CN111118109B - A Method for Evaluating Individual Protein Nutrition Status of Pigs Using Blood Biochemical Indexes - Google Patents
A Method for Evaluating Individual Protein Nutrition Status of Pigs Using Blood Biochemical Indexes Download PDFInfo
- Publication number
- CN111118109B CN111118109B CN202010003889.4A CN202010003889A CN111118109B CN 111118109 B CN111118109 B CN 111118109B CN 202010003889 A CN202010003889 A CN 202010003889A CN 111118109 B CN111118109 B CN 111118109B
- Authority
- CN
- China
- Prior art keywords
- blood
- protein
- regression model
- group
- density lipoprotein
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 102000004169 proteins and genes Human genes 0.000 title claims abstract description 127
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 127
- 239000008280 blood Substances 0.000 title claims abstract description 117
- 210000004369 blood Anatomy 0.000 title claims abstract description 117
- 241000282887 Suidae Species 0.000 title claims abstract description 68
- 235000016709 nutrition Nutrition 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 21
- 230000035764 nutrition Effects 0.000 title claims description 24
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 claims description 88
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 54
- 239000004202 carbamide Substances 0.000 claims description 53
- 102000015779 HDL Lipoproteins Human genes 0.000 claims description 44
- 108010010234 HDL Lipoproteins Proteins 0.000 claims description 44
- 235000012000 cholesterol Nutrition 0.000 claims description 44
- 102000007330 LDL Lipoproteins Human genes 0.000 claims description 33
- 108010007622 LDL Lipoproteins Proteins 0.000 claims description 33
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 32
- 239000008103 glucose Substances 0.000 claims description 32
- 229940027941 immunoglobulin g Drugs 0.000 claims description 32
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 31
- 102100036475 Alanine aminotransferase 1 Human genes 0.000 claims description 28
- 108010082126 Alanine transaminase Proteins 0.000 claims description 28
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 28
- 108060003951 Immunoglobulin Proteins 0.000 claims description 26
- 102000018358 immunoglobulin Human genes 0.000 claims description 26
- 239000013256 coordination polymer Substances 0.000 claims description 24
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 claims description 24
- 108010003415 Aspartate Aminotransferases Proteins 0.000 claims description 20
- 102000004625 Aspartate Aminotransferases Human genes 0.000 claims description 20
- 102000003914 Cholinesterases Human genes 0.000 claims description 20
- 108090000322 Cholinesterases Proteins 0.000 claims description 20
- 229940048961 cholinesterase Drugs 0.000 claims description 20
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 claims description 19
- 229910021529 ammonia Inorganic materials 0.000 claims description 14
- 102000004420 Creatine Kinase Human genes 0.000 claims description 12
- 108010042126 Creatine kinase Proteins 0.000 claims description 12
- 102000003855 L-lactate dehydrogenase Human genes 0.000 claims description 12
- 108700023483 L-lactate dehydrogenases Proteins 0.000 claims description 12
- 229940109239 creatinine Drugs 0.000 claims description 12
- -1 immunoglobulin G Chemical compound 0.000 claims description 11
- 239000004382 Amylase Substances 0.000 claims description 10
- 102000013142 Amylases Human genes 0.000 claims description 10
- 108010065511 Amylases Proteins 0.000 claims description 10
- 235000019418 amylase Nutrition 0.000 claims description 10
- 238000000611 regression analysis Methods 0.000 claims description 9
- 150000003626 triacylglycerols Chemical class 0.000 claims description 6
- 238000012417 linear regression Methods 0.000 claims description 2
- 238000010238 partial least squares regression Methods 0.000 claims description 2
- 238000012628 principal component regression Methods 0.000 claims description 2
- 101710088194 Dehydrogenase Proteins 0.000 claims 1
- 238000002965 ELISA Methods 0.000 claims 1
- 235000018102 proteins Nutrition 0.000 description 102
- 102000015781 Dietary Proteins Human genes 0.000 description 50
- 108010010256 Dietary Proteins Proteins 0.000 description 50
- 235000021245 dietary protein Nutrition 0.000 description 50
- 235000003715 nutritional status Nutrition 0.000 description 44
- 235000005911 diet Nutrition 0.000 description 30
- 230000037213 diet Effects 0.000 description 28
- 241001465754 Metazoa Species 0.000 description 12
- 238000011156 evaluation Methods 0.000 description 9
- 238000012360 testing method Methods 0.000 description 7
- 238000010219 correlation analysis Methods 0.000 description 6
- 235000015097 nutrients Nutrition 0.000 description 6
- 230000001419 dependent effect Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000013210 evaluation model Methods 0.000 description 4
- 238000012216 screening Methods 0.000 description 4
- 102100026533 Cytochrome P450 1A2 Human genes 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 101000855342 Homo sapiens Cytochrome P450 1A2 Proteins 0.000 description 3
- 101000741271 Sorghum bicolor Phosphoenolpyruvate carboxylase 1 Proteins 0.000 description 3
- 238000000540 analysis of variance Methods 0.000 description 3
- 239000012805 animal sample Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229940088598 enzyme Drugs 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 235000006180 nutrition needs Nutrition 0.000 description 3
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- 102000004506 Blood Proteins Human genes 0.000 description 2
- 108010017384 Blood Proteins Proteins 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 235000019750 Crude protein Nutrition 0.000 description 2
- 238000001134 F-test Methods 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 235000019728 animal nutrition Nutrition 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- CVSVTCORWBXHQV-UHFFFAOYSA-N creatine Chemical compound NC(=[NH2+])N(C)CC([O-])=O CVSVTCORWBXHQV-UHFFFAOYSA-N 0.000 description 2
- 230000000378 dietary effect Effects 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 2
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 2
- 238000001543 one-way ANOVA Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 2
- 229910000368 zinc sulfate Inorganic materials 0.000 description 2
- 239000001763 2-hydroxyethyl(trimethyl)azanium Substances 0.000 description 1
- 108010011619 6-Phytase Proteins 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 239000004151 Calcium iodate Substances 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 235000019743 Choline chloride Nutrition 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000008157 ELISA kit Methods 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 101710085938 Matrix protein Proteins 0.000 description 1
- 101710127721 Membrane protein Proteins 0.000 description 1
- 229910017234 MnSO4 H2O Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 102000003929 Transaminases Human genes 0.000 description 1
- 108090000340 Transaminases Proteins 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 235000021052 average daily weight gain Nutrition 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000037237 body shape Effects 0.000 description 1
- YYRMJZQKEFZXMX-UHFFFAOYSA-L calcium bis(dihydrogenphosphate) Chemical compound [Ca+2].OP(O)([O-])=O.OP(O)([O-])=O YYRMJZQKEFZXMX-UHFFFAOYSA-L 0.000 description 1
- 229940062672 calcium dihydrogen phosphate Drugs 0.000 description 1
- UHWJJLGTKIWIJO-UHFFFAOYSA-L calcium iodate Chemical compound [Ca+2].[O-]I(=O)=O.[O-]I(=O)=O UHWJJLGTKIWIJO-UHFFFAOYSA-L 0.000 description 1
- 235000019390 calcium iodate Nutrition 0.000 description 1
- MKJXYGKVIBWPFZ-UHFFFAOYSA-L calcium lactate Chemical compound [Ca+2].CC(O)C([O-])=O.CC(O)C([O-])=O MKJXYGKVIBWPFZ-UHFFFAOYSA-L 0.000 description 1
- 235000011086 calcium lactate Nutrition 0.000 description 1
- 239000001527 calcium lactate Substances 0.000 description 1
- 229960002401 calcium lactate Drugs 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- CYDMQBQPVICBEU-UHFFFAOYSA-N chlorotetracycline Natural products C1=CC(Cl)=C2C(O)(C)C3CC4C(N(C)C)C(O)=C(C(N)=O)C(=O)C4(O)C(O)=C3C(=O)C2=C1O CYDMQBQPVICBEU-UHFFFAOYSA-N 0.000 description 1
- CYDMQBQPVICBEU-XRNKAMNCSA-N chlortetracycline Chemical compound C1=CC(Cl)=C2[C@](O)(C)[C@H]3C[C@H]4[C@H](N(C)C)C(O)=C(C(N)=O)C(=O)[C@@]4(O)C(O)=C3C(=O)C2=C1O CYDMQBQPVICBEU-XRNKAMNCSA-N 0.000 description 1
- 229960004475 chlortetracycline Drugs 0.000 description 1
- 235000019365 chlortetracycline Nutrition 0.000 description 1
- SGMZJAMFUVOLNK-UHFFFAOYSA-M choline chloride Chemical compound [Cl-].C[N+](C)(C)CCO SGMZJAMFUVOLNK-UHFFFAOYSA-M 0.000 description 1
- 229960003178 choline chloride Drugs 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 229960003624 creatine Drugs 0.000 description 1
- 239000006046 creatine Substances 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 235000021050 feed intake Nutrition 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 125000000291 glutamic acid group Chemical group N[C@@H](CCC(O)=O)C(=O)* 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000003862 health status Effects 0.000 description 1
- 230000003832 immune regulation Effects 0.000 description 1
- 238000009309 intensive farming Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 229940099596 manganese sulfate Drugs 0.000 description 1
- 235000007079 manganese sulphate Nutrition 0.000 description 1
- 239000011702 manganese sulphate Substances 0.000 description 1
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 1
- ISPYRSDWRDQNSW-UHFFFAOYSA-L manganese(II) sulfate monohydrate Chemical compound O.[Mn+2].[O-]S([O-])(=O)=O ISPYRSDWRDQNSW-UHFFFAOYSA-L 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 235000019691 monocalcium phosphate Nutrition 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000009304 pastoral farming Methods 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 229940085127 phytase Drugs 0.000 description 1
- 238000009374 poultry farming Methods 0.000 description 1
- 239000006041 probiotic Substances 0.000 description 1
- 235000018291 probiotics Nutrition 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 235000021195 test diet Nutrition 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
- 239000011686 zinc sulphate Substances 0.000 description 1
- 235000009529 zinc sulphate Nutrition 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/58—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving urea or urease
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/26—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
- C12Q1/32—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving dehydrogenase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/34—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
- C12Q1/40—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving amylase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/34—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
- C12Q1/44—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving esterase
- C12Q1/46—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving esterase involving cholinesterase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/48—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase
- C12Q1/50—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase involving creatine phosphokinase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/48—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase
- C12Q1/52—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase involving transaminase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/60—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving cholesterol
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/66—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood sugars, e.g. galactose
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Biomedical Technology (AREA)
- Cell Biology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Diabetes (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
本发明公开了一种利用血液生化指标评价生猪个体蛋白营养状态的方法,所述方法是通过同时定量检测血液生化指标中的至少一种来评价生猪个体蛋白营养状态。The invention discloses a method for evaluating the individual protein nutritional state of pigs by using blood biochemical indexes. The method evaluates the individual protein nutritional state of pigs by simultaneously quantitatively detecting at least one of the blood biochemical indexes.
Description
技术领域technical field
本发明属于动物营养技术领域,具体涉及一种利用血液生化指标评价生猪个体蛋白营养状态的方法。The invention belongs to the technical field of animal nutrition, and in particular relates to a method for evaluating the protein nutrition state of individual pigs by using blood biochemical indexes.
背景技术Background technique
近年来,饲料原料的紧缺,人畜争粮状况加剧;超过营养需求的饲料供应也会加重畜禽养殖对环境的压力。为提高饲料报酬,开展精准营养供应变得迫切。精准营养是针对个体不同营养供应状态来供给营养物质的一种精准衔接饲料营养供应和养殖动物营养需求的动物营养策略。动物个体的营养状态是饲料、机体与环境之间相互作用的综合表现,体现了动物自身满足营养需求的能力。目前,生猪的营养状态主要通过外部指标进行测定,如体形外貌直观法、体况分值评价法和体重指数法等,但由于这些指标的主观性、不敏感性及静态性等缺点,导致发现生猪营养不平衡时,其损失将难以弥补和纠正。In recent years, the shortage of feed raw materials has intensified the competition between humans and animals for food; the supply of feed exceeding nutritional needs will also increase the pressure on the environment of livestock and poultry farming. In order to improve feed remuneration, it is urgent to carry out precise nutrition supply. Precision nutrition is an animal nutrition strategy that accurately connects the feed nutrient supply and the nutritional needs of farmed animals to supply nutrients according to different nutrient supply states of individuals. The nutritional status of an individual animal is a comprehensive expression of the interaction between feed, body and environment, and reflects the animal's ability to meet its nutritional needs. At present, the nutritional status of live pigs is mainly determined by external indicators, such as the direct method of body shape and appearance, the method of body condition score evaluation and the method of body mass index, etc. When the nutrition of pigs is unbalanced, the loss will be difficult to make up and correct.
蛋白是养殖动物首要的营养物质,如何精准评估个体或亚群体的蛋白营养需求变化及其蛋白营养状态已成为精准营养的基础所在。在目前集约化养殖条件下,由于个体遗传背景变异、环境差异以及健康状况不同等因素的影响,饲喂相同蛋白水平日粮的生猪会出现不同的个体对日粮蛋白营养的需求不同,从而造成不同个体蛋白营养满足程度不一样,使得生猪在采食相同蛋白营养水平日粮后实际生长性能或蛋白营养状态出现较大差异。Protein is the primary nutrient for farmed animals. How to accurately assess the changes in protein nutritional requirements of individuals or subgroups and their protein nutritional status has become the basis of precision nutrition. Under the current intensive farming conditions, due to the influence of factors such as individual genetic background variation, environmental differences, and different health status, pigs fed the same protein level diet will have different individual requirements for dietary protein nutrition, resulting in Different individuals have different levels of protein nutrition satisfaction, which leads to large differences in actual growth performance or protein nutrition status of pigs after eating diets with the same protein nutrition level.
血液生化指标是指血液中的一些酶和蛋白质,其在机体代谢、免疫调节、能量传递和动物生长发育等方面发挥着重要的作用,并且可通过微创途径对其获得,是理想的蛋白营养状态监测靶点所在组织。目前还没有利用与生猪蛋白营养状态显著相关的血液生化指标建立动态回归模型,对生猪蛋白营养状态和营养需求变化进行精准评估的报道。Blood biochemical indicators refer to some enzymes and proteins in the blood, which play an important role in body metabolism, immune regulation, energy transfer and animal growth and development, and can be obtained through minimally invasive ways, which are ideal protein nutrition The organization where the status monitoring target is located. At present, there is no report on the establishment of a dynamic regression model using blood biochemical indicators that are significantly related to the nutritional status of pig protein to accurately evaluate the nutritional status and nutritional requirements of pig protein.
发明内容Contents of the invention
本发明旨在针对目前现有技术的不足,提供一种利用血液生化指标评价生猪个体蛋白营养状态的方法。The present invention aims to provide a method for evaluating the nutritional status of pig individual protein by using blood biochemical indexes aiming at the deficiencies of the current prior art.
为了达到上述目的,本发明提供的技术方案为:In order to achieve the above object, the technical solution provided by the invention is:
所述利用血液生化指标评价生猪个体蛋白营养状态的方法是通过同时定量检测血液中如下血液生化指标中的至少一种来评价生猪个体蛋白营养状态:尿素、总蛋白、血氨、谷丙转氨酶、谷草转氨酶、胰淀粉酶、肌酐、葡萄糖、总胆固醇、高密度脂蛋白、胆碱酯酶、肌酸激酶、乳酸脱氢酶、免疫球蛋白M、甘油三酯、低密度脂蛋白、免疫球蛋白G。The method for evaluating the nutritional status of pig individual protein by using blood biochemical indicators is to evaluate the nutritional status of individual pig protein by simultaneously quantitatively detecting at least one of the following blood biochemical indicators in the blood: urea, total protein, blood ammonia, alanine aminotransferase, Aspartate aminotransferase, pancreatic amylase, creatinine, glucose, total cholesterol, high-density lipoprotein, cholinesterase, creatine kinase, lactate dehydrogenase, immunoglobulin M, triglycerides, low-density lipoprotein, immunoglobulin g.
优选地,所述方法通过定量检测血液中如下A组的血液生化指标,或B组的血液生化指标,或C组的血液生化指标,或D组的血液生化指标,或E组的血液生化指标,或F组的血液生化指标,来评价生猪个体蛋白营养状态:Preferably, the method quantitatively detects the following blood biochemical indicators of group A, or blood biochemical indicators of group B, or blood biochemical indicators of group C, or blood biochemical indicators of group D, or blood biochemical indicators of group E in the blood , or the blood biochemical indicators of group F, to evaluate the individual protein nutritional status of pigs:
A组:尿素;Group A: urea;
B组:总蛋白、尿素、血氨、谷丙转氨酶、谷草转氨酶、胰淀粉酶、肌酐、葡萄糖、总胆固醇、高密度脂蛋白、胆碱酯酶、肌酸激酶、乳酸脱氢酶、免疫球蛋白M;Group B: total protein, urea, blood ammonia, alanine aminotransferase, aspartate aminotransferase, pancreatic amylase, creatinine, glucose, total cholesterol, high-density lipoprotein, cholinesterase, creatine kinase, lactate dehydrogenase, immune globulin Protein M;
C组:总蛋白、谷丙转氨酶、尿素、葡萄糖、甘油三酯、总胆固醇、高密度脂蛋白、低密度脂蛋白、免疫球蛋白G、免疫球蛋白M;Group C: total protein, alanine aminotransferase, urea, glucose, triglyceride, total cholesterol, high-density lipoprotein, low-density lipoprotein, immunoglobulin G, immunoglobulin M;
D组:甘油三酯、总胆固醇、低密度脂蛋白、免疫球蛋白G、尿素、高密度脂蛋白、胆碱酯酶;Group D: triglycerides, total cholesterol, low-density lipoprotein, immunoglobulin G, urea, high-density lipoprotein, cholinesterase;
E组:尿素、葡萄糖、甘油三酯、总胆固醇、高密度脂蛋白、低密度脂蛋白、免疫球蛋白G、免疫球蛋白M;Group E: urea, glucose, triglycerides, total cholesterol, high-density lipoprotein, low-density lipoprotein, immunoglobulin G, immunoglobulin M;
F组:总蛋白、谷丙转氨酶、谷草转氨酶、尿素、葡萄糖、总胆固醇、免疫球蛋白G、低密度脂蛋白、高密度脂蛋白。Group F: total protein, alanine aminotransferase, aspartate aminotransferase, urea, glucose, total cholesterol, immunoglobulin G, low-density lipoprotein, high-density lipoprotein.
优选地,所述方法的具体步骤包括:Preferably, the specific steps of the method include:
(1)建立生长猪生长性能与所述日粮中蛋白质水平的回归模型,确定生长性能最佳时日粮蛋白质水平,并设定该日粮蛋白质水平±1%作为生长猪蛋白营养状态参考标准;(1) Establish the regression model of the growth performance of growing pigs and the protein level in the diet, determine the protein level of the diet when the growth performance is the best, and set the protein level of the diet ± 1% as the reference standard for the protein nutritional status of growing pigs ;
(2)构建反映生长猪蛋白营养状态的血液生化指标含量(本发明中,血液生化指标总蛋白、胆碱酯酶、免疫球蛋白G和免疫球蛋白M的含量单位为g/L,尿素、葡萄糖、总胆固醇、甘油三酯、低密度脂蛋白和高密度脂蛋白的含量单位为mmol/L,血氨和肌酐的含量单位为μmol/L,谷丙转氨酶、谷草转氨酶、胰淀粉酶、肌酸激酶和乳酸脱氢酶的含量单位为U/L)与日粮蛋白质水平的动态回归模型,所述回归模型如下:(2) Construct the blood biochemical index content (in the present invention, the content unit of blood biochemical index total protein, cholinesterase, immunoglobulin G and immunoglobulin M is g/L reflecting growth pig protein nutritional state, urea, The unit of glucose, total cholesterol, triglyceride, low-density lipoprotein and high-density lipoprotein is mmol/L, the unit of blood ammonia and creatinine is μmol/L, alanine aminotransferase, aspartate aminotransferase, pancreatic amylase, creatinine The content unit of acid kinase and lactate dehydrogenase is U/L) and the dynamic regression model of dietary protein level, and described regression model is as follows:
A回归模型:A regression model:
CP=-0.2039x2+4.5507x-0.6947;其中,所述x为血液中尿素的含量;CP=-0.2039x 2 +4.5507x-0.6947; wherein, the x is the content of urea in the blood;
B回归模型:B regression model:
CP=14.3304+0.3498x1+0.7335x2-0.0110x3-0.1162x4-0.0400x5+0.0003x6-0.0448x7-0.5111x8-3.5789x9+1.1543x10-0.0045x11+0.0019x12+0.0028x13-5.2590x14;其中,所述x1至x14分别为血液中总蛋白、尿素、血氨、谷丙转氨酶、谷草转氨酶、胰淀粉酶、肌酐、葡萄糖、总胆固醇、高密度脂蛋白、胆碱酯酶、肌酸激酶、乳酸脱氢酶、免疫球蛋白M的含量;CP=14.3304+0.3498x 1 +0.7335x 2 -0.0110x 3 -0.1162x 4 -0.0400x 5 +0.0003x 6 -0.0448x 7 -0.5111x 8 -3.5789x 9 +1.1543x 10 -0.0045x 11 +0.0019x 12 +0.0028x 13 -5.2590x 14 ; wherein, x1 to x14 are respectively total protein in blood, urea, blood ammonia, alanine aminotransferase, aspartate aminotransferase, pancreatic amylase, creatinine, glucose, total cholesterol, high Density lipoprotein, cholinesterase, creatine kinase, lactate dehydrogenase, immunoglobulin M content;
C回归模型:C regression model:
CP=(0.2497+0.0021x1+0.0012x2+0.0086x3-0.0069x4+0.1081x5-0.304x6+0.2573x7+0.2926x8+0.0066x9-0.0391x10)×100;其中,所述x1至x10分别为血液中总蛋白、谷丙转氨酶、尿素、葡萄糖、甘油三酯、总胆固醇、高密度脂蛋白、低密度脂蛋白、免疫球蛋白G和免疫球蛋白M的含量;CP=(0.2497+0.0021x 1 +0.0012x 2 +0.0086x 3 -0.0069x 4 +0.1081x 5 -0.304x 6 +0.2573x 7 +0.2926x 8 +0.0066x 9 -0.0391x 10 )×100; Said x1 to x10 are respectively the content of total protein, alanine aminotransferase, urea, glucose, triglyceride, total cholesterol, high-density lipoprotein, low-density lipoprotein, immunoglobulin G and immunoglobulin M in the blood ;
D回归模型:D regression model:
CP=(0.5349x1 2+0.0073x2 2+0.0307x3 2+0.0206x4 2+0.0207x5-0.3931x1-0.1839x2+0.1008x6+0.0179x3-0.1119x7-0.0449x4)×100;其中,所述x1至x7分别为血液中甘油三酯、总胆固醇、低密度脂蛋白、免疫球蛋白G、尿素、高密度脂蛋白、胆碱酯酶的含量;CP=(0.5349x 1 2 +0.0073x 2 2 +0.0307x 3 2 +0.0206x 4 2 +0.0207x 5 -0.3931x 1 -0.1839x 2 +0.1008x 6 +0.0179x 3 -0.1119x 7 -0.0449x 4 ) × 100; wherein, said x1 to x7 are respectively the content of triglyceride, total cholesterol, low-density lipoprotein, immunoglobulin G, urea, high-density lipoprotein, and cholinesterase in blood;
E回归模型:E regression model:
17.75CP=0.06786+0.0033x1-0.0014x2-0.0057x3-0.003x4-0.003x5-0.0035x6-0.0012x7+0.02x8;其中,所述x1至x8分别为血液中尿素、葡萄糖、甘油三酯、总胆固醇、高密度脂蛋白、低密度脂蛋白、免疫球蛋白G、免疫球蛋白M的含量;17.75CP=0.06786+0.0033x 1 -0.0014x 2 -0.0057x 3 -0.003x 4 -0.003x 5 -0.0035x 6 -0.0012x 7 +0.02x 8 ; wherein, said x 1 to x 8 are respectively Contents of urea, glucose, triglycerides, total cholesterol, high-density lipoprotein, low-density lipoprotein, immunoglobulin G, and immunoglobulin M;
F回归模型:F regression model:
CP=(0.001x1-0.0018x2+0.0006x3+0.01x4-0.002x5-0.0014x6-0.00093x7-0.00057x8-0.00053x9)×100;其中,所述x1至x9分别为血液中总蛋白、谷丙转氨酶、谷草转氨酶、尿素、葡萄糖、总胆固醇、免疫球蛋白G、低密度脂蛋白、高密度脂蛋白的质量百分比含量;CP=(0.001x 1 -0.0018x 2 +0.0006x 3 +0.01x 4 -0.002x5-0.0014x 6 -0.00093x 7 -0.00057x 8 -0.00053x 9 )×100; wherein, the x 1 to x 9 Respectively, the mass percentages of total protein, alanine aminotransferase, aspartate aminotransferase, urea, glucose, total cholesterol, immunoglobulin G, low-density lipoprotein, and high-density lipoprotein in blood;
所述CP为日粮蛋白质水平,所述日粮蛋白质水平是指日粮中蛋白质的含量,单位为%;The CP is the protein level of the diet, and the protein level of the diet refers to the protein content in the diet, and the unit is %;
(3)测定待测生猪个体血液中A组血液生化指标的含量,将测得的结果代入A回归模型;或者,测定待测生猪个体血液中B组血液生化指标的含量,将测得的结果代入B回归模型;或者,测定待测生猪个体血液中C组血液生化指标的含量,将测得的结果代入C回归模型;或者,测定待测生猪个体血液中D组血液生化指标的含量,将测得的结果代入D回归模型;或者,测定待测生猪个体血液中E组血液生化指标的含量,将测得的结果代入E回归模型;或者,测定待测生猪个体血液中F组血液生化指标的含量,将测得的结果代入F回归模型;计算获得待测生猪个体所饲喂日粮蛋白质水平,将测生猪个体所饲喂日粮蛋白质水平与步骤(1)所得的生长猪蛋白营养状态参考标准比对,若在生长猪蛋白营养状态参考标准数值范围内,则表示待测生猪个体营养状况最佳。(3) Determination of the content of group A blood biochemical indicators in the blood of the individual pigs to be tested, and substitute the measured results into the A regression model; Substitute into the B regression model; or, measure the content of the C group blood biochemical index in the blood of the individual pig to be tested, and substitute the measured result into the C regression model; or, measure the content of the blood biochemical index of the D group in the blood of the individual pig to be tested, and The measured results are substituted into the D regression model; or, the content of the blood biochemical indicators of the E group in the blood of the individual pigs to be tested is determined, and the measured results are substituted into the E regression model; or, the blood biochemical indicators of the F group in the blood of the individual pigs to be tested are determined Substitute the measured results into the F regression model; calculate and obtain the protein level of the diet fed by the individual pigs to be tested, and combine the protein level of the diet fed by the individual pigs to be tested with the protein nutritional status of the growing pigs obtained in step (1) Compared with the reference standard, if it is within the value range of the reference standard for the protein nutritional status of growing pigs, it means that the nutritional status of the individual pig to be tested is the best.
优选地,检测血液时,采用自动生化分析仪、酶联免疫吸附试剂盒等对血液中生化指标进行测定。Preferably, when detecting blood, an automatic biochemical analyzer, an enzyme-linked immunosorbent assay kit, etc. are used to measure the biochemical indicators in the blood.
优选地,所述回归模型为线性回归模型、非线性回归模型、主成分回归模型、最小二乘法模型和偏最小二乘回归模型。Preferably, the regression model is a linear regression model, a nonlinear regression model, a principal component regression model, a least squares model and a partial least squares regression model.
优选地,所述回归模型中回归分析F检验显著性值p<0.05,决定系数R2>0.6。Preferably, the regression analysis F-test significance value of the regression model is p<0.05, and the coefficient of determination R 2 >0.6.
下面对本发明作进一步说明:The present invention will be further described below:
本发明提供了生猪个体蛋白营养状态评估模型6个及蛋白营养状态参考标准(日粮蛋白质含量16.3~18.3%),通过测定待测生猪个体的血液生化指标含量并代入生猪个体蛋白营养状态评估模型获得日粮蛋白质含量,与生猪个体蛋白营养状态最佳时的日粮蛋白质含量参考标准(16.3~18.3%)进行比对来实现生猪蛋白营养状态的评估;通过生猪个体蛋白营养状态评估模型获得此待测生猪个体获得最佳营养状态所需要的日粮蛋白质含量调整值。The present invention provides 6 assessment models of individual protein nutrition status of pigs and a reference standard of protein nutrition status (the dietary protein content is 16.3-18.3%), by measuring the blood biochemical index content of individual pigs to be tested and substituting them into the assessment model of pig individual protein nutrition status Obtain the protein content of the diet, and compare it with the reference standard (16.3-18.3%) of the dietary protein content when the individual protein nutritional status of the pig is the best to realize the evaluation of the nutritional status of the pig protein; this is obtained through the evaluation model of the individual protein nutritional status of the pig The adjusted value of dietary protein content required for the individual pigs to be tested to obtain the optimal nutritional status.
本发明首先用动物样本各个体的血液进行试验,所述动物样本是根据饲喂日粮中的粗蛋白含量进行如下分组的生长猪:无氮日粮组(CP0)、日粮蛋白水平为5%组(CP5)、日粮蛋白水平为9%(CP9)、日粮蛋白水平为12%组(CP12)、日粮蛋白水平为16%组(CP16)、日粮蛋白水平为17%组(CP17)、日粮蛋白水平为18%组(CP18)、日粮蛋白水平为21%组(CP21)、日粮蛋白水平为25%组(CP25)和日粮蛋白水平为30%组(CP30);饲喂所述日粮中,除粗蛋白含量有差别外,其它物质的营养水平相同;所述生猪群体除日粮外的饲养条件均相同;对所述生猪群体中各个体的血液生化指标含量进行检测,获得所述每个个体的所述血液生化指标含量的数据,将所述数据按所述动物样本的分组统计为CP0、CP5、CP9、CP12、CP16、CP17、CP18、CP21、CP25和CP30组的数据集;The present invention first uses the blood of each individual of animal samples to test, and the animal samples are growing pigs grouped as follows according to the crude protein content in the feeding ration: nitrogen-free ration group (CPO), the ration protein level is 5 % group (CP5), dietary protein level of 9% (CP9), dietary protein level of 12% group (CP12), dietary protein level of 16% group (CP16), dietary protein level of 17% group ( CP17), dietary protein level of 18% group (CP18), dietary protein level of 21% group (CP21), dietary protein level of 25% group (CP25) and dietary protein level of 30% group (CP30) ; Feeding in the diet, except that the crude protein content is different, the nutritional level of other substances is the same; the feeding conditions of the pig group are all the same except the diet; the blood biochemical indicators of each individual in the pig group The content is tested to obtain the data of the blood biochemical index content of each individual, and the data are grouped into CP0, CP5, CP9, CP12, CP16, CP17, CP18, CP21, CP25 according to the grouping of the animal samples and the data set of the CP30 group;
然后对所述数据集进行分析,筛选得到评价生长猪蛋白营养状态的血液生化指标:利用IBM SPSS Statistics 25软件对数据集进行单因素ANOVA方差分析,获得受日粮蛋白水平显著影响的单个血液生化指标;利用IBM SPSS Statistics 25软件对数据集进行非线性相关分析,筛选得到与日粮蛋白水平显著相关的单个血液生化指标,分别为总蛋白、尿素、血氨、谷丙转氨酶、谷草转氨酶、总胆固醇、高密度脂蛋白、肌酸激酶和乳酸脱氢酶,利用IBM SPSS Statistics 25软件对这些指标进行回归分析筛选得到反映生长猪蛋白营养状态的单个血液生化指标,为尿素;利用Matlab软件对数据集进行R语言编程求解,获得反映生长猪蛋白营养状态的组合血液生化指标;分别为①总蛋白、尿素、血氨、谷丙转氨酶、谷草转氨酶、胰淀粉酶、肌酐、葡萄糖、总胆固醇、高密度脂蛋白、胆碱酯酶、肌酸激酶、乳酸脱氢酶、免疫球蛋白M,②总蛋白、谷丙转氨酶、尿素、葡萄糖、甘油三酯、总胆固醇、高密度脂蛋白、低密度脂蛋白、免疫球蛋白G、免疫球蛋白M,③甘油三酯、总胆固醇、低密度脂蛋白、免疫球蛋白G、尿素、高密度脂蛋白、胆碱酯酶,④尿素、葡萄糖、甘油三酯、总胆固醇、高密度脂蛋白、低密度脂蛋白、免疫球蛋白G、免疫球蛋白M,⑤总蛋白、谷丙转氨酶、谷草转氨酶、尿素、葡萄糖、总胆固醇、免疫球蛋白G、低密度脂蛋白、高密度脂蛋白;Then the data set is analyzed, and the blood biochemical indicators for evaluating the protein nutritional status of growing pigs are screened: use IBM SPSS Statistics 25 software to carry out one-way ANOVA analysis of variance on the data set, and obtain a single blood biochemical index significantly affected by the dietary protein level. Indicators; use IBM SPSS Statistics 25 software to conduct nonlinear correlation analysis on the data set, and screen out a single blood biochemical index significantly related to dietary protein level, which are total protein, urea, blood ammonia, alanine aminotransferase, aspartate aminotransferase, total Cholesterol, high-density lipoprotein, creatine kinase and lactate dehydrogenase, use IBM SPSS Statistics 25 software to carry out regression analysis and screening on these indicators to obtain a single blood biochemical indicator reflecting the nutritional status of growing pig protein, which is urea; use Matlab software to analyze the data Set up R language programming solution to obtain combined blood biochemical indicators reflecting the protein nutritional status of growing pigs; they are ① total protein, urea, blood ammonia, alanine aminotransferase, aspartate aminotransferase, pancreatic amylase, creatinine, glucose, total cholesterol, high Density lipoprotein, cholinesterase, creatine kinase, lactate dehydrogenase, immunoglobulin M, ② total protein, alanine aminotransferase, urea, glucose, triglyceride, total cholesterol, high-density lipoprotein, low-density lipoprotein Protein, immunoglobulin G, immunoglobulin M, ③ triglyceride, total cholesterol, low-density lipoprotein, immunoglobulin G, urea, high-density lipoprotein, cholinesterase, ④ urea, glucose, triglyceride , total cholesterol, high-density lipoprotein, low-density lipoprotein, immunoglobulin G, immunoglobulin M, ⑤ total protein, alanine aminotransferase, aspartate aminotransferase, urea, glucose, total cholesterol, immunoglobulin G, low-density lipoprotein protein, high-density lipoprotein;
再建立生长猪生长性能与所述日粮中蛋白质水平的回归模型ADG(g/day)=35.5+35.9×蛋白水平-1.51×蛋白水平2+0.0182×蛋白水平3(决定系数r2=0.945),通过方程求解获得生长性能最佳时所述日粮的蛋白质含量为17.3%,依据生产实际中日粮蛋白水平1%的合理波动范围设定此日粮的蛋白质水平±1%为日粮中蛋白质最佳添加比例,即16.3~18.3%,此范围内生长猪蛋白营养状态最佳,设定此日粮蛋白水平为生长猪蛋白营养状态参考标准;Then establish the regression model ADG (g/day)=35.5+35.9×protein level-1.51×protein level 2 +0.0182×protein level 3 in the growth performance of growing pigs and the protein level in the diet (coefficient of determination r 2 =0.945) The protein content of the diet was 17.3% when the growth performance was obtained by solving the equation. According to the reasonable fluctuation range of 1% protein level in the actual production, the protein level of this diet ± 1% was set as the dietary protein level. The optimum proportion of protein added is 16.3-18.3%. In this range, the protein nutritional status of growing pigs is the best, and this dietary protein level is set as the reference standard for protein nutritional status of growing pigs;
利用IBM SPSS Statistics 25软件曲线估计构建所述评价生长猪蛋白营养状态的单个血液生化指标与所述日粮蛋白质水平的一元非线性回归模型;利用Matlab软件R语言编程求解构建所述评价生长猪蛋白营养状态的血液生化指标含量与所述日粮蛋白质水平的多元回归模型;可根据模型决定系数R2选择相对应的最优生猪蛋白营养状态评价回归模型:Utilize IBM SPSS Statistics 25 software curve estimation to construct the unary nonlinear regression model of the single blood biochemical index of described evaluation growth pig protein nutritional status and described dietary protein level; Utilize Matlab software R language programming to solve and construct described evaluation growth pig protein The multiple regression model of the blood biochemical index content of nutritional state and described dietary protein level; Can select corresponding optimal pig protein nutritional state evaluation regression model according to model determination coefficient R2 :
A回归模型:A regression model:
CP=-0.2039x2+4.5507x-0.6947(x为血液尿素含量);CP=-0.2039x 2 +4.5507x-0.6947 (x is blood urea content);
B回归模型:B regression model:
CP=14.3304+0.3498x1+0.7335x2-0.0110x3-0.1162x4-0.0400x5+0.0003x6-0.0448x7-0.5111x8-3.5789x9+1.1543x10-0.0045x11+0.0019x12+0.0028x13-5.2590x14(x1-x14分别为血液中总蛋白、尿素、血氨、谷丙转氨酶、谷草转氨酶、胰淀粉酶、肌酐、葡萄糖、总胆固醇、高密度脂蛋白、胆碱酯酶、肌酸激酶、乳酸脱氢酶、免疫球蛋白M的含量);CP=14.3304+0.3498x 1 +0.7335x 2 -0.0110x 3 -0.1162x 4 -0.0400x 5 +0.0003x 6 -0.0448x 7 -0.5111x 8 -3.5789x 9 +1.1543x 10 -0.0045x 11 +0.0019x 12 +0.0028x 13 -5.2590x 14 (x 1 -x 14 are total protein, urea, blood ammonia, alanine aminotransferase, aspartate aminotransferase, pancreatic amylase, creatinine, glucose, total cholesterol, high-density lipoprotein, cholinesterase, creatine kinase, lactate dehydrogenase, immunoglobulin M content);
C回归模型:C regression model:
CP=(0.2497+0.0021x1+0.0012x2+0.0086x3-0.0069x4+0.1081x5-0.304x6+0.2573x7+0.2926x8+0.0066x9-0.0391x10)×100(x1-x10分别为血液总蛋白、谷丙转氨酶、尿素、葡萄糖、甘油三酯、总胆固醇、高密度脂蛋白、低密度脂蛋白、免疫球蛋白G和免疫球蛋白M的含量);CP=(0.2497+0.0021x 1 +0.0012x 2 +0.0086x 3 -0.0069x 4 +0.1081x 5 -0.304x 6 +0.2573x 7 +0.2926x 8 +0.0066x 9 -0.0391x 10 )×100(x 1 -x 10 are the contents of total blood protein, alanine aminotransferase, urea, glucose, triglyceride, total cholesterol, high-density lipoprotein, low-density lipoprotein, immunoglobulin G and immunoglobulin M respectively);
D回归模型:D regression model:
CP=(0.5349x1 2+0.0073x2 2+0.0307x3 2+0.0206x4 2+0.0207x5-0.3931x1-0.1839x2+0.1008x6+0.0179x3-0.1119x7-0.0449x4)×100(x1-x7分别为血液甘油三酯、总胆固醇、低密度脂蛋白、免疫球蛋白G、尿素、高密度脂蛋白、胆碱酯酶含量);CP=(0.5349x 1 2 +0.0073x 2 2 +0.0307x 3 2 +0.0206x 4 2 +0.0207x 5 -0.3931x 1 -0.1839x 2 +0.1008x 6 +0.0179x 3 -0.1119x 7 -0.0449x 4 )×100 (x 1 -x 7 are blood triglyceride, total cholesterol, low-density lipoprotein, immunoglobulin G, urea, high-density lipoprotein, cholinesterase content respectively);
E回归模型:E regression model:
17.75CP=0.06786+0.0033x1-0.0014x2-0.0057x3-0.003x4-0.003x5-0.0035x6-0.0012x7+0.02x8(x1-x8分别为血液尿素、葡萄糖、甘油三酯、总胆固醇、高密度脂蛋白、低密度脂蛋白、免疫球蛋白G、免疫球蛋白M含量);17.75CP=0.06786+0.0033x 1 -0.0014x 2 -0.0057x 3 -0.003x 4 -0.003x 5 -0.0035x 6 -0.0012x 7 +0.02x 8 (x 1 -x 8 are blood urea, glucose, glycerol Triesters, total cholesterol, high-density lipoprotein, low-density lipoprotein, immunoglobulin G, immunoglobulin M content);
F回归模型:F regression model:
CP=(0.001x1-0.0018x2+0.0006x3+0.01x4-0.002x5-0.0014x6-0.00093x7-0.00057x8-0.00053x9)×100(x1-x9分别为血液总蛋白、谷丙转氨酶、谷草转氨酶、尿素、葡萄糖、总胆固醇、免疫球蛋白G、低密度脂蛋白、高密度脂蛋白含量);CP=(0.001x 1 -0.0018x 2 +0.0006x 3 +0.01x 4 -0.002x 5 -0.0014x 6 -0.00093x 7 -0.00057x 8 -0.00053x 9 )×100(x 1 -x 9 are blood respectively Total protein, alanine aminotransferase, aspartate aminotransferase, urea, glucose, total cholesterol, immunoglobulin G, low-density lipoprotein, high-density lipoprotein content);
所述CP为所述日粮的蛋白质水平,单位为%;The CP is the protein level of the diet, in %;
测定待测生猪个体血液中A组血液生化指标的含量,将测得的结果代入A回归模型;或者,测定待测生猪个体血液中B组血液生化指标的含量,将测得的结果代入B回归模型;或者,测定待测生猪个体血液中C组血液生化指标的含量,将测得的结果代入C回归模型;或者,测定待测生猪个体血液中D组血液生化指标的含量,将测得的结果代入D回归模型;或者,测定待测生猪个体血液中E组血液生化指标的含量,将测得的结果代入E回归模型;或者,测定待测生猪个体血液中F组血液生化指标的含量,将测得的结果代入F回归模型;计算获得所述待测生猪个体所饲喂日粮蛋白质含量,与生猪个体蛋白营养状态最佳时的日粮蛋白质含量参考标准(16.3~18.3%)进行比对,在所述范围内则表示所述待测生猪个体营养状况最佳,不在所述范围内则表示所述待测生猪个体营养状况并没有处于最佳状态,需调整蛋白营养水平;根据预测方程计算获得所述待测生猪个体所饲喂日粮蛋白质含量与生猪个体蛋白营养状态最佳时日粮蛋白质含量参考标准(16.3~18.3%)进行比对获得使此生猪个体获得最佳营养状态所需要的日粮蛋白质水平调整值。Determine the content of blood biochemical indicators of group A in the blood of individual pigs to be tested, and substitute the measured results into regression model A; or measure the content of biochemical indicators of group B blood in the blood of individual pigs to be tested, and substitute the measured results into regression model B Or, measure the content of C group blood biochemical indicators in the blood of the individual pig to be tested, and substitute the measured results into the C regression model; or, measure the content of the blood biochemical indicators of the D group in the individual pig blood to be measured, and use the measured results The results are substituted into the D regression model; or, the determination of the content of the blood biochemical indicators of the E group in the blood of the individual pigs to be tested is performed, and the measured results are substituted into the E regression model; or, the content of the blood biochemical indicators of the F group in the blood of the individual pigs to be measured is Substitute the measured results into the F regression model; calculate and obtain the protein content of the diet fed by the individual pigs to be tested, and compare it with the dietary protein content reference standard (16.3~18.3%) when the individual protein nutritional status of the pigs is the best Yes, if it is within the range, it means that the nutritional status of the individual pig to be tested is the best, and if it is not within the range, it means that the nutritional status of the individual pig to be tested is not in the best state, and the protein nutrition level needs to be adjusted; according to the prediction The formula is calculated to obtain the protein content of the diet fed by the individual pig to be tested and the reference standard (16.3-18.3%) for the protein content of the diet when the individual pig's protein nutritional status is optimal, and compares it to obtain the optimal nutritional status of the pig individual The desired dietary protein level adjustment.
本发明中,单因素方差ANOVA分析显著性值p<0.05;相关性分析F检验显著性值p<0.05和相关系数r>0.5;回归分析F检验显著性值p<0.05和决定系数R2>0.6。In the present invention, the significance value of single factor variance ANOVA analysis is p<0.05; the significance value of correlation analysis F test is p<0.05 and the correlation coefficient r>0.5; the significance value of regression analysis F test is p<0.05 and the coefficient of determination R 2 > 0.6.
本发明中所述动物为猪,亦可推至其他动物和人。The animals described in the present invention are pigs, and can also be extended to other animals and humans.
与现有技术相比,本发明的有益效果为:Compared with prior art, the beneficial effect of the present invention is:
能通过测定生猪个体血液样品的任一单一或组合评价蛋白营养状态的血液生化指标含量并代入生猪个体蛋白营养状态评估模型的预测方程中获得日粮蛋白含量,与生猪个体蛋白营养状态最佳时的日粮蛋白质含量参考标准(16.3~18.3%)进行比对来实现生猪蛋白营养状态的评估,并获得使此生猪个体获得最佳蛋白营养状态所需要的日粮蛋白质含量调整值;利用此生猪个体蛋白营养状态评估模型能迅速掌握生猪蛋白营养状态变化,了解动物的营养需求量,以便及时采取应对措施;对机体健康、动物精准化饲养和精细化管理具有重要的理论和实践意义。The content of blood biochemical indicators that can evaluate the nutritional status of protein by measuring any single or combination of individual pig blood samples and substituting it into the prediction equation of the individual protein nutritional status evaluation model of pigs to obtain the dietary protein content, and when the nutritional status of individual pigs is optimal The dietary protein content reference standard (16.3-18.3%) is compared to realize the evaluation of the protein nutritional status of pigs, and obtain the dietary protein content adjustment value required for the pig individual to obtain the best protein nutritional status; use this pig The individual protein nutritional status assessment model can quickly grasp the changes in the nutritional status of pig protein and understand the nutritional requirements of animals, so as to take timely countermeasures; it has important theoretical and practical significance for body health, animal precision feeding and refined management.
附图说明Description of drawings
图1为日粮蛋白水平对生长猪日增重的影响;图中:ADG:日增重;CP:日粮蛋白质水平(%)。组间不同上标表明差异显著(p<0.05,n=6)。Figure 1 is the effect of dietary protein level on the daily gain of growing pigs; in the figure: ADG: daily gain; CP: dietary protein level (%). Different superscripts between groups indicate significant differences (p<0.05, n=6).
具体实施方式Detailed ways
下述实施例中所使用的实验方法、材料和试剂如无特殊说明,均为常规方法、材料和试剂,均可从商业途径得到。Unless otherwise specified, the experimental methods, materials and reagents used in the following examples are conventional methods, materials and reagents, all of which can be obtained from commercial sources.
1.材料和方法1. Materials and Methods
1)试验动物1) Test animals
选择体重没有显著差异的35kg左右的二元杂(长白×大约克)生长猪60头,随机分为10组,每组6头(n=6),单栏饲养30天,自由饮水但统一定量采食(平均日采食为1.5kg)。Select 60 binary hybrid (Landrace × large gram) growing pigs with no significant difference in body weight, and divide them into 10 groups randomly, with 6 pigs in each group (n=6), and raise them in a single pen for 30 days, with free access to water but uniform ration Feed intake (average daily intake is 1.5kg).
2)试验日粮2) Test diet
依据NRC(2012)标准,设计了10组不同蛋白水平日粮,无氮日粮组(CP0)、日粮蛋白水平为5%组(CP5)、日粮蛋白水平为9%组(CP9)、日粮蛋白水平为12%组(CP12)、日粮蛋白水平为16%组(CP16)、日粮蛋白水平为17%组(CP17)、日粮蛋白水平为18%组(CP18)、日粮蛋白水平为21%组(CP21)、日粮蛋白水平为25%组(CP25)和日粮蛋白水平为30%组(CP30),每组日粮能量相同。日粮组成及营养成分见表1。According to the NRC (2012) standard, 10 groups of diets with different protein levels were designed, nitrogen-free diet group (CP0), diet protein level 5% group (CP5), diet protein level 9% group (CP9), The dietary protein level was 12% group (CP12), the dietary protein level was 16% group (CP16), the dietary protein level was 17% group (CP17), the dietary protein level was 18% group (CP18), the dietary The protein level was 21% group (CP21), the dietary protein level was 25% group (CP25) and the dietary protein level was 30% group (CP30), and the dietary energy of each group was the same. The composition and nutrient composition of the diet are shown in Table 1.
表1 试验日粮组成及营养水平(干物质基础)Table 1 Composition and nutritional level of experimental diet (dry matter basis)
a预混料组成(%):磷酸二氢钙,31.575;石粉,15;乳酸钙,30;食盐,10;氯化胆碱(50%),2.5;防霉剂,2.5;抗氧化剂,1.25;436多维(猪多维),1;CuSO4·5H2O,0.75;硫酸亚铁FeSO4·H2O,0.75;硫酸锌ZnSO4·H2O,0.5;硫酸锰MnSO4·H2O,0.25;有机铬(0.2%),0.375;碘酸钙(1%碘),0.05;有机硒(0.2%),0.375;金霉素(15%),1.25;耐高温植酸酶10000U,0.25;复合酶(888),0.75;包膜VC(90%),0.25;维生素E粉(50%),0.125;枯草芽孢(微生态制剂),0.5。 a Premix composition (%): calcium dihydrogen phosphate, 31.575; stone powder, 15; calcium lactate, 30; salt, 10; choline chloride (50%), 2.5; ; 436 multidimensional (pig multidimensional), 1; CuSO4 5H2O, 0.75; ferrous sulfate FeSO4 H2O, 0.75; zinc sulfate ZnSO4 H2O, 0.5; manganese sulfate MnSO4 H2O, 0.25; organic chromium (0.2%), 0.375; Calcium iodate (1% iodine), 0.05; organic selenium (0.2%), 0.375; aureomycin (15%), 1.25; high temperature resistant phytase 10000U, 0.25; compound enzyme (888), 0.75; enveloped VC (90%), 0.25; Vitamin E powder (50%), 0.125; Bacillus subtilis (probiotics), 0.5.
b营养成分(计算值):标准可消化磷STTD P(%),0.28;钠Sodium(%),0.16;氯Chlorine(%),0.25;盐Salt(%),0.41;铜Copper(ppm),75.6;铁Iron(ppm),90;锌Zinc(ppm),71;锰Manganese(ppm),29.5;铬Chromium(ppm),0.3;碘Iodine(ppm),0.2;硒Selenium(ppm),0.3。 b Nutrient composition (calculated value): Standard digestible phosphorus STTD P (%), 0.28; Sodium (%), 0.16; Chlorine (%), 0.25; Salt (%), 0.41; Copper (ppm), 75.6; Iron (ppm), 90; Zinc (ppm), 71; Manganese (ppm), 29.5; Chromium (ppm), 0.3; Iodine (ppm), 0.2; Selenium (ppm), 0.3.
3)试验方法3) Test method
在试验的开始和结束,分别测定每栏猪的体重。计算平均日增重。动物饲养试验结束后采集血液,利用自动生化分析仪测定血液中总蛋白、尿素、血氨、谷丙转氨酶、谷草转氨酶、谷氨酰氨基转移酶、胰淀粉酶、肌酐、葡萄糖、甘油三酯、总胆固醇、高密度脂蛋白、低密度脂蛋白、胆碱酯酶、肌酸激酶、乳酸脱氢酶、免疫球蛋白G和免疫球蛋白M的含量。At the beginning and end of the experiment, the body weight of each pen was measured separately. Calculate average daily weight gain. Blood was collected after the animal feeding experiment, and the total protein, urea, blood ammonia, alanine aminotransferase, aspartate aminotransferase, glutamyl aminotransferase, pancreatic amylase, creatinine, glucose, triglyceride, Contents of total cholesterol, high-density lipoprotein, low-density lipoprotein, cholinesterase, creatine kinase, lactate dehydrogenase, immunoglobulin G, and immunoglobulin M.
4)数据分析4) Data Analysis
利用IBM SPSS Statistics 25软件对数据进行差异分析:使用One-way ANOVA方差分析、CONTRAST结果比较以及Duncan多重比较分析,结果以平均值±标准误的形式表示,不同字母上标表示差异显著,从a-f表示差异从大到小;p<0.05表示差异显著,p<0.001表示差异极显著;Use IBM SPSS Statistics 25 software to analyze the difference of data: use One-way ANOVA analysis of variance, CONTRAST result comparison and Duncan multiple comparison analysis, the results are expressed in the form of mean ± standard error, and the superscripts of different letters indicate significant differences, from a to f Indicates that the difference is from large to small; p<0.05 indicates that the difference is significant, and p<0.001 indicates that the difference is extremely significant;
利用IBM SPSS Statistics 25软件对数据进行单变量相关性分析,相关系数0.4≤r<0.7表示自变量与因变量显著相关;0.7≤r<1表示自变量与因变量高度相关,使用曲线相关回归分析,F检验显著性值p<0.05表示自变量与因变量存在显著回归关系;Use IBM SPSS Statistics 25 software to conduct univariate correlation analysis on the data. The correlation coefficient 0.4≤r<0.7 indicates that the independent variable is significantly correlated with the dependent variable; 0.7≤r<1 indicates that the independent variable is highly correlated with the dependent variable, and curve correlation regression analysis is used , the significance value of F test p<0.05 indicates that there is a significant regression relationship between the independent variable and the dependent variable;
利用Matlab软件对数据进行多元回归分析,F检验显著性值p<0.05表示自变量与因变量存在显著回归关系,决定系数R2>0.6表示所有自变量能解释因变量变化的百分比为60%,越接近1模型拟合优度越好;Using Matlab software to conduct multiple regression analysis on the data, the significance value of F test p<0.05 indicates that there is a significant regression relationship between the independent variable and the dependent variable, and the coefficient of determination R 2 >0.6 indicates that the percentage of all independent variables that can explain the change of the dependent variable is 60%. The closer to 1, the better the model fit;
3.试验结果3. Test results
1)生长猪蛋白营养状态评价指标的筛选1) Screening of evaluation indicators for protein nutritional status of growing pigs
日粮蛋白水平对生长猪血液生化指标的影响见表2。结果可知,日粮蛋白水平显著影响了血液中总蛋白、尿素、血氨、谷丙转氨酶、谷草转氨酶、胰淀粉酶、肌酐、葡萄糖、总胆固醇、高密度脂蛋白、胆碱酯酶、肌酸激酶、乳酸脱氢酶和免疫球蛋白M的含量(p<0.05)。进行不同蛋白水平日粮饲喂下生长猪血液生化指标含量与日粮蛋白质水平的相关性分析,如表3所示,血液生化指标中总蛋白、尿素、血氨、谷丙转氨酶、谷草转氨酶、总胆固醇、高密度脂蛋白、肌酸激酶和乳酸脱氢酶含量与日粮蛋白水平存在显著相关性(p<0.05,r>0.5)。综合两方面的筛选结果最终得到对日粮蛋白水平变化敏感的血液生化指标为总蛋白、尿素、血氨、谷丙转氨酶、谷草转氨酶、总胆固醇、高密度脂蛋白、肌酸激酶和乳酸脱氢酶。The effects of dietary protein levels on blood biochemical indicators of growing pigs are shown in Table 2. The results showed that the level of dietary protein significantly affected the levels of total protein, urea, blood ammonia, alanine aminotransferase, aspartate aminotransferase, pancreatic amylase, creatinine, glucose, total cholesterol, high-density lipoprotein, cholinesterase, creatine The content of kinase, lactate dehydrogenase and immunoglobulin M (p<0.05). Carry out the correlation analysis of blood biochemical index content and dietary protein level of growing pigs fed with different protein level diets, as shown in Table 3, blood biochemical index in total protein, urea, blood ammonia, alanine aminotransferase, aspartate aminotransferase, There were significant correlations between total cholesterol, high-density lipoprotein, creatine kinase and lactate dehydrogenase and dietary protein levels (p<0.05, r>0.5). Based on the screening results of the two aspects, the blood biochemical indicators that are sensitive to changes in dietary protein levels are finally obtained as total protein, urea, blood ammonia, alanine aminotransferase, aspartate aminotransferase, total cholesterol, high-density lipoprotein, creatine kinase, and lactate dehydrogenation enzyme.
表2 日粮蛋白水平对生长猪血液生化指标的影响Table 2 Effect of dietary protein level on blood biochemical indicators of growing pigs
注:CP:日粮蛋白质水平(%)。组间不同上标表明差异显著(p<0.05,n=6)Note: CP: dietary protein level (%). Different superscripts between groups indicate significant differences (p<0.05, n=6)
表3 日粮蛋白水平与生长猪血液生化指标相关性分析Table 3 Correlation analysis between dietary protein level and blood biochemical indexes of growing pigs
注:r为相关系数,p为显著性值。Note: r is the correlation coefficient, and p is the significance value.
2)生长猪蛋白营养状态参考标准的设定2) Setting of reference standards for protein nutritional status of growing pigs
从图1可知,日粮蛋白水平显著影响生长猪的生长性能(p<0.05),生长猪的日增重随着日粮蛋白质水平的增加呈现先上升后下降的趋势;相关性分析也表明生长猪日增重与日粮蛋白水平存在显著相关性(r=0.952),建立生长猪生长性能与日粮蛋白质水平的回归模型ADG(g/day)=35.5+35.9×蛋白水平-1.51×蛋白水平2+0.0182×蛋白水平3(决定系数R2=0.945),通过方程求解获得生长猪生长性能最佳时日粮蛋白质水平为17.3%,依据生产实际中日粮蛋白水平1%的合理波动范围设定17.3±1%为日粮中蛋白质最佳添加比例,即16.3~18.3%,此范围内生长猪蛋白营养状态最佳,因此设定此日粮蛋白水平为生长猪蛋白营养状态参考标准。It can be seen from Figure 1 that the dietary protein level significantly affects the growth performance of growing pigs (p<0.05), and the daily gain of growing pigs increases first and then decreases with the increase of dietary protein level; correlation analysis also shows that growth There is a significant correlation between pig daily gain and dietary protein level (r=0.952), and the regression model ADG(g/day)=35.5+35.9×protein level-1.51×protein level is established for the growth performance of growing pigs and dietary protein level 2 +0.0182×protein level 3 (coefficient of determination R 2 =0.945), through the solution of the equation, the dietary protein level for the best growth performance of growing pigs is 17.3%, which is set according to the reasonable fluctuation range of 1% dietary protein level in actual production Set 17.3±1% as the optimal ratio of protein in the diet, that is, 16.3 to 18.3%, and the protein nutritional status of growing pigs is the best in this range, so this dietary protein level is set as the reference standard for protein nutritional status of growing pigs.
3)生长猪蛋白营养状态评价模型的构建3) Construction of the evaluation model for protein nutritional status of growing pigs
利用筛选得到的生长猪蛋白营养状态评价指标进行一元回归分析以及多元回归分析,以研究日粮蛋白营养水平与蛋白营养状态评价指标之间的关系,表4列出了回归分析后生长猪蛋白营养状态预测回归方程,构建标准为回归模型F检验显著性值p<0.05,决定系数R2>0.6。尿素因其回归模型决定系数R2达到0.8314,可以作为一元预测方程中的预测因子对生长猪蛋白营养状态进行评价;而多元回归方程的建立能提高预测方程的准确性,表2-3中最优多元回归模型决定系数R2可达到0.9636,预测方程为CP=(0.5349x1 2+0.0073x2 2+0.0307x3 2+0.0206x4 2+0.0207x5-0.3931x1-0.1839x2+0.1008x6+0.0179x3-0.1119x7-0.0449x4)×100(x1-x7分别为血液中甘油三酯、总胆固醇、低密度脂蛋白、免疫球蛋白G、尿素、高密度脂蛋白和胆碱酯酶的含量)。Utilize the evaluation index of protein nutritional state of growing pigs obtained by screening to carry out single regression analysis and multiple regression analysis to study the relationship between dietary protein nutritional level and protein nutritional state evaluation index. Table 4 lists the protein nutrition of growing pigs after regression analysis For state prediction regression equation, the construction standard is regression model F-test significance value p<0.05, coefficient of determination R 2 >0.6. Urea can be used as a predictor in the unary predictive equation to evaluate the protein nutritional status of growing pigs because of its regression model determination coefficient R2 reaching 0.8314; and the establishment of multiple regression equations can improve the accuracy of the predictive equation, the most in Table 2-3 The coefficient of determination R 2 of the excellent multiple regression model can reach 0.9636, and the prediction equation is CP=(0.5349x 1 2 +0.0073x 2 2 +0.0307x 3 2 +0.0206x 4 2 +0.0207x 5 -0.3931x 1 -0.1839x 2 + 0.1008x 6 +0.0179x 3 -0.1119x 7 -0.0449x 4 )×100(x 1 -x 7 are blood triglyceride, total cholesterol, low-density lipoprotein, immunoglobulin G, urea, high-density lipoprotein, respectively protein and cholinesterase content).
表4 生长猪蛋白营养状态预测回归方程Table 4 Regression equation for predicting protein nutritional status of growing pigs
注:x为血液生化指标含量,CP为日粮蛋白水平(%),R2为决定系数,p为显著性值。Note: x is the blood biochemical index content, CP is the dietary protein level (%), R 2 is the determination coefficient, and p is the significance value.
4.结论4 Conclusion
血液生化指标可以作为评价生猪个体蛋白营养状态的标志物,其中单个血液生化指标为尿素;组合血液生化指标分别为①总蛋白、尿素、血氨、谷丙转氨酶、谷草转氨酶、胰淀粉酶、肌酐、葡萄糖、总胆固醇、高密度脂蛋白、胆碱酯酶、肌酸激酶、乳酸脱氢酶、免疫球蛋白M,②总蛋白、谷丙转氨酶、尿素、葡萄糖、甘油三酯、总胆固醇、高密度脂蛋白、低密度脂蛋白、免疫球蛋白G、免疫球蛋白M,③甘油三酯、总胆固醇、低密度脂蛋白、免疫球蛋白G、尿素、高密度脂蛋白、胆碱酯酶,④尿素、葡萄糖、甘油三酯、总胆固醇、高密度脂蛋白、低密度脂蛋白、免疫球蛋白G、免疫球蛋白M,⑤总蛋白、谷丙转氨酶、谷草转氨酶、尿素、葡萄糖、总胆固醇、免疫球蛋白G、低密度脂蛋白、高密度脂蛋白。Blood biochemical indicators can be used as markers to evaluate individual protein nutritional status of pigs. The single blood biochemical indicator is urea; the combined blood biochemical indicators are ① total protein, urea, blood ammonia, alanine aminotransferase, aspartate aminotransferase, pancreatic amylase, creatinine , glucose, total cholesterol, high-density lipoprotein, cholinesterase, creatine kinase, lactate dehydrogenase, immunoglobulin M, ② total protein, alanine aminotransferase, urea, glucose, triglyceride, total cholesterol, high Density lipoprotein, low-density lipoprotein, immunoglobulin G, immunoglobulin M, ③ triglyceride, total cholesterol, low-density lipoprotein, immunoglobulin G, urea, high-density lipoprotein, cholinesterase, ④ Urea, glucose, triglyceride, total cholesterol, high-density lipoprotein, low-density lipoprotein, immunoglobulin G, immunoglobulin M, ⑤ total protein, alanine aminotransferase, aspartate aminotransferase, urea, glucose, total cholesterol, immune Globulin G, low-density lipoprotein, high-density lipoprotein.
这些血液生化指标能够很好地预测生猪的日粮蛋白水平,来反映蛋白营养对生猪机体造成的影响,利用这些标志物作为预测因子构建生猪蛋白营养状态评估模型,其中最优一元预测方程为CP=-0.2039x2+4.5507x-0.6947(R2=0.8314,x为血液尿素含量),最优多元预测方程为CP=(0.5349x1 2+0.0073x2 2+0.0307x3 2+0.0206x4 2+0.0207x5-0.3931x1-0.1839x2+0.1008x6+0.0179x3-0.1119x7-0.0449x4)×100(R2=0.9636,x1-x7分别为血液中甘油三酯、总胆固醇、低密度脂蛋白、免疫球蛋白G、尿素、高密度脂蛋白和胆碱酯酶的含量)。These blood biochemical indicators can well predict the dietary protein level of pigs to reflect the impact of protein nutrition on the pig body, and use these markers as predictors to build a pig protein nutritional status evaluation model, in which the optimal one-variable prediction equation is CP =-0.2039x 2 +4.5507x-0.6947 (R 2 =0.8314, x is blood urea content), the optimal multivariate prediction equation is CP=(0.5349x 1 2 +0.0073x 2 2 +0.0307x 3 2 +0.0206x 4 2 +0.0207x 5 -0.3931x 1 -0.1839x 2 +0.1008x 6 +0.0179x 3 -0.1119x 7 -0.0449x 4 )×100(R 2 =0.9636, x 1 -x 7 are triglycerides in blood respectively , total cholesterol, low-density lipoprotein, immunoglobulin G, urea, high-density lipoprotein and cholinesterase).
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010003889.4A CN111118109B (en) | 2020-01-03 | 2020-01-03 | A Method for Evaluating Individual Protein Nutrition Status of Pigs Using Blood Biochemical Indexes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010003889.4A CN111118109B (en) | 2020-01-03 | 2020-01-03 | A Method for Evaluating Individual Protein Nutrition Status of Pigs Using Blood Biochemical Indexes |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111118109A CN111118109A (en) | 2020-05-08 |
CN111118109B true CN111118109B (en) | 2023-08-01 |
Family
ID=70507541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010003889.4A Active CN111118109B (en) | 2020-01-03 | 2020-01-03 | A Method for Evaluating Individual Protein Nutrition Status of Pigs Using Blood Biochemical Indexes |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111118109B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114414750B (en) * | 2022-01-21 | 2024-09-10 | 江苏省家禽科学研究所 | A method to improve poultry production efficiency by quickly assessing egg freshness |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9225711D0 (en) * | 1992-12-09 | 1993-02-03 | Univ Guelph | Methodology for developing a superior line of domesticated animals |
CN102948616A (en) * | 2012-11-19 | 2013-03-06 | 浙江大学 | Growing-finishing pig low-protein daily feed capable of improving meat quality and feeding method thereof |
CN103087963A (en) * | 2013-01-31 | 2013-05-08 | 武汉工业学院 | Method for screening probiotics |
CN103149280A (en) * | 2011-12-07 | 2013-06-12 | 中国农业大学 | Method for evaluating animal individual nutriture by metabonomics |
CN103548774A (en) * | 2013-11-21 | 2014-02-05 | 中国科学院亚热带农业生态研究所 | Dynamic nutrition feeding method for improving nutrition metabolism of pig organisms |
CN107328947A (en) * | 2017-08-22 | 2017-11-07 | 湖北省农业科学院畜牧兽医研究所 | A kind of evaluation method, restorative procedure and the feed of transgene pig exogenous origin gene integrator position effect and expression product physiological function |
CA3071597A1 (en) * | 2017-07-31 | 2019-02-07 | Myriad Genetics, Inc. | Adjusted multi-biomarker disease activity score for inflammatory disease assessment |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100212031A1 (en) * | 2002-05-21 | 2010-08-19 | Foley Leigh Shaw Marquess | Method for improving efficiencies in livestock production |
US8450074B2 (en) * | 2009-01-26 | 2013-05-28 | W. Jean Dodds | Multi-stage nutrigenomic diagnostic food sensitivity testing in animals |
CN103525908A (en) * | 2013-08-13 | 2014-01-22 | 南京吉泰生物科技有限公司 | Method for rapidly detecting chicken, duck and pig blood components in blood jelly |
CN109662062A (en) * | 2019-01-18 | 2019-04-23 | 中国科学院亚热带农业生态研究所 | The method for building up of high casein daily ration induction weanling pig trophism diarrhea model |
-
2020
- 2020-01-03 CN CN202010003889.4A patent/CN111118109B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9225711D0 (en) * | 1992-12-09 | 1993-02-03 | Univ Guelph | Methodology for developing a superior line of domesticated animals |
CN103149280A (en) * | 2011-12-07 | 2013-06-12 | 中国农业大学 | Method for evaluating animal individual nutriture by metabonomics |
CN102948616A (en) * | 2012-11-19 | 2013-03-06 | 浙江大学 | Growing-finishing pig low-protein daily feed capable of improving meat quality and feeding method thereof |
CN103087963A (en) * | 2013-01-31 | 2013-05-08 | 武汉工业学院 | Method for screening probiotics |
CN103548774A (en) * | 2013-11-21 | 2014-02-05 | 中国科学院亚热带农业生态研究所 | Dynamic nutrition feeding method for improving nutrition metabolism of pig organisms |
CA3071597A1 (en) * | 2017-07-31 | 2019-02-07 | Myriad Genetics, Inc. | Adjusted multi-biomarker disease activity score for inflammatory disease assessment |
CN107328947A (en) * | 2017-08-22 | 2017-11-07 | 湖北省农业科学院畜牧兽医研究所 | A kind of evaluation method, restorative procedure and the feed of transgene pig exogenous origin gene integrator position effect and expression product physiological function |
Non-Patent Citations (3)
Title |
---|
发酵床饲养对育肥猪血液生化指标的影响;周玉刚;宁康健;刘树全;许百年;谢俊龙;;安徽农业大学学报(02);51-56 * |
营养水平对保育期美系长白猪血清生化指标的影响;李秀宝;张恒博;黄郁萱;谢植;齐俊勇;何若钢;;畜牧与兽医(07);70-74 * |
雷山小香羊母羊部分血液生化指标测定分析;田兴贵;朱红刚;杨正梅;王家鹏;杨云;主性;罗终菊;唐静;吴飞;刘若余;;西南农业学报(02);45-48 * |
Also Published As
Publication number | Publication date |
---|---|
CN111118109A (en) | 2020-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Avnimelech et al. | Evaluation of nitrogen uptake and excretion by tilapia in bio floc tanks, using 15N tracing | |
Lorenz et al. | Quantitative determination of phytate and inorganic phosphorus for maize breeding | |
Jarret et al. | Effect of different quality wheat dried distiller's grain solubles (DDGS) in pig diets on composition of excreta and methane production from faeces and slurry | |
Prabhu et al. | Dietary ingredient composition alters faecal characteristics and waste production in common carp reared in recirculation system | |
Wu-Haan et al. | Effect of an acidifying diet combined with zeolite and slight protein reduction on air emissions from laying hens of different ages | |
CN111118109B (en) | A Method for Evaluating Individual Protein Nutrition Status of Pigs Using Blood Biochemical Indexes | |
Kiprotich et al. | Multivariate analysis of nutritional diversity of selected macro and micro nutrients in pearl millet (Pennisetum glaucum) varieties | |
CN111149763B (en) | Method for evaluating protein nutrition state of live pig individual | |
CN105831402A (en) | Mixed feed capable of improving carcass quality and drip loss of fattening pig under low-nitrogen-emission daily ration condition | |
CN111292799A (en) | A method for evaluating the temperature and humidity state of the environment in which the individual nursery pigs grow by using blood biochemical indicators | |
Warner et al. | Stable isotope‐labelled feed nutrients to assess nutrient‐specific feed passage kinetics in ruminants | |
Cozannet et al. | Dietary metabolizable energy, digestible lysine, available phosphorus levels and exogenous enzymes affect broiler chicken performance | |
CN106645019A (en) | Method for quick determination of effective phosphorus content in corn for poultry feeding and application of such method | |
CN102696918B (en) | Dietary for improving chicken egg quality | |
CN118731374A (en) | A method for predicting net energy deposition in growing pigs | |
Reddy et al. | Effects of graded concentrations of supplemental lead on lead concentrations in tissues of pigs and prediction equations for estimating dietary lead intake | |
Macleod | Energy utilization: measurement and prediction. | |
CN112669167A (en) | Method for predicting commercial pig production performance and application thereof | |
Kamiya et al. | Influence of dietary crude protein content on fattening performance and nitrogen excretion of Holstein steers | |
Kwon et al. | Determination and validation of available phosphorus equivalency of Escherichia coli-derived phytase in broiler diets | |
Mohebbifar et al. | Effect of phytase supplementation of diets with different levels of rice bran and non-phytate phosphorus on productive performance, egg quality traits, leukocytes profile and serum lipids of laying hens reared indoor under high environmental temperatures | |
CN111109193B (en) | Method for evaluating protein nutrition state of live pig individual by using blood metabolite | |
Liu et al. | The relationship between odd-and branched-chain fatty acids and microbial nucleic acid bases in rumen | |
Aggrey et al. | Genetic factors affecting feed efficiency in meat-type chickens | |
Pepple et al. | Ammonia, hydrogen sulfide, and greenhouse gas emissions from wean-to-finish swine barns fed diets with or without DDGS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |