CN111085780A - Laser welding method for metal container - Google Patents
Laser welding method for metal container Download PDFInfo
- Publication number
- CN111085780A CN111085780A CN201911387382.7A CN201911387382A CN111085780A CN 111085780 A CN111085780 A CN 111085780A CN 201911387382 A CN201911387382 A CN 201911387382A CN 111085780 A CN111085780 A CN 111085780A
- Authority
- CN
- China
- Prior art keywords
- laser
- welding
- heat conduction
- head
- optical fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000003466 welding Methods 0.000 title claims abstract description 233
- 238000000034 method Methods 0.000 title claims abstract description 29
- 239000002184 metal Substances 0.000 title claims abstract description 22
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 22
- 230000035515 penetration Effects 0.000 claims abstract description 64
- 230000008569 process Effects 0.000 claims abstract description 11
- 230000001681 protective effect Effects 0.000 claims abstract description 10
- 238000007664 blowing Methods 0.000 claims abstract description 8
- 230000005540 biological transmission Effects 0.000 claims description 42
- 239000013307 optical fiber Substances 0.000 claims description 31
- 239000000835 fiber Substances 0.000 claims description 11
- 239000010953 base metal Substances 0.000 claims description 10
- 210000001503 joint Anatomy 0.000 claims description 10
- 230000003287 optical effect Effects 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 21
- 230000007547 defect Effects 0.000 description 7
- 239000011148 porous material Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000004021 metal welding Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/20—Bonding
- B23K26/21—Bonding by welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
- B23K26/0869—Devices involving movement of the laser head in at least one axial direction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/14—Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/14—Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
- B23K26/142—Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor for the removal of by-products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/70—Auxiliary operations or equipment
- B23K26/702—Auxiliary equipment
- B23K26/703—Cooling arrangements
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Laser Beam Processing (AREA)
Abstract
本发明公开一种面向金属容器的激光焊接方法,包括如下步骤:步骤1、提供第一母材和第二母材;步骤2、采用专用夹具将第一母材和第二母材准确对接;步骤3、提供激光深熔焊接系统;步骤4、提供远程激光热传导焊接系统;步骤5、开启激光发生器,控制一拖二光闸,通过第一激光焊接头输出第一激光束;步骤6:打开保护气体吹送装置;步骤7、控制一拖二光闸,通过第二激光焊接头输出第二激光束;步骤8、第二焊接机械手夹持第二激光焊接头沿着焊接轨迹移动;步骤9、当第一激光束移动到焊接末端点时,完成激光深熔焊接;步骤10、当第二激光束移动到焊接末端点时,完成激光热传导焊接;步骤11、关闭激光发生器,完成焊接过程。
The invention discloses a laser welding method for metal containers, comprising the following steps: step 1, providing a first base material and a second base material; step 2, using a special fixture to accurately butt the first base material and the second base material; Step 3, provide a laser deep penetration welding system; Step 4, provide a remote laser heat conduction welding system; Step 5, turn on the laser generator, control one-to-two shutters, and output the first laser beam through the first laser welding head; Step 6: Turn on the protective gas blowing device; Step 7, control one-to-two shutters, and output the second laser beam through the second laser welding head; Step 8, the second welding manipulator clamps the second laser welding head and moves along the welding track; Step 9 , When the first laser beam moves to the welding end point, the laser deep penetration welding is completed; Step 10, when the second laser beam moves to the welding end point, the laser heat conduction welding is completed; Step 11, Turn off the laser generator to complete the welding process .
Description
技术领域technical field
本发明涉及焊接领域,尤其是一种面向金属容器的激光焊接方法与系统。The invention relates to the field of welding, in particular to a laser welding method and system for metal containers.
背景技术Background technique
在激光焊接是激光加工技术中应用最广泛的先进工艺之一,具有焊接热源容易操纵,控制简单,焊件变形小,热影响区狭窄,残余应力低,精确性和自动化程度高等优点,已经在汽车、造船、核电、管道等国民经济重要行业领域中得到应用。Laser welding is one of the most widely used advanced processes in laser processing technology. It has the advantages of easy manipulation of welding heat source, simple control, small deformation of weldment, narrow heat-affected zone, low residual stress, high precision and high degree of automation. It has been applied in important industries of the national economy such as automobiles, shipbuilding, nuclear power, and pipelines.
通常根据导热机制的不同,激光焊接分为激光热传导焊接和激光深熔焊接或 激光小孔焊接模式两种模式,这两种焊接模式的激光能量耦合吸收机制、焊缝成形和最终焊接效果完全不同。激光热传导焊接过程与钨极氩弧焊(TIG)的导热模式类似。激光深熔焊接模式是激光焊接的常见应用模式,具有焊缝深宽比大、焊接精度高、焊接效率高等突出优点。激光深熔焊接与电子束焊接相似,高能量密度激光引起材料局部蒸发,在蒸发压力作用下熔池表面下陷形成小孔,激光束通过“小孔” 深入到熔池内部,同时,小孔内部的蒸发金属蒸汽继续在高能量密度的激光作用下发生电离,而在小孔内部和上部形成一团光致等离子体。对比热传导焊接和深熔焊接两种焊接模式可以发现,两者的本质区别为是否形成小孔和等离子体。可以说,小孔效应是激光深熔焊接的本质特征。由于激光深熔焊接中小孔是动态振荡存在的,小孔的坍塌将直接导致气孔,因此激光深熔焊接熔池凝固形成的焊缝往往存在气孔缺陷。然而,激光热传导焊接过程不存在小孔,熔池流动稳定,一般不存在气孔缺陷。Usually, according to the different heat conduction mechanisms, laser welding is divided into two modes: laser heat conduction welding and laser deep penetration welding or laser pinhole welding. The laser energy coupling absorption mechanism, weld formation and final welding effect of these two welding modes are completely different. . The laser heat conduction welding process is similar to the heat conduction mode of tungsten gas tungsten arc welding (TIG). Laser deep penetration welding mode is a common application mode of laser welding, which has the outstanding advantages of large welding seam aspect ratio, high welding precision and high welding efficiency. Laser deep penetration welding is similar to electron beam welding. The high energy density laser causes local evaporation of the material. Under the action of evaporation pressure, the surface of the molten pool sags to form small holes. The laser beam penetrates into the molten pool through the "small holes". The evaporated metal vapor continues to be ionized under the action of a high-energy-density laser, and a photoplasma is formed inside and above the small hole. Comparing the two welding modes of heat conduction welding and deep penetration welding, it can be found that the essential difference between the two is whether the formation of small holes and plasma. It can be said that the pinhole effect is the essential feature of laser deep penetration welding. Due to the dynamic oscillation of small holes in laser deep penetration welding, the collapse of small holes will directly lead to porosity, so the weld formed by the solidification of the molten pool of laser deep penetration welding often has porosity defects. However, there are no small holes in the laser heat conduction welding process, the flow of the molten pool is stable, and there is generally no porosity defect.
医药行业的金属容器由于存储的原材料对焊缝的气孔要求异常严格,基本不能允许金属容器内壁的焊缝表层存在气孔等缺陷,现有焊接工艺为手工TIG,焊后需要打磨,加工效率较低。采用激光焊接工艺,气孔缺陷难以控制,不能满足要求。The metal containers in the pharmaceutical industry have extremely strict requirements on the pores of the welding seam due to the stored raw materials, and it is basically impossible to allow defects such as pores on the surface of the welding seam on the inner wall of the metal container. The existing welding process is manual TIG, which needs to be polished after welding, and the processing efficiency is low. . Using the laser welding process, the porosity defect is difficult to control and cannot meet the requirements.
发明内容SUMMARY OF THE INVENTION
本发明的目的是针对金属容器激光焊接过程中易形成气孔等缺陷,提供一种面向金属容器的激光焊接方法与系统。The purpose of the present invention is to provide a laser welding method and system for metal containers, aiming at defects such as pores easily formed during the laser welding of metal containers.
本发明提供了一种面向金属容器的激光焊接方法,其具体步骤如下:The invention provides a laser welding method for metal containers, the specific steps of which are as follows:
步骤1:提供第一母材和第二母材。Step 1: Provide the first base material and the second base material.
步骤2:采用专用夹具将第一母材和第二母材准确对接。Step 2: Use a special fixture to accurately butt the first base metal and the second base metal.
步骤3:提供激光深熔焊接系统,激光深熔焊接系统包括激光发生器、第一传输光纤、一拖二关闸、第二传输光纤、第一焊接机械手、第一激光焊接头、保护气体吹送装置,激光发生器经第一传输光纤与一拖二关闸相连,然后一拖二关闸经第二传输光纤与第一激光焊接头相连。Step 3: Provide a laser deep penetration welding system. The laser deep penetration welding system includes a laser generator, a first transmission optical fiber, one drag and two gates, a second transmission optical fiber, a first welding manipulator, a first laser welding head, and protective gas blowing The device, the laser generator is connected with the one-to-two switch via the first transmission optical fiber, and then the one-to-two switch is connected to the first laser welding head via the second transmission optical fiber.
步骤4:提供远程激光热传导焊接系统,远程激光热传导焊接系统包括激光发生器、第一传输光纤、一拖二关闸、第三传输光纤、第二焊接机械手、第二激光焊接头,激光发生器经第一传输光纤与一拖二关闸相连,然后一拖二关闸经第三传输光纤与第二激光焊接头相连。Step 4: Provide a remote laser heat conduction welding system. The remote laser heat conduction welding system includes a laser generator, a first transmission optical fiber, one drag and two gates, a third transmission optical fiber, a second welding manipulator, a second laser welding head, and a laser generator The first transmission optical fiber is connected to the one-to-two gate, and then the one-to-two gate is connected to the second laser welding head via the third transmission optical fiber.
步骤5:开启激光发生器,控制一拖二光闸,通过第一传输光纤、第二传输光纤和第一激光焊接头输出第一激光束,第一激光束垂直辐照对接接头外表面。Step 5: Turn on the laser generator, control the one-to-two shutter, and output the first laser beam through the first transmission fiber, the second transmission fiber and the first laser welding head, and the first laser beam vertically irradiates the outer surface of the butt joint.
步骤6:打开保护气体吹送装置,保护气体吹向焊接区域,第一焊接机械手夹持第一激光焊接头沿着焊接轨迹移动,实施激光深熔焊接。Step 6: The protective gas blowing device is turned on, the protective gas is blown to the welding area, and the first welding manipulator clamps the first laser welding head and moves along the welding track to implement laser deep penetration welding.
步骤7:控制一拖二光闸,通过第一传输光纤、第三传输光纤和第二激光焊接头相连输出第二激光束,第二激光束远距离辐照激光深熔焊接凝固的全熔透焊缝底部。Step 7: Control the one-to-two optical gate, connect the first transmission fiber, the third transmission fiber and the second laser welding head to output the second laser beam, and the second laser beam is irradiated by the long-distance laser deep penetration welding to solidify the full penetration Bottom of weld.
步骤8:第二焊接机械手夹持第二激光焊接头沿着焊接轨迹移动,实施远程激光热传导焊接,获得激光热传导焊缝,焊接熔池冷却后共同形成接头。Step 8: The second welding manipulator clamps the second laser welding head to move along the welding track, performs remote laser heat conduction welding, and obtains a laser heat conduction weld. After the welding pool is cooled, a joint is formed together.
步骤9:当第一激光束 移动到焊接末端点时,控制一拖二光闸,关闭第一激光束,关闭气体保护装置,完成激光深熔焊接。Step 9: When the first laser beam moves to the welding end point, control one and two shutters, turn off the first laser beam, turn off the gas protection device, and complete the laser deep penetration welding.
步骤10:当第二激光束移动到焊接末端点时,控制一拖二光闸,关闭第二激光束,完成激光热传导焊接。Step 10: When the second laser beam moves to the welding end point, control one and two shutters to turn off the second laser beam to complete the laser heat conduction welding.
步骤11:关闭激光发生器,第一焊接机械手和第二焊接机械手回到原位,完成焊接过程。Step 11: Turn off the laser generator, and the first welding manipulator and the second welding manipulator return to their original positions to complete the welding process.
进一步地,在步骤1中,将第一母材和第二母材的厚度为3~6 mm 。Further, in
进一步地,在步骤3中,激光发生器功率为6~10 kW。Further, in
进一步地,在步骤3中,第一激光焊接头为固定镜组焊接头。Further, in
进一步地,第一激光焊接头聚焦焦距为150~300 mm。Further, the focusing focal length of the first laser welding head is 150-300 mm.
进一步地,第一激光焊接头聚焦焦斑大小为Φ 0.2~Φ 0.6 mm。Further, the size of the focusing focal spot of the first laser welding head is Φ 0.2~Φ 0.6 mm.
进一步地,在步骤4中,第二激光焊接头为振镜式焊接头。Further, in step 4, the second laser welding head is a galvanometer type welding head.
进一步地,第二激光焊接头聚焦焦距为500~1000 mm。Further, the focusing focal length of the second laser welding head is 500-1000 mm.
进一步地,第二激光焊接头聚焦焦斑大小为Φ 0.8~Φ1.5 mm。Further, the size of the focusing focal spot of the second laser welding head is Φ 0.8~Φ1.5 mm.
进一步地,在步骤6中,激光深熔焊接形式为全熔透焊接,获得全熔透焊缝。Further, in
进一步地,在步骤7中,第二激光束与第一母材和第二母材下表面夹角θ为60°~90°。Further, in
进一步地,在步骤7中,第二激光束焊接区中心与第一激光束焊接区中心之间距离d为2~5 mm。Further, in
进一步地,在步骤8中,激光热传导焊接熔深δ为1 ~2.5 mm。Further, in step 8, the penetration depth δ of the laser heat conduction welding is 1 to 2.5 mm.
本发明还提供一种面向金属容器的激光焊接系统,包括激光深熔焊接系统和远程激光热传导焊接系统两个子系统,激光深熔焊接系统中第一激光焊接头聚焦形成的第一激光束垂直辐照对接接头外表面,实现激光深熔焊接,得到全熔透焊缝,第二激光焊接头聚焦形成的第二激光束远距离辐照激光深熔焊接凝固的全熔透焊缝底部,实现远程激光热传导焊接,焊接熔池冷却后共同形成连接接头,完成焊接过程,激光深熔焊接系统和远程激光热传导焊接系统中第一激光焊接头固定连接在第一机械手末端的第一连接法兰和第二激光焊接头固定连接在第二机械手末端的第二连接法兰上。The invention also provides a laser welding system for metal containers, including two subsystems, a laser deep penetration welding system and a remote laser heat conduction welding system. Irradiate the outer surface of the butt joint to realize laser deep penetration welding and obtain a full penetration weld. Laser heat conduction welding, after the welding pool is cooled, the joints are formed together, and the welding process is completed. Two laser welding heads are fixedly connected to the second connecting flange at the end of the second manipulator.
进一步地,激光深熔焊接系统中还包括与第一激光焊接头对应设置的保护气体吹送装置。Further, the laser deep penetration welding system further includes a protective gas blowing device corresponding to the first laser welding head.
进一步地,第一激光焊接头为固定镜组焊接头。Further, the first laser welding head is a fixed mirror group welding head.
进一步地,第二激光焊接头为振镜式焊接头。Further, the second laser welding head is a galvanometer type welding head.
进一步地,激光深熔焊接形式为全熔透焊接,获得全熔透焊缝。Further, the form of laser deep penetration welding is full penetration welding to obtain a full penetration weld.
进一步地,第二激光束与第一母材和第二母材下表面夹角θ为60°~90°。Further, the included angle θ between the second laser beam and the first base material and the lower surface of the second base material is 60°˜90°.
本发明的有益效果:Beneficial effects of the present invention:
1)在本发明中,首先采用第一激光束对对接接头外表面进行激光深熔焊接,获得全熔透焊缝,实现了对接接头高效率和高精度的焊接连接,然后采用第二激光束对全熔透焊缝底部进行远程激光热传导焊接,获得激光热传导焊缝,激光热传导焊接对激光深熔焊接形成的全熔透焊缝底部进行了重熔,使得全熔透焊缝底部的气孔溢出激光热传导焊接熔池,因此,焊接熔池冷却后共同形成连接接头底部不存在气孔缺陷,实现了金属容器内壁焊缝表层无气孔缺陷。1) In the present invention, the first laser beam is used to carry out laser deep penetration welding on the outer surface of the butt joint to obtain a full penetration weld, which realizes the high-efficiency and high-precision welding connection of the butt joint, and then the second laser beam is used. Perform remote laser heat conduction welding on the bottom of the full penetration weld to obtain a laser heat conduction weld. Laser heat conduction welding remelts the bottom of the full penetration weld formed by laser deep penetration welding, so that the pores at the bottom of the full penetration weld overflow. The laser heat conducts the welding molten pool, therefore, after the welding molten pool is cooled, there is no porosity defect at the bottom of the joint joint formed together, and the surface of the welding seam on the inner wall of the metal container has no porosity defect.
2)采用本发明提供的面向金属容器的激光焊接方法与系统,避免了传统手工电弧焊件变形较大、效率较低等问题,具有变形小和效率高等突出特点。2) The laser welding method and system for metal containers provided by the present invention avoids the problems of large deformation and low efficiency of traditional manual arc welding parts, and has the outstanding characteristics of small deformation and high efficiency.
附图说明:Description of drawings:
图1是本发明实施例一种面向金属容器的激光焊接方法示意图。FIG. 1 is a schematic diagram of a laser welding method for a metal container according to an embodiment of the present invention.
图2是图1所示方法中激光焊接区纵截面示意图。FIG. 2 is a schematic diagram of a longitudinal section of the laser welding area in the method shown in FIG. 1 .
图3是对接接头示意图。Figure 3 is a schematic diagram of a butt joint.
其中:1-第一母材,2-第二母材,3-激光发射器,4-第一传输光纤,5-一拖二光闸,6-第二传输光纤,7-第一焊接机械手,8-第一连接法兰,9-第一激光焊接头,10-第一激光束,11-固定支架,12-保护气体装置,13-金属容器,14-第三传输光纤,15-第二激光焊接头,16-第二连接法兰, 17-第二激光束,18第二焊接机械手,19-小孔,20-深熔焊熔池,21-全熔透焊缝,22-全熔透焊缝底部,23-激光热传导焊缝,24-激光热传导焊缝底部,25-激光热传导焊熔池。Among them: 1-first base material, 2-second base material, 3-laser transmitter, 4-first transmission fiber, 5-one-to-two shutters, 6-second transmission fiber, 7-first welding manipulator , 8- the first connecting flange, 9- the first laser welding head, 10- the first laser beam, 11- fixing bracket, 12- protective gas device, 13- metal container, 14- the third transmission fiber, 15- the first Two laser welding heads, 16-second connecting flange, 17-second laser beam, 18-second welding manipulator, 19-small hole, 20-deep penetration welding pool, 21-full penetration weld, 22-full Bottom of penetration weld, 23-laser heat conduction weld, 24-laser heat conduction weld bottom, 25-laser heat conduction weld pool.
具体实施方式:Detailed ways:
以下将结合附图1-3以及具体实施例来对本发明的技术方案进行详细说明。The technical solutions of the present invention will be described in detail below with reference to the accompanying drawings 1-3 and specific embodiments.
如图1-3中,在本发明示例中,一种面向金属容器的激光焊接方法包括如 下步骤:As shown in Figures 1-3, in an example of the present invention, a laser welding method for a metal container includes the following steps:
步骤1,提供第一母材1和第二母材2。In
可选地,第一母材1和第二母材2的厚度为3~6 mm 。Optionally, the thickness of the
步骤2,采用专用夹具将第一母材1和第二母材2准确对接。
步骤3,提供激光深熔焊接系统,激光深熔焊接系统包括激光发生器3、第一传输光纤4、一拖二关闸5、第二传输光纤6、第一焊接机械手7、第一激光焊接头9、保护气体吹送装置12,激光发生器3经第一传输光纤4与一拖二关闸5相连,然后一拖二关闸5经第二传输光纤6与第一激光焊接头9相连。In
可选地,激光发生器3功率为6~10 kW。Optionally, the power of the
可选地,第一激光焊接头9为固定镜组焊接头,,第一激光焊接头9聚焦焦距为150~300 mm,第一激光焊接头9聚焦焦斑大小为Φ 0.2~Φ 0.6 mm。Optionally, the first laser welding head 9 is a fixed lens group welding head, the focusing focal length of the first laser welding head 9 is 150-300 mm, and the focusing focal spot size of the first laser welding head 9 is Φ 0.2-Φ 0.6 mm.
步骤4,提供远程激光热传导焊接系统,远程激光热传导焊接系统包括激光发生器3、第一传输光纤4、一拖二关闸5、第三传输光纤14、第二焊接机械手18、第二激光焊接头15,激光发生器3经第一传输光纤4与一拖二关闸5相连,然后一拖二关闸5经第三传输光纤14与第二激光焊接头15相连。Step 4, provide a remote laser heat conduction welding system, the remote laser heat conduction welding system includes a
可选地,第二激光焊接头15为振镜式焊接头,第二激光焊接头15聚焦焦距为500~1000 mm,第二激光焊接头15聚焦焦斑大小为Φ 0.8~Φ1.5 mm。 Optionally, the second
步骤5,开启激光发生3器,控制一拖二光闸5,通过第一传输光纤4、第二传输光纤6和第一激光焊接头9输出第一激光束10,第一激光束10垂直辐照对接接头外表面。Step 5, turn on the
步骤6,打开保护气体吹送装置12,保护气体吹向焊接区域,第一焊接机械手7夹持第一激光焊接头9沿着焊接轨迹移动,实施激光深熔焊接。In
可选地,激光深熔焊接形式为全熔透焊接,获得全熔透焊缝21。Optionally, the form of laser deep penetration welding is full penetration welding to obtain a
步骤7,控制一拖二光闸5,通过第一传输光纤4、第三传输光纤14和第二激光焊接头15相连输出第二激光束17,第二激光束17远距离辐照激光深熔焊接凝固的全熔透焊缝底部22。
可选地,第二激光束17与第一母材1和第二母材2下表面夹角θ为60°~90°。Optionally, the included angle θ between the
可选地,第二激光束17焊接区中心与第一激光束10焊接区中心之间距离d为2~5mm。Optionally, the distance d between the center of the welding area of the
步骤8,第二焊接机械手18夹持第二激光焊接头15沿着焊接轨迹移动,实施远程激光热传导焊接,获得激光热传导焊缝23,深熔焊熔池20和激光热传导焊熔池25冷却后共同形成接头。Step 8, the
可选地,激光热传导焊接熔深δ为1 ~2.5 mm。Optionally, the laser heat conduction welding penetration δ is 1 to 2.5 mm.
步骤9,当第一激光束10移动到焊接末端点时,控制一拖二光闸5,关闭第一激光束10,关闭气体保护装置12,完成激光深熔焊接。Step 9, when the
步骤10,当第二激光束17移动到焊接末端点时,控制一拖二光闸5,关闭第二激光束17,完成激光热传导焊接。In
步骤11,关闭激光发生器5,第一焊接机械手7和第二焊接机械手18回到原位,完成焊接过程。
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911387382.7A CN111085780A (en) | 2019-12-30 | 2019-12-30 | Laser welding method for metal container |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911387382.7A CN111085780A (en) | 2019-12-30 | 2019-12-30 | Laser welding method for metal container |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111085780A true CN111085780A (en) | 2020-05-01 |
Family
ID=70398485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911387382.7A Withdrawn CN111085780A (en) | 2019-12-30 | 2019-12-30 | Laser welding method for metal container |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111085780A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112743234A (en) * | 2020-12-30 | 2021-05-04 | 长沙理工大学 | Method and system for welding magnesium alloy thick plate by high-power laser |
CN114951996A (en) * | 2022-05-27 | 2022-08-30 | 长沙理工大学 | A laser deep penetration welding method and system with co-modulation of laser energy in space and time |
CN115922061A (en) * | 2022-12-07 | 2023-04-07 | 长沙大科激光科技有限公司 | Copper-aluminum dissimilar metal lap welding method based on ultrasonic real-time measurement |
WO2024032054A1 (en) * | 2022-08-08 | 2024-02-15 | 深圳信息职业技术学院 | Multi-axis linkage laser superfinishing method and device |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1570939A1 (en) * | 2004-03-02 | 2005-09-07 | Howaldtswerke-Deutsche Werft GmbH | Submerged arc welding process |
CN102513708A (en) * | 2011-11-25 | 2012-06-27 | 湖南大学 | Active type integrating device of micro-pore monitoring and seam tracking in short-wavelength laser welding |
CN102909478A (en) * | 2011-08-02 | 2013-02-06 | 上海新力动力设备研究所 | Welding method for thick-wall small-diameter product |
CN105382417A (en) * | 2015-12-02 | 2016-03-09 | 中国航空工业集团公司北京航空制造工程研究所 | Different-mode laser welding method for aluminum-lithium alloy sheet T-shaped connector |
CN106181032A (en) * | 2016-07-29 | 2016-12-07 | 温州大学 | A kind of laser welding system and method |
CN107953032A (en) * | 2017-12-27 | 2018-04-24 | 长沙理工大学 | Laser welding method and system for zero-clearance galvanized steel sheet splice joint |
CN109954969A (en) * | 2019-03-29 | 2019-07-02 | 中国航空制造技术研究院 | The flexible switching method of Laser Deep Penetration Welding and laser post-treatment welding |
CN110434463A (en) * | 2019-08-23 | 2019-11-12 | 上海第一机床厂有限公司 | The method for laser welding of irradiation sample frame |
-
2019
- 2019-12-30 CN CN201911387382.7A patent/CN111085780A/en not_active Withdrawn
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1570939A1 (en) * | 2004-03-02 | 2005-09-07 | Howaldtswerke-Deutsche Werft GmbH | Submerged arc welding process |
CN102909478A (en) * | 2011-08-02 | 2013-02-06 | 上海新力动力设备研究所 | Welding method for thick-wall small-diameter product |
CN102513708A (en) * | 2011-11-25 | 2012-06-27 | 湖南大学 | Active type integrating device of micro-pore monitoring and seam tracking in short-wavelength laser welding |
CN105382417A (en) * | 2015-12-02 | 2016-03-09 | 中国航空工业集团公司北京航空制造工程研究所 | Different-mode laser welding method for aluminum-lithium alloy sheet T-shaped connector |
CN106181032A (en) * | 2016-07-29 | 2016-12-07 | 温州大学 | A kind of laser welding system and method |
CN107953032A (en) * | 2017-12-27 | 2018-04-24 | 长沙理工大学 | Laser welding method and system for zero-clearance galvanized steel sheet splice joint |
CN109954969A (en) * | 2019-03-29 | 2019-07-02 | 中国航空制造技术研究院 | The flexible switching method of Laser Deep Penetration Welding and laser post-treatment welding |
CN110434463A (en) * | 2019-08-23 | 2019-11-12 | 上海第一机床厂有限公司 | The method for laser welding of irradiation sample frame |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112743234A (en) * | 2020-12-30 | 2021-05-04 | 长沙理工大学 | Method and system for welding magnesium alloy thick plate by high-power laser |
CN114951996A (en) * | 2022-05-27 | 2022-08-30 | 长沙理工大学 | A laser deep penetration welding method and system with co-modulation of laser energy in space and time |
CN114951996B (en) * | 2022-05-27 | 2024-03-22 | 长沙理工大学 | Laser energy space-time cooperative modulation laser deep-melting welding method and system |
WO2024032054A1 (en) * | 2022-08-08 | 2024-02-15 | 深圳信息职业技术学院 | Multi-axis linkage laser superfinishing method and device |
CN115922061A (en) * | 2022-12-07 | 2023-04-07 | 长沙大科激光科技有限公司 | Copper-aluminum dissimilar metal lap welding method based on ultrasonic real-time measurement |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111085780A (en) | Laser welding method for metal container | |
US5624585A (en) | Method and apparatus for welding material by laser beam | |
US20160354867A1 (en) | Laser welding method | |
JP6155183B2 (en) | Narrow groove laser welding method | |
US7858900B2 (en) | Laser welding process | |
CN104801852A (en) | Beam splitting double-focus-point laser processing head | |
CN105583523A (en) | Method for deep penetration laser welding of plate under assistance of ultrasound | |
CN102500936A (en) | High-strength steel resistance and laser combined spot welding method | |
CN115351420A (en) | A kind of laser modification welding method | |
CN105499794A (en) | Welding device with laser double-beam light path system | |
Mei et al. | Impact of inter-sheet gaps on laser overlap welding performance for galvanised steel | |
CN101249587A (en) | A device for reducing pores in laser welding of 1420 Al-Li alloy | |
JPH10272586A (en) | Laser butt welding method and apparatus for metal tube | |
Danielewski et al. | Numerical analysis of laser-welded flange pipe joints in lap and fillet configurations | |
CN109332897A (en) | A kind of laser welding method of medium and thick plate | |
IT9083342A1 (en) | WELDING PROCEDURE FOR METAL BEAMS AND METAL BEAMS SO OBTAINED | |
JPS59232690A (en) | Welding method | |
CN107498177B (en) | Non-penetration laser welding method and system | |
CN111001934A (en) | A welding method and system for suppressing porosity in laser welding | |
CN116423041A (en) | A multi-focus laser welding method for axial point ring | |
KR102408420B1 (en) | Bonding method of sandwich plates | |
CN214185730U (en) | A laser welding system | |
JPH07323386A (en) | Laser welding method | |
JP3398128B2 (en) | Laser welding method | |
JPH0199789A (en) | Manufacture of welded pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20200501 |
|
WW01 | Invention patent application withdrawn after publication |