CN1111090C - Dual-component modified zeolite catalyst for aromatizing reaction of hydrocarbons - Google Patents
Dual-component modified zeolite catalyst for aromatizing reaction of hydrocarbons Download PDFInfo
- Publication number
- CN1111090C CN1111090C CN99123953A CN99123953A CN1111090C CN 1111090 C CN1111090 C CN 1111090C CN 99123953 A CN99123953 A CN 99123953A CN 99123953 A CN99123953 A CN 99123953A CN 1111090 C CN1111090 C CN 1111090C
- Authority
- CN
- China
- Prior art keywords
- catalyst
- hzsm
- component
- aromatization
- zsm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 66
- 229930195733 hydrocarbon Natural products 0.000 title claims abstract description 12
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical class O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 title claims abstract description 10
- 150000002430 hydrocarbons Chemical class 0.000 title claims abstract description 10
- 238000006243 chemical reaction Methods 0.000 title abstract description 14
- 238000005899 aromatization reaction Methods 0.000 claims abstract description 17
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 10
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052751 metal Inorganic materials 0.000 claims abstract description 9
- 239000002184 metal Substances 0.000 claims abstract description 9
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 9
- 239000000203 mixture Substances 0.000 claims abstract description 8
- 239000011230 binding agent Substances 0.000 claims abstract description 7
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 6
- 229910052702 rhenium Inorganic materials 0.000 claims abstract description 6
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 5
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 abstract description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 3
- 150000001335 aliphatic alkanes Chemical class 0.000 abstract 1
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 14
- 239000000843 powder Substances 0.000 description 13
- 238000004939 coking Methods 0.000 description 9
- 239000002994 raw material Substances 0.000 description 9
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 239000002808 molecular sieve Substances 0.000 description 6
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 6
- 239000008367 deionised water Substances 0.000 description 5
- 229910021641 deionized water Inorganic materials 0.000 description 5
- 238000010992 reflux Methods 0.000 description 5
- 229910021536 Zeolite Inorganic materials 0.000 description 4
- 239000002737 fuel gas Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000001294 propane Substances 0.000 description 4
- 239000010457 zeolite Substances 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 3
- 238000001833 catalytic reforming Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 3
- 101710134784 Agnoprotein Proteins 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 239000012263 liquid product Substances 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 244000256297 Euphorbia tirucalli Species 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910002666 PdCl2 Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000012065 filter cake Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
一种用于烃类芳构化反应双组份改性沸石催化剂,其特征在于催化剂是由Si/Al摩尔比为20-70的ZSM-5,金属Ga以及金属La、Ag、Pd、Zn、Re中的任一种组成,各组份重量百分比为ZSM-5 46-99.4%,Ga 0.5-2%,La、Ag、Pd、Zn、Re中的任一种0.01-2%,粘结剂氧化铝0-50%,该催化剂选择性好,适用于C2-C8烷烃的芳构化,结炭量减少,稳定性好,转化率高,寿命长。A two-component modified zeolite catalyst for hydrocarbon aromatization, characterized in that the catalyst is ZSM-5 with a Si/Al molar ratio of 20-70, metal Ga and metal La, Ag, Pd, Zn, Any composition in Re, the weight percentage of each component is ZSM-5 46-99.4%, Ga 0.5-2%, any one of La, Ag, Pd, Zn, Re 0.01-2%, binder Alumina 0-50%, the catalyst has good selectivity and is suitable for the aromatization of C 2 -C 8 alkanes, with reduced carbon formation, good stability, high conversion rate and long service life.
Description
本发明属于HZSM-5类催化剂,具体地说涉及一种用于烃类芳构化反应的双组份改性沸石催化剂。The invention belongs to HZSM-5 catalysts, in particular to a two-component modified zeolite catalyst used for hydrocarbon aromatization.
HZSM-5高硅沸石经Ga改性后制备的Ga/HZSM-5沸石,对低碳烷烃如丙烷、丁烷等直接合成芳烃具有高的反应活性和芳烃选择性,受到广泛关注。但也像许多有机催化反应一样,存在催化剂表面结炭导致催化剂活性下降的问题,需频繁再生,给工业固定床操作带来许多困难。因此提高催化剂的抗结炭性能,改善催化剂稳定性,延长反应周期和催化剂使用寿命是其能否工业应用的关键。前人在此方面也作了不少努力。CN 1081938A公开的一种芳构化催化剂的活化改性工艺,是采取水蒸气高温活化Zn/HZSM-5型催化剂,用于裂解汽油芳构化,催化剂寿命有所改善,但其最好结果为单程寿命29小时,文中没有提到用于更低碳数的烃类。美国环球公司的CN 86 108104A及USP 4,636,483提出用一种复合催化剂可使C2-C5烃生产取得好的耐结焦效果,从而可以延长催化剂使用寿命,其主要方法是改进载体的制备,在结晶硅酸盐沸石中,掺入含磷的氧化铝,并用高温油分散成球,其制备过程复杂。中国专利CN 1062100A公开的用于轻烃芳构化反应的Zn-Pt和Ga-Pt改性HZSM-5和HZSM-11沸石催化剂也只限于碳数较高的油田轻烃(C4-C9)馏分的应用,且使用了贵金属Pt,催化剂成本较高。USP4,180,689及USP4,334,114所公开的Ga/HZSM-5催化剂用于C3-C12烃的芳构化,目的均在于改进催化剂的活性及芳烃选择性,未涉及催化剂的抗结炭性和稳定性问题。The Ga/HZSM-5 zeolite prepared by HZSM-5 high-silica zeolite modified by Ga has high reactivity and aromatics selectivity for the direct synthesis of aromatics from low-carbon alkanes such as propane and butane, and has attracted widespread attention. However, like many organic catalytic reactions, there is the problem of catalyst surface coking leading to a decrease in catalyst activity, and frequent regeneration is required, which brings many difficulties to industrial fixed-bed operations. Therefore, improving the anti-coking performance of the catalyst, improving the stability of the catalyst, prolonging the reaction cycle and the service life of the catalyst are the keys to its industrial application. Predecessors have also made a lot of efforts in this regard. CN 1081938A discloses a process for the activation and modification of an aromatization catalyst, which uses water vapor to activate the Zn/HZSM-5 type catalyst at high temperature and is used for the aromatization of pyrolysis gasoline. The life of the catalyst is improved, but the best result is The one-way life is 29 hours, and the article does not mention hydrocarbons with lower carbon numbers. CN 86 108104A and USP 4,636,483 of Universal Corporation of the United States propose to use a composite catalyst to make C 2 -C 5 hydrocarbon production achieve good coking resistance, thereby prolonging the service life of the catalyst. The main method is to improve the preparation of the carrier. Silicate zeolite is mixed with phosphorus-containing alumina and dispersed into balls with high-temperature oil. The preparation process is complicated. The Zn-Pt and Ga-Pt modified HZSM-5 and HZSM-11 zeolite catalysts disclosed in Chinese patent CN 1062100A for the aromatization of light hydrocarbons are also limited to higher oilfield light hydrocarbons (C 4 -C 9 ) cuts, and the noble metal Pt is used, the catalyst cost is higher. The disclosed Ga/HZSM-5 catalyst of USP4,180,689 and USP4,334,114 is used for the aromatization of C 3 -C 12 hydrocarbons, and the purpose is to improve the activity and aromatics selectivity of the catalyst, and does not involve the anti-coking property of the catalyst Stability issues.
本发明的目的是提供一种抗结炭性强、稳定性好的,用于烃类芳构化反应的双组份改性沸石催化剂。The purpose of the present invention is to provide a two-component modified zeolite catalyst with strong anti-coking property and good stability, which is used for the aromatization reaction of hydrocarbons.
本发明的发明目的是这样实现的:在Ga/HZSM-5中加入第二金属组分,调变催化剂表面酸性质,同时使分子筛孔道变窄,抑制结焦前身物的生成,从而达到减少结炭量,改善稳定性的目的。The purpose of the present invention is achieved by adding a second metal component to Ga/HZSM-5 to adjust the surface acid properties of the catalyst, and at the same time narrow the pores of the molecular sieve to suppress the generation of coking precursors, thereby reducing coking amount, for the purpose of improving stability.
本发明的催化剂是由Si/Al摩尔比为20-70的ZSM-5、金属Ga以及金属La、Ag、Pd、Zn、Re中任一种组成。The catalyst of the invention is composed of ZSM-5 with Si/Al molar ratio of 20-70, metal Ga and any one of metals La, Ag, Pd, Zn and Re.
各组份重量比为:The weight ratio of each component is:
ZSM-5 46-99.4% Ga 0.5-2%ZSM-5 46-99.4% Ga 0.5-2%
La、Ag、Pd、Zn、Re中的任一种 0.01-2%Any of La, Ag, Pd, Zn, Re 0.01-2%
氧化铝粘结剂 0-50%Alumina binder 0-50%
各组份重量百分比最佳范围为:The optimum range of each component weight percent is:
ZSM-5 63-99% Ga 0.8-1.6%ZSM-5 63-99% Ga 0.8-1.6%
La、Ag、Pd、Zn、Re中的任一种 0.1-1%Any of La, Ag, Pd, Zn, Re 0.1-1%
氧化铝粘接剂 0-35%Alumina adhesive 0-35%
本发明的催化剂具体制备方法如下:The concrete preparation method of catalyst of the present invention is as follows:
(1)选择Si/Al摩尔比为20-70的ZSM-5分子筛原粉,加HCl加热回流,浆洗至无Cl-离子,烘干,在600℃焙烧4h得到HZSM-5粉;(1) Select ZSM-5 molecular sieve raw powder with a Si/Al molar ratio of 20-70, add HCl and heat to reflux, wash until no Cl - ions are present, dry, and roast at 600° C. for 4 hours to obtain HZSM-5 powder;
(2)按催化剂组成配比,选取含有活性组分Ga的盐Ga(NO3)3溶液,用离子交换或浸渍方法将Ga载于HZSM-5上,经过干燥,焙烧,制成Ga/HZSM-5粉;(2) According to the ratio of the catalyst composition, the salt Ga(NO 3 ) 3 solution containing the active component Ga is selected, and Ga is loaded on the HZSM-5 by ion exchange or impregnation method, dried and roasted to make Ga/HZSM -5 powder;
(3)取Ga/HZSM-5,按催化剂组成配比加氧化铝粘结剂,用4%HNO3粘结成型,经过干燥,焙烧制成含有粘结剂的Ga/HZSM-5;(3) Take Ga/HZSM-5, add alumina binder according to the ratio of catalyst composition, use 4% HNO3 to bond and form, dry, and roast to make Ga/HZSM-5 containing binder;
(4)按催化剂组成配比,选取含有La、Ag、Pd、Zn、Re中任一种的硝酸盐溶液或氯化物溶液,采用离子交换法或浸渍法引入Ga/HZSM-5中,即可得到所发明的催化剂。(4) According to the ratio of the catalyst composition, select a nitrate solution or chloride solution containing any one of La, Ag, Pd, Zn, Re, and introduce it into Ga/HZSM-5 by ion exchange or impregnation. The inventive catalyst is obtained.
本发明的催化剂与现有技术相比具有如下优点:Catalyst of the present invention has following advantage compared with prior art:
1.由于本发明催化剂是通过Ga/HZSM-5中加入第二金属组分,调变催化剂的表面酸性质,同时由于第二金属组分进入Ga/HZSM-5分子筛孔道中,使分子筛孔道不同程度变窄,有效孔经变小,抑制了结焦前身物的生成,使催化剂结炭量减少,催化剂的稳定性提高。1. Because the catalyst of the present invention is by adding the second metal component in Ga/HZSM-5, the surface acid properties of the catalyst are adjusted, and at the same time, because the second metal component enters the Ga/HZSM-5 molecular sieve channel, the molecular sieve channel is different The degree becomes narrower, the effective pore size becomes smaller, the formation of coking precursors is inhibited, the amount of coking of the catalyst is reduced, and the stability of the catalyst is improved.
2.本催化剂适用于C2-C3烷烃,特别是C3-C6烷烃的芳构化反应,转化率高,芳烃选择性好,催化剂单程寿命长,多次再生活性稳定。2. This catalyst is suitable for the aromatization reaction of C 2 -C 3 alkanes, especially C 3 -C 6 alkanes, with high conversion rate, good selectivity of aromatics, long single-pass life of the catalyst, and stable regeneration activity for multiple times.
3.本发明的催化剂中,不含贵金属Pt,且制备工艺简单,催化剂成本较低。3. The catalyst of the present invention does not contain noble metal Pt, and the preparation process is simple, and the catalyst cost is low.
实施例1Example 1
取Si/Al比为56的ZSM-5分子筛原粉40g,加1N HCl 240ml,加热回流1h,浆洗4次至无Cl-离子,抽干,烘箱中120℃过夜,入马弗炉600℃焙烧4h,得到HZSM-5粉。HZSM-5粉20g,加去离子水100ml和浓度为0.0198gGa/ml的Ga(NO3)3溶液100ml,加热回流4h,静置平衡10h,过滤,热水洗涤3次,滤饼于红外灯下烘干,烘箱中120℃过夜,入马弗炉540℃焙烧4h,得到Ga/HZSM-5粉,Ga含量1.6wt.%。压片、破碎、筛分,取20-40目颗粒做催化剂,记做催化剂A。Take 40g of ZSM-5 molecular sieve raw powder with a Si/Al ratio of 56, add 240ml of 1N HCl, heat and reflux for 1h, wash the slurry 4 times until there is no Cl - ion, drain, put in an oven at 120°C overnight, and bake in a muffle furnace at 600°C After 4h, HZSM-5 powder was obtained. Add 20g of HZSM-5 powder, add 100ml of deionized water and 100ml of Ga(NO 3 ) 3 solution with a concentration of 0.0198gGa/ml, heat to reflux for 4h, let it stand for 10h to balance, filter, wash with hot water for 3 times, filter the cake under infrared light It was dried at 120°C overnight in an oven, and baked in a muffle furnace at 540°C for 4 hours to obtain Ga/HZSM-5 powder with a Ga content of 1.6wt.%. Tablet, crush, sieve, take 20-40 mesh particles as catalyst, record as catalyst A.
实施例2Example 2
称取AgNO3(A.R)0.0394g,溶于5ml去离子水中,取实施例1中的催化剂A5g,浸渍,静置10h,于红外灯下烘干,烘箱中120℃过夜,入马弗炉540℃焙烧4h,得到Ag含量0.5wt.%的Ga/HZSM-5。记做催化剂B。Weigh 0.0394g of AgNO 3 (AR), dissolve it in 5ml of deionized water, take 5g of the catalyst A in Example 1, impregnate it, let it stand for 10h, dry it under an infrared lamp, put it in an oven at 120°C overnight, and put it in a muffle furnace at 540°C Calcined at ℃ for 4h to obtain Ga/HZSM-5 with Ag content of 0.5wt.%. Denote it as Catalyst B.
实施例3Example 3
取实施例1中Ga/HZSM-5粉10g,加氧化铝0.0Tg加4%HNO36ml粘结成型,120℃干燥过夜,540℃焙烧4h,得到含有粘结剂的Ga/HZSM-5,取5g20-40目的Ga/HZSM-5用浓度为1mgPd/ml的PdCl2溶液4.5ml,替代实施例2中的AgNO3溶液,其它步骤与实施例2相同,制得Pd含量0.1%的Ga/HZSM-5。记做催化剂C。Take 10g of Ga/HZSM-5 powder in Example 1, add 0.0Tg of alumina and 4% HNO 3 6ml to bond and form, dry at 120°C overnight, and bake at 540°C for 4h to obtain Ga/HZSM-5 containing binder. Get 5g20-40 purpose Ga/HZSM-5 and use concentration to be 1mgPd/ml PdCl2 solution 4.5ml, replace the AgNO3 solution in Example 2, other steps are identical with Example 2, make the Ga/HZSM-5 of Pd content 0.1%. HZSM-5. Denote it as Catalyst C.
实施例4Example 4
取Si/Al比为56的ZSM-5分子筛原粉80g,加1N HCl 480ml,加热回流1h,浆洗4次至无Cl-离子,抽干,烘箱中120℃过夜,入马弗炉600℃焙烧4h,得到HZSM-5粉。HZSM-5粉50g,加去离子水370ml和浓度为0.0397gGa/ml的Ga(NO3)3溶液29ml,加热回流4h,静置平衡20h,过滤,热水洗涤3次,滤饼于红外灯下烘干,烘箱中120℃过夜,入马弗炉540℃焙烧4h,得到Ga/HZSM-5粉。Ga/HZSM-5粉20g,加10g氧化铝,混合均匀,用4%HNO319ml粘结,挤条成型,红外灯下烘干,烘箱中120℃过夜,入马弗炉540℃焙烧4h,Ga含量1.0wt.%。破碎、筛分,取20-40目颗粒做催化剂,记做催化剂D。Take 80g of ZSM-5 molecular sieve raw powder with a Si/Al ratio of 56, add 480ml of 1N HCl, heat and reflux for 1h, wash the slurry 4 times until there is no Cl - ion, drain, put in an oven at 120°C overnight, and bake in a muffle furnace at 600°C After 4h, HZSM-5 powder was obtained. Add 50g of HZSM-5 powder, add 370ml of deionized water and 29ml of Ga(NO 3 ) 3 solution with a concentration of 0.0397gGa/ml, heat to reflux for 4h, let it stand for 20h to balance, filter, wash with hot water for 3 times, and put the filter cake in the infrared lamp Dry it under the oven, put it in an oven at 120°C overnight, put it into a muffle furnace and bake it at 540°C for 4 hours to get Ga/HZSM-5 powder. Add 20g of Ga/HZSM-5 powder, add 10g of alumina, mix evenly, bond with 4% HNO 3 19ml, extrude into strips, dry under infrared lamp, put in oven at 120°C overnight, put into muffle furnace and bake at 540°C for 4h, The Ga content is 1.0 wt.%. Crushing and sieving, take 20-40 mesh particles as catalyst, record as catalyst D.
实施例5Example 5
实施例4中的催化剂D5g,加浓度为22.25mg Zn/ml Zn(NO3)2溶液2.25ml和去离子水6.8ml,浸渍,静置10h,于红外灯下烘干,烘箱中120℃过夜,入马弗炉540℃焙烧4h,得到Zn含量0.5%的Ga/HZSM-5。记做催化剂E。Catalyst D5g in Example 4, add concentration is 22.25mg Zn/ml Zn(NO 3 ) 2 solution 2.25ml and deionized water 6.8ml, impregnate, let stand for 10h, dry under infrared lamp, 120 ℃ overnight in oven , put into muffle furnace and bake at 540°C for 4h to obtain Ga/HZSM-5 with Zn content of 0.5%. Denote it as Catalyst E.
实施例6Example 6
与实施例5相同,只是用浓度为5.0mg Ag/ml的AgNO3溶液1ml、5ml、8ml,分别加去离子水7ml、3ml、0ml,替代实施例5中的溶液,制得Ag含量为0.1%、0.5%、0.8%的Ga/HZSM-5。记做催化剂F、G、H。Same as Example 5, except that the AgNO solution 1ml, 5ml, and 8ml with a concentration of 5.0mg Ag/ml are added respectively with 7ml, 3ml, and 0ml of deionized water to replace the solution in Example 5, and the obtained Ag content is 0.1 %, 0.5%, 0.8% of Ga/HZSM-5. Record as catalysts F, G, H.
催化反应:Catalytic reaction:
图1为催化剂A、B、C上丙烷转化率随时间的变化曲线图。Fig. 1 is a graph showing the change of propane conversion rate over time on catalysts A, B, and C.
图2为催化剂D和G正己烷芳构化性能比较图。Fig. 2 is a comparison chart of catalysts D and G in n-hexane aromatization.
图3为催化剂D和催化剂G上抽余油芳构化性能曲线图。Fig. 3 is a curve diagram of aromatization performance of raffinate oil on catalyst D and catalyst G.
芳构化反应在常压连续流动积分反应器中进行,不锈钢管式反应器内径10mm,催化剂装量1-2g。产物经GC-9A气相色谱仪在线分析,采用氩(Ar)为载气,低碳烃和芳烃产物分别使用Porapak Qs和0V-101柱分析,氢焰(FID)检测,氢碳比(H2/CH4)由SC-01色谱仪的Porapak Qs柱分析,热导(TCD)检测,重新归一后,计算产物分布,以重量百分含量(wt.%)表示。The aromatization reaction is carried out in a continuous flow integration reactor at normal pressure, the inner diameter of the stainless steel tubular reactor is 10mm, and the catalyst loading is 1-2g. The product was analyzed online by GC-9A gas chromatograph, using argon (Ar) as the carrier gas, and the low-carbon hydrocarbon and aromatic products were analyzed by Porapak Qs and 0V-101 column respectively, detected by hydrogen flame (FID), and the ratio of hydrogen to carbon (H 2 /CH 4 ) was analyzed by the Porapak Qs column of the SC-01 chromatograph, detected by thermal conductivity (TCD), and after renormalization, the product distribution was calculated and expressed in weight percent (wt.%).
催化剂A、B、C以丙烷为原料,图1给出反应温度550℃,重时空速(WHSV)4.0h-1时它们的芳构化性能。可见Ga/HZSM-5上添加第二组分后,催化剂丙烷转化活性明显改善,稳定性提高。催化剂C显示出高的转化活性和良好的催化稳定性。Catalysts A, B, and C use propane as raw material. Figure 1 shows their aromatization performance at a reaction temperature of 550°C and a weight hourly space velocity (WHSV) of 4.0h -1 . It can be seen that after the second component is added to Ga/HZSM-5, the catalyst propane conversion activity is significantly improved and the stability is improved. Catalyst C showed high conversion activity and good catalytic stability.
催化剂D、E、F、G、H以正己烷和抽余油为原料。新鲜催化剂反应前须经过氧化还原预处理,即600℃.H2还原1小时,550℃空气氧化1小时,然后进行反应。原料经微量液体流量泵进入反应系统。以正己烷为原料,反应温度550℃,重时空速(WHSV)1.0h-1时的反应活性和稳定性见表1。可见,添加Zn、Ag的催化剂稳定明显改善,催化剂G即GaAg(0.5%)/HZSM-5表现出最好的活性和稳定性。在550℃,WHSV=0.5h-1下,比较了催化剂D和G分别以正己烷和抽余油(抚顺石油厂提供的催化剂重整抽余油)为原料时的芳构化性能,见图2和图3。抽余油的组成见表2,其转化率定义为C5、C6、C7转化的百分数。催化剂D,以试剂正己烷为原料时,80h平均液体收率61.2%,芳烃收率59.3%,H2产率3.9%,燃料气34.9%;以催化重整抽余油为原料时,70h平均液收60,2%,芳烃收率54.6%,H2产率2.8%,燃料气37.0%。催化剂G,以试剂正己烷为原料时,80h平均液体产品收率69.6%,芳烃收率为68.4%,H2产率4.7%,燃料气25.67%;以催化重整余油为原料时,70h平均液体产品收率64.1%,其中芳烃收率为55.7%,H22.9%,燃料气33.0%。Catalysts D, E, F, G, and H use n-hexane and raffinate as raw materials. The fresh catalyst must undergo redox pretreatment before reaction, that is, 600° C.H2 reduction for 1 hour, 550°C air oxidation for 1 hour, and then react. Raw materials enter the reaction system through the micro liquid flow pump. Table 1 shows the reactivity and stability when n-hexane is used as raw material, the reaction temperature is 550°C, and the weight hourly space velocity (WHSV) is 1.0h -1 . It can be seen that the stability of the catalyst added with Zn and Ag is obviously improved, and the catalyst G, GaAg(0.5%)/HZSM-5, shows the best activity and stability. At 550°C, WHSV=0.5h -1 , compared the aromatization performance of Catalysts D and G using n-hexane and raffinate (catalyst reformed raffinate provided by Fushun Petroleum Plant) as raw materials, see Fig. 2 and 3. The composition of the raffinate oil is shown in Table 2, and its conversion rate is defined as the conversion percentage of C5, C6 and C7. Catalyst D, when the reagent n-hexane is used as raw material, the 80h average liquid yield is 61.2%, the aromatics yield is 59.3%, the H2 yield is 3.9%, and the fuel gas is 34.9%; when the catalytic reforming raffinate is used as the raw material, the 70h
表1.催化剂上正己烷的芳构化性能(550℃,1.0h-1)
表2催化重整抽余油基本物化性质
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN99123953A CN1111090C (en) | 1999-11-19 | 1999-11-19 | Dual-component modified zeolite catalyst for aromatizing reaction of hydrocarbons |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN99123953A CN1111090C (en) | 1999-11-19 | 1999-11-19 | Dual-component modified zeolite catalyst for aromatizing reaction of hydrocarbons |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1296861A CN1296861A (en) | 2001-05-30 |
CN1111090C true CN1111090C (en) | 2003-06-11 |
Family
ID=5283073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN99123953A Expired - Fee Related CN1111090C (en) | 1999-11-19 | 1999-11-19 | Dual-component modified zeolite catalyst for aromatizing reaction of hydrocarbons |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1111090C (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE552906T1 (en) * | 2007-01-03 | 2012-04-15 | Saudi Basic Ind Corp | ZEOLITE-KAOLINE CATALYST COMPOSITION |
CN103747869A (en) | 2011-07-21 | 2014-04-23 | 沙特基础工业公司 | Catalyst for the preparation of aromatic hydrocarbons and use thereof |
WO2013102475A1 (en) | 2012-01-04 | 2013-07-11 | Saudi Basic Industries Corporation | Catalyst for the preparation of aromatic hydrocarbons and use thereof |
EP2692438A1 (en) | 2012-08-02 | 2014-02-05 | Saudi Basic Industries Corporation | Catalyst composition for the production of aromatic hydrocarbons |
CN104607238B (en) * | 2015-02-15 | 2015-11-25 | 东北农业大学 | A kind of composite catalyst containing modified montmorillonite used and ZSM-8 and preparation method thereof |
CN105498829B (en) * | 2015-12-10 | 2018-06-26 | 大唐国际化工技术研究院有限公司 | A kind of aromatization of methanol catalyst and its preparation method and application |
CN107983402B (en) * | 2017-12-06 | 2020-12-25 | 中国科学院山西煤炭化学研究所 | Propane aromatization catalyst and preparation method and application thereof |
CN110498425A (en) * | 2018-05-17 | 2019-11-26 | 中国科学院大连化学物理研究所 | A method for selectively modifying the acidity of the outer surface of zeolite molecular sieves |
CN111151292B (en) * | 2020-01-13 | 2021-03-05 | 中国科学院山西煤炭化学研究所 | A kind of aromatization catalyst and its preparation method and application |
CN113198527B (en) * | 2021-04-25 | 2022-05-17 | 西南化工研究设计院有限公司 | Composite hierarchical pore molecular sieve catalyst for preparing aromatic hydrocarbon from low-carbon alkane and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4613716A (en) * | 1984-11-16 | 1986-09-23 | The British Petroleum Company P.L.C. | Production of aromatics from ethane and/or ethylene |
CN88103549A (en) * | 1987-06-08 | 1988-12-28 | 标准石油公司 | The catalyzer of conversion of ethane to liquid aromatic hydrocarbons |
-
1999
- 1999-11-19 CN CN99123953A patent/CN1111090C/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4613716A (en) * | 1984-11-16 | 1986-09-23 | The British Petroleum Company P.L.C. | Production of aromatics from ethane and/or ethylene |
CN88103549A (en) * | 1987-06-08 | 1988-12-28 | 标准石油公司 | The catalyzer of conversion of ethane to liquid aromatic hydrocarbons |
Also Published As
Publication number | Publication date |
---|---|
CN1296861A (en) | 2001-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2388534C2 (en) | Method of reforming by using high-density catalyst | |
CN1111090C (en) | Dual-component modified zeolite catalyst for aromatizing reaction of hydrocarbons | |
WO2006105799A2 (en) | Method for selective hydrogenation of acetylene to ethylene | |
RU2547466C1 (en) | Catalyst and method of reforming | |
CN103418377B (en) | The thin-shell catalyst of low-carbon alkene is prepared for dehydrogenating low-carbon alkane | |
JPH0624633B2 (en) | Catalyst particles and method for producing the same | |
CN1705510A (en) | A lithium aluminate layered catalyst and a selective oxidation process using the catalyst | |
TW200400850A (en) | Bismuth-and phosphorus-containing catalyst support, reforming catalysts made from same, method of making and naphtha reforming process | |
EP3623045A1 (en) | Method for preparing dehydrogenation catalyst for linear chain light hydrocarbons with high regeneration efficiency | |
RU2329099C1 (en) | Highly active isomerisation catalyst and isomerisation method | |
CN1084224C (en) | Catalyst for dehydrogenation of saturated hydrocarbon and preparation thereof | |
JPS62171751A (en) | Catalyst containing morden zeolite, its preparation and its adaptation isomerizing fraction rich in normal paraffin | |
JP2000317310A (en) | Catalyst containing Group 8, 9 or 10 element with excellent accessibility and its use in a paraffin dehydrogenation process | |
RU2535206C2 (en) | Method of producing polymetallic catalyst with optimised | |
CN111725531A (en) | A kind of high-selectivity copper-platinum alloy catalyst for hydrogen transport system and preparation method thereof | |
CN103539614B (en) | The reaction method of dehydrogenating low-carbon alkane producing light olefins | |
CN101583427B (en) | Bimetallic or multi-metallic catalyst having optimised bimetallicity index and hydrogen adsorption capacity | |
CN109201093B (en) | Multi-metal continuous reforming catalyst and preparation and application thereof | |
CN110064422A (en) | Multi-metal continuous reforming catalyst and preparation method thereof | |
CN115282992B (en) | Preparation method of amorphous nickel phosphide catalyst loaded by in-situ synthesized multistage hole ZSM-5 molecular sieve | |
EP3287191A1 (en) | Catalytically active compositions of matter | |
CN112839735A (en) | Preparation method of high-efficiency branched light hydrocarbon dehydrogenation catalyst | |
JP2952409B2 (en) | Catalyst for lower olefin production | |
CN1133499C (en) | Application of a catalyst for producing toluene by cracking isopropyl toluene | |
JPS581973B2 (en) | Alumino Keisan Ensuite Tenkanshiyokubaino Seihou |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C06 | Publication | ||
PB01 | Publication | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |