。
上述的一种柔性自支撑硅基锂离子电池负极材料的制备方法,步骤(2)中所述混合溶液中纳米硅的使用量是纳米纤维素晶体质量的5-20%。上述优选配比保证硅与纳米纤维素晶体自组装,形成硅/纳米纤维素复合薄膜。
上述的一种柔性自支撑硅基锂离子电池负极材料的制备方法,步骤(3)中所述培养皿的直径为80~150mm。通过改变不同的容器大小,可以得到具有不同尺寸大小的膜材料。
上述的一种柔性自支撑硅基锂离子电池负极材料的制备方法,步骤(4)中所述高温热处理过程升温速率为3~5℃/min,热处理温度为800~1000℃,热处理时间为2~4h。
本发明还提供一种经上述柔性自支撑硅基锂离子电池负极材料的制备方法所制备的柔性自支撑硅基锂离子电池负极材料。
与现有技术相比,本发明使用的原材料脱脂棉更为价廉和环保,蒸发诱导自组装法工艺简单可控,实现了低成本规模化制备柔性自支撑硅基锂离子电池负极材料,具有良好的应用前景。该薄膜化硅基负极材料,纳米硅很好的分散于纳米纤维素骨架中,抑制了其在锂离子电池充放电过程中的体积膨胀,避免颗粒的粉化破碎,促进锂离子和电子的传输和扩散。另外,该柔性自支撑硅基膜电极,无需粘结剂和导电材料的加入,也无需涂覆工艺,简化了制备工艺,提高了电化学性能。
附图说明
图1为本发明实例1制备的柔性自支撑硅基复合材料的数码图;
图2为本发明实例1制备的柔性自支撑硅基复合材料的截面扫描电镜图;
图3为本发明实例1制备的柔性自支撑硅基复合材料的XRD图;
图4为本发明实例1制备的柔性自支撑硅基复合材料在0.1A/g电流密度下的循环性能曲线图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对于本领的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例1
将10g脱脂棉缓慢加入到400g浓度为65%的硫酸溶液中,控制水浴温度为60℃,不断搅拌30min后停止加热;向其中加入500mL去离子稀释溶液,冷却至室温。经不断地离心、洗涤,至上层清液不再透明;再分散于去离子水中,得到纳米纤维素晶体分散液。
依次将0.0252g聚乙烯醇、0.01g的十六烷基三甲基溴化铵和25mg的纳米硅加入到含有0.252g纳米纤维素晶体的水溶液中,在室温条件下快速搅拌30min,然后进行超声处理15min,再将其转移至直径为100mm的聚四氟培养皿中。经过24h的溶剂挥发,得到硅/纳米纤维素复合膜材料。将硅/纳米纤维素复合膜材料置于管式炉中进行高温热处理,在800℃氩气氛围中恒温3h,得到柔性自支撑硅/多孔炭复合电极材料。
图1是本实施例制备的柔性自支撑硅基复合材料高温热处理前后对比的数码图片,热处理前后该材料都保持较为完成;图2是高温热处理后的膜材料的断面扫描电镜图,截面厚度约为10μm。
图3是本实施例制备的柔性自支撑硅/多孔炭复合材料的XRD图,可明显观察到其中纳米硅的特征衍射峰,表明纳米硅颗粒有效的嵌入多孔炭骨架中。
对本实施例制备得到的柔性自支撑硅/多孔炭膜材料,将其与金属锂组成半电池进行电化学性能检测,测试电流密度为0.1A/g,反复充放电100次后,负极片的放电比容量为650mAh/g。具体如图4所示。
实施例2
将10g脱脂棉缓慢加入到400g浓度为65%的硫酸溶液中,控制水浴温度为60℃,不断搅拌30min后停止加热;向其中加入500mL去离子稀释溶液,冷却至室温。经不断地离心、洗涤,至上层清液不再透明;再分散于去离子水中,得到纳米纤维素晶体分散液。
依次将0.02g聚乙烯醇、0.01g的十六烷基三甲基溴化铵和20mg的纳米硅加入到含有0.200g纳米纤维素晶体的水溶液中,在室温条件下快速搅拌30min,然后进行超声处理15min,再将其转移至直径为100mm的聚四氟培养皿中。经过24h的溶剂挥发,得到硅/纳米纤维素复合膜材料。将硅/纳米纤维素复合膜材料置于管式炉中进行高温热处理,在800℃氩气氛围中恒温3h,得到柔性自支撑硅/多孔炭复合电极材料。
对本实施例制备得到的柔性自支撑硅/多孔炭膜材料,将其与金属锂组成半电池进行电化学性能检测,测试电流密度为0.1A/g,反复充放电100次后,负极片的放电比容量为700mAh/g。
实施例3
将10g脱脂棉缓慢加入到400g浓度为65%的硫酸溶液中,控制水浴温度为60℃,不断搅拌30min后停止加热;向其中加入500mL去离子稀释溶液,冷却至室温。经不断地离心、洗涤,至上层清液不再透明;再分散于去离子水中,得到纳米纤维素晶体分散液。
依次将0.0252g聚乙烯醇、0.01g的十六烷基三甲基溴化铵和30mg的纳米硅加入到含有0.252g纳米纤维素晶体的水溶液中,在室温条件下快速搅拌30min,然后进行超声处理15min,再将其转移至直径为100mm的聚四氟培养皿中。经过24h的溶剂挥发,得到硅/纳米纤维素复合膜材料。将硅/纳米纤维素复合膜材料置于管式炉中进行高温热处理,在800℃氩气氛围中恒温3h,得到柔性自支撑硅/多孔炭复合电极材料。
对本实施例制备得到的柔性自支撑硅/多孔炭膜材料,将其与金属锂组成半电池进行电化学性能检测,测试电流密度为0.1A/g,反复充放电100次后,负极片的放电比容量为800mAh/g。
实施例4
将10g脱脂棉缓慢加入到400g浓度为65%的硫酸溶液中,控制水浴温度为60℃,不断搅拌30min后停止加热;向其中加入500mL去离子稀释溶液,冷却至室温。经不断地离心、洗涤,至上层清液不再透明;再分散于去离子水中,得到纳米纤维素晶体分散液。
依次将0.0252g聚乙烯醇、0.01g的十六烷基三甲基溴化铵和40mg的纳米硅加入到含有0.2g纳米纤维素晶体的水溶液中,在室温条件下快速搅拌30min,然后进行超声处理15min,再将其转移至直径为100mm的聚四氟培养皿中。经过24h的溶剂挥发,得到硅/纳米纤维素复合膜材料。将硅/纳米纤维素复合膜材料置于管式炉中进行高温热处理,在800℃氩气氛围中恒温3h,得到柔性自支撑硅/多孔炭复合电极材料。
对本实施例制备得到的柔性自支撑硅/多孔炭膜材料,将其与金属锂组成半电池进行电化学性能检测,测试电流密度为0.1A/g,反复充放电100次后,负极片的放电比容量为1000mAh/g。
实施例5
将10g脱脂棉缓慢加入到400g浓度为65%的硫酸溶液中,控制水浴温度为60℃,不断搅拌30min后停止加热;向其中加入500mL去离子稀释溶液,冷却至室温。经不断地离心、洗涤,至上层清液不再透明;再分散于去离子水中,得到纳米纤维素晶体分散液。
依次将0.03g聚乙烯醇、0.01g的十六烷基三甲基溴化铵和60mg的纳米硅加入到含有0.4g纳米纤维素晶体的水溶液中,在室温条件下快速搅拌30min,然后进行超声处理15min,再将其转移至直径为150mm的聚四氟培养皿中。经过24h的溶剂挥发,得到硅/纳米纤维素复合膜材料。将硅/纳米纤维素复合膜材料置于管式炉中进行高温热处理,在800℃氩气氛围中恒温3h,得到柔性自支撑硅/多孔炭复合电极材料。
对本实施例制备得到的柔性自支撑硅/多孔炭膜材料,将其与金属锂组成半电池进行电化学性能检测,测试电流密度为0.1A/g,反复充放电100次后,负极片的放电比容量为850mAh/g。
实施例6
将10g脱脂棉缓慢加入到400g浓度为65%的硫酸溶液中,控制水浴温度为60℃,不断搅拌30min后停止加热;向其中加入500mL去离子稀释溶液,冷却至室温。经不断地离心、洗涤,至上层清液不再透明;再分散于去离子水中,得到纳米纤维素晶体分散液。
依次将0.03g聚乙烯醇、0.01g的十六烷基三甲基溴化铵和60mg的纳米硅加入到含有0.3g纳米纤维素晶体的水溶液中,在室温条件下快速搅拌30min,然后进行超声处理15min,再将其转移至直径为150mm的聚四氟培养皿中。经过24h的溶剂挥发,得到硅/纳米纤维素复合膜材料。将硅/纳米纤维素复合膜材料置于管式炉中进行高温热处理,在800℃氩气氛围中恒温3h,得到柔性自支撑硅/多孔炭复合电极材料。
对本实施例制备得到的柔性自支撑硅/多孔炭膜材料,将其与金属锂组成半电池进行电化学性能检测,测试电流密度为0.1A/g,反复充放电100次后,负极片的放电比容量为900mAh/g。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。
Claims (5)
1.一种柔性自支撑硅基锂离子电池负极材料的制备方法,其特征在于,所述方法包括以下步骤:
(1)将脱脂棉花加入硫酸溶液中,50~60℃条件下不断搅拌,20~30 min后停止加热,并加入去离子水稀释,冷却至室温;水解产物经多次离心、洗涤至上层清液不再透明,再次分散于去离子水中,得到纳米纤维素晶体分散液;所述脱脂棉花和硫酸溶液使用质量比为棉花:硫酸溶液=10:400,硫酸溶液质量分数为60~65 %;
(2)将纳米硅颗粒和表面活性剂加入步骤(1)中得到的纳米纤维素晶体分散液中,并进行磁力搅拌和超声处理,形成混合溶液;所述表面活性剂为聚乙烯醇,其水溶液浓度为5 %;和十六烷基三甲基溴化铵,其浓度为1 mmol/L;成分加入量按照20~100mg的纳米硅颗粒加入聚乙烯醇0.44~0.88 g,浓度为1 mmol/L的十六烷基三甲基溴化铵1~2 mL;所述的搅拌时间为0.5 ~ 1 h,超声处理时间为20 ~ 30 min;所述混合溶液中纳米硅的使用量是纳米纤维素晶体质量的5-20%;
(3)将步骤(2)中得到的混合溶液转移至干净的聚四氟培养皿中,置于平整通风处,室温条件下,静置18-24小时后,得到硅/纳米纤维素复合薄膜;
(4)将步骤(3)中得到的硅/纳米纤维素复合薄膜材料经高温热处理,得到柔性自支撑硅/多孔炭负极材料,该负极材料为具有自支撑的膜材料,直接用作电池电极,无需加入粘结剂和导电材料;所述的高温热处理条件为800 ~ 1000℃,热处理时间为2 ~ 4 h。
2. 根据权利要求1所述的一种柔性自支撑硅基锂离子电池负极材料的制备方法,其特征在于,步骤(2)中所述的纳米硅颗粒的粒径尺寸为 < 100 nm。
3. 根据权利要求1所述的一种柔性自支撑硅基锂离子电池负极材料的制备方法,其特征在于,步骤(3)中所述的培养皿的直径为80 ~ 150 mm。
4. 根据权利要求1所述的一种柔性自支撑硅基锂离子电池负极材料的制备方法,其特征在于,步骤(1)中停止加热,并加入500 mL去离子水稀释,冷却至室温。
5.一种权利要求1-4任一项所述的一种柔性自支撑硅基锂离子电池负极材料的制备方法所制备的柔性自支撑硅基锂离子电池负极材料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911385725.6A CN111180686B (zh) | 2019-12-29 | 2019-12-29 | 一种柔性自支撑硅基锂离子电池负极材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911385725.6A CN111180686B (zh) | 2019-12-29 | 2019-12-29 | 一种柔性自支撑硅基锂离子电池负极材料的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111180686A CN111180686A (zh) | 2020-05-19 |
CN111180686B true CN111180686B (zh) | 2023-06-02 |
Family
ID=70649020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911385725.6A Active CN111180686B (zh) | 2019-12-29 | 2019-12-29 | 一种柔性自支撑硅基锂离子电池负极材料的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111180686B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114204000A (zh) * | 2021-12-02 | 2022-03-18 | 大连理工大学 | 一种硅碳互锁柔性自支撑负极材料、制备方法及应用 |
CN114975848A (zh) * | 2022-05-27 | 2022-08-30 | 南京林业大学 | 纳米纤维素及水系锌离子电池柔性自支撑正极的制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102509781A (zh) * | 2011-10-27 | 2012-06-20 | 上海交通大学 | 硅碳复合负极材料及其制备方法 |
CN107910508A (zh) * | 2017-10-30 | 2018-04-13 | 汪涛 | 一种二氧化硅包覆的碳纤维材料的制备方法、产品及应用 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100576610C (zh) * | 2006-12-22 | 2009-12-30 | 比亚迪股份有限公司 | 一种含硅复合材料及其制备方法 |
GB0908089D0 (en) * | 2009-05-11 | 2009-06-24 | Nexeon Ltd | A binder for lithium ion rechargaable battery cells |
CN102709536B (zh) * | 2012-06-28 | 2014-10-22 | 东华大学 | 一种硅碳复合材料及其制备方法 |
CN103730645B (zh) * | 2014-01-17 | 2015-11-18 | 江苏华盛精化工股份有限公司 | 一种硅包覆碳纤维纳米复合材料及其制备方法和应用 |
CN105140494B (zh) * | 2015-07-01 | 2017-07-18 | 齐鲁工业大学 | 一种Fe3O4/Fe/C纳米复合电池电极材料的仿生合成方法 |
CN106589894B (zh) * | 2016-12-19 | 2019-08-27 | 广州简米餐具有限公司 | 一种耐热纤维素纳米晶的制备方法 |
CN106964318B (zh) * | 2017-03-17 | 2019-08-02 | 江苏大学 | 一种介孔硅膜及其一步制备方法和用途 |
CN108091866B (zh) * | 2017-12-22 | 2020-08-21 | 厦门大学 | 一种用于锂离子电池硅碳负极材料的制备方法 |
CN109524641A (zh) * | 2018-10-19 | 2019-03-26 | 西安科技大学 | 锂离子电池柔性自支撑硅/石墨烯负极材料的制备方法 |
CN110581267B (zh) * | 2019-09-16 | 2022-09-13 | 哈尔滨工业大学 | 一种纳米纤维素-硅-石墨微米片柔性电极材料及其制备方法和应用 |
-
2019
- 2019-12-29 CN CN201911385725.6A patent/CN111180686B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102509781A (zh) * | 2011-10-27 | 2012-06-20 | 上海交通大学 | 硅碳复合负极材料及其制备方法 |
CN107910508A (zh) * | 2017-10-30 | 2018-04-13 | 汪涛 | 一种二氧化硅包覆的碳纤维材料的制备方法、产品及应用 |
Non-Patent Citations (2)
Title |
---|
Hanwei Wang等.A binder-free high silicon content flexible anode for Li-ion batteries.Energy Environ. Sci..2019,第13卷第848--858页. * |
Zhaohui Wang等.Flexible freestanding Cladophora nanocellulose paper based Si anodes for lithium-ion batteries.J. Mater. Chem. A.2015,第3卷第14109–14115页. * |
Also Published As
Publication number | Publication date |
---|---|
CN111180686A (zh) | 2020-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103531760B (zh) | 一种蛋黄-蛋壳结构多孔硅碳复合微球及其制备方法 | |
CN105206801B (zh) | 一种锂离子电池用硅碳复合负极材料的制备方法 | |
CN109524643B (zh) | 一种多层碳壳核壳结构硅基负极材料的制备方法及其应用 | |
CN105428611B (zh) | 一种多孔‑中空复合负极材料及其制备方法和应用 | |
CN110783561B (zh) | 一种碳自包覆微米级氧化钨、负极材料、电池及制备方法 | |
CN110061190A (zh) | 液态金属基自愈合锂电负极及制备方法和锂离子电池 | |
CN103500813B (zh) | 一种二次锂硫电池单质硫正极及其制备方法 | |
CN110336005A (zh) | 一种钛基氧化物锂离子电池负极材料及其性能测试方法 | |
CN115050945B (zh) | 一种生物质氮掺杂碳包覆富锂磷酸铁锂正极材料的制备方法 | |
CN108448090A (zh) | 一种锂电池硅碳复合负极材料的制备方法 | |
CN110323440A (zh) | 一种石墨烯/碳-硅纳米复合负极材料的制备方法 | |
CN105932284A (zh) | 一种介孔碳紧密包覆型复合材料及其制备方法和应用 | |
CN110042503A (zh) | 一种MoSe2@C电纺中空纳米纤维及其制备方法和应用 | |
CN111994889A (zh) | 磷酸钒钠钠离子电池正极材料及其制备方法 | |
CN108400305A (zh) | 一种碳包SnSe2复合材料及其制备方法和应用 | |
CN111180686B (zh) | 一种柔性自支撑硅基锂离子电池负极材料的制备方法 | |
CN118315594B (zh) | 一种新型锂金属负极材料的集流体及其制备方法和应用 | |
CN114583137A (zh) | 一种在碳表面进行硫掺杂磷修饰的方法及其应用 | |
CN105810911A (zh) | 一种高倍率磷酸铁锂/石墨烯复合正极材料的制备方法 | |
CN112125304B (zh) | 一种金属氧化物改性的微纳硅-石墨复合负极材料及其制备方法 | |
CN108963237A (zh) | 一种钠离子电池负极材料的制备方法 | |
CN115959671B (zh) | 多孔碳网络改性氧化亚硅复合负极材料及制备和应用 | |
CN116417573A (zh) | 一种硅基负极极片及其制备方法和应用 | |
CN115810721A (zh) | 一种硬碳活性材料负极片的制备方法 | |
CN107425184A (zh) | 一种硅‑多孔碳电极材料及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |