CN111147060B - Control circuit and semiconductor structure comprising same - Google Patents
Control circuit and semiconductor structure comprising same Download PDFInfo
- Publication number
- CN111147060B CN111147060B CN201910467133.2A CN201910467133A CN111147060B CN 111147060 B CN111147060 B CN 111147060B CN 201910467133 A CN201910467133 A CN 201910467133A CN 111147060 B CN111147060 B CN 111147060B
- Authority
- CN
- China
- Prior art keywords
- mosfet
- voltage
- conductivity type
- doped region
- gate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 14
- 239000000758 substrate Substances 0.000 claims abstract description 27
- 238000004146 energy storage Methods 0.000 claims description 14
- 238000002955 isolation Methods 0.000 claims description 13
- 230000005669 field effect Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/51—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
- H03K17/56—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
- H03K17/687—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
- H03K17/689—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors with galvanic isolation between the control circuit and the output circuit
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/08—Modifications for protecting switching circuit against overcurrent or overvoltage
- H03K17/082—Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
- H03K17/0822—Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in field-effect transistor switches
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/811—Combinations of field-effect devices and one or more diodes, capacitors or resistors
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
技术领域technical field
本发明有关于一种控制电路,特别是有关于一种供电予一负载的控制电路,其中控制电路可包含空乏型MOSFET与增强型MOSFET的一半导体结构。The present invention relates to a control circuit, in particular to a control circuit for supplying power to a load, wherein the control circuit may include a semiconductor structure of a depletion MOSFET and an enhancement MOSFET.
背景技术Background technique
晶体管主要分为双极性接面晶体管(bipolar junction transistor;BJT)以及场效应晶体管(field effect transistor;FET)。场效应晶体管又分为金属氧化半导体场效应晶体管(metal oxide semiconductor FET;MOSFET)以及接面场效应晶体管(junctionFET;JFET)。然而,接面场效应晶体管的栅极易发生漏电流,进而造成功率损耗。Transistors are mainly classified into bipolar junction transistors (BJT) and field effect transistors (field effect transistors; FET). Field effect transistors are further divided into metal oxide semiconductor field effect transistors (metal oxide semiconductor FETs; MOSFETs) and junction field effect transistors (junctionFETs; JFETs). However, the gate of the junction field effect transistor is prone to leakage current, thereby causing power loss.
发明内容Contents of the invention
本发明提供一种控制电路,用以提供一输出电压予一负载,并包括一空乏型MOSFET、一增强型MOSFET以及一电流电压转换器。空乏型MOSFET的漏极接收一输入电压,其栅极接收一第一控制电压。增强型MOSFET的漏极接收输入电压,其源极耦接负载。电流电压转换器根据流经空乏型MOSFET的电流,产生一第二控制电压予增强型MOSFET的栅极。增强型MOSFET根据第二控制电压产生输出电压予负载,且增强型MOSFET与空乏型MOSFET整合在同一基底上。The invention provides a control circuit for providing an output voltage to a load, and includes a depleted MOSFET, an enhanced MOSFET and a current-to-voltage converter. The drain of the depletion MOSFET receives an input voltage, and the gate receives a first control voltage. The drain of the enhanced MOSFET receives the input voltage, and its source is coupled to the load. The current-to-voltage converter generates a second control voltage to the gate of the enhancement MOSFET according to the current flowing through the depletion MOSFET. The enhanced MOSFET generates an output voltage for the load according to the second control voltage, and the enhanced MOSFET and the depletion MOSFET are integrated on the same substrate.
本发明提供一种包含于控制电路的半导体结构,包括:一基底,具有一第一导电型;一第一井区,具有所述第一导电型,并形成在所述基底中;一第一掺杂区,具有一第二导电型,并形成在所述第一井区中;一第二井区,具有所述第二导电型,并形成在所述基底中;一第二掺杂区,具有所述第二导电型,并形成在所述第二井区中;以及一第一栅极结构,形成于所述基底之上,并重叠所述第一及第二井区;其中所述第一掺杂区作为一增强型MOSFET的源极,所述第二掺杂区作为所述增强型MOSFET的漏极,所述第一栅极结构作为所述增强型MOSFET的栅极。The present invention provides a semiconductor structure included in a control circuit, comprising: a substrate having a first conductivity type; a first well region having the first conductivity type and formed in the substrate; a first a doped region, having a second conductivity type, and formed in the first well region; a second well region, having the second conductivity type, and formed in the substrate; a second doped region , having the second conductivity type, and formed in the second well region; and a first gate structure, formed on the substrate, and overlapping the first and second well regions; wherein the The first doped region is used as a source of an enhanced MOSFET, the second doped region is used as a drain of the enhanced MOSFET, and the first gate structure is used as a gate of the enhanced MOSFET.
附图说明Description of drawings
图1为本发明的操作系统的示意图;Fig. 1 is the schematic diagram of operating system of the present invention;
图2为本发明的控制电路的一可能实施例;Fig. 2 is a possible embodiment of the control circuit of the present invention;
图3为本发明的控制电路的另一可能实施例;Fig. 3 is another possible embodiment of the control circuit of the present invention;
图4为本发明的控制电路的另一可能实施例;Fig. 4 is another possible embodiment of the control circuit of the present invention;
图5为本发明的空乏型MOSFET与增强型MOSFET的半导体结构俯视图;5 is a top view of the semiconductor structure of the depletion MOSFET and the enhancement MOSFET of the present invention;
图6为图5的半导体结构沿着虚线A-A”部分的剖面图。FIG. 6 is a cross-sectional view of the semiconductor structure in FIG. 5 along the dashed line A-A″.
附图标记说明Explanation of reference signs
100:操作系统;100: operating system;
110:控制电路;110: control circuit;
120:负载;120: load;
Vin:输入电压;Vin: input voltage;
Vout:输出电压;Vout: output voltage;
RV:参考电压;RV: reference voltage;
210、310、410:控制电路;210, 310, 410: control circuit;
211、311、411、DT:空乏型MOSFET;211, 311, 411, DT: Depletion MOSFET;
212、312、412、ET:增强型MOSFET;212, 312, 412, ET: Enhanced MOSFET;
213、313、413:电流电压转换器;213, 313, 413: current-to-voltage converters;
214:储能元件;214: energy storage element;
215:二极管;215: diode;
216、315、419:接地端;216, 315, 419: ground terminal;
CV1、CV2:控制电压;CV1, CV2: control voltage;
314、417、418:电阻;314, 417, 418: resistance;
414:电压调整器;414: voltage regulator;
415:比较电路;415: comparison circuit;
416:电阻串;416: resistor string;
DV:分压;DV: divided voltage;
500:基底;500: base;
511~513、511A、511B:井区;511~513, 511A, 511B: well area;
521~525、521A、521B、526A、526B:掺杂区;521~525, 521A, 521B, 526A, 526B: doped regions;
531、532:栅极结构;531, 532: grid structure;
541~546:隔离结构;541~546: isolation structure;
D1:方向。D1: direction.
具体实施方式Detailed ways
为让本发明的目的、特征和优点能更明显易懂,下文特举出实施例,并配合所附图式,做详细的说明。本发明说明书提供不同的实施例来说明本发明不同实施方式的技术特征。其中,实施例中的各元件的配置为说明之用,并非用以限制本发明。另外,实施例中图式标号的部分重复,为了简化说明,并非意指不同实施例之间的关联性。In order to make the purpose, features and advantages of the present invention more comprehensible, the following specifically cites the embodiments, together with the accompanying drawings, for a detailed description. The description of the present invention provides different examples to illustrate the technical features of different implementations of the present invention. Wherein, the configuration of each element in the embodiment is for illustration, not for limiting the present invention. In addition, the partial repetition of the symbols in the figures in the embodiments does not imply the relationship between different embodiments in order to simplify the description.
图1为本发明的操作系统的示意图。如图所示,操作系统100包括一控制电路110以及一负载120。控制电路110用以供电予负载120。在本实施例中,控制电路110接收一输入电压Vin,并提供一输出电压Vout予负载120。在一可能实施例中,控制电路110包含一启动电路(startup circuit),用以在电源刚启动时,提供一初始电压。FIG. 1 is a schematic diagram of the operating system of the present invention. As shown in the figure, the operating system 100 includes a control circuit 110 and a load 120 . The control circuit 110 is used to supply power to the load 120 . In this embodiment, the control circuit 110 receives an input voltage Vin and provides an output voltage Vout to the load 120 . In a possible embodiment, the control circuit 110 includes a startup circuit for providing an initial voltage when the power supply is just started.
负载120根据输出电压Vout而动作。在一可能实施例中,输出电压Vout作为负载120的电源电压。本发明并不限定负载120的电路架构。在一可能实施例中,负载120为一直流-直流转换器(DC-DC converter),用以转换输出电压Vout的位准。The load 120 operates according to the output voltage Vout. In a possible embodiment, the output voltage Vout is used as the power supply voltage of the load 120 . The present invention does not limit the circuit structure of the load 120 . In a possible embodiment, the load 120 is a DC-DC converter for converting the level of the output voltage Vout.
在其它实施例中,负载120产生一参考电压RV。控制电路110根据参考电压RV,得知负载120所需的电压。在一可能实施例中,控制电路110根据参考电压RV调整输出电压Vout。举例而言,当输出电压Vout小于参考电压RV时,控制电路110增加输出电压Vout。当输出电压Vout大于参考电压RV时,控制电路110减少输出电压Vout。当输出电压Vout等于参考电压RV时,控制电路110维持输出电压Vout。藉由负载120提供的反馈信号(即参考电压RV),控制电路110适当地调整输出电压Vout,用以提供一稳定的电源电压,使得负载120稳定地工作。In other embodiments, the load 120 generates a reference voltage RV. The control circuit 110 obtains the voltage required by the load 120 according to the reference voltage RV. In a possible embodiment, the control circuit 110 adjusts the output voltage Vout according to the reference voltage RV. For example, when the output voltage Vout is lower than the reference voltage RV, the control circuit 110 increases the output voltage Vout. When the output voltage Vout is greater than the reference voltage RV, the control circuit 110 reduces the output voltage Vout. When the output voltage Vout is equal to the reference voltage RV, the control circuit 110 maintains the output voltage Vout. With the feedback signal provided by the load 120 (ie, the reference voltage RV), the control circuit 110 properly adjusts the output voltage Vout to provide a stable power supply voltage, so that the load 120 works stably.
图2为本发明的控制电路的一可能实施例。如图所示,控制电路210包括一空乏型金属氧化半导体场效应晶体管(depletion-mode MOSFET;以下简称空乏型MOSFET)211、一增强型金属氧化半导体场效应晶体管(enhancement-mode MOSFET;以下简称增强型MOSFET)212以及一电流电压转换器(I-V transformer)213。FIG. 2 is a possible embodiment of the control circuit of the present invention. As shown in the figure, the control circuit 210 includes a depletion-mode MOSFET (hereinafter referred to as depletion-mode MOSFET) 211, an enhancement-mode MOSFET (enhancement-mode MOSFET; hereinafter referred to as enhancement type MOSFET) 212 and a current-to-voltage converter (I-V transformer) 213 .
空乏型MOSFET 211的漏极接收输入电压Vin,其栅极接收一控制电压CV1,其源极耦接电流电压转换器213。在本实施例中,空乏型MOSFET 211为一永远开启(always on)晶体管。当空乏型MOSFET 211的栅极与源极之间的压差大于空乏型MOSFET 211的临界电压(threshold voltage)时,空乏型MOSFET 211导通。因此,电流电压转换器213根据流经空乏型MOSFET 211的电流,产生一控制电压CV2。然而,当空乏型MOSFET 211的栅极与源极之间的压差小于空乏型MOSFET 211的临界电压时,空乏型MOSFET 211不导通。当空乏型MOSFET211不导通时,由于没有电流流过空乏型MOSFET 211,故不会造成功率损耗。在一可能实施例中,控制电压CV1由一外部装置(如负载120)所提供。在此例中,外部装置利用控制电压CV1,导通或不导通空乏型MOSFET 211,用以调整输出电压Vout。The drain of the depleted MOSFET 211 receives the input voltage Vin, its gate receives a control voltage CV1 , and its source is coupled to the current-to-voltage converter 213 . In this embodiment, the depletion MOSFET 211 is an always-on transistor. When the voltage difference between the gate and the source of the depletion MOSFET 211 is greater than the threshold voltage of the depletion MOSFET 211 , the depletion MOSFET 211 is turned on. Therefore, the current-to-voltage converter 213 generates a control voltage CV2 according to the current flowing through the depleted MOSFET 211 . However, when the voltage difference between the gate and the source of the depletion MOSFET 211 is smaller than the threshold voltage of the depletion MOSFET 211 , the depletion MOSFET 211 is not turned on. When the depleted MOSFET 211 is not turned on, since no current flows through the depleted MOSFET 211, no power loss will be caused. In a possible embodiment, the control voltage CV1 is provided by an external device (such as the load 120 ). In this example, the external device utilizes the control voltage CV1 to turn on or off the depletion type MOSFET 211 to adjust the output voltage Vout.
增强型MOSFET 212的漏极接收输入电压Vin,其栅极接收控制电压CV2,其源极用以提供输出电压Vout,其基极耦接一接地端216。在本实施例中,增强型MOSFET 212根据控制电压CV2产生输出电压Vout。本发明并不限定增强型MOSFET212的种类。在一可能实施例中,增强型MOSFET 212为一N型晶体管。在此例中,当控制电压CV2为高位准时,增强型MOSFET 212导通。此时,增强型MOSFET 212根据输入电压Vin产生输出电压Vout。在一可能实施例中,当控制电压CV2不足以完全导通增强型MOSFET 212时,输出电压Vout可能减小。当控制电压CV2完全导通增强型MOSFET 212时,输出电压Vout增加。因此,通过电压CV2的控制,可得到稳定的输出电压Vout。在本实施例中,增强型MOSFET 212为一高压元件,其通道尺寸大于空乏型MOSFET 211的通道尺寸。The drain of the enhanced MOSFET 212 receives the input voltage Vin, the gate receives the control voltage CV2 , the source provides the output voltage Vout, and the base is coupled to a ground terminal 216 . In this embodiment, the enhancement MOSFET 212 generates the output voltage Vout according to the control voltage CV2. The present invention does not limit the type of enhancement MOSFET 212 . In a possible embodiment, the enhancement MOSFET 212 is an N-type transistor. In this example, when the control voltage CV2 is at a high level, the enhancement mode MOSFET 212 is turned on. At this time, the enhancement MOSFET 212 generates an output voltage Vout according to the input voltage Vin. In a possible embodiment, when the control voltage CV2 is not enough to fully turn on the enhancement MOSFET 212, the output voltage Vout may decrease. When the control voltage CV2 fully turns on the enhancement MOSFET 212, the output voltage Vout increases. Therefore, a stable output voltage Vout can be obtained by controlling the voltage CV2. In this embodiment, the enhancement MOSFET 212 is a high voltage device, and its channel size is larger than that of the depletion MOSFET 211 .
电流电压转换器213根据流经空乏型MOSFET 211的电流,产生控制电压CV2予增强型MOSFET 212的栅极。本发明并不限定电流电压转换器213的电路架构。任何可将电流转换成电压的电路架构,均可作为电流电压转换器213。在本实施例中,电流电压转换器213包括一储能元件214以及一二极管215。The current-to-voltage converter 213 generates a control voltage CV2 to the gate of the enhancement MOSFET 212 according to the current flowing through the depletion MOSFET 211 . The present invention does not limit the circuit architecture of the current-to-voltage converter 213 . Any circuit structure that can convert current into voltage can be used as the current-to-voltage converter 213 . In this embodiment, the current-to-voltage converter 213 includes an energy storage element 214 and a diode 215 .
储能元件214的一端耦接空乏型MOSFET 211的源极与增强型MOSFET 212的栅极。储能元件214的另一端耦接接地端216。储能元件214根据流经空乏型MOSFET211的电流而充电。在此例中,储能元件214所储存的电压作为控制电压CV2。因此,即使空乏型MOSFET 211不导通,增强型MOSFET 212仍可根据控制电压CV2,产生输出电压Vout。本发明并不限定储能元件214的种类。在一可能实施例中,储能元件214为一电容。One end of the energy storage element 214 is coupled to the source of the depletion MOSFET 211 and the gate of the enhancement MOSFET 212 . The other end of the energy storage element 214 is coupled to the ground 216 . The energy storage element 214 is charged according to the current flowing through the depletion type MOSFET 211 . In this example, the voltage stored in the energy storage element 214 is used as the control voltage CV2. Therefore, even if the depletion MOSFET 211 is not turned on, the enhancement MOSFET 212 can still generate the output voltage Vout according to the control voltage CV2. The invention does not limit the type of the energy storage element 214 . In a possible embodiment, the energy storage element 214 is a capacitor.
二极管215并联储能元件214。在本实施例中,二极管215的阴极(cathode)耦接空乏型MOSFET 211源极与增强型MOSFET 212的栅极,其阳极(anode)耦接接地端216。在一可能实施例中,接地端216用以接收一接地电压(ground)。在本实施例中,当储能元件214储存足够的电压时,增强型MOSFET 212导通,用以产生输出电压Vout。The diode 215 is connected in parallel with the energy storage element 214 . In this embodiment, the cathode of the diode 215 is coupled to the source of the depletion MOSFET 211 and the gate of the enhancement MOSFET 212 , and its anode is coupled to the ground terminal 216 . In a possible embodiment, the ground terminal 216 is used to receive a ground voltage (ground). In this embodiment, when the energy storage element 214 stores enough voltage, the enhancement MOSFET 212 is turned on to generate the output voltage Vout.
藉由储能元件214储存电荷,空乏型MOSFET 211就不需要持续导通,故可节省功率损耗。当空乏型MOSFET 211不导通时,没有电流流过空乏型MOSFET 211,故可避免漏电流发生。再者,由于空乏型MOSFET 211的切换速度快,故可确保储能元件214储存足够的电荷,并可确保增强型MOSFET 212产生输出电压Vout。With the charge stored in the energy storage element 214, the depletion MOSFET 211 does not need to be continuously turned on, thus saving power loss. When the depletion-type MOSFET 211 is not turned on, no current flows through the depletion-type MOSFET 211, so leakage current can be avoided. Furthermore, since the switching speed of the depletion MOSFET 211 is fast, it can ensure that the energy storage element 214 stores enough charge, and can ensure that the enhancement MOSFET 212 can generate the output voltage Vout.
图3为本发明的控制电路的另一可能实施例。图3相似于图2,不同之处在于,图3的电流电压转换器313包括一电阻314。电阻314的一端耦接空乏型MOSFET 311的源极以及增强型MOSFET 312的栅极。电阻314的另一端耦接一接地端315。在本实施例中,电阻314根据流经空乏型MOSFET 311的电流,提供一控制电压CV2。在此例中,电阻314两端的压差作为控制电压CV2。Fig. 3 is another possible embodiment of the control circuit of the present invention. FIG. 3 is similar to FIG. 2 , except that the current-to-voltage converter 313 in FIG. 3 includes a resistor 314 . One end of the resistor 314 is coupled to the source of the depletion MOSFET 311 and the gate of the enhancement MOSFET 312 . The other end of the resistor 314 is coupled to a ground 315 . In this embodiment, the resistor 314 provides a control voltage CV2 according to the current flowing through the depletion MOSFET 311 . In this example, the voltage difference across the resistor 314 is used as the control voltage CV2.
增强型MOSFET 312根据控制电压CV2以及输入电压Vin,产生输出电压Vout。由于增强型MOSFET 312的动作原理相同于图2的增强型MOSFET 212的动作原理,故不再赘述。另外,图3的空乏型MOSFET 311的动作原理相似于图2的空乏型MOSFET 211的动作原理,故不再赘述。The enhancement MOSFET 312 generates an output voltage Vout according to the control voltage CV2 and the input voltage Vin. Since the operation principle of the enhancement MOSFET 312 is the same as the operation principle of the enhancement MOSFET 212 in FIG. 2 , it will not be repeated here. In addition, the operating principle of the depleted MOSFET 311 in FIG. 3 is similar to the operating principle of the depleted MOSFET 211 in FIG. 2 , so it will not be repeated here.
图4为本发明的控制电路的另一可能实施例。在本实例中,控制电路410包括一空乏型MOSFET 411、一增强型MOSFET 412、一电流电压转换器413以及一电压调整器414。由于空乏型MOSFET 411与增强型MOSFET 412的动作与图2的空乏型MOSFET 211及增强型MOSFET212相似,故不再赘述。Fig. 4 is another possible embodiment of the control circuit of the present invention. In this example, the control circuit 410 includes a depletion MOSFET 411 , an enhancement MOSFET 412 , a current-to-voltage converter 413 and a voltage regulator 414 . Since the actions of the depletion MOSFET 411 and the enhancement MOSFET 412 are similar to those of the depletion MOSFET 211 and the enhancement MOSFET 212 in FIG. 2 , they are not repeated here.
电流电压转换器413根据流经空乏型MOSFET 411的电流,产生控制电压CV2。本发明并不限定电流电压转换器413的电路架构。在一可能实施例中,电流电压转换器413的电路架构相似于图2的电流电压转换器213或是图3的电流电压转换器313。The current-to-voltage converter 413 generates a control voltage CV2 according to the current flowing through the depleted MOSFET 411 . The present invention does not limit the circuit architecture of the current-to-voltage converter 413 . In a possible embodiment, the circuit architecture of the current-to-voltage converter 413 is similar to the current-to-voltage converter 213 in FIG. 2 or the current-to-voltage converter 313 in FIG. 3 .
电压调整器415根据输出电压Vout,产生控制电压CV1。在本实施例中,电压调整器415包括一比较电路415以及一电阻串416。电阻串416根据输出电压Vout,产生一分压DV。电阻串416包括电阻417及418。电阻417的一端耦接增强型MOSFET 412的源极。电阻417的一端输出分压DV,并耦接电阻418的一端。电阻418的另一端耦接一接地端419。比较电路415比较分压DV与参考电压RV,用以判断输出电压Vout是否达一目标电压。比较电路415根据分压DV与参考电压RV的比较结果,产生控制电压CV1,用以调整输出电压Vout。The voltage regulator 415 generates the control voltage CV1 according to the output voltage Vout. In this embodiment, the voltage regulator 415 includes a comparison circuit 415 and a resistor string 416 . The resistor string 416 generates a divided voltage DV according to the output voltage Vout. The resistor string 416 includes resistors 417 and 418 . One end of the resistor 417 is coupled to the source of the enhancement MOSFET 412 . One end of the resistor 417 outputs the divided voltage DV, and is coupled to one end of the resistor 418 . The other end of the resistor 418 is coupled to a ground 419 . The comparison circuit 415 compares the divided voltage DV with the reference voltage RV to determine whether the output voltage Vout reaches a target voltage. The comparison circuit 415 generates the control voltage CV1 according to the comparison result of the divided voltage DV and the reference voltage RV for adjusting the output voltage Vout.
在其它实施例中,比较电路415直接比较输出电压Vout与参考电压RV。在此例中,电阻串416可省略,并且比较电路415直接耦接增强型MOSFET 412的源极。当输出电压Vout等于参考电压RV时,表示输出电压Vout已达目标值。因此,比较电路415通过控制电压CV1不导通空乏型MOSFET 411。当输出电压Vout小于参考电压RV时,比较电路415通过控制电压CV1,控制空乏型MOSFET 411,用以增加流经空乏型MOSFET 411的电流。在一可能实施例中,参考电压RV由一外部装置(如负载120)所提供。在此例中,参考电压RV可能事先储存于外部装置中。In other embodiments, the comparison circuit 415 directly compares the output voltage Vout with the reference voltage RV. In this example, the resistor string 416 can be omitted, and the comparison circuit 415 is directly coupled to the source of the enhancement MOSFET 412 . When the output voltage Vout is equal to the reference voltage RV, it means that the output voltage Vout has reached the target value. Therefore, the comparison circuit 415 does not turn on the depletion type MOSFET 411 by controlling the voltage CV1. When the output voltage Vout is lower than the reference voltage RV, the comparison circuit 415 controls the depleted MOSFET 411 by controlling the voltage CV1 to increase the current flowing through the depleted MOSFET 411 . In a possible embodiment, the reference voltage RV is provided by an external device (such as the load 120 ). In this example, the reference voltage RV may be stored in an external device in advance.
在一可能实施例中,空乏型MOSFET与增强型MOSFET整合在同一基底上,用以减少元件占用空间。图5为本发明的空乏型MOSFET与增强型MOSFET的一可能半导体结构的俯视图。在本实施例中,空乏型MOSFET与增强型MOSFET整合在同一基底(substrate)500上。In a possible embodiment, the depletion MOSFET and the enhancement MOSFET are integrated on the same substrate to reduce the space occupied by the components. 5 is a top view of a possible semiconductor structure of the depletion MOSFET and the enhancement MOSFET of the present invention. In this embodiment, the depletion MOSFET and the enhancement MOSFET are integrated on the same substrate 500 .
如图所示,井区511形成在基底500中。在本实施例中,井区511为一U形结构,其开口朝向方向D1。掺杂区521与522形成在井区511之中。在一可能实施例中,掺杂区521的导电型不同于掺杂区522的导电型。栅极结构531形成在基底500之上,并重叠部分井区511。在一可能实施例中,栅极结构531作为增强型MOSFET的栅极。井区512形成在基底500之中。掺杂区523形成在井区512之中。在一可能实施例中,掺杂区523的导电型相同于掺杂区522的导电型。栅极结构532形成在基底500之上,并重叠掺杂区525及524。在一可能实施例中,栅极结构532作为空乏型MOSFET的栅极。As shown, a well region 511 is formed in the substrate 500 . In this embodiment, the well region 511 is a U-shaped structure with an opening facing the direction D1. Doped regions 521 and 522 are formed in the well region 511 . In a possible embodiment, the conductivity type of the doped region 521 is different from that of the doped region 522 . The gate structure 531 is formed on the substrate 500 and overlaps part of the well region 511 . In a possible embodiment, the gate structure 531 serves as a gate of an enhancement MOSFET. A well region 512 is formed in the substrate 500 . The doped region 523 is formed in the well region 512 . In a possible embodiment, the conductivity type of the doped region 523 is the same as that of the doped region 522 . A gate structure 532 is formed on the substrate 500 and overlaps the doped regions 525 and 524 . In a possible embodiment, the gate structure 532 serves as a gate of a depletion MOSFET.
图6为图5的半导体结构沿着虚线A-A”部分的剖面图。井区511A与511B设置于基底500中。在一可能实施例中,基底500具有第一导电型。在本实施例中,井区511A与511B为图5的井区511的部分。因此,井区511A与511B彼此电连接。在一可能实施例中,井区511A与511B具有第一导电型。在此例中,井区511A与511B的掺杂浓度高于基底500的掺杂浓度。6 is a cross-sectional view of the semiconductor structure of FIG. 5 along the dotted line A-A". The wells 511A and 511B are disposed in the substrate 500. In a possible embodiment, the substrate 500 has a first conductivity type. In this embodiment, Wells 511A and 511B are part of wells 511 of Figure 5. Therefore, wells 511A and 511B are electrically connected to each other. In a possible embodiment, wells 511A and 511B have a first conductivity type. In this example, wells 511A and 511B have a first conductivity type. The doping concentration of the regions 511A and 511B is higher than that of the substrate 500 .
井区512设置于基底500中,并位于井区511A与511B之间。在本实施例中,井区512具有第二导电型。第二导电型不同于第一导电型。举例而言,第一导电型为P型,第二导电型为N型。在其它实施例中,第一导电型为N型,第二导电型为P型。The well region 512 is disposed in the substrate 500 and located between the well regions 511A and 511B. In this embodiment, the well region 512 has the second conductivity type. The second conductivity type is different from the first conductivity type. For example, the first conductivity type is P type, and the second conductivity type is N type. In other embodiments, the first conductivity type is N type, and the second conductivity type is P type.
掺杂区521A设置于井区511A中。在本实施例中,掺杂区521A具有第一导电型,作为增强型MOSFET ET的一基极(bulk)。在一可能实施例中,掺杂区521A的掺杂浓度高于井区511A的掺杂浓度。掺杂区522具有第二导电型,并形成于井区511A中。掺杂区522的掺杂浓度高于井区512的掺杂浓度。在本实施例中,掺杂区522作为增强型MOSFET ET的源极。栅极结构531设置于基底500之上,并重叠部分井区511A及512。在本实施例中,栅极结构531作为增强型MOSFET ET的栅极。掺杂区523具有第二导电型,并形成于井区512之中。掺杂区523的掺杂浓度高于井区512的掺杂浓度。在本实施例中,掺杂区523作为增强型MOSFET ET的漏极。The doped region 521A is disposed in the well region 511A. In this embodiment, the doped region 521A has the first conductivity type and serves as a bulk of the enhancement MOSFET ET. In a possible embodiment, the doping concentration of the doped region 521A is higher than that of the well region 511A. The doped region 522 has the second conductivity type and is formed in the well region 511A. The doping concentration of the doped region 522 is higher than that of the well region 512 . In this embodiment, the doped region 522 serves as the source of the enhancement MOSFET ET. The gate structure 531 is disposed on the substrate 500 and overlaps part of the well regions 511A and 512 . In this embodiment, the gate structure 531 serves as the gate of the enhancement MOSFET ET. The doped region 523 has the second conductivity type and is formed in the well region 512 . The doping concentration of the doped region 523 is higher than that of the well region 512 . In this embodiment, the doped region 523 serves as the drain of the enhancement MOSFET ET.
另外,掺杂区523也作为空乏型MOSFET DT的漏极。如图所示,栅极结构532设置于基底500之上,并重叠部分井区512及511B。在本实施例中,栅极结构532作为空乏型MOSFETDT的栅极。掺杂区525形成于基底500与井区511中。如图所示,掺杂区525具有一第一部分以及一第二部分,其中第一部分位于基底500中,第二部分位于井区511B中。在本实施例中,掺杂区525具有第二导电型,作为空乏型MOSFET DT的通道。掺杂区524设置于井区511B之中。在本实施例中,掺杂区524具有第二导电型,作为空乏型MOSFET DT的源极。掺杂区521B设置于井区511B之中。在本实施例中,掺杂区521B具有第一导电型,作为空乏型MOSFET DT的基极。掺杂区521B与521A为图5的掺杂区521的一部分。In addition, the doped region 523 also serves as the drain of the depletion MOSFET DT. As shown in the figure, the gate structure 532 is disposed on the substrate 500 and overlaps part of the well regions 512 and 511B. In this embodiment, the gate structure 532 serves as the gate of the depletion MOSFET DT. The doped region 525 is formed in the substrate 500 and the well region 511 . As shown, the doped region 525 has a first portion and a second portion, wherein the first portion is located in the substrate 500 and the second portion is located in the well region 511B. In this embodiment, the doped region 525 has the second conductivity type, and serves as a channel of the depletion MOSFET DT. The doped region 524 is disposed in the well region 511B. In this embodiment, the doped region 524 has the second conductivity type and serves as the source of the depletion MOSFET DT. The doped region 521B is disposed in the well region 511B. In this embodiment, the doped region 521B has the first conductivity type and serves as the base of the depletion MOSFET DT. The doped regions 521B and 521A are part of the doped region 521 of FIG. 5 .
由于空乏型MOSFET与增强型MOSFET共用同一掺杂区(即523),故可减少走线数量。再者,由于空乏型MOSFET与增强型MOSFET的工艺相似,只不过空乏型MOSFET多了一掺杂区(即525),因此,并不会增加工艺的复杂度。Since the depletion MOSFET and the enhancement MOSFET share the same doped region (ie 523 ), the number of wires can be reduced. Furthermore, since the process of the depletion MOSFET is similar to that of the enhancement MOSFET, except that the depletion MOSFET has a doped region (ie 525 ), therefore, the complexity of the process will not be increased.
在其它实施例中,井区512更包括一井区513。井区513具有第二导电型。在此例中,井区512为一深井区(deep well)。在一可能实施例中,掺杂区523的掺杂浓度高于井区513的掺杂浓度。井区513的掺杂浓度高于井区512的掺杂浓度。In other embodiments, the well area 512 further includes a well area 513 . The well region 513 has the second conductivity type. In this example, the well 512 is a deep well. In a possible embodiment, the doping concentration of the doped region 523 is higher than that of the well region 513 . The doping concentration of the well region 513 is higher than that of the well region 512 .
在一些实施例中,图6更显示隔离结构541~546。隔离结构541~546可能是浅沟渠隔离(Shallow Trench Isolation;STI)结构或是区域氧化(Local Oxidation ofSilicon;LOCOS)结构。在其它实施例中,井区512更包括掺杂区526A及526B。掺杂区526A位于隔离结构543之下,并具有第一导电型,用以控制增强型MOSFET ET的崩溃电压。掺杂区526B位于隔离结构544之下,并具有第一导电型,用以控制空乏型MOSFET DT的崩溃电压。在一可能实施例中,掺杂区526A为一环形结构(未显示)的一部分,而掺杂区526B为该环形结构的另一部分。换句话说,掺杂区526A与526B彼此电连接。在本实施例中,隔离结构543隔离栅极结构531与掺杂区523,隔离结构544隔离栅极结构532与掺杂区523。在其它实施例中,掺杂区526A及526B的至少一者延伸进入井区513。In some embodiments, FIG. 6 further shows isolation structures 541 - 546 . The isolation structures 541 - 546 may be shallow trench isolation (Shallow Trench Isolation; STI) structures or local oxidation (Local Oxidation of Silicon; LOCOS) structures. In other embodiments, the well region 512 further includes doped regions 526A and 526B. The doped region 526A is located under the isolation structure 543 and has the first conductivity type for controlling the breakdown voltage of the enhancement MOSFET ET. The doped region 526B is located under the isolation structure 544 and has the first conductivity type for controlling the breakdown voltage of the depletion MOSFET DT. In one possible embodiment, the doped region 526A is part of a ring structure (not shown), and the doped region 526B is another part of the ring structure. In other words, the doped regions 526A and 526B are electrically connected to each other. In this embodiment, the isolation structure 543 isolates the gate structure 531 from the doped region 523 , and the isolation structure 544 isolates the gate structure 532 from the doped region 523 . In other embodiments, at least one of the doped regions 526A and 526B extends into the well region 513 .
除非另作定义,在此所有词汇(包含技术与科学词汇)均属本发明所属技术领域中具有通常知识者的一般理解。此外,除非明白表示,词汇于一般字典中的定义应解释为与其相关技术领域的文章中意义一致,而不应解释为理想状态或过分正式的语态。Unless otherwise defined, all terms (including technical and scientific terms) used herein are to be understood by those of ordinary skill in the art to which this invention belongs. In addition, unless expressly stated, the definition of a word in a general dictionary should be interpreted as consistent with the meaning in the article in its related technical field, and should not be interpreted as an ideal state or an overly formal voice.
虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明,任何所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作些许的更动与润饰。举例来,本发明实施例所系统、装置或是方法可以硬件、软件或硬件以及软件的组合的实体实施例加以实现。因此本发明的保护范围以权利要求保护范围为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the art can make some modifications and changes without departing from the spirit and scope of the present invention. retouch. For example, the system, device or method of the embodiments of the present invention can be implemented in physical embodiments of hardware, software, or a combination of hardware and software. Therefore, the protection scope of the present invention shall be determined by the protection scope of the claims.
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107139318 | 2018-11-06 | ||
TW107139318A TWI688192B (en) | 2018-11-06 | 2018-11-06 | Control circuit and semiconductor structure thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111147060A CN111147060A (en) | 2020-05-12 |
CN111147060B true CN111147060B (en) | 2023-08-08 |
Family
ID=70516731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910467133.2A Active CN111147060B (en) | 2018-11-06 | 2019-05-31 | Control circuit and semiconductor structure comprising same |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111147060B (en) |
TW (1) | TWI688192B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI847460B (en) * | 2022-12-29 | 2024-07-01 | 新唐科技股份有限公司 | Semiconductor structure |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0405407A2 (en) * | 1989-06-29 | 1991-01-02 | Siemens Aktiengesellschaft | Circuit arrangement for controlling a MOSFET with a load connected to its source |
US5045902A (en) * | 1989-07-17 | 1991-09-03 | Sgs-Thomson Microelectronics S.A. | VDMOS/logic integrated circuit comprising a vertical depleted MOS transistor and a zener diode and a method of making same |
TW510054B (en) * | 2000-01-27 | 2002-11-11 | Nec Corp | Circuit for processing charge detecting signal |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3173056D1 (en) * | 1980-06-24 | 1986-01-09 | Nec Corp | Linear voltage-current converter |
JP2004086750A (en) * | 2002-08-28 | 2004-03-18 | Nec Micro Systems Ltd | Band gap circuit |
TWI224869B (en) * | 2004-03-25 | 2004-12-01 | Richtek Techohnology Corp | Apparatus for driving depletion type junction field effect transistor |
WO2008092004A2 (en) * | 2007-01-24 | 2008-07-31 | Keystone Semiconductor, Inc. | Depletion-mode mosfet circuits and applications |
TWI425222B (en) * | 2009-02-23 | 2014-02-01 | United Microelectronics Corp | Voltage generating apparatus |
CN102939557B (en) * | 2010-05-29 | 2014-07-30 | 蒋文宇 | Systems, methods and apparatus for making and using eyeglasses with adaptive lens driven by gaze distance and low power gaze tracking |
JP2012195454A (en) * | 2011-03-16 | 2012-10-11 | Ricoh Co Ltd | Semiconductor device |
US9768160B2 (en) * | 2013-08-09 | 2017-09-19 | Infineon Technologies Austria Ag | Semiconductor device, electronic circuit and method for switching high voltages |
CN103928464B (en) * | 2014-04-18 | 2015-08-12 | 杭州士兰微电子股份有限公司 | Multiple device and Switching Power Supply |
-
2018
- 2018-11-06 TW TW107139318A patent/TWI688192B/en active
-
2019
- 2019-05-31 CN CN201910467133.2A patent/CN111147060B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0405407A2 (en) * | 1989-06-29 | 1991-01-02 | Siemens Aktiengesellschaft | Circuit arrangement for controlling a MOSFET with a load connected to its source |
US5045902A (en) * | 1989-07-17 | 1991-09-03 | Sgs-Thomson Microelectronics S.A. | VDMOS/logic integrated circuit comprising a vertical depleted MOS transistor and a zener diode and a method of making same |
TW510054B (en) * | 2000-01-27 | 2002-11-11 | Nec Corp | Circuit for processing charge detecting signal |
Non-Patent Citations (1)
Title |
---|
雷慧杰等.1.4.3 电力场效应晶体管.《电力电子应用技术》.重庆大学出版社,2017,第33-35页. * |
Also Published As
Publication number | Publication date |
---|---|
CN111147060A (en) | 2020-05-12 |
TWI688192B (en) | 2020-03-11 |
TW202019067A (en) | 2020-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kaufmann et al. | A monolithic GaN-IC with integrated control loop for 400-V offline buck operation achieving 95.6% peak efficiency | |
US11437990B2 (en) | Generating high dynamic voltage boost | |
US10079542B2 (en) | High voltage current source with short circuit protection | |
CN101515184B (en) | low dropout voltage regulator | |
US10186944B2 (en) | Switching power supply and the controller thereof | |
US20230122458A1 (en) | Low dropout linear regulator and control circuit thereof | |
TW202038558A (en) | Compound switch with jfet cascode gate forward-biasing control | |
CN110556371A (en) | Rectifier device | |
US8643302B2 (en) | Switching power-supply device and luminaire | |
US20160020685A1 (en) | Semiconductor device and power converter equipment | |
US20100194465A1 (en) | Temperature compensated current source and method therefor | |
CN111147060B (en) | Control circuit and semiconductor structure comprising same | |
US10615788B2 (en) | Variable capacitance protection circuit of a circuit element, amplifier, and switching power supply apparatus | |
CN110556373B (en) | Rectifier Devices | |
US11489521B2 (en) | Power transistor module and controlling method thereof | |
CN113359933B (en) | Reference voltage generation circuit | |
CN119174098A (en) | Cascode Normally Off Switch with Driver and Self-Bias | |
US20140159685A1 (en) | Control device and power supply device | |
CN115167608B (en) | Reverse voltage protection circuit, voltage adjustment circuit, electronic device and chip | |
US20230198388A1 (en) | Systems and methods for improving efficiency in a power converter using cascode power stages | |
US12212310B2 (en) | Gate bias circuit for a driver monolithically integrated with a GAN power FET | |
US9837999B2 (en) | Electronic device with substrate current management | |
TW202445993A (en) | Drive device | |
Lu et al. | A Monolithically Integrated Voltage Reference based on AlGaN/GaN Schottky Gate HEMTs | |
TW202445992A (en) | Drive device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |