CN111168680B - 一种基于神经动力学方法的软体机器人控制方法 - Google Patents
一种基于神经动力学方法的软体机器人控制方法 Download PDFInfo
- Publication number
- CN111168680B CN111168680B CN202010022540.5A CN202010022540A CN111168680B CN 111168680 B CN111168680 B CN 111168680B CN 202010022540 A CN202010022540 A CN 202010022540A CN 111168680 B CN111168680 B CN 111168680B
- Authority
- CN
- China
- Prior art keywords
- jacobian matrix
- soft robot
- robot
- inverse
- soft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 230000001537 neural effect Effects 0.000 title abstract description 15
- 239000011159 matrix material Substances 0.000 claims abstract description 67
- 230000008859 change Effects 0.000 claims abstract description 22
- 230000004913 activation Effects 0.000 claims description 11
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1656—Programme controls characterised by programming, planning systems for manipulators
- B25J9/1664—Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1602—Programme controls characterised by the control system, structure, architecture
- B25J9/1607—Calculation of inertia, jacobian matrixes and inverses
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Automation & Control Theory (AREA)
- Numerical Control (AREA)
- Manipulator (AREA)
Abstract
本发明公开了一种基于神经动力学方法的软体机器人控制方法,包括以下步骤:1、对于当前时刻t,结合软体机器人的末端坐标位置、目标轨迹和其速度,以及软体机器人的雅可比矩阵的逆,建立一个表示软体机器人驱动器状态变化率的一阶微分方程;2、根据软体机器人末端位姿和驱动器的状态的变化率确定雅可比矩阵,对雅可比矩阵使用零化神经动力学得到一个关于雅可比矩阵的逆的一阶微分方程;3、确定步骤1和步骤2的两个微分方程的初始条件并将两个微分方程联合起来求解;4、由步骤3得到的结果,得出软体机器人驱动器的状态,从而驱动机器人运动。本发明的达到较高的精确度,只需要模型的雅可比矩阵和目标轨迹信息便能完成追踪任务。
Description
技术领域
本发明涉及机器人控制技术领域,尤其涉及一种基于神经动力学方法的软体机器人控制方法。
背景技术
软体机器人的应用领域非常广泛,从工业领域到医疗领域都得到广泛使用。软体机器人的主要特征是其能够任意弯曲,由于内在的顺从性,使得其非常灵活并且能够在受限的环境进行安全的交互。但是正是由于这种柔软性,控制软体机器人变得具有挑战性,常见的控制软体机器人的方法有基于神经网络的方法、自适应控制方法、雅可比矩阵伪逆的方法。本发明所使用的方法是基于雅可比矩阵伪逆的方法,使用本发明的方法可以驱动软体机器人做出特定的运动,从而完成各种任务。
如图1所述,现有的雅可比矩阵伪逆的方法控制软体机器人,该方法通过求解微分方程得到驱动器的状态q,其中W为一个避免驱动器末端停止的对角矩阵,K为减少实际轨迹和目标轨迹误差的对角矩阵,J为连续体机器人的雅可比矩阵,xd为目标轨迹,为目标轨迹的导数,x为实际轨迹。求得驱动器状态后驱动软体机器人运动,实际x将发生变化并且作为下一状态的输入,通过反复的迭代上述过程,最终可以完成设定的任务。
但是,上述精确度不够高,不能胜任对精确度要求严格的任务。其次,求解时需要估计矩阵W和K,有些机器人模型难以估计。
发明内容
有鉴于现有技术的上述缺陷,本发明所要解决的技术问题是提供一种基于神经动力学方法的软体机器人控制方法,以解决现有技术的不足。
为实现上述目的,本发明提供了一种基于神经动力学方法的软体机器人控制方法,包括以下步骤:
步骤1、对于当前时刻t,结合软体机器人的末端坐标位置、目标轨迹和其速度,以及软体机器人的雅可比矩阵的逆,建立一个表示软体机器人驱动器状态变化率的一阶微分方程;
步骤2、根据软体机器人末端位姿和驱动器的状态的变化率确定雅可比矩阵,对雅可比矩阵使用零化神经动力学得到一个关于雅可比矩阵的逆的一阶微分方程;
步骤3、确定步骤1和步骤2的两个微分方程的初始条件并将两个微分方程联合起来求解;
步骤4、由步骤3得到的结果,得出软体机器人驱动器的状态,从而驱动机器人运动。
优选的,所述步骤1对于当前时刻t,结合软体机器人的末端坐标位置、目标轨迹和其速度,以及软体机器人的雅可比矩阵的逆,建立一个表示软体机器人驱动器状态变化率的一阶微分方程,具体为:
根据软体机器人的运动学公式,建立软体机器人驱动器状态变化率的一阶微分方程;
其中,软体机器人的运动学公式为:r(t)=f(u(t)),其中r(t)表示t时刻机器人末端的坐标,u(t)表示t时刻机器人驱动器的状态,f(·)是一个映射,由机器人的模型确定;
优选的,所述步骤2对雅可比矩阵使用零化神经动力学得到一个关于雅可比矩阵的逆的一阶微分方程具体方法为:
零化神经动力学首先引入一个误差函数
ε(t)=J+(t)J(t)JT(t)-JT(t)
其中J(t)为雅可比矩阵,J+(t)为雅可比矩阵的逆,JT(t)为雅可比矩阵的转置,为了令ε(t)趋近于0,误差函数的导数描述为:
结合以上两个式子得:
其中雅可比矩阵和它的导数根据机器人的模型计算得到,上述微分方程的解即为雅可比矩阵的逆。
参数ξ>2,p≥3,e为自然常数。
本发明的有益效果是:
(1)本发明的技术可以达到较高的精确度,并且可以根据任务的需求改变参数来调节精确度。
(2)本发明的技术不需要额外估计矩阵W和K,只需要模型的雅可比矩阵和目标轨迹信息便能完成追踪任务。
以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。
附图说明
图1是现有的雅可比矩阵伪逆的方法控制软体机器人的流程图;
图2为本发明的工作流程图;
图3为实现本发明的基于神经动力学方法的软体机器人轨迹追踪的结果示意图。
具体实施方式
本发明提出的一种基于神经动力学方法的软体机器人控制方法,包括以下步骤:
步骤1、对于当前时刻t,结合软体机器人的末端坐标位置、目标轨迹和其速度,以及软体机器人的雅可比矩阵的逆,建立一个表示软体机器人驱动器状态变化率的一阶微分方程;
步骤2、根据软体机器人末端位姿和驱动器的状态的变化率确定雅可比矩阵,对雅可比矩阵使用零化神经动力学得到一个关于雅可比矩阵的逆的一阶微分方程;
步骤3、确定步骤1和步骤2的两个微分方程的初始条件并将两个微分方程联合起来求解;
步骤4、由步骤3得到的结果,得出软体机器人驱动器的状态,从而驱动机器人运动。
本实施例中,所述步骤1对于当前时刻t,结合软体机器人的末端坐标位置、目标轨迹和其速度,以及软体机器人的雅可比矩阵的逆,建立一个表示软体机器人驱动器状态变化率的一阶微分方程,具体为:
根据软体机器人的运动学公式,建立软体机器人驱动器状态变化率的一阶微分方程;机器人的末端会沿着固定的轨迹移动,为了完成跟踪任务,逆动力学的解需要结合目标轨迹,但是由于机器人的冗余性,对于给定的r(t),u(t)通常是不确定的,因此为了确保逆运动学的解得唯一性,需要同时考虑机器人末端的运动速度,得到逆运动学的解。
其中,软体机器人的运动学公式为:r(t)=f(u(t)),其中r(t)表示t时刻机器人末端的坐标,u(t)表示t时刻机器人驱动器的状态,f(·)是一个映射,由机器人的模型确定;
本实施例中,所述步骤2对雅可比矩阵使用零化神经动力学得到一个关于雅可比矩阵的逆的一阶微分方程具体方法为:
零化神经动力学首先引入一个误差函数
ε(t)=J+(t)J(t)JT(t)-JT(t)
其中J(t)为雅可比矩阵,J+(t)为雅可比矩阵的逆,JT(t)为雅可比矩阵的转置,为了令ε(t)趋近于0,误差函数的导数描述为:
结合以上两个式子得:
其中雅可比矩阵和它的导数根据机器人的模型计算得到,上述微分方程的解即为雅可比矩阵的逆。
参数ξ>2,p≥3,e为自然常数
下面结合图形对本发明做进一步说明。
图2是本发明所使用的方法的工作流程,首先输入目标轨迹的信息、传感器得到的实际轨迹信息、初始雅可比矩阵的逆和驱动器的初始状态,经过上位机对微分方程组的求解,得到驱动软体机器人运动的信号,经过反复的迭代,使机器人做出一系列运动,完成轨迹跟踪任务。
图3为实现本发明的方法的有模型软体机器人轨迹跟踪结果示意图。使用本发明的控制方法实现在三维空间绘制圆形。本发明使用的软体机器人有两段,每段有三个驱动器,这些驱动器可以控制机器人的弯曲程度和长度,他们的初始长度为q(0)=[0.20,0.22,0.18,0.20,0.22,0.18]T米。软体机器人的雅可比矩阵的伪逆初值为:
r(t)表示t时刻机器人末端的坐标,u(t)表示t时刻机器人驱动器的状态,其逆运动学的解为
上述微分方程中,目标轨迹和机器人的运动学模型都已知,可以求得雅可比矩阵J(t),使用零化神经动力学对雅可比矩阵求伪逆,当求得雅可比矩阵的伪逆之后,逆运动学方程便能求解,从而得到软体机器人的驱动器状态,驱动机器人运动。零化神经动力学引入误差函数
ε(t)=J+(t)J(t)JT(t)-JT(t)
其中J(t)为雅可比矩阵,J+(t)为雅可比矩阵的逆,JT(t)为雅可比矩阵的转置,为了令ε(t)趋近于0,误差函数的导数描述为
参数ξ>2,p≥3,e为自然常数,对ε(t)求导得
结合以上两个式子得
解上述微分方程,得到雅可比矩阵的伪逆之后,就可以求解逆运动学方程,得到u(t),即驱动器的信号。上述求解过程是一个迭代的过程,时间t会不断增加,直到任务完成为止。
需要说明的是,本发明使用的零化神经动力学可以使用不同的激活函数,因此若用其它激活函数替代本文所使用的激活函数,最后也可以得到相似的结果。另外,可以对零化神经动力学的误差函数添加一个噪声抑制项,即设从而使结果的精度更好。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思做出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。
Claims (2)
1.一种基于神经动力学方法的软体机器人控制方法,其特征在于,包括以下步骤:
步骤1、对于当前时刻t,结合软体机器人的末端坐标位置、目标轨迹和其速度,以及软体机器人的雅可比矩阵的逆,建立一个表示软体机器人驱动器状态变化率的一阶微分方程;
步骤2、根据软体机器人末端位姿和驱动器的状态的变化率确定雅可比矩阵,对雅可比矩阵使用零化神经动力学得到一个关于雅可比矩阵的逆的一阶微分方程;
步骤3、确定步骤1和步骤2的两个微分方程的初始条件并将两个微分方程联合起来求解;
步骤4、由步骤3得到的结果,得出软体机器人驱动器的状态,从而驱动机器人运动; 所述的一种基于神经动力学方法的软体机器人控制方法,其特征在于:所述步骤1对于当前时刻t,结合软体机器人的末端坐标位置、目标轨迹和其速度,以及软体机器人的雅可比矩阵的逆,建立一个表示软体机器人驱动器状态变化率的一阶微分方程,具体为:
根据软体机器人的运动学公式,建立软体机器人驱动器状态变化率的一阶微分方程;
其中,软体机器人的运动学公式为:r(t)=f(u(t)),其中r(t)表示t时刻机器人末端的坐标,u(t)表示t时刻机器人驱动器的状态,f(·)是一个映射,由机器人的模型确定;
软体机器人驱动器状态变化率的一阶微分方程为其中表示驱动器状态变化率,rd(t)和表示目标轨迹和其导数,J+(t)表示雅可比矩阵的逆,雅可比矩阵τ为大于0的参数; 所述的一种基于神经动力学方法的软体机器人控制方法,其特征在于,所述步骤2对雅可比矩阵使用零化神经动力学得到一个关于雅可比矩阵的逆的一阶微分方程具体方法为:
零化神经动力学首先引入一个误差函数
ε(t)=J+(t)J(t)JT(t)-JT(t)
其中J(t)为雅可比矩阵,J+(t)为雅可比矩阵的逆,JT(t)为雅可比矩阵的转置,为了令ε(t)趋近于0,误差函数的导数描述为:
结合以上两个式子得:
其中雅可比矩阵和它的导数根据机器人的模型计算得到,上述微分方程的解即为雅可比矩阵的逆。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010022540.5A CN111168680B (zh) | 2020-01-09 | 2020-01-09 | 一种基于神经动力学方法的软体机器人控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010022540.5A CN111168680B (zh) | 2020-01-09 | 2020-01-09 | 一种基于神经动力学方法的软体机器人控制方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111168680A CN111168680A (zh) | 2020-05-19 |
CN111168680B true CN111168680B (zh) | 2022-11-15 |
Family
ID=70650917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010022540.5A Active CN111168680B (zh) | 2020-01-09 | 2020-01-09 | 一种基于神经动力学方法的软体机器人控制方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111168680B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112706165A (zh) * | 2020-12-22 | 2021-04-27 | 中山大学 | 一种面向轮式移动机械臂的跟踪控制方法及系统 |
WO2023015528A1 (zh) * | 2021-08-12 | 2023-02-16 | 中国科学院深圳先进技术研究院 | 一种软体机器人仿真方法、装置、电子设备及存储介质 |
CN116061186B (zh) * | 2023-03-03 | 2023-09-05 | 中国人民解放军军事科学院国防科技创新研究院 | 基于神经网络模型的软体机械臂逆运动学迭代优化方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990016038A1 (en) * | 1989-06-16 | 1990-12-27 | Lawrence, Malcolm, Graham | Continuous bayesian estimation with a neural network architecture |
WO2004033159A1 (ja) * | 2002-10-11 | 2004-04-22 | Fujitsu Limited | ロボット制御アルゴリズム構築装置、ロボット制御アルゴリズム構築プログラム、ロボット制御装置、ロボット制御プログラム、およびロボット |
CN101520857A (zh) * | 2009-03-31 | 2009-09-02 | 天津大学 | 一种基于神经网络的永磁球形电动机逆运动学求解方法 |
JP2014140942A (ja) * | 2013-01-25 | 2014-08-07 | Seiko Epson Corp | ロボット制御システム、ロボット、ロボット制御方法及びプログラム |
CN104865829A (zh) * | 2015-03-26 | 2015-08-26 | 哈尔滨工业大学 | 多机器人系统分布式自适应神经网络连续跟踪控制方法 |
CN107984472A (zh) * | 2017-11-13 | 2018-05-04 | 华南理工大学 | 一种用于冗余度机械臂运动规划的变参神经求解器设计方法 |
WO2018176854A1 (zh) * | 2017-03-27 | 2018-10-04 | 华南理工大学 | 一种冗余度机械臂重复运动规划方法 |
WO2018205707A1 (zh) * | 2017-05-09 | 2018-11-15 | 中国科学院计算技术研究所 | 机器人的逆运动学求解系统 |
CN109190086A (zh) * | 2018-08-16 | 2019-01-11 | 华南理工大学 | 一种用于时变矩阵求逆的指数增强型变参求解方法 |
WO2019024303A1 (zh) * | 2017-08-02 | 2019-02-07 | 华南理工大学 | 一种基于有限时间神经动力学的多旋翼无人飞行器的稳定飞行控制方法 |
-
2020
- 2020-01-09 CN CN202010022540.5A patent/CN111168680B/zh active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990016038A1 (en) * | 1989-06-16 | 1990-12-27 | Lawrence, Malcolm, Graham | Continuous bayesian estimation with a neural network architecture |
WO2004033159A1 (ja) * | 2002-10-11 | 2004-04-22 | Fujitsu Limited | ロボット制御アルゴリズム構築装置、ロボット制御アルゴリズム構築プログラム、ロボット制御装置、ロボット制御プログラム、およびロボット |
CN101520857A (zh) * | 2009-03-31 | 2009-09-02 | 天津大学 | 一种基于神经网络的永磁球形电动机逆运动学求解方法 |
JP2014140942A (ja) * | 2013-01-25 | 2014-08-07 | Seiko Epson Corp | ロボット制御システム、ロボット、ロボット制御方法及びプログラム |
CN104865829A (zh) * | 2015-03-26 | 2015-08-26 | 哈尔滨工业大学 | 多机器人系统分布式自适应神经网络连续跟踪控制方法 |
WO2018176854A1 (zh) * | 2017-03-27 | 2018-10-04 | 华南理工大学 | 一种冗余度机械臂重复运动规划方法 |
WO2018205707A1 (zh) * | 2017-05-09 | 2018-11-15 | 中国科学院计算技术研究所 | 机器人的逆运动学求解系统 |
WO2019024303A1 (zh) * | 2017-08-02 | 2019-02-07 | 华南理工大学 | 一种基于有限时间神经动力学的多旋翼无人飞行器的稳定飞行控制方法 |
CN107984472A (zh) * | 2017-11-13 | 2018-05-04 | 华南理工大学 | 一种用于冗余度机械臂运动规划的变参神经求解器设计方法 |
CN109190086A (zh) * | 2018-08-16 | 2019-01-11 | 华南理工大学 | 一种用于时变矩阵求逆的指数增强型变参求解方法 |
Non-Patent Citations (3)
Title |
---|
基于神经网络的机器人视觉伺服控制;谢冬梅等;《微计算机信息》;20060210(第04期);全文 * |
基于雅可比的实时目标跟踪系统研究;郭小勤等;《机床与液压》;20040730(第07期);全文 * |
漂浮基空间机械臂基于双向映射神经元网络的逆运动学控制;黄登峰等;《应用力学学报》;20090630(第02期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN111168680A (zh) | 2020-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106945043B (zh) | 一种主从式遥操作手术机器人多臂协同控制系统 | |
CN109159151B (zh) | 一种机械臂空间轨迹跟踪动态补偿方法和系统 | |
CN111168680B (zh) | 一种基于神经动力学方法的软体机器人控制方法 | |
WO2021135405A1 (zh) | 一种面向机械臂的无运动学模型轨迹跟踪方法及一种机械臂系统 | |
CN109968361B (zh) | 一种基于实时力反馈的变阻抗遥操作控制装置及方法 | |
CN110561421B (zh) | 机械臂间接拖动示教方法及装置 | |
CN107891424A (zh) | 一种求解冗余机械臂逆运动学的有限时间神经网络优化方法 | |
CN112605996B (zh) | 一种面向冗余机械臂的无模型碰撞避免控制方法 | |
CN106406098B (zh) | 一种机器人系统在未知环境下的人机交互控制方法 | |
CN108555914B (zh) | 一种基于腱驱动灵巧手的dnn神经网络自适应控制方法 | |
CN111249005A (zh) | 一种穿刺手术机器人柔顺控制系统 | |
WO2022241806A1 (zh) | 一种基于强化学习的双机器人力/位多元数据驱动方法 | |
CN112589797B (zh) | 一种非球形手腕机械臂奇异点规避方法和系统 | |
CN108908347A (zh) | 一种面向冗余移动机械臂容错型重复运动规划方法 | |
CN118559698B (zh) | 基于分数型障碍李雅普诺夫的固定时间视觉伺服控制方法 | |
CN115338869A (zh) | 一种主从异构型遥操作系统的主从控制方法及系统 | |
CN111823235A (zh) | 一种用于采摘机械臂的碰撞检测方法 | |
CN116383574A (zh) | 一种基于高阶微分器的仿人上肢机器人逆运动学求解方法 | |
CN104267598A (zh) | 一种Delta机器人运动机构的模糊PI控制器设计方法 | |
CN114179089B (zh) | 一种机械臂的鲁棒区域跟踪控制方法 | |
CN114454150A (zh) | 一种基于复合学习的臂式机器人控制方法及机器人系统 | |
CN117773937A (zh) | 连续体机械臂的位置控制方法、计算机程序产品及设备 | |
CN112077841A (zh) | 一种提升机器人手臂操纵精度的多关节联动方法及系统 | |
CN115958595A (zh) | 机械臂引导方法、装置、计算机设备和存储介质 | |
CN110543919B (zh) | 一种机器人定位控制方法、终端设备及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |