CN111087336A - Synthesis method of difluorine spiro-compound and intermediate thereof - Google Patents
Synthesis method of difluorine spiro-compound and intermediate thereof Download PDFInfo
- Publication number
- CN111087336A CN111087336A CN201811244818.2A CN201811244818A CN111087336A CN 111087336 A CN111087336 A CN 111087336A CN 201811244818 A CN201811244818 A CN 201811244818A CN 111087336 A CN111087336 A CN 111087336A
- Authority
- CN
- China
- Prior art keywords
- formula
- reagent
- compound
- substituted
- molar ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- -1 difluorine spiro-compound Chemical class 0.000 title claims description 13
- 238000001308 synthesis method Methods 0.000 title description 2
- 150000001875 compounds Chemical class 0.000 claims abstract description 94
- 238000000034 method Methods 0.000 claims abstract description 15
- LMBFAGIMSUYTBN-MPZNNTNKSA-N teixobactin Chemical compound C([C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H](CCC(N)=O)C(=O)N[C@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H]1C(N[C@@H](C)C(=O)N[C@@H](C[C@@H]2NC(=N)NC2)C(=O)N[C@H](C(=O)O[C@H]1C)[C@@H](C)CC)=O)NC)C1=CC=CC=C1 LMBFAGIMSUYTBN-MPZNNTNKSA-N 0.000 claims abstract description 6
- 238000004519 manufacturing process Methods 0.000 claims abstract description 3
- 239000003153 chemical reaction reagent Substances 0.000 claims description 53
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 claims description 30
- 238000002360 preparation method Methods 0.000 claims description 26
- GQHTUMJGOHRCHB-UHFFFAOYSA-N 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine Chemical compound C1CCCCN2CCCN=C21 GQHTUMJGOHRCHB-UHFFFAOYSA-N 0.000 claims description 18
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 claims description 16
- YYROPELSRYBVMQ-UHFFFAOYSA-N 4-toluenesulfonyl chloride Chemical compound CC1=CC=C(S(Cl)(=O)=O)C=C1 YYROPELSRYBVMQ-UHFFFAOYSA-N 0.000 claims description 12
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 12
- 125000001584 benzyloxycarbonyl group Chemical group C(=O)(OCC1=CC=CC=C1)* 0.000 claims description 12
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 12
- UYWQUFXKFGHYNT-UHFFFAOYSA-N phenylmethyl ester of formic acid Chemical group O=COCC1=CC=CC=C1 UYWQUFXKFGHYNT-UHFFFAOYSA-N 0.000 claims description 12
- 239000012359 Methanesulfonyl chloride Substances 0.000 claims description 10
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 10
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical group C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 claims description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- 229910052717 sulfur Inorganic materials 0.000 claims description 9
- 125000005931 tert-butyloxycarbonyl group Chemical group [H]C([H])([H])C(OC(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 9
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 claims description 8
- 125000004170 methylsulfonyl group Chemical group [H]C([H])([H])S(*)(=O)=O 0.000 claims description 8
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 claims description 8
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 8
- 125000006239 protecting group Chemical group 0.000 claims description 8
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 claims description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 6
- WGQKYBSKWIADBV-UHFFFAOYSA-N benzylamine Chemical group NCC1=CC=CC=C1 WGQKYBSKWIADBV-UHFFFAOYSA-N 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- QARBMVPHQWIHKH-UHFFFAOYSA-N methanesulfonyl chloride Chemical compound CS(Cl)(=O)=O QARBMVPHQWIHKH-UHFFFAOYSA-N 0.000 claims description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 6
- 230000006103 sulfonylation Effects 0.000 claims description 6
- 238000005694 sulfonylation reaction Methods 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- 239000007868 Raney catalyst Substances 0.000 claims description 5
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical group [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 claims description 5
- 229910000564 Raney nickel Inorganic materials 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 239000010949 copper Substances 0.000 claims description 5
- IRSJDVYTJUCXRV-UHFFFAOYSA-N ethyl 2-bromo-2,2-difluoroacetate Chemical group CCOC(=O)C(F)(F)Br IRSJDVYTJUCXRV-UHFFFAOYSA-N 0.000 claims description 5
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 4
- 239000003054 catalyst Substances 0.000 claims description 4
- 229910052731 fluorine Inorganic materials 0.000 claims description 4
- 239000011737 fluorine Substances 0.000 claims description 4
- QARBMVPHQWIHKH-KHWXYDKHSA-N methanesulfonyl chloride Chemical group C[35S](Cl)(=O)=O QARBMVPHQWIHKH-KHWXYDKHSA-N 0.000 claims description 4
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 4
- 229910000027 potassium carbonate Inorganic materials 0.000 claims description 4
- 235000011181 potassium carbonates Nutrition 0.000 claims description 4
- 239000012279 sodium borohydride Substances 0.000 claims description 4
- 229910000033 sodium borohydride Inorganic materials 0.000 claims description 4
- 229960000549 4-dimethylaminophenol Drugs 0.000 claims description 3
- 239000012448 Lithium borohydride Substances 0.000 claims description 3
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 claims description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 3
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 3
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 claims description 3
- 229910000024 caesium carbonate Inorganic materials 0.000 claims description 3
- FAMRKDQNMBBFBR-BQYQJAHWSA-N diethyl azodicarboxylate Substances CCOC(=O)\N=N\C(=O)OCC FAMRKDQNMBBFBR-BQYQJAHWSA-N 0.000 claims description 3
- FAMRKDQNMBBFBR-UHFFFAOYSA-N ethyl n-ethoxycarbonyliminocarbamate Chemical compound CCOC(=O)N=NC(=O)OCC FAMRKDQNMBBFBR-UHFFFAOYSA-N 0.000 claims description 3
- IOBCLXSGWMFVQJ-UHFFFAOYSA-N methyl 2-bromo-2,2-difluoroacetate Chemical compound COC(=O)C(F)(F)Br IOBCLXSGWMFVQJ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052700 potassium Inorganic materials 0.000 claims description 3
- 239000011591 potassium Substances 0.000 claims description 3
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- 239000003638 chemical reducing agent Substances 0.000 claims description 2
- ZZVUWRFHKOJYTH-UHFFFAOYSA-N diphenhydramine Chemical group C=1C=CC=CC=1C(OCCN(C)C)C1=CC=CC=C1 ZZVUWRFHKOJYTH-UHFFFAOYSA-N 0.000 claims description 2
- MGHPNCMVUAKAIE-UHFFFAOYSA-N diphenylmethanamine Chemical compound C=1C=CC=CC=1C(N)C1=CC=CC=C1 MGHPNCMVUAKAIE-UHFFFAOYSA-N 0.000 claims description 2
- HGWXXIZVRRTDKT-UHFFFAOYSA-N ethyl 2,2-difluoro-2-iodoacetate Chemical compound CCOC(=O)C(F)(F)I HGWXXIZVRRTDKT-UHFFFAOYSA-N 0.000 claims description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 2
- 239000012280 lithium aluminium hydride Substances 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 239000011736 potassium bicarbonate Substances 0.000 claims description 2
- 229910000028 potassium bicarbonate Inorganic materials 0.000 claims description 2
- 235000015497 potassium bicarbonate Nutrition 0.000 claims description 2
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 claims description 2
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 claims description 2
- VVWRJUBEIPHGQF-UHFFFAOYSA-N propan-2-yl n-propan-2-yloxycarbonyliminocarbamate Chemical compound CC(C)OC(=O)N=NC(=O)OC(C)C VVWRJUBEIPHGQF-UHFFFAOYSA-N 0.000 claims description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 2
- 235000017550 sodium carbonate Nutrition 0.000 claims description 2
- 125000001424 substituent group Chemical group 0.000 claims description 2
- LMYRWZFENFIFIT-UHFFFAOYSA-N toluene-4-sulfonamide Chemical compound CC1=CC=C(S(N)(=O)=O)C=C1 LMYRWZFENFIFIT-UHFFFAOYSA-N 0.000 claims description 2
- GRGCWBWNLSTIEN-UHFFFAOYSA-N trifluoromethanesulfonyl chloride Chemical compound FC(F)(F)S(Cl)(=O)=O GRGCWBWNLSTIEN-UHFFFAOYSA-N 0.000 claims description 2
- 125000001889 triflyl group Chemical group FC(F)(F)S(*)(=O)=O 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 239000011701 zinc Substances 0.000 claims description 2
- 150000001336 alkenes Chemical class 0.000 abstract description 4
- 239000006227 byproduct Substances 0.000 abstract description 4
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 abstract description 4
- 239000002243 precursor Substances 0.000 abstract description 4
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 abstract description 3
- 239000007858 starting material Substances 0.000 abstract description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 125000004122 cyclic group Chemical group 0.000 abstract description 2
- 238000007363 ring formation reaction Methods 0.000 abstract 1
- 230000002194 synthesizing effect Effects 0.000 abstract 1
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 30
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 24
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 16
- 239000012074 organic phase Substances 0.000 description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 14
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 12
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- KJPRLNWUNMBNBZ-UHFFFAOYSA-N cinnamic aldehyde Natural products O=CC=CC1=CC=CC=C1 KJPRLNWUNMBNBZ-UHFFFAOYSA-N 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 8
- 238000000926 separation method Methods 0.000 description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- 235000019270 ammonium chloride Nutrition 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 150000003413 spiro compounds Chemical class 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000004440 column chromatography Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 239000000543 intermediate Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical class O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 3
- 125000003003 spiro group Chemical group 0.000 description 3
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000009509 drug development Methods 0.000 description 2
- 239000012025 fluorinating agent Substances 0.000 description 2
- 238000003682 fluorination reaction Methods 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- IUBQJLUDMLPAGT-UHFFFAOYSA-N potassium bis(trimethylsilyl)amide Chemical compound C[Si](C)(C)N([K])[Si](C)(C)C IUBQJLUDMLPAGT-UHFFFAOYSA-N 0.000 description 2
- WRIKHQLVHPKCJU-UHFFFAOYSA-N sodium bis(trimethylsilyl)amide Chemical compound C[Si](C)(C)N([Na])[Si](C)(C)C WRIKHQLVHPKCJU-UHFFFAOYSA-N 0.000 description 2
- 238000010189 synthetic method Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- DROZYMFJWSYDRY-UHFFFAOYSA-N 2,7-diazaspiro[3.5]nonane Chemical compound C1NCC11CCNCC1 DROZYMFJWSYDRY-UHFFFAOYSA-N 0.000 description 1
- 102000012004 Ghrelin Human genes 0.000 description 1
- 101800001586 Ghrelin Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- GNKDKYIHGQKHHM-RJKLHVOGSA-N ghrelin Chemical compound C([C@H](NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)CN)COC(=O)CCCCCCC)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1N=CNC=1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C1=CC=CC=C1 GNKDKYIHGQKHHM-RJKLHVOGSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- YNESATAKKCNGOF-UHFFFAOYSA-N lithium bis(trimethylsilyl)amide Chemical compound [Li+].C[Si](C)(C)[N-][Si](C)(C)C YNESATAKKCNGOF-UHFFFAOYSA-N 0.000 description 1
- 239000012450 pharmaceutical intermediate Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011403 purification operation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D205/00—Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom
- C07D205/02—Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings
- C07D205/04—Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C255/00—Carboxylic acid nitriles
- C07C255/01—Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
- C07C255/31—Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing rings other than six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C31/00—Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
- C07C31/27—Polyhydroxylic alcohols containing saturated rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D305/00—Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms
- C07D305/02—Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms not condensed with other rings
- C07D305/04—Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
- C07D305/06—Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D331/00—Heterocyclic compounds containing rings of less than five members, having one sulfur atom as the only ring hetero atom
- C07D331/04—Four-membered rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D335/00—Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom
- C07D335/04—Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
- C07D471/10—Spiro-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D493/00—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
- C07D493/02—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
- C07D493/10—Spiro-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D495/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
- C07D495/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
- C07D495/10—Spiro-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/04—Systems containing only non-condensed rings with a four-membered ring
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
The invention has provided a method for synthesizing and its midbody of compound of bis-fluoro spiro, is prepared from compound of formula II through fluorizating, reducing, and subsequent cyclization step, compared with existing technology that regard carbonyl as precursor to fluorinate directly, the invention has avoided the formation of cyclic internal olefin by-product, the operation of preparing and separating and purifying is simple, the process is stable; in addition, the starting materials are easy to obtain, and the production cost is saved.
Description
Technical Field
The invention relates to the field of pharmaceutical chemistry synthesis, in particular to a synthetic method of a difluoride spiro ring.
Background
Spiro compounds have been widely used in the field of drug development as a relatively novel pharmaceutical intermediate, for example, in WO2011114271a1, 2, 7-diazaspiro [3.5] nonane may be used as part of the mother ring structure of a series of compounds having ghrelin antagonist activity:
fluorine atoms are often used for structural optimization of compounds due to their strong electronegativity, thereby improving the physicochemical properties of the compounds. Therefore, the fluorinated spiro compound has great potential as a drug development structure optimization intermediate.
Generally, the precursor for preparing the difluoride is a carbonyl group, which is fluorinated with a fluorinating agent to obtain the desired product. However, in the spiro compound containing six-membered ring, on one hand, the fluorination of the fluorinating agent tends to generate a large amount of byproducts which are eliminated as cyclic internal olefin, and the properties of the olefin and the fluoro product are very close, so that the separation and purification of the product are difficult; on the other hand, the carbonyl-substituted spiro compound as a precursor is not easily available, which greatly restricts the development and application of the fluorinated spiro product.
Disclosure of Invention
Aiming at the problems of difficult raw material obtaining and more byproducts existing in the preparation of the prior fluoro spiro compound, the invention provides a synthetic method of a difluoride spiro ring and an intermediate thereof.
In one aspect, the invention provides a compound of formula iv, as shown in the following structure:
wherein X is selected from C, N, O or S, and when X is N, it is substituted by an amino protecting group selected from tert-butoxycarbonyl or benzyloxycarbonyl;
r1 is selected from cyano or-CH2OH。
In another aspect, the present invention provides a process for the preparation of a compound of formula iv, which is prepared by the following route:
wherein X is selected from C, N, O or S, and when X is N, it is substituted by an amino protecting group selected from tert-butoxycarbonyl or benzyloxycarbonyl;
r1 is selected from cyano or-CH2OH;
R2 is selected from cyano or-COOR 4;
r3 is selected from methyl or ethyl;
r4 is selected from methyl, ethyl or isopropyl;
the fluorine-containing reagent is selected from ethyl difluorobromoacetate, methyl difluorobromoacetate or ethyl difluoroiodoacetate;
preferably, the compounds of formula II: fluorine-containing reagent: the molar ratio of zinc or copper is 1: 1-3, and more preferably 1:2: 2;
preferably, tetramethylethylenediamine and acetic acid are added in the reaction of the compounds shown in the formulas II to III;
preferably, the reducing agent is selected from sodium borohydride, potassium borohydride or lithium borohydride.
In another aspect, the present invention provides a process for the preparation of a compound of formula I, as shown in the following structure, starting from a compound of formula V prepared by the process described above,
wherein X is selected from C, N, O or S, and when X is N, it is substituted by an amino protecting group selected from tert-butoxycarbonyl or benzyloxycarbonyl;
y is selected from O, S, substituted or unsubstituted N, and when Y is substituted N, the substituent is selected from benzyl, benzhydryl or p-toluenesulfonyl;
when Y is unsubstituted N, the compounds of formula I are prepared by the following scheme:
when Y is substituted N, the compounds of formula i are prepared by the following route:
when Y is S, the compounds of formula I are prepared by the following scheme:
when Y is O, the compounds of formula I are prepared by the following scheme:
r5 is selected from methanesulfonyl, p-toluenesulfonyl, or trifluoromethanesulfonyl;
the sulfonylation reagent is selected from methanesulfonyl chloride, p-toluenesulfonyl chloride or trifluoromethanesulfonyl chloride;
the catalyst is selected from Raney nickel, Pd/C, Pd (OH)2C, red aluminum or lithium aluminum hydride;
the nitrogen-containing reagent is selected from benzylamine, benzhydrylamine or p-toluenesulfonamide;
the ring closing reagent is selected from triphenylphosphine, paratoluensulfonyl chloride or methanesulfonyl chloride;
when the ring closing reagent is triphenylphosphine, the alkaline reagent 4 is selected from diisopropyl azodicarboxylate or diethyl azodicarboxylate, and when the ring closing reagent is selected from paratoluensulfonyl chloride or methanesulfonyl chloride, the alkaline reagent 4 is selected from potassium tert-butoxide or n-butyllithium;
preferably, the basic agent 1 is selected from triethylamine, sodium hydroxide, pyridine, DBU, DMAP or DIPEA; the alkaline reagent 2 is selected from triethylamine, pyridine, sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, DBU or DIPEA; the alkaline agent 3 is selected from potassium carbonate, cesium carbonate, DIPEA, DBU or pyridine;
preferably, when Y is unsubstituted N, the molar ratio of the compound shown in the formula IV to the sulfonylating agent to the basic agent 1 is 1: 1-2: 1-3, and the molar ratio of the compound shown in the formula V to the basic agent 2 is 1: 1-3;
when Y is substituted N, the molar ratio of the compound shown in the formula IV to the sulfonylating reagent to the basic reagent 1 is 1: 2-4: 2-5, and the molar ratio of the compound shown in the formula V to the nitrogen-containing reagent to the basic reagent 3 is 1: 1-2: 2-5;
when Y is S, the molar ratio of the compound shown in the formula IV to the sulfonylating reagent to the alkaline reagent 1 is 1: 2-4: 2-5;
when Y is O, the molar ratio of the compound shown in the formula IV to the ring closing reagent to the alkaline reagent 4 is 1: 1-2: 1-5;
preferably, X is N, substituted with an amino protecting group selected from t-butoxycarbonyl or benzyloxycarbonyl; y is unsubstituted N, and the compound of formula I is prepared by the following route:
the sulfonylation reagent is methanesulfonyl chloride, the alkaline reagent 1 is triethylamine, and the molar ratio of the compound shown in the formula IV to the sulfonylation reagent to the alkaline reagent 1 is 1: 1-2: 1-3;
r5 is methylsulfonyl, the catalyst is Raney nickel, the basic reagent 2 is triethylamine, and the molar ratio of the compound in the formula V to the basic reagent 2 is 1: 1-3.
Unless otherwise specified, the reagents and starting materials used in the present invention are commercially available.
Compared with the prior art of direct fluorination by taking carbonyl as a precursor, the method avoids the generation of intra-annular olefin byproducts, and has simple preparation, separation and purification operations and stable process; in addition, the starting materials are easy to obtain, and the production cost is saved.
The following acronyms are used throughout the invention:
KHMDS: potassium bis (trimethylsilyl) amide;
NaHMDS: sodium bis (trimethylsilyl) amide;
LiHMDS: bis-trimethylsilyl amido lithium;
NaCl: sodium chloride;
DMSO, DMSO: dimethyl sulfoxide;
DBU: 1, 8-diazabicyclo [5.4.0] undec-7-ene;
DMAP: 4-dimethylaminopyridine;
DIPEA: n, N-diisopropylethylamine.
Detailed Description
Example 1
Preparation of Compounds of formula III
Wherein X is benzyloxycarbonyl substituted N, R2 is cyano, and R3 is ethyl.
Ethyl difluorobromoacetate (150.00g, 0.73mol, 1.8eq.) was dissolved in tetrahydrofuran (1L), and the compound of formula ii (93.00g, 0.41mol, 1.0eq.) was added, copper (54.00g, 0.86mol, 2.1eq.) was added, tetramethylethylenediamine (24.00g, 0.204mol, 0.5eq.) and acetic acid (22.00g, 0.366mol, 0.9eq.) were refluxed at 65 ℃ for 24h, 500mL of a saturated aqueous ammonium chloride solution was added for liquid separation, and the organic phase was washed with saturated brine, dried, concentrated, and subjected to column chromatography (petroleum ether/ethyl acetate) to obtain 118.00g of the compound of formula iii with a yield of 82%.
Preparation of Compounds of formula IV
Wherein X is benzyloxycarbonyl substituted N, R1 is cyano, R2 is cyano, R3 is ethyl.
Dissolving a compound (118.0g, 0.335mol, 1.0eq.) in ethanol (450mL), controlling the temperature to be lower than 5 ℃, adding sodium borohydride (12.70g, 0.335mol, 1.0eq.) in batches, stirring for 1h at room temperature after adding, adding water (100mL), concentrating, adding a saturated ammonium chloride aqueous solution (150mL), extracting with dichloromethane (100mL multiplied by 3), and concentrating an organic phase to obtain 93.5g of a compound (IV) with the yield of 90.0%. LCMS: CALD MS: 310.3 MS: [ M + H ]]+=311.3。
Example 2
Preparation of Compounds of formula III
Wherein X is C, R2 is-COOCH3And R3 is methyl.
Methyl difluorobromoacetate (75.6g, 0.40mol, 1.0eq.) is dissolved in tetrahydrofuran (500mL), a compound of formula II (50.00g, 0.40mol, 1.0eq.) and zinc powder (26.2g, 0.40mol, 1.0eq.) are added, reflux is carried out at 65 ℃ for 15h, 250mL of saturated aqueous ammonium chloride solution is added for liquid separation, the organic phase is washed by saturated saline solution, and drying and concentration are carried out, so that 70.9g of a compound of formula III is obtained, and the yield is 75%.
Preparation of Compounds of formula IV
Wherein X is C, R1 is-CH2OH, R2 is-COOCH3And R3 is methyl.
Dissolving a compound (70.0g, 0.30mol, 1.0eq.) in a formula III in ethanol (450mL), controlling the temperature to be lower than 5 ℃, adding potassium borohydride (16.2g, 0.30mol, 1.0eq.) in batches, stirring for 2 hours at room temperature after adding, adding a saturated ammonium chloride aqueous solution (150mL), concentrating and evaporating ethanol, extracting dichloromethane (100mL × 3), and concentrating an organic phase to obtain 54.3g of a compound (IV) with the yield of 87.0%. LCMS: CALD MS: 180.2 MS: [ M + H ]]+=181.2。
Example 3
Preparation of Compounds of formula III
Wherein X is O, R2 is cyano, and R3 is ethyl.
Ethyl difluorobromoacetate (322.8g, 1.59mol, 3.0eq.) was dissolved in tetrahydrofuran (3L), the compound of formula ii (50.00g, 0.53mol, 1.0eq.) and copper (101.8g, 1.59mol, 3.0eq.) were added, refluxing was carried out at 65 ℃ for 24h, 800mL of a saturated aqueous ammonium chloride solution was added for liquid separation, the organic phase was washed with saturated brine, dried and concentrated to obtain 94.1g of the compound of formula iii with a yield of 81%.
Preparation of Compounds of formula IV
Wherein X is O, R1 is cyano, R2 is cyano, and R3 is ethyl.
Dissolving a compound (94.0g, 0.43mol, 1.0eq.) in tetrahydrofuran (500mL), controlling the temperature at 0 ℃, adding lithium borohydride (14.2g, 0.65mol, 1.5eq.) in batches, stirring at room temperature for 3h, adding a saturated ammonium chloride aqueous solution (500mL), concentrating and evaporating tetrahydrofuran, adding dichloromethane (300mL) for extraction, and concentrating an organic phase to obtain 67.03g of a compound (V), wherein the yield is 88.0%. LCMS: CALD MS: 177.1 MS: [ M + H ]]+=178.1。
Example 4
Preparation of Compounds of formula III
Wherein X is S and R2 is-COOC2H5And R3 is ethyl.
Ethyl difluorobromoacetate (205g, 1.01mol, 2.0eq.) was dissolved in tetrahydrofuran (2L), the compound of formula ii (80.00g, 0.51mol, 1.0eq.) and copper (64g, 1.01mol, 2.0eq.) were added, refluxing was carried out at 65 ℃ for 18h, 600mL of a saturated aqueous ammonium chloride solution was added for liquid separation, and the organic phase was washed with saturated brine, dried, and concentrated to obtain 118.1g of the compound of formula iii with a yield of 82%.
Preparation of Compounds of formula IV
Wherein X is S, R1 is-CH2OH, R2 being-COOC2H5And R3 is ethyl.
The compound of formula III (100.0g, 0.35mol, 1.0eq.) was dissolved in ethanol (300mL) and sodium borohydride (19.8g, 0.53mol, 1) was added in portions, with temperature controlled below 5 ℃.5eq.), stirring at room temperature for 3h after the addition, adding saturated ammonium chloride aqueous solution (400mL), concentrating and evaporating ethanol, adding dichloromethane (200mL) for extraction, and concentrating the organic phase to obtain 62.4g of the compound of the formula V with the yield of 90.0%. LCMS: CALD MS: 198.2 MS: [ M + H ]]+=199.2。
Examples 5 to 10
Preparation of Compounds of formula IV by the methods of reference examples 1-4
TABLE-Structure of the Compound of formula IV of examples 5-10 and MS data
Example 11
Preparation of Compounds of formula V
Wherein X is benzyloxycarbonyl substituted N, R5 is methylsulfonyl, and the compound of formula IV is prepared by example 1.
Dissolving a compound (80.0g, 0.258mol, 1.0eq.) in dichloromethane (250mL), adding triethylamine (39g, 0.387mol, 1.5eq.), dropwise adding methanesulfonyl chloride (33g, 0.284mol, 1.1eq.) at the temperature of 0 ℃, preserving heat for 1h after dropwise adding, adding water (200mL) for separating liquid, and drying and concentrating an organic phase to obtain 93g of a yellow solid, namely the compound of the formula V, wherein the yield is 93%. Preparation of Compounds of formula I
Wherein X is N substituted by benzyloxycarbonyl, R5 is methylsulfonyl, and Y is N.
The compound of formula V (74.0g, 0.191mol, 1.0eq.) and triethylamine (19.3g, 0.191mol, 1.0eq.) were dissolved in methanol (1L) and charged into an autoclave, Raney nickel (75.0g) was added, hydrogen was bubbled through, and the mixture was reacted at 40 deg.CAnd reacting for 30 hours, filtering the reaction solution, concentrating the filtrate, and performing column chromatography (petroleum ether/ethyl acetate) to obtain 23.2g of the compound shown in the formula I with the yield of 41%. LCMS: CALD MS: 296.3 MS: [ M + H ]]+=297.3。
Example 12
Preparation of Compounds of formula V
Wherein X is tert-butoxycarbonyl substituted N and R5 is p-toluenesulfonyl, the compound of formula IV was prepared as in example 8.
Dissolving a compound (100.0g, 0.36mol, 1.0eq.) in dichloromethane (500mL), adding sodium hydroxide (14.4g, 0.36mol, 1.0eq.), dropwise adding a dichloromethane solution (300mL) of p-toluenesulfonyl chloride (205.8g, 1.08mol, 3.0eq.) at the temperature of 0 ℃, preserving the temperature for 1h after dropwise adding, adding water (400mL) for liquid separation, extracting the water phase with dichloromethane (500mL), combining the organic phases, drying and concentrating to obtain 193.2g of a compound (V), wherein the yield is 91%.
Preparation of Compounds of formula I
Wherein X is tert-butoxycarbonyl substituted N, R5 is p-toluenesulfonyl, and Y is benzyl substituted N.
Dissolving a compound (193.2g,0.33mol,1.0eq.) of the formula V in N, N-dimethylformamide (500mL), adding benzylamine (38.6g,0.36mol,1.1eq.), stirring, adding cesium carbonate (215.0g,0.66mol,2.0eq.), heating to 110 ℃ and 120 ℃ for reaction for 8h, cooling, adding water and ethyl acetate each 500mL, separating liquid, extracting an aqueous layer with ethyl acetate (2X 200mL), combining organic phases, washing with a saturated sodium chloride aqueous solution (2X 200mL), drying the organic phase with anhydrous sodium sulfate, and concentrating to obtain the compound I93.0 g with the yield of 80.0%. LCMS: CALD MS: 352.4 MS: [ M + H ]]+=353.4。
Example 13
Preparation of Compounds of formula V
Wherein X is C and R5 is methanesulfonyl, and the compound of formula IV is prepared by example 2.
Dissolving the compound (80.0g, 0.44mol, 1.0eq.) in dichloromethane (400mL), adding DBU (267.5g, 1.76mol, 4.0eq.), dropwise adding methanesulfonyl chloride (100.8g, 0.88mol, 2.0eq.) at a controlled temperature of 0 ℃, preserving the temperature for 2 hours after dropwise adding, adding water (300mL) for separating liquid, extracting an aqueous phase with dichloromethane (2X 200mL), combining organic phases, drying and concentrating to obtain 140.7g of the compound (V), wherein the yield is 95.1%.
Preparation of Compounds of formula I
Wherein X is C, R5 is methylsulfonyl, and Y is S.
Dissolving the compound of formula V (140.7g,0.42mol,1.0eq.) in ethanol (500mL), adding anhydrous sodium sulfide (149.1g,1.05mol,2.5eq.), stirring, heating to 75-80 deg.C for 5h, cooling, concentrating to remove ethanol, adding water and ethyl acetate (300mL each), separating, extracting the water layer with ethyl acetate (2X 200mL), combining the organic phases, washing with saturated aqueous sodium chloride solution (2X 200mL), drying with anhydrous sodium sulfate, and concentrating to obtain compound I, 62.7g, with a yield of 83.7%. LCMS: CALD MS: 178.2 MS: [ M + H ]]+=179.2。
Example 14
Preparation of Compounds of formula I
Wherein X is O and Y is O, the compound of formula IV is prepared by example 9.
Dissolving the compound of formula IV (80.0g, 0.44mol, 1.0eq.) in tetrahydrofuran (400mL), adding 2.5M n-butyllithium hexane solution (528mL, 1.32mol, 3.0eq.) dropwise at a temperature below 0 deg.C, reacting at 0 deg.C for 1h, and adding p-toluenesulfonyl chloride (167.8g, 0eq.) dropwise at a temperature below 0 deg.C88mol, 2.0eq.) tetrahydrofuran solution (600mL) is added, the mixture is naturally raised to room temperature, and after the mixture is heated to 60 ℃ for reaction for 1h, the system is cooled to 40 ℃, water (400mL) is added into the reaction liquid, ethyl acetate (300mL multiplied by 2) is used for extraction, organic phases are combined, the organic phases are dried and spin-dried, and column chromatography (petroleum ether/ethyl acetate) is carried out, so that the compound of the formula I is obtained, the total amount is 40.0g, and the yield is 54%. LCMS: CALD MS: 164.1 MS: [ M + H ]]+=165.1。
Example 15
Preparation of Compounds of formula I
Wherein X is S and Y is O, are prepared as described in example 4.
The compound of formula IV (40.0g, 0.2mol, 1.0eq.) was dissolved in toluene (300mL), triphenylphosphine (104.9g, 0.4mol, 2.0eq.) was added, diethyl azodicarboxylate (69.7g, 0.4mol, 2.0eq.) was added dropwise, and the reaction was carried out at room temperature for 5h, in a manner referred to the post-treatment of this step in example 14, to give 22.0g of the compound of formula I in a yield of 61%. LCMS: CALDMS: 180.2 MS: [ M + H ]]+=181.2。
Claims (9)
2. A process for the preparation of a compound of formula iv, characterized in that it is prepared by the following route:
wherein X is selected from C, N, O or S, and when X is N, it is substituted by an amino protecting group selected from tert-butoxycarbonyl or benzyloxycarbonyl;
r1 is selected from cyano or-CH2OH;
R2 is selected from cyano or-COOR 4;
r3 is selected from methyl or ethyl;
r4 is selected from methyl, ethyl or isopropyl;
the fluorine-containing reagent is selected from ethyl difluorobromoacetate, methyl difluorobromoacetate or ethyl difluoroiodoacetate.
3. The method of claim 2, wherein: the compound of formula II: fluorine-containing reagent: the molar ratio of zinc or copper is 1: 1-3, preferably 1:2: 2.
4. The production method according to claim 2 or 3, characterized in that: adding tetramethylethylenediamine and acetic acid in the reaction of the compounds shown in the formulas II to III.
5. The method of claim 2, wherein: the reducing agent is selected from sodium borohydride, potassium borohydride or lithium borohydride.
6. A process for the preparation of a compound of formula I as shown in the following structure starting from a compound of formula IV as prepared according to any one of claims 2, 3 or 5,
wherein X is selected from C, N, O or S, and when X is N, it is substituted by an amino protecting group selected from tert-butoxycarbonyl or benzyloxycarbonyl;
y is selected from O, S, substituted or unsubstituted N, and when Y is substituted N, the substituent is selected from benzyl, benzhydryl or p-toluenesulfonyl;
when Y is unsubstituted N, the compounds of formula I are prepared by the following scheme:
when Y is substituted N, the compounds of formula i are prepared by the following route:
when Y is S, the compounds of formula I are prepared by the following scheme:
when Y is O, the compounds of formula I are prepared by the following scheme:
r5 is selected from methanesulfonyl, p-toluenesulfonyl, or trifluoromethanesulfonyl;
the sulfonylation reagent is selected from methanesulfonyl chloride, p-toluenesulfonyl chloride or trifluoromethanesulfonyl chloride;
the catalyst is selected from Raney nickel, Pd/C, Pd (OH)2C, red aluminum or lithium aluminum hydride;
the nitrogen-containing reagent is selected from benzylamine, benzhydrylamine or p-toluenesulfonamide;
the ring closing reagent is selected from triphenylphosphine, paratoluensulfonyl chloride or methanesulfonyl chloride;
when the ring closing reagent is triphenylphosphine, the basic reagent 4 is selected from diisopropyl azodicarboxylate or diethyl azodicarboxylate, and when the ring closing reagent is selected from paratoluensulfonyl chloride or methanesulfonyl chloride, the basic reagent 4 is selected from potassium tert-butoxide or n-butyllithium.
7. A process for the preparation of a compound of formula i according to claim 6, characterized in that: the alkaline reagent 1 is selected from triethylamine, sodium hydroxide, pyridine, DBU, DMAP or DIPEA; the alkaline reagent 2 is selected from triethylamine, pyridine, sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, DBU or DIPEA; the alkaline agent 3 is selected from potassium carbonate, cesium carbonate, DIPEA, DBU or pyridine.
8. A process for the preparation of a compound of formula i according to claim 6, characterized in that:
when Y is unsubstituted N, the molar ratio of the compound shown in the formula IV to the sulfonylating reagent to the basic reagent 1 is 1: 1-2: 1-3, and the molar ratio of the compound shown in the formula V to the basic reagent 2 is 1: 1-3;
when Y is substituted N, the molar ratio of the compound shown in the formula IV to the sulfonylating reagent to the basic reagent 1 is 1: 2-4: 2-5, and the molar ratio of the compound shown in the formula V to the nitrogen-containing reagent to the basic reagent 3 is 1: 1-2: 2-5;
when Y is S, the molar ratio of the compound shown in the formula IV to the sulfonylating reagent to the alkaline reagent 1 is 1: 2-4: 2-5;
when Y is O, the molar ratio of the compound shown in the formula IV to the ring closing reagent to the alkaline reagent 4 is 1: 1-2: 1-5.
9. A process for the preparation of a compound of formula i according to any one of claims 6 to 8, characterized in that:
x is N, substituted with an amino protecting group selected from tert-butoxycarbonyl or benzyloxycarbonyl;
y is unsubstituted N, and the compound of formula I is prepared by the following route:
the sulfonylation reagent is methanesulfonyl chloride, the alkaline reagent 1 is triethylamine, and the molar ratio of the compound shown in the formula IV to the sulfonylation reagent to the alkaline reagent 1 is 1: 1-2: 1-3;
r5 is methylsulfonyl, the catalyst is Raney nickel, the basic reagent 2 is triethylamine, and the molar ratio of the compound in the formula V to the basic reagent 2 is 1: 1-3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811244818.2A CN111087336A (en) | 2018-10-24 | 2018-10-24 | Synthesis method of difluorine spiro-compound and intermediate thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811244818.2A CN111087336A (en) | 2018-10-24 | 2018-10-24 | Synthesis method of difluorine spiro-compound and intermediate thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111087336A true CN111087336A (en) | 2020-05-01 |
Family
ID=70392150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811244818.2A Pending CN111087336A (en) | 2018-10-24 | 2018-10-24 | Synthesis method of difluorine spiro-compound and intermediate thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111087336A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101305005A (en) * | 2005-09-06 | 2008-11-12 | 阿斯利康(瑞典)有限公司 | Novel diazaspiroalkanes and their use for treatment of CCR8 mediated diseases |
WO2015038426A1 (en) * | 2013-09-13 | 2015-03-19 | Asana Biosciences, Llc | Self-immolative linkers containing mandelic acid derivatives, drug-ligand conjugates for targeted therapies and uses thereof |
CN105408330A (en) * | 2013-08-12 | 2016-03-16 | 豪夫迈·罗氏有限公司 | Novel aza-oxo-indoles for the treatment and prophylaxis of respiratory syncytial virus infection |
CN107428756A (en) * | 2015-03-30 | 2017-12-01 | 第三共株式会社 | The pyrazolyl 9H purine derivatives of 6 morpholinyl 2 and its purposes as PI3K inhibitor |
-
2018
- 2018-10-24 CN CN201811244818.2A patent/CN111087336A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101305005A (en) * | 2005-09-06 | 2008-11-12 | 阿斯利康(瑞典)有限公司 | Novel diazaspiroalkanes and their use for treatment of CCR8 mediated diseases |
CN105408330A (en) * | 2013-08-12 | 2016-03-16 | 豪夫迈·罗氏有限公司 | Novel aza-oxo-indoles for the treatment and prophylaxis of respiratory syncytial virus infection |
WO2015038426A1 (en) * | 2013-09-13 | 2015-03-19 | Asana Biosciences, Llc | Self-immolative linkers containing mandelic acid derivatives, drug-ligand conjugates for targeted therapies and uses thereof |
CN107428756A (en) * | 2015-03-30 | 2017-12-01 | 第三共株式会社 | The pyrazolyl 9H purine derivatives of 6 morpholinyl 2 and its purposes as PI3K inhibitor |
Non-Patent Citations (3)
Title |
---|
CAS: "RN:2007920-32-1", 《RN:2007920-32-1》 * |
GEORG WUITSCHIK,等: "Spirocyclic Oxetanes: Synthesis and Properties", 《ANGEW. CHEM. INT. ED.》 * |
ZHAO, G.,等: "Cp2TiCl2(cat.)/Zn system promoted addition reaction of bromodifluoroacetate with electron-deficient gem-dicyanoalkenes", 《JOURNAL OF FLUORINE CHEMISTRY》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI825524B (en) | Process for synthesizing 2-hydroxy-6-((2-(1-isopropyl-1hpyrazol-5-yl)-pyridin-3-yl)methoxy)benzaldehyde | |
CN111205294B (en) | Preparation method of Reidesciclovir intermediate | |
JP2014501790A5 (en) | ||
JP2001288193A (en) | Method for producing sulfonyl imide compound | |
CN103073516B (en) | Derivative containing halogen light active oxazolidinone and preparation method thereof | |
CN111087336A (en) | Synthesis method of difluorine spiro-compound and intermediate thereof | |
EP2080753B1 (en) | Method for producing tris(perfluoroalkanesulfonyl)methide acid salt | |
CN107216303B (en) | Synthesis method of fluccoladine | |
TW200403335A (en) | Process for preparation of spirofluorenols | |
CN106518751B (en) | Method for preparing pimavanserin | |
CN112159388B (en) | Preparation method of vinyl sulfate derivative | |
KR101471047B1 (en) | Improved process for preparation of highly pure bosentan | |
CN102442947B (en) | Preparation method of Montelukast Sodium intermediate | |
CN103596921B (en) | Chiral synthesis of N- {3, 4-difluoro-2- [ (2-fluoro-4-iodophenyl) amino ] -6-methoxyphenyl } -1- (2, 3-dihydroxypropyl) cyclopropylsulfonamide | |
CN107216302B (en) | Synthesis method of flucloratadine | |
JP5544892B2 (en) | Process for producing 2-cyano-1,3-diketonate salt and ionic liquid | |
CN110963955A (en) | Synthesis method of monofluoro spiro compound and intermediate thereof | |
CN104774183A (en) | Preparation method of formoxyl rosuvastatin calcium intermediate | |
CN116120262B (en) | Preparation method of fluorinated cyclic ether | |
CN109574860A (en) | A kind of method for preparing vilanterol | |
CN118754827B (en) | Synthesis method of α-methylornithine containing protecting group | |
JP2014151285A (en) | New optically active imidazoline-phosphoric acid catalyst and derivative thereof | |
CN103113357A (en) | Preparation method of statin intermediate and derivatives thereof | |
CN1299345A (en) | Method for stereochemically controlled production of isomerically pure highly substituted azacyclic compounds | |
CN109704981B (en) | Method for substituting and synthesizing (Z) -3-amino-2- (2-fluoro-3-methoxyphenyl) -2-ethyl crotonate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20200501 |
|
WD01 | Invention patent application deemed withdrawn after publication |