CN111143768A - 一种基于arima-svm组合模型的空气质量预测算法 - Google Patents
一种基于arima-svm组合模型的空气质量预测算法 Download PDFInfo
- Publication number
- CN111143768A CN111143768A CN201911089421.5A CN201911089421A CN111143768A CN 111143768 A CN111143768 A CN 111143768A CN 201911089421 A CN201911089421 A CN 201911089421A CN 111143768 A CN111143768 A CN 111143768A
- Authority
- CN
- China
- Prior art keywords
- arima
- data
- model
- svm
- air quality
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/18—Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2411—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Analysis (AREA)
- Evolutionary Biology (AREA)
- Mathematical Physics (AREA)
- Bioinformatics & Computational Biology (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computational Mathematics (AREA)
- Mathematical Optimization (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Operations Research (AREA)
- Probability & Statistics with Applications (AREA)
- Artificial Intelligence (AREA)
- Algebra (AREA)
- Evolutionary Computation (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域
本发明涉及一种数据挖掘领域,具体的涉及一种基于ARIMA-SVM组合模型的空气质量预测算法。
背景技术
近年来,随着工业生产的发展与人类活动的增加,造成大量能源消耗与废物排放,空气质量问题日益突出,尤其是可吸入颗粒物(PM2.5)严重影响人体健康。因此空气质量的精准预测对人们的生产、生活、培养保护环境意识等具有重要的指导意义。
PM2.5浓度受多个因素影响同时兼具线性和非线性的特点,目前对PM2.5的预测主要有神经网络、灰色预测、时空数据模型、支持向量机等方法。以上的这些现有的单一模型在对空气质量数据进行分析预测的时候不能同时挖掘数据的线性以及非线性特征信息造成预测精度的下降。
发明内容
为了弥补先有技术的不足,本发明提供了一种能同时挖掘数据线性以及非线性信息从而提高预测精度的一种基于基于ARIMA-SVM组合模型的空气质量预测算法。
为实现上述目的,设计了三个部分:ARIMA模型预测、SVM模型预测、确定组合模型的预测结果。
其各个部分的方法如下:
所述ARIMA(p,d,q)模型预测,ARIMA模型只能对严平稳数据进行预测分析,对数据进行平稳性检验,若是严平稳则不对数据进行处理,若是非严平稳怎对数据进行d阶差分处理使数据变为严平稳。
对ARIMA(p,d,q)模型进行定阶主要是确定(p,d,q)的值,其中d的值在第一步中已经确认。在ARIMA的数学模型中,一般把时间序列在某时刻的值视为过去若干时间值与一组白噪声的线性叠加。即:
式(1)中yt是待分析的平稳时间序列,εt为白噪声序列。通过对序列自相关系数图以及偏自相关系数图的观察可以确定自回归阶数p和移动平均阶数q,模型完成定阶后,可确定系数γi、γi。
所述的SVM模型预测主要的工作是:支持向量机(SVM)最初被提出来用来解决分类问题,后来随着理论的发展通过非线性映射把数据映射到高维空间完成线性回归以此来解决原来样本空间的非线性回归问题。设训练集xi∈RD,yi∈R,则设SVM的回归方程为:
式中w是权向量,b是拟合偏差,“·”表示内积,f(x)是x的非线性函数,同时f(x)又是的线性函数,这样就把问题由原本空间的非线性回归转化为了高维空间的线性回归。为了减少计算量,引入核函数取代高维空间中的内积运算将其转化为原样本空间运算,得到SVM的非线性拟合函数:
本发明的与现有的主流相关滤波跟踪算法相比,其优点在于:
本发明提出的一种基于基于基于ARIMA-SVM组合模型的空气质量预测算法与现有的单一模型预测算法相比能同时挖掘数据线性以及非线性信息从而提高预测精度。
附图说明
图1是本发明的算法流程图。
图2是本发明的ARIMA模型预测流程图。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图说明本发明的具体实施方式。
图1是本发明的算法流程图:
第一步:ARIMA(p,d,q)模型的分析对象是平稳序列,首先对空气质量数据进行平稳性检验,若是严平稳则不对数据进行处理,若是非严平稳怎对数据进行差分处理使数据变为严平稳。
第二步:平稳的空气质量数据进行分析根据分析结果对ARIMA模型进行定阶,对ARIMA(p,d,q)模型进行定阶主要是确定(p,d,q)的值,其中d的值在第一步中已经确认。在ARIMA的数学模型中,一般把时间序列在某时刻的值视为过去若干时间值与一组白噪声的线性叠加。即:
式(1)中yt是待分析的平稳时间序列,εt为白噪声序列。通过对序列自相关系数图以及偏自相关系数图的观察可以确定自回归阶数p和移动平均阶数q,模型完成定阶后,可确定系数γi、γi。
第五步:支持向量机(SVM)最初被提出来用来解决分类问题,后来随着理论的发展通过非线性映射把数据映射到高维空间完成线性回归以此来解决原来样本空间的非线性回归问题。设训练集xi∈RD,yi∈R,则设SVM的回归方程为:
式中w是权向量,b是拟合偏差,“·”表示内积,f(x)是x的非线性函数,同时f(x)又是的线性函数,这样就把问题由原本空间的非线性回归转化为了高维空间的线性回归。为了减少计算量,引入核函数取代高维空间中的内积运算将其转化为原样本空间运算,得到SVM的非线性拟合函数:
图2是本发明的ARIMA模型预测流程图。
第一步:对获取的空气质量数据进行检测,若平稳则进行零均值化,若非平稳则进行d次差分使其平稳。
第二步:计算序列自相关函数(ACF)和自相关函数(PACF),若序列在上一步中进行差分处理,则计算差分序列的自相关函数以及偏自相关函数。
第三步:根据上一步的计算结果确定ARIMA模型中p、q的值,完成模型的定阶,这里的定阶标准选取BIC(Bayesian InformationCriterion)贝叶斯信息准。
第四步:对模型进行检验,这里检验进行两个,首先是检验参数的显著性(t检测),检验通过后接着选取一部分训练集,使用模型进行预测,求出预测结果的残差,对预测结果的残差进行随机性检验,检验残差是否是独立的。两个检验都通过证明模型是有效的。
第五步:使用得到的模型进行预测分析。
Claims (6)
1.一种基于ARIMA-SVM组合模型的空气质量预测算法,其特征在于,所述一种基于ARIMA-SVM空气质量预测算法的具体步骤如下:
第一步:首先对空气质量数据进行平稳性检验,若是严平稳则不对数据进行处理,若是非严平稳怎对数据进行差分处理使数据变为严平稳;
第二步:对平稳的空气质量数据进行分析根据分析结果对ARIMA模型进行定阶;
第三步:使用定阶后的ARIMA模型对空气质量数据进行预测;
第四步:求实际数值与ARIMA模型预测数值的残差;
第五步:使用SVM模型对残差进行回归分析,求得残差的预测结果;
第六步:把残差的预测分析结果与ARIMA模型的预测结果相加即为ARIMA-SVM组合模型的预测结果。
2.根据权利要求1所述的一种基于ARIMA-SVM组合模型的空气质量预测算法,其特征在于:所述的第一步中对数据进行平稳性检验,若是严平稳则不对数据进行处理,若是非严平稳怎对数据进行差分处理使数据变为严平稳。ARIMA(p,d,q)模型的分析对象是平稳序列,若序列非平稳则通过d阶差分的方法使其平稳。
5.根据权利要求1所述的一种基于ARIMA-SVM组合模型的空气质量预测算法,其特征在于:在第五步中,支持向量机(SVM)最初被提出来用来解决分类问题,后来随着理论的发展通过非线性映射把数据映射到高维空间完成线性回归以此来解决原来样本空间的非线性回归问题。设训练集xi∈RD,yi∈R,则设SVM的回归方程为:
式中w是权向量,b是拟合偏差,“·”表示内积,f(x)是x的非线性函数,同时f(x)又是的线性函数,这样就把问题由原本空间的非线性回归转化为了高维空间的线性回归。为了减少计算量,引入核函数取代高维空间中的内积运算将其转化为原样本空间运算,得到SVM的非线性拟合函数:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911089421.5A CN111143768A (zh) | 2019-11-08 | 2019-11-08 | 一种基于arima-svm组合模型的空气质量预测算法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911089421.5A CN111143768A (zh) | 2019-11-08 | 2019-11-08 | 一种基于arima-svm组合模型的空气质量预测算法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111143768A true CN111143768A (zh) | 2020-05-12 |
Family
ID=70517067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911089421.5A Pending CN111143768A (zh) | 2019-11-08 | 2019-11-08 | 一种基于arima-svm组合模型的空气质量预测算法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111143768A (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112906941A (zh) * | 2021-01-21 | 2021-06-04 | 哈尔滨工程大学 | 面向动态相关空气质量时间序列的预测方法及系统 |
CN113011455A (zh) * | 2021-02-02 | 2021-06-22 | 北京数汇通信息技术有限公司 | 一种空气质量预测svm模型构建方法 |
CN113139673A (zh) * | 2020-11-04 | 2021-07-20 | 西安天和防务技术股份有限公司 | 一种预测空气质量的方法、装置、终端及存储介质 |
CN117219284A (zh) * | 2023-09-11 | 2023-12-12 | 广东德澳智慧医疗科技有限公司 | 一种具有时序性智慧医疗大数据管理的系统 |
-
2019
- 2019-11-08 CN CN201911089421.5A patent/CN111143768A/zh active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113139673A (zh) * | 2020-11-04 | 2021-07-20 | 西安天和防务技术股份有限公司 | 一种预测空气质量的方法、装置、终端及存储介质 |
CN113139673B (zh) * | 2020-11-04 | 2024-11-12 | 西安天和防务技术股份有限公司 | 一种预测空气质量的方法、装置、终端及存储介质 |
CN112906941A (zh) * | 2021-01-21 | 2021-06-04 | 哈尔滨工程大学 | 面向动态相关空气质量时间序列的预测方法及系统 |
CN113011455A (zh) * | 2021-02-02 | 2021-06-22 | 北京数汇通信息技术有限公司 | 一种空气质量预测svm模型构建方法 |
CN113011455B (zh) * | 2021-02-02 | 2024-01-05 | 北京数汇通信息技术有限公司 | 一种空气质量预测svm模型构建方法 |
CN117219284A (zh) * | 2023-09-11 | 2023-12-12 | 广东德澳智慧医疗科技有限公司 | 一种具有时序性智慧医疗大数据管理的系统 |
CN117219284B (zh) * | 2023-09-11 | 2024-05-07 | 湖北中医药大学 | 一种具有时序性智慧医疗大数据管理的系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111143768A (zh) | 一种基于arima-svm组合模型的空气质量预测算法 | |
Harmel et al. | Evaluating, interpreting, and communicating performance of hydrologic/water quality models considering intended use: A review and recommendations | |
CN111104981A (zh) | 一种基于机器学习的水文预报精度评价方法及系统 | |
CN107357275B (zh) | 非高斯工业过程故障检测方法及系统 | |
Manouchehrian et al. | Application of artificial neural networks and multivariate statistics to estimate UCS using textural characteristics | |
CN106650020A (zh) | 一种复合受体模型污染源解析方法 | |
TWI584134B (zh) | 製程異因分析方法與製程異因分析系統 | |
CN107958267B (zh) | 一种基于光谱线性表示的油品性质预测方法 | |
CN111367959B (zh) | 一种零时滞非线性扩展Granger因果分析方法 | |
Bano et al. | A novel and systematic approach to identify the design space of pharmaceutical processes | |
CN112948932A (zh) | 一种基于TSP预报数据与XGBoost算法的围岩等级预测方法 | |
CN105334185A (zh) | 基于光谱投影判别的近红外模型维护方法 | |
Liu et al. | A data‐driven combined deterministic‐stochastic subspace identification method for condition assessment of roof structures subjected to strong winds | |
CN108663334B (zh) | 基于多分类器融合寻找土壤养分光谱特征波长的方法 | |
Lozada et al. | Improvements to estimate ADCP uncertainty sources for discharge measurements | |
CN113642209A (zh) | 基于数字孪生的结构植入故障响应数据获取及评判方法 | |
CN109840386B (zh) | 基于因子分析的损伤识别方法 | |
CN117934404A (zh) | 一种石材表面缺陷检测方法及系统 | |
CN111639715A (zh) | 基于ls-svm的汽车仪表组装质量预测方法与系统 | |
Sun et al. | A classification and location of surface defects method in hot rolled steel strips based on YOLOV7 | |
CN111880957A (zh) | 一种基于随机森林模型的程序错误定位方法 | |
Zhang et al. | Multivariate discrete grey model base on dummy drivers | |
CN111260029A (zh) | 一种面向空气质量数据的可信度分析方法 | |
Iwata et al. | AI-aided Hammering Test System to Automatically Generate Anomaly Maps. | |
CN112836433B (zh) | 高温合金晶粒尺寸识别模型的构建方法及尺寸识别方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20200512 |
|
WD01 | Invention patent application deemed withdrawn after publication |