[go: up one dir, main page]

CN111072761A - 促进枇杷成花转变的EjSPL5基因及其编码蛋白与应用 - Google Patents

促进枇杷成花转变的EjSPL5基因及其编码蛋白与应用 Download PDF

Info

Publication number
CN111072761A
CN111072761A CN202010023699.9A CN202010023699A CN111072761A CN 111072761 A CN111072761 A CN 111072761A CN 202010023699 A CN202010023699 A CN 202010023699A CN 111072761 A CN111072761 A CN 111072761A
Authority
CN
China
Prior art keywords
gene
ejspl5
loquat
flowering
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010023699.9A
Other languages
English (en)
Other versions
CN111072761B (zh
Inventor
景丹龙
孙伟雄
刘新亚
梁国鲁
郭启高
夏燕
何桥
欧阳玉洁
郭艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest University
Original Assignee
Southwest University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest University filed Critical Southwest University
Priority to CN202010023699.9A priority Critical patent/CN111072761B/zh
Publication of CN111072761A publication Critical patent/CN111072761A/zh
Application granted granted Critical
Publication of CN111072761B publication Critical patent/CN111072761B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • C12N15/827Flower development or morphology, e.g. flowering promoting factor [FPF]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Physiology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明属于植物分子生物学领域,具体涉及一个促进枇杷成花转变的EjSPL5基因及其应用。EjSPL5基因cDNA的编码区序列全长如SEQ ID No.1所示,其编码蛋白质的氨基酸序列,如SEQ ID No.2所示。本发明的EjSPL5基因的编码蛋白定位于细胞核,具有典型的转录因子特性。该基因在枇杷由营养生长向生殖生长的成花转变期中的表达量最高。进一步将EjSPL5基因过表达载体转入野生型拟南芥中过量表达,转基因野生型拟南芥中过量表达EjSPL5基因,能显著提前拟南芥成花转变。利用EjSPL5基因过表达载体获得的转基因植物材料,能显著促进植物的成花转变和开花时间,进而提前植物开花和结果时间,可用于植物早花早熟品种的定向选育,具有良好的应用前景。

Description

促进枇杷成花转变的EjSPL5基因及其编码蛋白与应用
技术领域
本发明属于植物分子生物学领域,具体涉及一个枇杷EjSPL5蛋白及其编码基因和应用。
背景技术
枇杷(Eriobotrya japonica Lindl.)为蔷薇科枇杷属亚热带常绿果树,是我国南方重要的果树之一。因其果肉鲜嫩多汁、营养丰富以及药用价值而深受消费者喜爱。目前,枇杷作为春季上市较早的鲜果之一,果实成熟期越早,其经济效益越高,因此早花枇杷品种选育是枇杷育种的重要方向之一。同时,成花转变时期提前是促进提前开花和果实早熟的因素之一。
SPL(Squamosa promoter binding protein-like)基因编码植物特有的一类转录调控因子。在拟南芥中,分离得到的SBP-box基因被命名为SPL基因,同时SPL基因在开花过程中扮演重要作用。拟南芥SPL基因家族共有30多个成员,包括编码蛋白分子量较小的SPL3、SPL4、SPL5、SPL9和SPL15等。其中,SPL5参与诱导植物在长日照条件下开花。在花发育调控网络中,SPL5将内源性衰老信号和光周期信号整合到调控拟南芥开花的蛋白复合物中。同时,SPL5基因也受到SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1(SOC1)和赤霉素(GA)信号的调控。在短日照条件下,GA信号激活SOC1基因,而SOC1直接诱导SPL5基因表达。在该调控网络中,SPL5-SOC1复合物通过整合光周期和GA信号,促进拟南芥成花转变和开花时间。目前,SPL5基因研究主要集中在模式植物的花发育调控过程中,但是枇杷SPL5同源基因(EjSPL5)的功能研究和应用尚未见报道。
发明内容
本发明目的是提供枇杷EjSPL5蛋白及其编码基因与应用。
首先,本发明提供枇杷EjSPL5蛋白,其为:
1)由SEQ ID No.2所示的氨基酸组成的蛋白质;或
2)在SEQ ID No.2所示的氨基酸序列中经取代、缺失或添加一个或几个氨基酸且具有同等活性的由1)衍生的蛋白质。
本发明还提供编码所述的枇杷EjSPL5蛋白的基因。
所述基因序列如SEQ ID No.1所示。
本发明还提供含有所述基因的过表达载体,宿主细胞和工程菌。
本发明还提供所述基因在调控被子植物成花转变和提前开花中用途。
在本发明一个实施方案中,将所述EjSPL5基因转入被子植物基因组中,并在转基因植物中超量表达,能促进转基因植物成花转变,进而提前开花结果。
本发明还提供一种转基因植株的构建方法,采用农杆菌介导的方法,将含有所述EjSPL5基因的过表达载体转入植物基因组中,筛选获得转基因植株。
其中,所述的转基因植株与野生型相比,显著促进其成花转变并提前开花。
本发明从枇杷花芽中分离了1个枇杷成花转变和开花时间调控密切相关的EjSPL5基因,发现其编码的蛋白定位于细胞核,具有典型的转录因子特性。通过实时荧光定量PCR证实了该基因在枇杷成花转变期的表达量最高,而在营养生长期、花蕾露白期和盛花期的表达量较低,表明EjSPL5基因的表达量具有促进枇杷成花转变期和花芽分化的作用。利用基因工程手段构建了EjSPL5基因的植物过表达载体,将其转入野生型拟南芥中过量表达,能显著促进植物的成花转变,进而促进植物的开花和结果时间。本发明为被子植物花期的改造提供了很好的应用前景。
附图说明
图1是实施例1枇杷EjSPL5基因的3'RACE、5'RACE和基因编码区序列验证的电泳照片。其中,A是3'RACE的电泳照片,M为DL2000 DNA marker,EjSPL5-3R为3'RACE的PCR产物;B是5'RACE的电泳照片,M为DL2000 DNA marker,EjSPL5-5R为5'RACE的PCR产物;C为EjSPL5基因ORF验证的PCR电泳照片,M为DL2000 DNA marker,EjSPL5-ORF为EjSPL5基因ORF的PCR产物。
图2是枇杷EjSPL5蛋白质的氨基酸序列与预测的苹果和拟南芥的蛋白序列对比,该蛋白序列与其近缘物种苹果及模式植物拟南芥的序列相比,序列差异明显但结构域序列呈现出保守性,表明了该蛋白序列的特异性和结构域的保守性。
图3是枇杷EjSPL5基因在烟草叶片中瞬时表达,显示该基因的表达产物定位于细胞核。GFP:绿色荧光蛋白;DAPI:4,6-联脒-2-苯基吲哚;BF:明场成像;Merged:GFP,DAPI和BF的合并后的图像。
图4是枇杷EjSPL5基因在枇杷不同器官的表达显示出显著差异。
图5是枇杷EjSPL5基因在枇杷花不同发育时期的表达量变化。
图6是转基因拟南芥植株的PCR鉴定。其中M是为DNA marker III,1-12是EjSPL5基因的转基因拟南芥株系。
图7是EjSPL5转基因前后的野生型拟南芥的开花时间照片和EjSPL5基因表达分析。其中,A为与未转基因野生型拟南芥中相比,过量表达EjSPL5基因能导致转基因拟南芥成花转变和开花时间均提前了15天左右;B是转基因拟南芥内源的SPL5基因表达量;C是转基因拟南芥的EjSPL5基因表达量。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。若未特别指明,实施例均按照常规实验条件,如Sambrook等分子克隆实验手册(Sambrook J&Russell DW,Molecular cloning:a laboratory manual,2001),或按照制造厂商说明书建议的条件。
实施例1枇杷EjSPL5基因cDNA序列的克隆
枇杷花芽总RNA的提取
采集新鲜长度约0.5cm的枇杷成花转变期的花芽,迅速取样后,放入冻存管中,放入液氮中速冻2h后,然后放入-80℃超低温冰箱中待用。采用RNA提取试剂盒提取枇杷花芽中的总RNA:从-80℃超低温冰箱中取出收集的花芽材料,放入预先冷冻并且加有2mL RLT裂解液和200μL PLANTaid的研钵中,在室温条件下,充分研磨;吸取上述研磨液1mL转移至1.5mL的eppendorf离心管中,13000rpm离心15min后,吸取600μL上清液,转移至新的1.5mL离心管;向上清液中加入300μL无水酒精,吸打混匀后,加入吸附柱中,然后将吸附柱放入收集管;向吸附柱中加入600μL去蛋白液,13000rpm离心1min后;加入600μL漂洗液,13000rpm离心1min后,倒掉收集管中的废液,再次重复一次加入漂洗液并13000rpm离心2min;将吸附柱重新放回空收集管中,13000rpm空离心2min,去除残留的漂洗液,将吸附柱在超净工作台中放置2min,使残留的漂洗液挥发;将吸附柱放回至空的RNase-free离心管中,加入50μL的Rnase-free H2O,室温放置2min,接着13000rpm离心2min;再次将第一次的洗脱液再次加入到吸附柱中,再离心一次,以提高RNA浓度。吸取2μL稀释后的RNA样品,用微量核酸浓度检测仪检测RNA浓度。
枇杷EjSPL5基因的3'RACE实验
采用枇杷花芽总RNA为3'RACE实验模板,以3'RACE Adaptor为接头引物进行逆转录反应,合成3'RACE实验的第一链cDNA。具体操作为:吸取总RNA 1μL,3'RACE Adaptor 1μL,DEPC-ddH2O4.5μL,混合均匀后,在70℃条件下,变性10min后,冰浴2min;RNA变性反应结束后,依次加入RNase inhibitor 0.25μL,10mM dNTP 1μL,5×M-MLV buffer 2μL,M-MLV0.25μL,混合均匀后,置于42℃条件下,反应90min;接着,在70℃条件下,反应10min;冰浴2min,然后放置在-20℃条件下,保存待用。
根据NCBI网站公布的预测的亲缘关系较近的苹果MdSPL5同源基因(HM122688.1)和拟南芥SPL5基因(NM_112390.5)序列的保守区域,直接设计3′RACE实验的上游特异性引物3REjSPL5F,3REjSPL5F:5′-GACGGTGTCAGGCGGACAGGTGCAC-3′。以3'RACE逆转录产物为模板,使用高保真EX-taq酶,上游外侧特异性引物3REjSPL5F1和3'RACE Outer Primer:5'-TACCGTCGTTCCACTAGTGATTT-3',进行PCR反应,反应条件为94℃5min;94℃40s,56℃40s,72℃40s,进行35个循环;72℃10min。PCR反应结束后,通过1%琼脂糖凝胶电泳检测(图1A),切下目的条带,按照说明书用琼脂糖凝胶DNA回收试剂盒回收PCR产物。将回收的PCR产物连接到pMD18-T载体后,转入大肠杆菌感受态细胞中,挑取单克隆菌落,进行测序。
枇杷EjEjSPL5基因的5'RACE实验
根据同源基因序列,设计5′RACE实验的特异性引物5REjSPL5-1和5REjSPL5-2,其中5REjSPL5-1:5′-CGCATACATCCTTGAACTGAGTCCCTG-3′,5REjSPL5-2:5′-GTCCTGCCAGACGCCTGCGACAACTCC-3′。根据5'RACE实验操作步骤:第一链合成,首先配制Buffer Mix,即依次加入1.0μL的dNTP Mix(10mM),2.0μL的5×First-strand Buffer,1.0μL的DTT(20mM),混合均匀,室温放置。
在200μL的eppendorf管,加入1.0μL总RNA,1.0μL的5’-CDS primer A,1.75μL的H2O,混合均匀,瞬时离心后,72℃3min,冷却至42℃2min,冷却后,14000g离心10s,加入1μL的SMARTER IIA oligo,1.0μL的SMARTscrube Reverse Transcriptese(100U),4.0μL的Buffer Mix,0.25μL的RNase inhibitor(400U/μL),总体积10μL,混合均匀,瞬时离心后,42℃反应90min,70℃变性10min,获得control 5’-RACE-Ready cDNA。
5'RACE扩增体系:34.5μL的PCR-Grade water,5.0μL的10×Advantage 2PCRBuffer,1.0μL的50×Advantage 2polymerase Mix,1.0μL的dNTP Mix,2.5μL的control5’-RACE-Ready cDNA,1.0μL的5REjSPL5-1引物,5.0μL的UPM(10×)。降落PCR的程序为:95℃30s,72℃3min,5个循环;95℃30s,70℃30s,5个循环;72℃3min,95℃30s,68℃30s,30个循环;72℃5min。PCR反应结束后,以第一链5'RACE的PCR反应产物为模板,使用高保真LA-taq酶,上游外侧特异性引物5REjSPL5-2和UPM Primer,进行第二链PCR反应,反应程序为95℃5min;94℃30s,56℃30s,72℃30s,进行30个循环;72℃10min。PCR反应结束后,用1%琼脂糖凝胶电泳检测第二链的PCR反应(图1B)。切下目的条带,用琼脂糖凝胶DNA回收试剂盒回收PCR产物。连接到pMD18-T载体后,转入大肠杆菌感受态细胞中,挑取单克隆,进行测序分析。
在枇杷EjSPL5基因序列全长两端设计引物FEjSPL5F:5'-ATGAGTAAGTTGGACTTGAACAAGC-3'和FEjSPL5R:5'-TTATCTGATATGGAAATGCTTTGTG-3',反应条件为94℃5min;94℃60s,57℃60s,72℃60s,进行30个循环;72℃10min。PCR反应结束后,利用1%琼脂糖凝胶电泳检测后,切下目的条带(图1C),用琼脂糖凝胶DNA回收试剂盒回收PCR产物。连接到pMD18-T载体后,转入大肠杆菌感受态细胞中,挑取单克隆,进行测序,对EjSPL5基因的编码区序列进行验证。
使用DNAMAN软件对3'RACE、5'RACE和编码区序列验证实验的PCR测序结果,进行序列分析和拼接,得到枇杷EjSPL5基因cDNA的编码区序列(SEQ ID No.1)。
使用primer 5软件,对枇杷EjSPL5基因的cDNA的编码区序列,进行蛋白质序列翻译(SEQ ID No.2)。进一步,将枇杷EjSPL5基因,编码蛋白质的氨基酸序列与预测的苹果、拟南芥和金鱼草的序列对比,该蛋白序列与其近缘物种及其他被子植物的序列相比,氨基酸序列差异明显,同时也存在保守的两个锌指结构域和核定位信号结构域,表明了该蛋白序列的特异性和结构域的保守性(图2)。
实施例2枇杷Ej SPL5基因的亚细胞定位分析
利用软件Oligo7对EjSPL5基因的ORF序列进行酶切位点分析,并设计两端的酶切位点引物,EjSPL5-SacI:5'-cgagctcATGAGTAAGTTGGACTTG-3';EjSPL5-BamHI:5'-cgggatccTCTGATATGGAAATGC-3'。以测序正确的pMD18-EjSPL5质粒为模板进行扩增,得到含有SacI和BamHI酶切位点的EjSPL5基因ORF序列。分别提取目的基因和改造的载体pCAMBIA1300质粒,用限制性内切酶SacI和BamHI分别进行双酶切反应,经琼脂糖凝胶电泳后进行回收。利用T4 DNA连接酶将双酶切后的目的基因EjSPL5和改造的pCAMBIA1300载体进行连接,并将重组载体转入大肠杆菌感受态细胞中,之后进行菌液PCR和双酶切验证后进行测序,确保目的基因序列成功连接到载体。提取构建好的载体质粒通过冻融法转入农杆菌GV1301感受态细胞。
从固体LB培养基平板上挑取农杆菌的单克隆菌落,接种至10mL液体培养基(含Rif+kan)中,28℃,250rpm培养至OD600=0.5。取5mL培养液离心10min收集菌体,然后加入2mL渗透液重新悬浮菌体,接着离心10min加入2mL渗透液悬浮菌体。最后稀释成OD600=0.03~0.1后进行烟草叶片的转化,转化后的烟草弱光培养16h后,恢复正常生长,3-4d后进行GFP荧光的观察(图3)。
对照组(未含EjSPL5的表达载体)的烟草表皮细胞里的绿色荧光蛋白在细胞质和细胞核中均有表达;而实验组(含EjSPL5基因的表达载体)在烟草表皮细胞里的绿色荧光蛋白仅在细胞核中均有表达,具有典型的转录因子特性。
实施例3枇杷EjSPL5基因的实时荧光定量PCR分析
分别提取枇杷茎、叶、叶芽、萼片、花瓣、花丝、花药、雌蕊、子房和幼果的总RNA;同时分别提取枇杷花发育的8个不同时期材料的RNA(S1.花芽的生理分化期;S2.成花转变期(营养生长向生殖生长的花芽形态分化期);S3.花序主轴分化期;S4.花序支轴分化期;S5.花序侧生支轴快速伸长期;S6.小花分化期;S7.花蕾露白期;S8.盛花期)。分别去除总RNA中微量的DNA后,逆转录成cDNA。根据枇杷cDNA为模板,利用oligo 7.0软件设计实时荧光定量PCR引物qEjSPL5F:5'-CACGGCTGATCTGAGTGAAGA-3'和qEjSPL5R:5'-TCGTTCATTGTGTCCTGCCA-3'。以枇杷actin基因为内参基因,引物为qRTEjactinF:5'-AATGGAACTGGAATGGTCAAGGC-3'和qRTEjactinR:5'-TGCCAGATCTTCTCCATGTCATCCCA-3',用PCR对其特异性进行检测,在确保PCR特异性扩增前提下,进行实时荧光定量PCR实验,每个反应设置3个生物学重复。PCR反应程序为:94℃预变性5min;94℃20s,55℃20s,72℃20s,41个循环,接着,采集溶解曲线:将温度调至60℃,90s,预溶解;接着以1.0℃/s速度升温,每升温1℃保温5s,直至95℃。结果显示:在枇杷不同组织和器官中,EjSPL5均有表达,并且表达量存在显著差异(图4)。在萼片和幼果中表达量较高;而在花瓣、子房和花丝中的表达量较低(图4),表明EjSPL5基因的表达量具有显著差异。在花发育不同阶段,EjSPL5的表达主要集中在花发育的前6个时期,EjSPL5的表达量呈现先上升后下降的趋势,而在成花转变期的表达量最高(图5),表明EjSPL5基因与枇杷的顶芽向花芽分化的成花转变密切相关。
实施例4枇杷EjSPL5基因的植物转基因载体pBI121-EjSPL5构建
采用PCR扩增手段,在枇杷EjSPL5基因的CDS区两端引入酶切位点。以枇杷花芽总RNA逆转录的cDNA为模板,以TEjSPL5F:5′-TCTAGAATGAGTAAGTTGGACTTG-3′(引入XbaⅠ酶切位点)和TEjSPL5R:5′-CCCGGGTTATCTGATATGGAAATGC-3′(引入SmaⅠ酶切位点)为引物,使用Ex-taq酶,进行PCR扩增。PCR反应程序:94℃5min;94℃40s,56℃40s,72℃40s,进行30个循环;72℃10min。PCR反应结束后,对PCR产物进行1%琼脂糖凝胶电泳,使用琼脂糖凝胶DNA回收试剂盒回收PCR产物。将回收的PCR产物与pMD18-T载体连接,转入大肠杆菌感受态细胞,挑取单克隆后,进行测序。根据测序结果分析,提取质粒。使用XbaⅠ和SmaⅠ限制性内切酶分别双酶切pMD18-EjSPL5重组质粒和pBI121载体,通过1%琼脂糖凝胶电泳检测,利用琼脂糖凝胶DNA回收试剂盒回收。使用T4 DNA连接酶将双酶切后的EjSPL5基因与pBI121连接后,转入大肠杆菌感受态细胞,获得植物转基因表达载体pBI121-EjSPL5。
实施例5将转基因表达载体pBI121-EjSPL5转入拟南芥
取1μg的pBI121-EjSPL5质粒,加入50μL农杆菌感受态细胞,混合均匀;冰浴10min,转入液氮,迅速冷冻2min,快速置于37℃,水浴10min;加入800μL的LB液体培养基,28℃、250rpm振荡5h;将菌液转移至LB(50mL LB+50μg/mL Kan+50μg/mL Rif)固体选择培养基中,涂布均匀,在28℃条件下倒置培养48h。
将含有pBI121-EjSPL5阳性克隆的农杆菌在25mL固体平板培养基(含有25μg/mLKan+25μg/mL Rif)上划线,28℃,倒置培养48h;选取单克隆,接种到10mL的液体LB培养基(含有10μg/mL Kan+10μg/mL Rif)中;在28℃、250rpm条件下,振荡培养过夜至OD=0.7-0.8。取1mL的培养菌液均匀涂布在25mL固体LB培养基平板(含有25μg/mL Kan+25μg/mLRif)上,28℃,倒置培养48h;利用灭菌的玻璃三角棒将固体培养基上的农杆菌刮下来,将菌块重悬于含有5%蔗糖和3%Silwet L-77的1/2MS液体培养基中,使其OD=0.2,用于拟南芥转基因。
将拟南芥种子放在湿润的滤纸上,并置于4℃,48h,接着播种至营养土(珍珠岩:蛭石:营养土=1:4:5),在温度22℃,湿度70%,14h光照/10h黑暗条件下,培养;转基因前,将拟南芥(购自拟南芥突变体库)植株浇透水;在浸染时将待用的拟南芥植株上已有角果剪掉,将花芽浸入PBI121-EjSPL5农杆菌浸染液约90s;罩上黑色封口膜,并保持膜内的高温和高湿环境,暗培养2d后,揭开薄膜;上述方法侵染4次,间隔时间为7d。
实施例6枇杷EjSPL5基因的转基因拟南芥筛选和表型鉴定
收取EjSPL5转基因拟南芥成熟种子,将种子处理干净。置于4℃冰箱中进行春化处理14d;将拟南芥种子放入收集管中,向种子中加入800μL无水乙醇,摇动6min;离心5000rpm,2min;倒掉收集管中的酒精,向收集管中加入800μL 70%乙醇,摇晃5min;离心5000rpm,2min;晾干种子;均匀铺在1/2MS培养基(pH=5.8,含50μg/mL的Kan,3%蔗糖和0.8%琼脂)平板上。将接种后的平板放入到4℃冰箱,进行再春化处理2d;将春化后的种子置于人工气候箱中,进行正常培养。待其长出6片真叶后,将其移至营养土中,经过炼苗、壮苗后,按照常规的水肥管理,直至开花。
提取EjSPL5转基因拟南芥DNA,取1小片拟南芥的叶片置于1.5mL的eppendorf管中,放入液氮速冻,研磨;加入600μL提取缓冲液,涡旋震荡后,置于冰上;待所有样品处理完后,置于65℃水浴中,25min;将样品从水浴中取出,放置到室温,待冷却至室温后,加入340μL乙酸钾溶液,涡旋震荡,冰浴20min;13000rpm,高速离心5min,将上清液转移至新的eppendorf管中;加等量体积的异丙醇,4℃,13000rpm,离心10min,倒掉清液,用冰无水乙醇(提前2h将无水乙醇放入-20℃冰箱)漂洗;沉淀依次用70%、100%乙醇漂洗;沉淀吹干后,溶于50μL无菌水。
分别以未转基因野生型拟南芥叶片(阴性对照)和筛选后的转基因拟南芥叶片DNA为模板,同时以pBI121-EjSPL5质粒作为阳性对照的模板,使用TEjSPL5F和TEjSPL5R作为引物,进行PCR分析,结果显示共获得12株阳性的EjSPL5转基因野生型拟南芥植株(图6)。在这些转基因株系中,随机挑选了3株转基因株系进行开花时间的表型鉴定分析,对这3个代表性转基因拟南芥的开花时间表型进行观察、统计和拍照(图7A)。进一步使用实时荧光定量引物qEjSPL5F2:5′-TGCTTGTCTCTGGCCTCCAC-3′和qEjSPL5R2:5′-TGAATTTCCTGGAAGCTGTCATC-3′,以及拟南芥SPL5基因和内参基因作为对照,拟南芥actinTUB2-F:5′-ATCCGTGAAGAGTACCCAGAT-3′;TUB2-R:5′-AAGAACCATGCACTCATCAGC-3′;qAtSPL5-F:5′-CGACTGTTGCAGGGGTCAGG-3′;qAtSPL5-R:5′-GAGTTGGTCATAGGAAGTTTCCT-3′。以未转基因野生型拟南芥的cDNA作为对照,以3株转基因株系作为实验组进行进行EjSPL5基因和内源SPL5基因的表达量进行分析。
结果显示:与野生型拟南芥相比,与未转基因野生型拟南芥中相比,过量表达EjSPL5基因能导致转基因拟南芥成花转变和开花时间均提前了15天左右(图7A)。转基因拟南芥的SPL5和EjSPL5基因表达分析发现,与未转基因野生型拟南芥中相比,这些拟南芥自身的内源SPL5基因表达量并未显著变化(图7B),而促进成花转变和开花时间的转基因拟南芥的EjSPL5基因显著高表达(图7C)。因此,结果表明:EjSPL5基因表达导致拟南芥成花转变和开花提前,EjSPL5基因的转基因拟南芥材料可用于植物开花时间的改造,促使植物成花转变和开花时间提前,进而有效促进植物的果实成熟时间提前,有利于早花早熟品种的选育。
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。
序列表
<110> 西南大学
<120> 促进枇杷成花转变的EjSPL5基因及其编码蛋白与应用
<160> 22
<170> SIPOSequenceListing 1.0
<210> 1
<211> 778
<212> DNA
<213> 枇杷(Eriobotrya japonica )
<400> 1
acatgggatc cattgatgga gaggatgagt aagttggact tgaacaagca gatgagggag 60
aagccgcggg tggtggcggt ggtgaagaag gaggaggagg attttgatga tgagctgcaa 120
gtggacagga agaaaaaagg aggcgtgaag agatcgttgt cctcgtcctc gtcatccggt 180
ggaggaggag gcggcgcaat gagacggtgt caggcggaca ggtgcacggc tgatctgagt 240
gaagaaaagc agtatcatag aaagcataag gtttgtgacc ttcattccaa gtctcaggtt 300
gtgcttgtct ctggcctcca ccaaaggttt tgccagcaat gcagcagatt tcatcagcta 360
ccagaattcg acgacaccaa aaggagttgt cgcaggcgtc tggcaggaca caatgaacga 420
cgaaggaaga atccagcgga gtctcatgca gtagaaggct caagccgaaa tgttggtgca 480
gggactcagt tcaaggatgt atgcgggcag gtcgatgaca gcttccagga aattcaactc 540
acaaagcatt tccatatcag ataagattta gagcaagcat gctcactctc ttctgtcagc 600
ttaattagag atgcataatt attagatgtt ggatatttgg cttgtaacaa aatcaatttc 660
atggagtgtg tgtgctagga ttgctgttaa ccggctgtag gaaggtatca aaactaccaa 720
gtgatttagc tagctctata actaatataa tttgcaagat taaaaaaaaa aaaaaaaa 778
<210> 2
<211> 182
<212> PRT
<213> 枇杷(Eriobotrya japonica )
<400> 2
Met Glu Arg Met Ser Lys Leu Asp Leu Asn Lys Gln Met Arg Glu Lys
1 5 10 15
Pro Arg Val Val Ala Val Val Lys Lys Glu Glu Glu Asp Phe Asp Asp
20 25 30
Glu Leu Gln Val Asp Arg Lys Lys Lys Gly Gly Val Lys Arg Ser Leu
35 40 45
Ser Ser Ser Ser Ser Ser Gly Gly Gly Gly Gly Gly Ala Met Arg Arg
50 55 60
Cys Gln Ala Asp Arg Cys Thr Ala Asp Leu Ser Glu Glu Lys Gln Tyr
65 70 75 80
His Arg Lys His Lys Val Cys Asp Leu His Ser Lys Ser Gln Val Val
85 90 95
Leu Val Ser Gly Leu His Gln Arg Phe Cys Gln Gln Cys Ser Arg Phe
100 105 110
His Gln Leu Pro Glu Phe Asp Asp Thr Lys Arg Ser Cys Arg Arg Arg
115 120 125
Leu Ala Gly His Asn Glu Arg Arg Arg Lys Asn Pro Ala Glu Ser His
130 135 140
Ala Val Glu Gly Ser Ser Arg Asn Val Gly Ala Gly Thr Gln Phe Lys
145 150 155 160
Asp Val Cys Gly Gln Val Asp Asp Ser Phe Gln Glu Ile Gln Leu Thr
165 170 175
Lys His Phe His Ile Arg
180
<210> 3
<211> 25
<212> DNA
<213> 枇杷(Eriobotrya japonica )
<400> 3
gacggtgtca ggcggacagg tgcac 25
<210> 4
<211> 23
<212> DNA
<213> 枇杷(Eriobotrya japonica )
<400> 4
taccgtcgtt ccactagtga ttt 23
<210> 5
<211> 27
<212> DNA
<213> 枇杷(Eriobotrya japonica )
<400> 5
cgcatacatc cttgaactga gtccctg 27
<210> 6
<211> 27
<212> DNA
<213> 枇杷(Eriobotrya japonica )
<400> 6
gtcctgccag acgcctgcga caactcc 27
<210> 7
<211> 25
<212> DNA
<213> 枇杷(Eriobotrya japonica )
<400> 7
atgagtaagt tggacttgaa caagc 25
<210> 8
<211> 25
<212> DNA
<213> 枇杷(Eriobotrya japonica )
<400> 8
ttatctgata tggaaatgct ttgtg 25
<210> 9
<211> 25
<212> DNA
<213> 枇杷(Eriobotrya japonica )
<400> 9
cgagctcatg agtaagttgg acttg 25
<210> 10
<211> 24
<212> DNA
<213> 枇杷(Eriobotrya japonica )
<400> 10
cgggatcctc tgatatggaa atgc 24
<210> 11
<211> 21
<212> DNA
<213> 枇杷(Eriobotrya japonica )
<400> 11
cacggctgat ctgagtgaag a 21
<210> 12
<211> 20
<212> DNA
<213> 枇杷(Eriobotrya japonica )
<400> 12
tcgttcattg tgtcctgcca 20
<210> 13
<211> 20
<212> DNA
<213> 枇杷(Eriobotrya japonica )
<400> 13
aatggaactg gaatggtcaa 20
<210> 14
<211> 26
<212> DNA
<213> 枇杷(Eriobotrya japonica )
<400> 14
tgccagatct tctccatgtc atccca 26
<210> 15
<211> 24
<212> DNA
<213> 枇杷(Eriobotrya japonica )
<400> 15
tctagaatga gtaagttgga cttg 24
<210> 16
<211> 25
<212> DNA
<213> 枇杷(Eriobotrya japonica )
<400> 16
cccgggttat ctgatatgga aatgc 25
<210> 17
<211> 20
<212> DNA
<213> 枇杷(Eriobotrya japonica )
<400> 17
tgcttgtctc tggcctccac 20
<210> 18
<211> 23
<212> DNA
<213> 枇杷(Eriobotrya japonica )
<400> 18
tgaatttcct ggaagctgtc atc 23
<210> 19
<211> 21
<212> DNA
<213> 拟南芥(Arabidopsis thaliana)
<400> 19
atccgtgaag agtacccaga t 21
<210> 20
<211> 21
<212> DNA
<213> 拟南芥(Arabidopsis thaliana)
<400> 20
aagaaccatg cactcatcag c 21
<210> 21
<211> 20
<212> DNA
<213> 拟南芥(Arabidopsis thaliana)
<400> 21
cgactgttgc aggggtcagg 20
<210> 22
<211> 23
<212> DNA
<213> 拟南芥(Arabidopsis thaliana)
<400> 22
gagttggtca taggaagttt cct 23

Claims (10)

1.枇杷EjSPL5蛋白,其为:
1)由SEQ ID No.2所示的氨基酸组成的蛋白质;或
2)在SEQ ID No.2所示的氨基酸序列中经取代、缺失或添加一个或几个氨基酸且具有同等活性的由1)衍生的蛋白质。
2.编码权利要求1所述的枇杷EjSPL5蛋白的基因。
3.如权利要求2所述的基因,其特征在于,序列如SEQ ID No.1所示。
4.含有权利要求2或3所述基因的载体。
5.含有权利要求4所述载体的宿主细胞。
6.含有权利要求2或3所述基因的工程菌。
7.权利要求2或3所述基因在调控被子植物成花转变和提前开花中用途。
8.如权利要求7所述的用途,其特征在于,将权利要求2或3所述EjSPL5基因转入被子植物基因组中,并在转基因植物中超量表达,能促进转基因植物成花转变,进而提前开花结果。
9.一种转基因植株的构建方法,采用农杆菌介导的方法,将含有权利要求2或3所述基因的过表达载体转入植物基因组中,筛选获得转基因植株。
10.如权利要求9所述的构建方法,其特征在于,所述的转基因植株与野生型相比,显著促进其成花转变并提前开花。
CN202010023699.9A 2020-01-09 2020-01-09 促进枇杷成花转变的EjSPL5基因及其编码蛋白与应用 Expired - Fee Related CN111072761B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010023699.9A CN111072761B (zh) 2020-01-09 2020-01-09 促进枇杷成花转变的EjSPL5基因及其编码蛋白与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010023699.9A CN111072761B (zh) 2020-01-09 2020-01-09 促进枇杷成花转变的EjSPL5基因及其编码蛋白与应用

Publications (2)

Publication Number Publication Date
CN111072761A true CN111072761A (zh) 2020-04-28
CN111072761B CN111072761B (zh) 2021-06-01

Family

ID=70322705

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010023699.9A Expired - Fee Related CN111072761B (zh) 2020-01-09 2020-01-09 促进枇杷成花转变的EjSPL5基因及其编码蛋白与应用

Country Status (1)

Country Link
CN (1) CN111072761B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114671932A (zh) * 2022-04-24 2022-06-28 西南大学 提早枇杷开花时间的EjAGL6基因及其编码蛋白与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008137108A2 (en) * 2007-05-03 2008-11-13 Basf Plant Science Gmbh Plants having enhanced yield-related traits and a method for making the same
CN103773796A (zh) * 2006-03-31 2014-05-07 巴斯福植物科学有限公司 具有增强的产量相关性状的植物和用于产生该植物的方法
US20160017356A1 (en) * 2003-06-06 2016-01-21 Arborgen Inc. Transcription factors
CN105566465A (zh) * 2014-10-15 2016-05-11 深圳市农科集团有限公司 一种玉米开花调控蛋白、编码基因及应用
CN106591320A (zh) * 2015-10-15 2017-04-26 东北林业大学 促进提前开花的白桦BplSPL1基因及其编码蛋白
CN108531506A (zh) * 2018-04-20 2018-09-14 中国农业科学院蔬菜花卉研究所 一种调控作物株型结构的方法及获得株型紧凑作物的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160017356A1 (en) * 2003-06-06 2016-01-21 Arborgen Inc. Transcription factors
CN103773796A (zh) * 2006-03-31 2014-05-07 巴斯福植物科学有限公司 具有增强的产量相关性状的植物和用于产生该植物的方法
WO2008137108A2 (en) * 2007-05-03 2008-11-13 Basf Plant Science Gmbh Plants having enhanced yield-related traits and a method for making the same
CN105566465A (zh) * 2014-10-15 2016-05-11 深圳市农科集团有限公司 一种玉米开花调控蛋白、编码基因及应用
CN106591320A (zh) * 2015-10-15 2017-04-26 东北林业大学 促进提前开花的白桦BplSPL1基因及其编码蛋白
CN108531506A (zh) * 2018-04-20 2018-09-14 中国农业科学院蔬菜花卉研究所 一种调控作物株型结构的方法及获得株型紧凑作物的方法

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
ALLAN,A.C. 等: ""Malus x domestica SPL domain class transcription factor (SPL5) mRNA, complete cds"", 《GENBANK》 *
DANLONG JING 等: ""An Integrative Analysis of Transcriptome, Proteome and Hormones Reveals Key Differentially Expressed Genes and Metabolic Pathways Involved in Flower Development in Loquat"", 《INT J MOL SCI》 *
MA,N. 等: ""SPL domain class transcription factor 5 [Malus hybrid cultivar]"", 《GENBANK》 *
NCBI: ""PREDICTED: Malus domestica squamosa promoter-binding-like protein 3 (LOC103444443), mRNA"", 《GENBANK》 *
WANG,F. 等: ""squamosa promoter-binding-like protein 3 [Pyrus ussuriensis x Pyrus communis]"", 《GENBANK》 *
YUANYUAN JIANG 等: ""The Role of EjSPL3, EjSPL4, EjSPL5, and EjSPL9 in Regulating Flowering in Loquat ( Eriobotrya japonica Lindl.)"", 《INT J MOL SCI》 *
孙伟雄 等: ""三倍体枇杷花期调控基因Ej SPL5的克隆、亚细胞定位及表达分析"", 《园艺学报》 *
张艺能 等: ""拟南芥开花时间调控的分子基础"", 《植物学报》 *
李巍 等: ""被子植物开花时间和花器官发育的表观遗传调控研究进展"", 《园艺学报》 *
樊胜 等: "" 苹果‘长富2号’开花调控转录因子基因MdSPL6的克隆及表达分析"", 《园艺学报》 *
潘晓璐 等: ""菠萝SPL基因家族全基因组鉴定及其在开花诱导中的表达分析"", 《分子植物育种》 *
田晶 等: "" SPL转录因子调控植物花发育及其分子机制研究进展"", 《南京林业大学学报(自然科学版)》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114671932A (zh) * 2022-04-24 2022-06-28 西南大学 提早枇杷开花时间的EjAGL6基因及其编码蛋白与应用
CN114671932B (zh) * 2022-04-24 2023-08-18 西南大学 提早枇杷开花时间的EjAGL6基因及其编码蛋白与应用

Also Published As

Publication number Publication date
CN111072761B (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
CN110669119B (zh) 调控枇杷开花时间的EjAGL17蛋白及其编码基因与应用
CN110845590B (zh) 野葡萄VyPPR基因及其编码蛋白在干旱胁迫中的应用
CN104031923B (zh) 一个山梨抗寒转录因子PubHLH及其应用
Xu et al. Heterogeneous expression of the cotton R2R3-MYB transcription factor GbMYB60 increases salt sensitivity in transgenic Arabidopsis
CN110872598B (zh) 一种棉花抗旱相关基因GhDT1及其应用
CN111072760B (zh) 延迟枇杷开花时间的EjFRI基因及其编码蛋白与应用
CN102329805A (zh) 一种水稻OsMYB基因的编码序列和应用
CN113150094B (zh) 枇杷花发育相关的EjAP2L基因及其编码蛋白与应用
CN109207484A (zh) 一种烟草尼古丁含量调控基因iaa27及其克隆方法与应用
WO2013166996A1 (zh) 一种提高植物抗逆境能力的基因及其用途
CN115960190B (zh) 枇杷EjGASA6基因及其编码的蛋白与应用
CN104710522A (zh) 与植物开花时间相关的蛋白及其编码基因与应用
CN110372782B (zh) 枇杷花器官发育相关转录因子EjPI蛋白及其编码基因与应用
CN111072761B (zh) 促进枇杷成花转变的EjSPL5基因及其编码蛋白与应用
CN103911384B (zh) 一种控制油菜菌核病的基因及其应用
CN102477435A (zh) 利用枳转录因子基因PtrABF提高植物抗旱能力
CN114671932B (zh) 提早枇杷开花时间的EjAGL6基因及其编码蛋白与应用
CN115838404B (zh) 调控枇杷花期的EjMYB44基因及其编码蛋白与应用
CN115948417B (zh) 一种大麦HvFRF1基因、蛋白、表达载体以及用途
CN110156882B (zh) 枇杷EjAP3基因及其编码的蛋白与应用
CN113214371B (zh) 枇杷抗旱相关的EjWRKY17基因及其编码蛋白与应用
CN110078805B (zh) 枇杷EjAG基因及其编码的蛋白与应用
CN105586347A (zh) 一种烟草干旱响应基因NtRDP1及其编码蛋白和应用
CN102604963A (zh) 柑橘早花基因PtELF5的分离克隆及应用
CN116083437A (zh) 大豆GmNAC56基因及其在大豆疫霉根腐病胁迫中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210601

Termination date: 20220109