CN111017868B - Preparation method and application of array structure silicon-based lattice - Google Patents
Preparation method and application of array structure silicon-based lattice Download PDFInfo
- Publication number
- CN111017868B CN111017868B CN201911148319.8A CN201911148319A CN111017868B CN 111017868 B CN111017868 B CN 111017868B CN 201911148319 A CN201911148319 A CN 201911148319A CN 111017868 B CN111017868 B CN 111017868B
- Authority
- CN
- China
- Prior art keywords
- micro
- silicon
- silicon wafer
- nano
- area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 230
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 230
- 239000010703 silicon Substances 0.000 title claims abstract description 230
- 238000002360 preparation method Methods 0.000 title claims abstract description 36
- 239000002086 nanomaterial Substances 0.000 claims abstract description 69
- 239000002077 nanosphere Substances 0.000 claims abstract description 65
- 238000000034 method Methods 0.000 claims abstract description 56
- 238000005530 etching Methods 0.000 claims abstract description 47
- 229920002120 photoresistant polymer Polymers 0.000 claims abstract description 39
- 238000001514 detection method Methods 0.000 claims abstract description 23
- 239000011159 matrix material Substances 0.000 claims abstract description 10
- 238000001069 Raman spectroscopy Methods 0.000 claims abstract description 7
- 239000010410 layer Substances 0.000 claims description 54
- 239000000463 material Substances 0.000 claims description 35
- 238000000206 photolithography Methods 0.000 claims description 35
- 229910052751 metal Inorganic materials 0.000 claims description 32
- 239000002184 metal Substances 0.000 claims description 32
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 18
- 239000011807 nanoball Substances 0.000 claims description 18
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 16
- 238000004949 mass spectrometry Methods 0.000 claims description 15
- 150000004767 nitrides Chemical class 0.000 claims description 13
- 229910044991 metal oxide Inorganic materials 0.000 claims description 12
- 150000004706 metal oxides Chemical class 0.000 claims description 12
- 229910052709 silver Inorganic materials 0.000 claims description 12
- 238000000151 deposition Methods 0.000 claims description 11
- 229910052737 gold Inorganic materials 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- 229910052759 nickel Inorganic materials 0.000 claims description 9
- 229910052697 platinum Inorganic materials 0.000 claims description 9
- 229920000642 polymer Polymers 0.000 claims description 9
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 9
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 8
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 8
- 229910052802 copper Inorganic materials 0.000 claims description 8
- 239000002356 single layer Substances 0.000 claims description 8
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 8
- 238000001840 matrix-assisted laser desorption--ionisation time-of-flight mass spectrometry Methods 0.000 claims description 7
- 238000004992 fast atom bombardment mass spectroscopy Methods 0.000 claims description 6
- 238000000434 field desorption mass spectrometry Methods 0.000 claims description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 5
- 239000003513 alkali Substances 0.000 claims description 5
- 238000003795 desorption Methods 0.000 claims description 5
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 claims description 4
- -1 polyethylene Polymers 0.000 claims description 4
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 claims description 3
- 239000004698 Polyethylene Substances 0.000 claims description 3
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 claims description 3
- 230000002093 peripheral effect Effects 0.000 claims description 3
- 229920001568 phenolic resin Polymers 0.000 claims description 3
- 239000005011 phenolic resin Substances 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 3
- 239000004800 polyvinyl chloride Substances 0.000 claims description 3
- 238000002451 electron ionisation mass spectrometry Methods 0.000 claims 1
- 238000001269 time-of-flight mass spectrometry Methods 0.000 claims 1
- 238000004528 spin coating Methods 0.000 abstract description 9
- 238000006555 catalytic reaction Methods 0.000 abstract 1
- 238000001819 mass spectrum Methods 0.000 abstract 1
- 238000001259 photo etching Methods 0.000 abstract 1
- 235000012431 wafers Nutrition 0.000 description 122
- 239000000243 solution Substances 0.000 description 39
- 239000004793 Polystyrene Substances 0.000 description 35
- 229920002223 polystyrene Polymers 0.000 description 32
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 28
- 239000000523 sample Substances 0.000 description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 23
- 238000010586 diagram Methods 0.000 description 17
- 238000009616 inductively coupled plasma Methods 0.000 description 17
- 238000005516 engineering process Methods 0.000 description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 15
- 239000006185 dispersion Substances 0.000 description 14
- 239000000377 silicon dioxide Substances 0.000 description 14
- 239000007864 aqueous solution Substances 0.000 description 9
- 238000001755 magnetron sputter deposition Methods 0.000 description 9
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 8
- 238000000137 annealing Methods 0.000 description 8
- 239000008367 deionised water Substances 0.000 description 8
- 229910021641 deionized water Inorganic materials 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000003517 fume Substances 0.000 description 5
- 238000001020 plasma etching Methods 0.000 description 5
- 235000012239 silicon dioxide Nutrition 0.000 description 5
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 238000003491 array Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 239000003344 environmental pollutant Substances 0.000 description 4
- 239000003292 glue Substances 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 231100000719 pollutant Toxicity 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000012491 analyte Substances 0.000 description 3
- 229910052793 cadmium Inorganic materials 0.000 description 3
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 239000002082 metal nanoparticle Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- WXTMDXOMEHJXQO-UHFFFAOYSA-N 2,5-dihydroxybenzoic acid Chemical compound OC(=O)C1=CC(O)=CC=C1O WXTMDXOMEHJXQO-UHFFFAOYSA-N 0.000 description 2
- BRARRAHGNDUELT-UHFFFAOYSA-N 3-hydroxypicolinic acid Chemical compound OC(=O)C1=NC=CC=C1O BRARRAHGNDUELT-UHFFFAOYSA-N 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- RWZYAGGXGHYGMB-UHFFFAOYSA-N anthranilic acid Chemical compound NC1=CC=CC=C1C(O)=O RWZYAGGXGHYGMB-UHFFFAOYSA-N 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000012742 biochemical analysis Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000002207 metabolite Substances 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 238000004377 microelectronic Methods 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 235000001968 nicotinic acid Nutrition 0.000 description 2
- 239000011664 nicotinic acid Substances 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 239000002777 nucleoside Substances 0.000 description 2
- 125000003835 nucleoside group Chemical group 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- 230000001699 photocatalysis Effects 0.000 description 2
- SIOXPEMLGUPBBT-UHFFFAOYSA-N picolinic acid Chemical compound OC(=O)C1=CC=CC=N1 SIOXPEMLGUPBBT-UHFFFAOYSA-N 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- BOOMHTFCWOJWFO-UHFFFAOYSA-N 3-aminopyridine-2-carboxylic acid Chemical compound NC1=CC=CN=C1C(O)=O BOOMHTFCWOJWFO-UHFFFAOYSA-N 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- 229910052789 astatine Inorganic materials 0.000 description 1
- 239000011805 ball Substances 0.000 description 1
- 238000005842 biochemical reaction Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000005232 molecular self-assembly Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 238000010137 moulding (plastic) Methods 0.000 description 1
- 229960003512 nicotinic acid Drugs 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000007146 photocatalysis Methods 0.000 description 1
- 229940081066 picolinic acid Drugs 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000000427 thin-film deposition Methods 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- AFVLVVWMAFSXCK-UHFFFAOYSA-N α-cyano-4-hydroxycinnamic acid Chemical compound OC(=O)C(C#N)=CC1=CC=C(O)C=C1 AFVLVVWMAFSXCK-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B7/00—Microstructural systems; Auxiliary parts of microstructural devices or systems
- B81B7/04—Networks or arrays of similar microstructural devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00015—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
- B81C1/00023—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
- B81C1/00031—Regular or irregular arrays of nanoscale structures, e.g. etch mask layer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Nanotechnology (AREA)
- Analytical Chemistry (AREA)
- Sampling And Sample Adjustment (AREA)
- Micromachines (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种硅基点阵,特别是涉及一种具有微纳米结构的阵列硅基点阵及其制备方法。The invention relates to a silicon-based lattice, in particular to an array silicon-based lattice with a micro-nano structure and a preparation method thereof.
背景技术Background technique
随着微纳加工技术的不断发展,使得应用于微电子、信息技术及生命科学的结构与器件向着更小尺度、更轻薄、更精密发展,在微电子技术和生物医学微系统中具有重要地位。微纳米技术涵盖广泛,多达60多种,可制备各种不同微纳米结构与器件,主要包括平面工艺,探针工艺及模型工艺等。With the continuous development of micro-nano processing technology, the structures and devices used in microelectronics, information technology and life science are developing towards smaller scale, thinner and more precise, which plays an important role in microelectronic technology and biomedical microsystem . Micro-nano technology covers a wide range of more than 60 types, which can prepare various micro-nano structures and devices, mainly including planar technology, probe technology and model technology.
平面工艺是目前应用最广泛的微纳加工技术,包括薄膜沉积、图形化、掺杂及热处理等工艺,平面微纳加工技术主要应用于集成电路制造,但近年来也开始应用于制造各种微机械、微流体及微光电器件。Planar technology is currently the most widely used micro-nano processing technology, including thin film deposition, patterning, doping and heat treatment. Planar micro-nano processing technology is mainly used in integrated circuit manufacturing, but in recent years it has also been applied Mechanical, microfluidic and micro-optical devices.
探针工艺是基于传统机械加工发展的,微纳米探针包括原子力显微镜探针、聚焦离子束、激光束、原子束以及火花放电微探针等,通过这些探针可以直接产生电子曝光作用或在衬底表面形成二维平面点阵、图形或者三维微纳米结构。The probe process is developed based on traditional mechanical processing. Micro-nano probes include atomic force microscope probes, focused ion beams, laser beams, atomic beams, and spark discharge micro-probes. These probes can directly produce electron exposure or in The surface of the substrate forms a two-dimensional planar lattice, a pattern or a three-dimensional micro-nano structure.
模型工艺是利用微米纳米尺寸的模具复制出相应的微纳米结构,包括自上而下的加工技术和自下而上的技术。自上而下的加工技术包括纳米压印技术,塑料模压技术及模铸技术;自下而上的方法一般为涉及生物化学反应的分子自组装过程。利用微纳加工技术制造的结构及器件,由于其独特的结构及特殊物理化学性质,使得其在物理、化学、光电信息、能源及生命科学有广泛的应用前景。The model process is to use the micro-nano-sized mold to replicate the corresponding micro-nano structure, including top-down processing technology and bottom-up technology. Top-down processing techniques include nanoimprinting, plastic molding, and die casting; bottom-up methods generally involve molecular self-assembly processes involving biochemical reactions. The structures and devices manufactured by micro-nano processing technology have broad application prospects in physics, chemistry, optoelectronic information, energy and life sciences due to their unique structure and special physical and chemical properties.
发明内容:Invention content:
本发明的主要目的在于提供一种具有三维微纳米结构的阵列硅基点阵及其制备方法,使其在物理、化学、光电信息、能源及生命科学具有潜在应用。The main purpose of the present invention is to provide an arrayed silicon-based lattice with a three-dimensional micro-nano structure and a preparation method thereof, so that it has potential applications in physics, chemistry, photoelectric information, energy and life sciences.
本发明提供了一种阵列结构硅基点阵的制备方法,所述制备方法包括:在一硅片表面旋涂光刻胶;采用光刻方法在所述硅片表面形成特定尺寸的点样区;采用溶液法在含点样区的所述硅片表面自组装微纳米球;对沉积了微纳米球的所述硅片进行刻蚀,使所述点样区形成微纳米结构阵列;去除所述硅片表面的所述光刻胶;且去除所述硅片表面的所述微纳米球。The invention provides a method for preparing a silicon-based lattice with an array structure, the preparation method comprising: spin-coating a photoresist on the surface of a silicon wafer; forming a spotting area of a specific size on the surface of the silicon wafer by photolithography; Using a solution method to self-assemble micro-nanospheres on the surface of the silicon wafer containing the spotting area; etching the silicon wafer on which the micro-nanospheres are deposited, so that the spotting area forms a micro-nano structure array; removing the the photoresist on the surface of the silicon wafer; and removing the micro-nano balls on the surface of the silicon wafer.
在一实施例中,在采用光刻方法在所述硅片表面形成特定尺寸的点样区之后,更包括:在所述点样区的硅片表面刻蚀形成凹槽。In one embodiment, after forming a spotting area of a specific size on the surface of the silicon wafer by photolithography, the method further includes: etching the surface of the silicon wafer in the spotting area to form a groove.
在一实施例中,所述采用溶液法在所述硅片表面自组装微纳米球的步骤,包括提拉法及LB(Langmuir-Blodgett)膜法。In one embodiment, the step of adopting a solution method to self-assemble micro-nanospheres on the surface of the silicon wafer includes a pulling method and a LB (Langmuir-Blodgett) membrane method.
在一实施例中,所述对沉积了微纳米球的所述硅片进行刻蚀的步骤,采用电感耦合等离子体(ICP)系统,其中刻蚀气体为SF6或O2,刻蚀气体的流速为5-40sccm(StandardCubic Centimeter per Minute),刻蚀时间为5-3000s,ICP功率为200-300W,射频(RF)功率为10-30W。In one embodiment, the step of etching the silicon wafer deposited with micro-nanospheres adopts an inductively coupled plasma (ICP) system, wherein the etching gas is SF 6 or O 2 , and the etching gas The flow rate is 5-40sccm (Standard Cubic Centimeter per Minute), the etching time is 5-3000s, the ICP power is 200-300W, and the radio frequency (RF) power is 10-30W.
在一实施例中,所述点样区形状为凹陷或者凸起的圆形或正多边形,其中,正多边形包括正方形、正三角形或者正六边形;正多边形点样区的边长为10μm-5mm,圆形点样区的直径为10μm-5mm;所述凹陷的深度或者所述凸起的高度为10nm-100μm;所述相邻点样区之间的距离为10μm-10mm。In one embodiment, the shape of the spotting area is a concave or convex circle or a regular polygon, wherein the regular polygon includes a square, a regular triangle or a regular hexagon; the side length of the regular polygon spotting area is 10 μm-5mm , the diameter of the circular spotting area is 10 μm-5 mm; the depth of the depression or the height of the protrusion is 10 nm-100 μm; the distance between the adjacent spotting areas is 10 μm-10 mm.
在一实施例中,去除所述硅片表面的所述光刻胶的步骤,是将所述硅片置于丙酮溶液中并震荡10分钟;去除所述硅片表面的所述微纳米球的步骤,是将所述硅片置于四氢呋喃溶液或强碱溶液或在高温下退火以去除所述微纳米球。In one embodiment, the step of removing the photoresist on the surface of the silicon wafer is to place the silicon wafer in an acetone solution and vibrate for 10 minutes; remove the micro-nanospheres on the surface of the silicon wafer The step is to place the silicon chip in tetrahydrofuran solution or strong alkali solution or anneal at high temperature to remove the micro-nano balls.
在一实施例中,在去除所述硅片表面的所述微纳米球后,更包括:在所述硅片表面沉积一材料层,所述材料可采用单层或者多层,所述材料层厚度为5nm-1μm;且对所述硅片进行划片。In one embodiment, after removing the micro-nanospheres on the surface of the silicon wafer, it further includes: depositing a material layer on the surface of the silicon wafer, the material can be a single layer or multiple layers, and the material layer The thickness is 5nm-1μm; and the silicon wafer is scribed.
在一实施例中,所述材料层的材料可采用金属、金属氧化物、金属氮化物,或者高分子聚合物,或所述材料的组合。In an embodiment, the material of the material layer may be metal, metal oxide, metal nitride, or high molecular polymer, or a combination of the above materials.
在一实施例中,所述金属包括但不限于Au、Ag、Cu、Al、Ti、Rh、Ni、Pt中的至少一种或其组合;所述金属氧化物包括但不限于Al2O3、ZnO、TiO2、ZrO2中的至少一种或其组合;所述金属氮化物包括但不限于TiN、GaN、AlN中的至少一种或其组合;所述高分子聚合物包括但不限于聚乙烯、聚氯乙烯、酚醛树脂中的至少一种或其组合。In one embodiment, the metal includes but not limited to at least one of Au, Ag, Cu, Al, Ti, Rh, Ni, Pt or a combination thereof; the metal oxide includes but not limited to Al 2 O 3 , at least one of ZnO, TiO 2 , ZrO 2 or a combination thereof; the metal nitride includes but not limited to at least one of TiN, GaN, AlN or a combination thereof; the polymer includes but not limited to At least one of polyethylene, polyvinyl chloride, phenolic resin or a combination thereof.
在一实施例中,所述的微纳米球包括聚苯乙烯球或者二氧化硅球。In one embodiment, the micro-nano spheres include polystyrene spheres or silica spheres.
本发明并提供一种阵列结构硅基点阵,以前述制备方法制成,硅基点阵包括所述点样区和外围区,其中,所述点样区包括所述微纳米结构阵列以及裹附在所述微纳米结构表面的材料层;所述微纳米结构阵列包括数个微纳米结构;所述微纳米结构的高度为10nm-100μm,其等效直径或者等效边长为10nm-100μm,所述相邻微纳米结构之间的距离即阵列结构间距为10nm-10μm;材料层厚度为5nm-1μm。The present invention also provides a silicon-based lattice with an array structure, which is made by the aforementioned preparation method. The silicon-based lattice includes the spotting area and the peripheral area, wherein the spotting area includes the micro-nano structure array and is wrapped in The material layer on the surface of the micro-nano structure; the micro-nano structure array includes several micro-nano structures; the height of the micro-nano structure is 10nm-100μm, and its equivalent diameter or equivalent side length is 10nm-100μm, so The distance between adjacent micro-nano structures, that is, the pitch of the array structure, is 10 nm-10 μm; the thickness of the material layer is 5 nm-1 μm.
在一实施例中,所述点样区形状为凹陷或者凸起的圆形或正多边形,其中,正多边形包括正方形、正三角形或者正六边形;所述正多边形点样区的边长为10μm-5mm,圆形点样区直径为10μm-5mm;所述凹陷深度或者凸起高度为10nm-100μm,所述相邻点样区之间的距离为10μm-10mm。In one embodiment, the shape of the spotting area is a concave or convex circle or a regular polygon, wherein the regular polygon includes a square, a regular triangle or a regular hexagon; the side length of the spotting area of the regular polygon is 10 μm -5 mm, the diameter of the circular spotting area is 10 μm-5 mm; the depth of the depression or the height of the protrusion is 10 nm-100 μm, and the distance between the adjacent spotting areas is 10 μm-10 mm.
在一实施例中,所述微纳米结构的高度和所述点样区的所述凹槽的深度的加和值为所述点样区的凹陷深度。In one embodiment, the sum of the height of the micro-nano structure and the depth of the groove in the spotting area is the depression depth of the spotting area.
在一实施例中,所述微纳米结构的形状包括锥状、柱状、桶状、瓶状、碗状、球状、半球状中的一种。In one embodiment, the shape of the micro/nano structure includes one of cone, column, barrel, bottle, bowl, spherical, and hemispherical.
在另一实施例中,本发明所提供具有三维微纳米结构的阵列硅基点阵的制作方法,包括步骤:In another embodiment, the present invention provides a method for fabricating an array silicon-based lattice having a three-dimensional micro-nano structure, comprising the steps of:
S1.提供单面或双面抛光的硅片;S1. Provide single-sided or double-sided polished silicon wafers;
S2.采用RCA(Radio Corporation of America)标准清洗硅片;S2. Using RCA (Radio Corporation of America) standard to clean the silicon wafer;
S3.在表面旋涂光刻胶,然后采用光刻的方法在硅片表面形成特定尺寸的点样区;S3. Spin-coat photoresist on the surface, and then use photolithography to form a spot area of a specific size on the surface of the silicon wafer;
S4.采用溶液法在含点样区的硅片表面自组装微纳米球;S4. Using a solution method to self-assemble micro-nanospheres on the surface of the silicon wafer containing the spotting area;
S5.以自组装微纳米球为掩膜,采用电感耦合等离子体(ICP)系统对硅片进行刻蚀,从而在点样区形成微纳米结构阵列;S5. Using self-assembled micro-nanospheres as a mask, the silicon wafer is etched by an inductively coupled plasma (ICP) system, thereby forming an array of micro-nano structures in the spotting area;
S6.将硅片置于丙酮溶液中震荡10分钟以去除硅片表面的光刻胶;S6. placing the silicon wafer in an acetone solution and shaking for 10 minutes to remove the photoresist on the surface of the silicon wafer;
S7.将硅片置于四氢呋喃溶液或强碱溶液或在高温下退火以去除硅片表面微纳米球掩膜;S7. placing the silicon wafer in a tetrahydrofuran solution or a strong alkali solution or annealing at a high temperature to remove the micro-nanosphere mask on the surface of the silicon wafer;
S8.在硅片表面形成其他材料层;S8. forming other material layers on the surface of the silicon wafer;
S9.对硅片进行划片。S9. Scribing the silicon wafer.
在一实施例中,在采用光刻方法在所述硅片表面形成特定尺寸的点样区之后,更包括:在所述点样区的硅片表面刻蚀形成凹槽。In one embodiment, after forming a spotting area of a specific size on the surface of the silicon wafer by photolithography, the method further includes: etching the surface of the silicon wafer in the spotting area to form a groove.
在一实施例中,所述的单晶硅片,电阻率为0.001-0.1Ω·cm。In one embodiment, the resistivity of the single crystal silicon wafer is 0.001-0.1Ω·cm.
在一实施例中,所述微纳米掩模采用100-1000nm聚苯乙烯球。In one embodiment, the micro/nano mask adopts 100-1000 nm polystyrene balls.
在一实施例中,所述的等离子体刻蚀方法可采用ICP刻蚀或者深硅刻蚀。In one embodiment, the plasma etching method may use ICP etching or deep silicon etching.
在一实施例中,所述的微纳米掩模采用退火的方式去除。In one embodiment, the micro-nano mask is removed by annealing.
在一实施例中,所述形成于硅片表面的材料层,可为Au、Ag、Al、TiO2、Al2O3中的一种或组合。In one embodiment, the material layer formed on the surface of the silicon wafer may be one or a combination of Au, Ag, Al, TiO 2 , Al 2 O 3 .
在一实施例中,形成材料层的方法,可以为热氧化、等离子体增强化学气相沉积法(PECVD)、低压力化学气相沉积法(LPCVD)、磁控溅射、原子层沉积(ALD)沉积方法中的任一种。In one embodiment, the method for forming the material layer may be thermal oxidation, plasma enhanced chemical vapor deposition (PECVD), low pressure chemical vapor deposition (LPCVD), magnetron sputtering, atomic layer deposition (ALD) deposition any of the methods.
在一实施例中,所述材料层厚度可为5nm-1μm,优选的材料层厚度为5-200nm。In one embodiment, the thickness of the material layer may be 5 nm-1 μm, preferably the thickness of the material layer is 5-200 nm.
在一实施例中,所述划片方式为砂轮划片或激光划片。In one embodiment, the scribing method is grinding wheel scribing or laser scribing.
在一实施例中,采用ICP刻蚀系统或者深硅刻蚀系统,刻蚀气体为SF6或O2;刻蚀气体SF6的流速为10-20sccm,O2流速为20-40sccm,刻蚀时间为5-3000s,ICP功率为200-250W,RF功率为10-20W。In one embodiment, an ICP etching system or a deep silicon etching system is used, and the etching gas is SF 6 or O 2 ; the flow rate of the etching gas SF 6 is 10-20 sccm, and the flow rate of O 2 is 20-40 sccm. The time is 5-3000s, the ICP power is 200-250W, and the RF power is 10-20W.
本发明第三方面提供一种阵列结构硅基点阵在质谱检测中的应用,所述的阵列结构硅基点阵是以本发明所述的阵列结构硅基点阵制备方法所制成。The third aspect of the present invention provides an application of a silicon-based lattice with an array structure in mass spectrometry detection. The silicon-based lattice with an array structure is made by the method for preparing a silicon-based lattice with an array structure according to the present invention.
在本发明实施例中,所述的质谱为电子轰击质谱(EI-MS)、场解吸附质谱(FD-MS)、快原子轰击质谱(FAB-MS)、基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)或电子喷雾质谱(ESI-MS)。In the embodiment of the present invention, the mass spectrometry is electron bombardment mass spectrometry (EI-MS), field desorption mass spectrometry (FD-MS), fast atom bombardment mass spectrometry (FAB-MS), matrix-assisted laser desorption ionization time-of-flight mass spectrometry ( MALDI-TOF MS) or electron spray mass spectrometry (ESI-MS).
依本发明所述方法将阵列结构硅基点阵制备好之后,可将基质与检测样品滴加到点样区,然后置于质谱,例如MALDI-TOF MS中进行检测。After the array structure silicon-based lattice is prepared according to the method of the present invention, the matrix and the detection sample can be added dropwise to the spotting area, and then placed in a mass spectrometer, such as MALDI-TOF MS, for detection.
优选的,所述基质包括但不限于MALDI-TOF MS常用基质,例如,3-羟基吡啶甲酸、α-氰基-4-羟基肉桂酸2,5-二羟基苯甲酸、吡啶甲酸、3-氨基吡啶甲酸、3-吡啶甲酸、邻氨基苯甲酸、烟酸等。Preferably, the matrix includes, but is not limited to, commonly used matrices for MALDI-TOF MS, for example, 3-hydroxypicolinic acid, α-cyano-4-hydroxycinnamic acid, 2,5-dihydroxybenzoic acid, picolinic acid, 3-amino Picolinic acid, 3-picolinic acid, anthranilic acid, nicotinic acid, etc.
本发明质谱检测适用的检测样品包括但不限于各类有机无机小分子、高分子化合物、病毒、微生物、核苷酸、核苷、寡核苷酸、核酸、氨基酸、肽、蛋白质、脂质、糖类、碳水化合物、抗原、抗体、细胞及细胞代谢产物中的至少一种,但不限于此。The detection samples applicable to the mass spectrometry detection of the present invention include but are not limited to various organic and inorganic small molecules, polymer compounds, viruses, microorganisms, nucleotides, nucleosides, oligonucleotides, nucleic acids, amino acids, peptides, proteins, lipids, At least one of sugars, carbohydrates, antigens, antibodies, cells and cell metabolites, but not limited thereto.
本发明的阵列结构硅基点阵,还可以用于拉曼光谱检测中。The silicon-based lattice with an array structure of the present invention can also be used in Raman spectrum detection.
本发明的阵列结构硅基点阵,还可以用于光电探测器中。The silicon-based lattice with the array structure of the present invention can also be used in photodetectors.
本发明的阵列结构硅基点阵,还可以用于生物传感器中。The array structure silicon-based lattice of the present invention can also be used in biosensors.
本发明的阵列结构硅基点阵,还可以用于催化性能表征仪器中。The silicon-based lattice with an array structure of the present invention can also be used in catalytic performance characterization instruments.
有益效果Beneficial effect
相比于采用旋涂法自组装微纳米球掩膜,本发明所采用自组装微纳米掩膜法工艺简单、耗材少,而且可以使其仅在特定点样区具有三维微纳米结构阵列,造成点样区与非点样区的性质差异,同时由于光在硅基点阵的点样区与非点样区的反射差异,无需在点样区添加其他标记物质的情况下可直接肉眼可区分,从而便于点样。Compared with the self-assembled micro-nanosphere mask by the spin coating method, the self-assembled micro-nano mask method adopted in the present invention has simple process and less consumables, and it can only have a three-dimensional micro-nano structure array in a specific spot area, resulting in The properties of the spotting area and the non-spotting area are different, and due to the difference in the reflection of light between the spotting area and the non-spotting area of the silicon-based lattice, it can be directly distinguished by the naked eye without adding other marking substances to the spotting area. This makes it easier to sample.
本发明的制备方法,可以在阵列结构硅基点阵表面形成滴定样品的圆形、正方形或者正三角形点样区孔与孔外区。其中,点样区根据需要,制备有不同尺寸的锥状、柱状、桶状或者半球状等特殊三维微纳米结构阵列。可通过等离子体刻蚀、光刻、化学气相沉积、磁控溅射等半导体微纳米加工工艺,在硅基点阵点样区制备一系列三维微纳米结构阵列,一方面,排列规整的三维结构阵列,可使点样区的分析物分布更为均匀;另一方面,硅基三维结构阵列有利于形成耦合电场,促进分子的电离。此外,还可在结构阵列表面溅射Au、Ag等金属纳米粒子,利用金属纳米结构的局域表面等离激元共振特性,促进分析样品的解吸电离,从而在生物化学样品分析,光电信息等领域具有潜在应用前景。The preparation method of the present invention can form circular, square or regular triangular sampling area holes and outer areas of the titration samples on the surface of the silicon-based dot matrix of the array structure. Among them, the spotting area is prepared with special three-dimensional micro-nano structure arrays of different sizes such as cones, columns, barrels or hemispheres according to needs. A series of three-dimensional micro-nano structure arrays can be prepared in the silicon-based lattice spot area through plasma etching, photolithography, chemical vapor deposition, magnetron sputtering and other semiconductor micro-nano processing techniques. On the one hand, the regular three-dimensional structure array , which can make the analyte distribution in the sample area more uniform; on the other hand, the silicon-based three-dimensional structure array is conducive to the formation of a coupled electric field and promote the ionization of molecules. In addition, metal nanoparticles such as Au and Ag can be sputtered on the surface of the structure array, and the local surface plasmon resonance characteristics of the metal nanostructure can be used to promote the desorption ionization of the analyzed sample, so that it can be used in biochemical sample analysis, photoelectric information, etc. The field has potential application prospects.
本发明通过采用微纳加工工艺制备具有三维微纳米结构阵列的硅基点阵,进而发挥微纳米结构阵列优势,及特有的光电性质,以期应用于生物化学分析检测,如质谱检测应用和拉曼检测中或在生物传感器中或光电探测器中的应用,提高样品检测效果。The present invention prepares a silicon-based lattice with a three-dimensional micro-nano structure array by adopting a micro-nano processing technology, and then utilizes the advantages of the micro-nano structure array and its unique photoelectric properties, so as to be applied to biochemical analysis and detection, such as mass spectrometry detection applications and Raman detection It can be used in biosensors or photodetectors to improve the detection effect of samples.
附图说明Description of drawings
所提供附图可对本发明进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。此外,附图数据是描述概要,不是按比例绘制。The provided drawings can further understand the present invention, and constitute a part of the description, and are used to explain the present invention together with the embodiments of the present invention, and do not constitute a limitation to the present invention. In addition, the drawing data are descriptive summaries and are not drawn to scale.
图1:本发明中提供硅基点阵俯视示意图。Figure 1: A schematic top view of a silicon-based lattice provided in the present invention.
图2:图1中点样区的结构示意图。Figure 2: Schematic diagram of the structure of the spotting area in Figure 1.
图3:本发明所提供制备工艺流程图。Fig. 3: a flow chart of the preparation process provided by the present invention.
图4:本发明中形成自组装纳米球掩膜的装置图。Figure 4: A diagram of the device for forming a self-assembled nanosphere mask in the present invention.
图5:本发明实施例1步骤S1中进行光刻的掩膜版示意图。FIG. 5 : Schematic diagram of a mask plate for photolithography in Step S1 of Embodiment 1 of the present invention.
图6:本发明实施例1步骤S4后点样区微观平面扫描电子显微镜(SEM)照片。FIG. 6 : Microscopic plane scanning electron microscope (SEM) photo of the spotting area after step S4 of Example 1 of the present invention.
图7:本发明实施例1步骤S4后点样区微观截面SEM照片。Fig. 7: SEM photograph of the microscopic section of the spotting area after step S4 of Example 1 of the present invention.
图8:本发明实施例1步骤S5后点样区微观平面SEM照片。Fig. 8: SEM photograph of the microscopic plane of the spotting area after step S5 of Example 1 of the present invention.
图9:本发明实施例1步骤S5后点样区微观截面SEM照片。Fig. 9: SEM photograph of the microscopic section of the spotting area after step S5 of Example 1 of the present invention.
图10:本发明实施例3步骤S5后点样区微观平面SEM照片。FIG. 10 : SEM photograph of the microscopic plane of the spotting area after step S5 of Example 3 of the present invention.
图11:本发明实施例3步骤S5后点样区微观截面SEM照片。FIG. 11 : SEM photo of the microscopic section of the spotting area after step S5 of Example 3 of the present invention.
图12:本发明实施例4步骤S2后点样区截面示意图。Fig. 12: Schematic cross-sectional view of the spotting area after step S2 in Example 4 of the present invention.
图13:本发明实施例4步骤S4后点样区截面示意图。Fig. 13: Schematic cross-sectional view of the spotting area after step S4 in Example 4 of the present invention.
图14:本发明实施例5步骤S3后点样区截面示意图。Figure 14: Schematic cross-sectional view of the spotting area after step S3 in Example 5 of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。The following will describe the technical solutions of the present invention in conjunction with the accompanying drawings in the embodiments of the present invention. Apparently, the described embodiments are part of the embodiments of the present application, but not all of the embodiments. Based on the embodiments in this application, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the scope of protection of this application.
本发明提出了一种具有微纳米结构阵列的硅基点阵及其制备方法,本发明利用等离子体刻蚀、磁控溅射及光刻等半导体加工工艺,制备具有规整的微纳米结构阵列的硅基点阵,利用阵列结构可使样品均匀分散、金属纳米结构表面等离激元共振效应等特性,进而促进分析物样品的解吸电离。The invention proposes a silicon-based lattice with a micro-nano structure array and its preparation method. The invention utilizes semiconductor processing technologies such as plasma etching, magnetron sputtering and photolithography to prepare silicon with a regular micro-nano structure array. Based on the array structure, the sample can be uniformly dispersed by using the array structure, and the surface plasmon resonance effect of the metal nanostructure can be used to promote the desorption and ionization of the analyte sample.
本发明提供了一种阵列结构硅基点阵的制备方法。请参考图1、图2和图3,图1为硅片的俯视示意图,其中阴影部分为点样区,图2为图1中点样区的结构示意图,显示了制作于硅片上表面的多个点样区,其中多个点样区以阵列方式分布于硅片上;图3则显示了所述制备方法的相关工艺流程。所述制备方法的步骤包括:The invention provides a method for preparing a silicon-based lattice with an array structure. Please refer to Figure 1, Figure 2 and Figure 3, Figure 1 is a schematic top view of a silicon wafer, in which the shaded part is the spotting area, Figure 2 is a structural schematic diagram of the spotting area in Figure 1, showing the silicon wafer made on the upper surface A plurality of spotting areas, wherein the multiple spotting areas are distributed in an array on the silicon wafer; Figure 3 shows the relevant process flow of the preparation method. The steps of the preparation method include:
(a)在一硅片2表面旋涂光刻胶1;(a) Spin-coat photoresist 1 on the surface of a silicon wafer 2;
(b)采用光刻方法在所述硅片表面形成特定尺寸的点样区;(b) using photolithography to form a spot area of a specific size on the surface of the silicon wafer;
(c)采用溶液法在含点样区的硅片表面自组装微纳米球3;(c) using a solution method to self-assemble micro-nanospheres 3 on the surface of the silicon wafer containing the spotting area;
(d)对沉积了微纳米球3的硅片进行刻蚀,在点样区形成微纳米结构阵列;(d) Etching the silicon wafer on which the micro-nano balls 3 are deposited, forming an array of micro-nano structures in the spotting area;
(e)去除硅片表面的光刻胶1;(e) removing the photoresist 1 on the surface of the silicon wafer;
(f)去除硅片表面的微纳米球3。(f) removing the micro-nano balls 3 on the surface of the silicon wafer.
在一实施例中,去除硅片表面的微纳米球3之后,还包括下列步骤:In one embodiment, after removing the micro-nanospheres 3 on the surface of the silicon wafer, the following steps are also included:
(g)在硅片表面沉积一材料层4,材料层4可采用单层或者多层,材料层4的厚度为5nm-1μm材料层;接着,可根据商业的需求,对硅片进行划片。(g) Deposit a material layer 4 on the surface of the silicon wafer, the material layer 4 can be a single layer or multiple layers, and the thickness of the material layer 4 is a material layer of 5nm-1μm; then, the silicon wafer can be diced according to commercial needs .
在一实施例中,在采用光刻方法在所述硅片表面形成特定尺寸的点样区之后,更包括下列步骤:在所述点样区的硅片表面刻蚀形成凹槽。In one embodiment, after forming a spotting area of a specific size on the surface of the silicon wafer by photolithography, the following step is further included: forming grooves by etching on the surface of the silicon wafer in the spotting area.
在一实施例中,所述的微纳米球包括聚苯乙烯球或者二氧化硅球。In one embodiment, the micro-nano spheres include polystyrene spheres or silica spheres.
在一实施例中,所述采用溶液法在硅片表面自组装微纳米球3的步骤,包括提拉法及LB(Langmuir-Blodgett)膜法。In one embodiment, the step of self-assembling the micro-nanospheres 3 on the surface of the silicon wafer by the solution method includes the pulling method and the LB (Langmuir-Blodgett) membrane method.
在一实施例中,对沉积了微纳米球3的硅片进行刻蚀的步骤,采用电感耦合等离子体(ICP)系统来刻蚀,其中刻蚀气体为SF6或O2,刻蚀气体的流速为5-40sccm(StandardCubic Centimeter per Minute),刻蚀时间为5-3000s,ICP功率为200-300W,RF功率为10-30W。In one embodiment, the step of etching the silicon wafer on which the micro-nanospheres 3 are deposited is etched using an inductively coupled plasma (ICP) system, wherein the etching gas is SF 6 or O 2 , and the etching gas The flow rate is 5-40sccm (Standard Cubic Centimeter per Minute), the etching time is 5-3000s, the ICP power is 200-300W, and the RF power is 10-30W.
在一实施例中,去除硅片表面光刻胶1的步骤,是将硅片置于丙酮溶液中并震荡10分钟;去除硅片表面的微纳米球3的步骤,是将硅片置于四氢呋喃溶液或强碱溶液或在高温下退火,以去除微纳米球3。In one embodiment, the step of removing the photoresist 1 on the surface of the silicon wafer is to place the silicon wafer in an acetone solution and shake it for 10 minutes; the step of removing the micro-nanospheres 3 on the surface of the silicon wafer is to place the silicon wafer in tetrahydrofuran solution or strong alkali solution or annealing at high temperature to remove micro-nanospheres 3 .
在一实施例中,所述材料层4的材料可采用金属、金属氧化物、金属氮化物或者高分子聚合物,或是上述材料的任意组合。在一实施例中,所述金属包括但不限于Au、Ag、Cu、Al、Ti、Rh、Ni、Pt中的至少一种或其组合;所述金属氧化物包括但不限于Al2O3、ZnO、TiO2、ZrO2中的至少一种或其组合;所述金属氮化物包括但不限于TiN、GaN、AlN中的至少一种或其组合;所述高分子聚合物包括但不限于聚乙烯、聚氯乙烯、酚醛树脂中的至少一种或其组合。In an embodiment, the material of the material layer 4 may be metal, metal oxide, metal nitride or polymer, or any combination of the above materials. In one embodiment, the metal includes but not limited to at least one of Au, Ag, Cu, Al, Ti, Rh, Ni, Pt or a combination thereof; the metal oxide includes but not limited to Al 2 O 3 , at least one of ZnO, TiO 2 , ZrO 2 or a combination thereof; the metal nitride includes but not limited to at least one of TiN, GaN, AlN or a combination thereof; the polymer includes but not limited to At least one of polyethylene, polyvinyl chloride, phenolic resin or a combination thereof.
请参考图4,图4显示本发明中以溶液法自组装微纳米球的相关装置,其中,采用微量注射器8将含有微纳米球的溶液缓慢注射进置有硅衬底6的水溶液中使微纳米球铺满水面;然后打开装水容器5底部小孔9后,水将缓慢流逝使微纳米球成功覆盖在硅衬底6表面,其中,硅衬底6置放于支撑圆柱台7上;最后将其放置于通风橱使其自然风干,获得如图3中(c)所示结果。Please refer to Fig. 4, Fig. 4 shows the related device of self-assembling micro-nanospheres by the solution method in the present invention, wherein, the solution containing micro-nanospheres is slowly injected into the aqueous solution with a silicon substrate 6 using a micro-injector 8 to make the micro-nanospheres The nanospheres cover the water surface; then after opening the small hole 9 at the bottom of the water container 5, the water will flow slowly so that the micronanospheres are successfully covered on the surface of the silicon substrate 6, wherein the silicon substrate 6 is placed on the supporting cylinder platform 7; Finally, place it in a fume hood to allow it to air-dry naturally, and obtain the result shown in (c) in Fig. 3 .
本发明并提供一种阵列结构硅基点阵,以前述制备方法所制成。所述阵列硅基点阵包括点样区和外围区,其中,点样区包括微纳米结构阵列以及裹附在微纳米结构表面的材料层,微纳米结构阵列包括数个微纳米结构,如图3中(f)所示;其中,微纳米结构的高度为10nm-100μm,其等效直径或者等效边长为10nm-100μm,相邻微纳米结构之间的距离即微纳米结构阵列间距为10nm-10μm;材料层的厚度为5nm-1μm。The invention also provides a silicon-based lattice with an array structure, which is made by the aforementioned preparation method. The array of silicon-based lattices includes a spotting area and a peripheral area, wherein the spotting area includes a micro-nanostructure array and a material layer wrapped on the surface of the micro-nanostructure, and the micro-nanostructure array includes several micro-nanostructures, as shown in Figure 3 As shown in middle (f); wherein, the height of the micro-nanostructure is 10nm-100μm, its equivalent diameter or equivalent side length is 10nm-100μm, and the distance between adjacent micro-nanostructures, that is, the micro-nanostructure array spacing is 10nm -10 μm; the thickness of the material layer is 5 nm-1 μm.
在一实施例中,所述点样区形状为凹陷或者凸起的圆形或正多边形,其中,正多边形可为正方形、正三角形或者正六边形;所述多边形点样区的边长为10μm-5mm,圆形点样区的直径为10μm-5mm;所述凹陷深度或者凸起高度为10nm-100μm,所述相邻点样区之间的距离为10μm-10mm。In one embodiment, the shape of the spotting area is a concave or convex circle or a regular polygon, wherein the regular polygon can be a square, a regular triangle or a regular hexagon; the side length of the polygonal spotting area is 10 μm -5 mm, the diameter of the circular spotting area is 10 μm-5 mm; the depth of the depression or the height of the protrusion is 10 nm-100 μm, and the distance between the adjacent spotting areas is 10 μm-10 mm.
在一实施例中,所述微纳米结构的高度和所述点样区的所述凹槽的深度的加和值为所述点样区的凹陷深度。In one embodiment, the sum of the height of the micro-nano structure and the depth of the groove in the spotting area is the depression depth of the spotting area.
在一实施例中,所述的微纳米结构的形状包括锥状、柱状、桶状、瓶状、碗状、球状、半球状中的一种。In one embodiment, the shape of the micro-nano structure includes one of cone, column, barrel, bottle, bowl, spherical and hemispherical.
在另一实施例中,本发明所提供阵列结构硅基点阵制作方法,包括步骤:In another embodiment, the method for fabricating an array structure silicon-based lattice provided by the present invention includes the steps of:
S1.提供单面或双面抛光的硅片;S1. Provide single-sided or double-sided polished silicon wafers;
S2.采用RCA标准清洗清洗硅片;S2. RCA standard cleaning is used to clean the silicon wafer;
S3.在表面旋涂光刻胶,然后采用光刻的方法在硅片表面形成特定尺寸的点样区;S3. Spin-coat photoresist on the surface, and then use photolithography to form a spot area of a specific size on the surface of the silicon wafer;
S4.采用溶液法在含点样区的硅片表面自组装微纳米球;S4. Using a solution method to self-assemble micro-nanospheres on the surface of the silicon wafer containing the spotting area;
S5.以自组装微纳米球为掩膜,采用电感耦合等离子体(ICP)系统对沉积了微纳米球的硅片进行刻蚀,从而使点样区具有三维微纳米结构阵列;S5. Using the self-assembled micro-nano spheres as a mask, an inductively coupled plasma (ICP) system is used to etch the silicon wafer on which the micro-nano spheres are deposited, so that the spotting area has a three-dimensional micro-nano structure array;
S6.将硅片置于丙酮溶液中并震荡10分钟以去除表面光刻胶;S6. the silicon wafer is placed in an acetone solution and shaken for 10 minutes to remove the surface photoresist;
S7.将硅片置于四氢呋喃溶液或强碱溶液或在高温下退火以去除硅片表面微纳米球掩膜;S7. placing the silicon wafer in a tetrahydrofuran solution or a strong alkali solution or annealing at a high temperature to remove the micro-nanosphere mask on the surface of the silicon wafer;
S8.在硅片表面形成其他材料层;S8. forming other material layers on the surface of the silicon wafer;
S9.硅片进行划片。S9. The silicon wafer is diced.
优选的,在光刻后形成特定尺寸点样区的硅片表面进行刻蚀形成凹槽。Preferably, after photolithography, the surface of the silicon wafer forming the spotting area of a specific size is etched to form grooves.
优选的,所述的硅片,厚度为100μm-2mm,可为N型掺杂或P型掺杂,电阻率为0.001~10Ω·cm。Preferably, the silicon wafer has a thickness of 100 μm-2 mm, can be N-type doped or P-type doped, and has a resistivity of 0.001˜10 Ω·cm.
优选的,所述微纳米球包括聚苯乙烯球或者二氧化硅球;其尺寸大小为100nm-10μm。Preferably, the micro-nano spheres include polystyrene spheres or silica spheres; the size thereof is 100 nm-10 μm.
优选的,所述的微纳米球包括聚苯乙烯球或者二氧化硅球,其微纳米球分散溶液质量分数为2%-40%。Preferably, the micro/nano spheres include polystyrene spheres or silica spheres, and the mass fraction of the micro/nano sphere dispersion solution is 2%-40%.
优选的,旋涂机低速为300-500rpm(revolutions per minute),时间为1-10s;高速为2000-3000rpm,时间为30-60s。Preferably, the low speed of the spin coater is 300-500rpm (revolutions per minute), and the time is 1-10s; the high speed is 2000-3000rpm, and the time is 30-60s.
优选的,采用ICP等离子体刻蚀系统或者深硅刻蚀系统,刻蚀气体为SF6、O2。Preferably, an ICP plasma etching system or a deep silicon etching system is used, and the etching gas is SF 6 , O 2 .
优选的,ICP刻蚀气体SF6流速为10-20sccm,O2流速为20-40sccm,刻蚀时间为5-3000s,ICP功率为200-250W,RF功率为10-20W。Preferably, the flow rate of ICP etching gas SF 6 is 10-20 sccm, the flow rate of O 2 is 20-40 sccm, the etching time is 5-3000s, the ICP power is 200-250W, and the RF power is 10-20W.
优选的,刻蚀所形成微纳米结构包括圆柱状、圆锥状或者圆台状。Preferably, the micro-nano structure formed by etching includes a cylindrical shape, a conical shape or a truncated cone shape.
优选的,光刻所形成的点样区为正多边形和圆形,正多边形包括正方形、正三角形或正六边形,其中,正多边形边长范围为10μm-5mm,圆形直径为10μm-5mm。Preferably, the spotting area formed by photolithography is a regular polygon and a circle, and the regular polygon includes a square, a regular triangle or a regular hexagon, wherein the side length of the regular polygon ranges from 10 μm to 5 mm, and the diameter of the circle is 10 μm to 5 mm.
优选的,微纳米球掩膜去除的方式包括在450-500℃退火20-30min,或者在四氢呋喃溶液中浸泡24h。Preferably, the method of removing the micro-nanosphere mask includes annealing at 450-500° C. for 20-30 minutes, or soaking in tetrahydrofuran solution for 24 hours.
优选的,在光刻后的硅片表面溅射金属Au、Ag、Al、Rh、Ni、Pt或任意组合或金属氮化物如TiN或金属氧化物如TiO2、Al2O3等。Preferably, metal Au, Ag, Al, Rh, Ni, Pt or any combination or metal nitrides such as TiN or metal oxides such as TiO 2 , Al 2 O 3 etc. are sputtered on the surface of the silicon wafer after photolithography.
优选的,溅射材料层厚度为5nm-1μm。Preferably, the thickness of the sputtered material layer is 5 nm-1 μm.
以下并通过5个实施例说明本发明所提供制备方法的详细制作流程与条件。The detailed production process and conditions of the preparation method provided by the present invention are illustrated below through five examples.
实施例1:Example 1:
S1、硅片准备:S1. Wafer preparation:
选取一双面抛光的硅片,并对硅片进行RCA标准清洗以去除表面各种杂质和污染物。Select a double-sided polished silicon wafer, and perform RCA standard cleaning on the silicon wafer to remove various impurities and pollutants on the surface.
S2、阵列结构硅基点阵点样区的制备S2. Preparation of silicon-based lattice dot-like area with array structure
采用模板光刻的方法制备点阵点样区,首先在洗净的硅片表面旋涂正性光刻胶,旋涂机参数为转速2500rpm,时间为30秒,然后将其置于96℃加热板上烘胶4分钟。(截面如图3中(a)示意图所示)Use template photolithography to prepare dot-matrix sample areas. First, spin-coat positive photoresist on the surface of the cleaned silicon wafer. The parameters of the spin-coating machine are 2500 rpm and 30 seconds, and then heat it at 96 ° C. Bake the glue on the board for 4 minutes. (The cross-section is shown in (a) schematic diagram in Figure 3)
将涂有光刻胶的硅片置于光刻机进行光刻,采用的光刻掩膜版为5寸镉板,掩膜版示意图如图5所示,透光部分为边长为2mm的正方形图案,相邻图案的间距为2mm,曝光时间为12秒,曝光结束后立即放置于显影液中震荡显影120秒以去除被曝光区域的光刻胶,随后用去离子水冲洗一分钟后氮气吹干,获得正方形点样区,相邻点样区之间的距离为2mm。(截面如图3中(b)示意图所示)Place the silicon wafer coated with photoresist in a photolithography machine for photolithography. The photolithography mask used is a 5-inch cadmium plate. The schematic diagram of the mask is shown in Figure 5. The light-transmitting part is a square pattern with a side length of 2mm. , the distance between adjacent patterns is 2mm, and the exposure time is 12 seconds. Immediately after the exposure, it is placed in the developing solution and developed for 120 seconds to remove the photoresist in the exposed area, and then rinsed with deionized water for one minute and then blown dry with nitrogen gas , to obtain a square spotting area, and the distance between adjacent spotting areas is 2mm. (The cross-section is shown in the schematic diagram of (b) in Figure 3)
S3、阵列结构硅基点阵点样区中微纳米结构阵列的制备S3. Preparation of micro-nano structure array in the array structure silicon-based lattice spot area
采用溶液法在光刻后的硅片表面自组装单层聚苯乙烯(PS)微纳米球。具体步骤如下:首先配制PS微纳米球分散液,将质量分数为5%的直径为530nm PS微纳米球悬浮液与正丁醇按体积比为1:1混合获得530nm PS微纳米球的分散液;然后如图4所示,采用微注射器将40μL的530nm的PS微纳米球分散液缓慢注射进置有硅片的水溶液中使PS微纳米球铺满水面(水淹没硅片,微注射器与水平面夹角为30-45度,注射器针尖部分正好接触水溶液),然后打开氧化铝坩埚底部小孔后,使水缓慢流逝,从而使PS微纳米球成功覆盖在硅片表面,最后放置于通风橱使其自然风干,获得如图3中(c)所示结果。Monolayer polystyrene (PS) micro-nanospheres were self-assembled on the surface of silicon wafer after photolithography by solution method. The specific steps are as follows: first prepare the PS micronanosphere dispersion, mix the suspension of 530nm PS micronanospheres with a mass fraction of 5% and n-butanol at a volume ratio of 1:1 to obtain a dispersion of 530nm PS micronanospheres Then as shown in Figure 4, adopt the microinjector to slowly inject the PS micronanosphere dispersion liquid of 40 μ L 530nm into the aqueous solution that is placed on the silicon chip to make the PS micronanosphere cover the water surface (the water submerges the silicon chip, the microinjector and the horizontal surface The included angle is 30-45 degrees, the needle tip of the syringe just touches the aqueous solution), then open the small hole at the bottom of the alumina crucible, let the water flow slowly, so that the PS micro-nano balls are successfully covered on the surface of the silicon wafer, and finally placed in the fume hood for use It was air-dried naturally, and the result shown in (c) in Fig. 3 was obtained.
将表面涂有PS微纳米球的硅片置于电感耦合等离子体刻蚀系统进行刻蚀,刻蚀时间100秒,刻蚀深度为600nm,此时硅基点阵点样区凹陷深度为600nm,获得如图3(d)所示结果。The silicon wafer coated with PS micro-nanospheres on the surface is placed in an inductively coupled plasma etching system for etching. The etching time is 100 seconds and the etching depth is 600nm. The results are shown in Figure 3(d).
S4、去除阵列结构硅基点阵表面光刻胶及微纳米球S4. Removing the photoresist and micro-nano balls on the surface of the array structure silicon-based lattice
将刻蚀后的硅片放置于丙酮溶液中并震荡10分钟以去除表面光刻胶及光刻胶表面PS微纳米球,随后用去离子水冲洗5分钟,并用氮气吹干,其截面如图3(e)所示。Place the etched silicon wafer in an acetone solution and shake it for 10 minutes to remove the surface photoresist and PS micro-nanospheres on the surface of the photoresist, then rinse it with deionized water for 5 minutes, and dry it with nitrogen. The cross-section is shown in the figure 3(e).
随后将硅片放置于马弗炉中退火以去除硅片点样区PS微纳米球,退火温度为500℃,时间为30分钟,此时硅片截面示意图如图3(f)所示,其中点阵点样区表面微观结构如图6、图7所示,硅基点阵点样区微纳米结构为柱状,平均直径为400-500nm,高度为550-600nm,相邻微纳米结构之间的距离为60-260nm。Then place the silicon wafer in a muffle furnace for annealing to remove the PS micro-nanospheres in the spotting area of the silicon wafer. The annealing temperature is 500°C and the time is 30 minutes. At this time, the cross-sectional schematic diagram of the silicon wafer is shown in Fig. The surface microstructure of the lattice spot area is shown in Figure 6 and Figure 7. The micro-nanostructure of the silicon-based lattice spot area is columnar, with an average diameter of 400-500nm and a height of 550-600nm. The distance is 60-260nm.
S5、在阵列结构硅基点阵表面沉积金属层S5. Depositing a metal layer on the surface of the array structure silicon-based lattice
将退火后的硅片采用磁控溅射镀膜系统沉积金属层,溅射功率为200W,沉积厚度为20nm,此时硅片截面示意图如图3(g)所示,金属层为Au层时点样区微观结构如图8、图9所示,其中这个Au层也可以是Ag、Cu、Al、Ti、Ni、Pt。整齐划一微纳米结构阵列有利于表面样品的均匀分散,在表面沉积Au、Ag等纳米颗粒后,在光照射下产生局域表面等离激元共振效应,等离子体基元诱发电荷分离使金属表面集聚大量正电荷,提高了电荷密度从而提高电场强度。本发明制备的一种阵列结构硅基点阵,其在样品分析检测、光电探测等领域存在潜在应用。The metal layer was deposited on the annealed silicon wafer using a magnetron sputtering coating system, the sputtering power was 200W, and the deposition thickness was 20nm. The microstructure of the sample area is shown in Figure 8 and Figure 9, where the Au layer can also be Ag, Cu, Al, Ti, Ni, Pt. The uniform micro-nano structure array is conducive to the uniform dispersion of surface samples. After depositing nanoparticles such as Au and Ag on the surface, a localized surface plasmon resonance effect is generated under light irradiation, and the plasmonic elements induce charge separation to make the metal surface Accumulate a large number of positive charges, increase the charge density and thus increase the electric field strength. The silicon-based lattice with an array structure prepared by the invention has potential applications in the fields of sample analysis and detection, photoelectric detection and the like.
实施例2:Example 2:
按照实施例1中S1、S2、S3、S4步骤制得的阵列结构硅基点阵,S4之后将退火的硅片采用磁控溅射镀膜系统沉积材料层,材料层为多层结构,优选的为双层结构,第一层可以为金属层、金属氧化层或者金属氮化层,第二层也可以为金属层、金属氧化层或者金属氮化层,其中这个金属层也可以是Au、Ag、Cu、Al、Ni、Pt中的至少一种或其组合,金属氧化物层可以为Al2O3、ZnO、TiO2、ZrO2中的至少一种或其组合,金属氮化物层可以为TiN、GaN、AlN中的至少一种或其组合。According to the array structure silicon-based lattice that S1, S2, S3, S4 steps make among the embodiment 1, after S4, adopt magnetron sputtering coating system deposition material layer with the silicon slice of annealing, material layer is multi-layer structure, preferably is Double-layer structure, the first layer can be a metal layer, metal oxide layer or metal nitride layer, and the second layer can also be a metal layer, metal oxide layer or metal nitride layer, where the metal layer can also be Au, Ag, At least one of Cu, Al, Ni, Pt or a combination thereof, the metal oxide layer can be at least one of Al 2 O 3 , ZnO, TiO 2 , ZrO 2 or a combination thereof, and the metal nitride layer can be TiN , at least one of GaN, AlN or a combination thereof.
实施例3:Example 3:
S1、硅片准备S1. Wafer preparation
选取一双面抛光的硅片,并对硅片进行RCA标准清洗以去除表面各种杂质和污染物。Select a double-sided polished silicon wafer, and perform RCA standard cleaning on the silicon wafer to remove various impurities and pollutants on the surface.
S2、阵列结构硅基点阵点样区的制备S2. Preparation of silicon-based lattice dot-like area with array structure
采用模板光刻的方法制备点阵点样区,首先在洗净的硅片上旋涂正性光刻胶,旋涂机参数为转速2500rpm,时间为30秒,然后将其置于96℃加热板上烘胶4分钟。(截面如图3中(a)示意图所示)Use template photolithography to prepare dot-matrix sample areas. First, spin-coat positive photoresist on the cleaned silicon wafer. The parameters of the spin-coating machine are 2500 rpm and 30 seconds, and then heat it at 96 ° C. Bake the glue on the board for 4 minutes. (The cross-section is shown in (a) schematic diagram in Figure 3)
将涂有光刻胶的硅片置于光刻机进行光刻,采用的光刻掩膜版为5寸镉板,掩膜版透光部分为直径为10μm的圆形图案,其中相邻图案间距为10μm,曝光时间为12秒,曝光结束后立即放置于显影液中震荡显影120秒以去除被曝光区域的光刻胶,随后再用去离子水冲洗一分钟后氮气吹干,获得圆形点样区,且相邻点样区之间的距离为10μm,截面如图3中(b)示意图所示。Place the silicon wafer coated with photoresist in a photolithography machine for photolithography. The photolithography mask used is a 5-inch cadmium plate. The light-transmitting part of the mask is a circular pattern with a diameter of 10 μm, and the distance between adjacent patterns is 10 μm, the exposure time is 12 seconds, placed in the developer solution for 120 seconds to shake and develop for 120 seconds to remove the photoresist in the exposed area, and then rinsed with deionized water for one minute and then dried with nitrogen to obtain a circular spot area, and the distance between adjacent spotting areas is 10 μm, the cross-section is shown in the schematic diagram of (b) in Figure 3.
S3、阵列结构硅基点阵点样区中微纳米结构阵列的制备S3. Preparation of micro-nano structure array in the array structure silicon-based lattice spot area
采用溶液法在光刻后的硅片表面自组装单层聚苯乙烯(PS)微纳米球。具体步骤如下:首先配制PS微纳米球分散液,将质量分数为5%的直径为360nm PS微纳米球悬浮液与正丁醇按体积比为1:1混合获得360nm的PS微纳米球分散液;然后如图4所示,采用微注射器将40μL的360nm的PS微纳米球分散液缓慢注射进置有硅片的水溶液中使PS微纳米球铺满水面(水淹没硅片,微注射器与水平面夹角为30-45度,注射器针尖部分正好接触水溶液),然后打开氧化铝坩埚底部小孔后,使水缓慢流逝,从而使PS微纳米球成功覆盖在硅片表面,最后放置于通风橱使其自然风干,获得如图3中(c)所示结果。Monolayer polystyrene (PS) micro-nanospheres were self-assembled on the surface of silicon wafer after photolithography by solution method. The specific steps are as follows: first prepare the PS micronanosphere dispersion, mix the PS micronanosphere suspension with a mass fraction of 5% and a diameter of 360nm with n-butanol at a volume ratio of 1:1 to obtain a 360nm PS micronanosphere dispersion Then as shown in Figure 4, the PS micro-nanosphere dispersion of 40 μ L of 360nm is slowly injected into the aqueous solution with silicon wafers using a micro-injector to make the PS micro-nano-spheres cover the water surface (water submerges the silicon wafer, and the micro-injector and the horizontal surface The included angle is 30-45 degrees, the needle tip of the syringe just touches the aqueous solution), then open the small hole at the bottom of the alumina crucible, let the water flow slowly, so that the PS micro-nano balls are successfully covered on the surface of the silicon wafer, and finally placed in the fume hood for use It was air-dried naturally, and the result shown in (c) in Fig. 3 was obtained.
将表面涂有PS微纳米球的硅片置于电感耦合等离子体刻蚀系统进行刻蚀,刻蚀时间60s,刻蚀深度为400nm,此时硅基点阵点样区凹陷深度为400nm,获得如图3(d)所示结果。Place the silicon wafer coated with PS micro-nanospheres on the surface in an inductively coupled plasma etching system for etching, the etching time is 60s, and the etching depth is 400nm. The results are shown in Figure 3(d).
S4、去除阵列结构硅基点阵表面光刻胶及微纳米球S4. Removing the photoresist and micro-nano balls on the surface of the array structure silicon-based lattice
将刻蚀后的硅片放置于丙酮溶液中并震荡10分钟以去除表面光刻胶及光刻胶表面PS微纳米球,随后用去离子水冲洗5分钟,并用氮气吹干,其截面如图3(e)所示。Place the etched silicon wafer in an acetone solution and shake it for 10 minutes to remove the surface photoresist and PS micro-nanospheres on the surface of the photoresist, then rinse it with deionized water for 5 minutes, and dry it with nitrogen. The cross-section is shown in the figure 3(e).
随后将硅片放置于四氢呋喃溶液中浸泡24小时以去除硅片点样区PS微纳米球,此时硅片截面示意图如图3(f)所示,硅基点阵点样区微纳米结构为柱状,平均直径为300-350nm,高度为350-400nm,相邻微纳米结构之间的距离为10-120nm。Then place the silicon wafer in tetrahydrofuran solution and soak for 24 hours to remove the PS micro-nanospheres in the spotting area of the silicon wafer. At this time, the cross-sectional schematic diagram of the silicon wafer is shown in Figure 3(f). , the average diameter is 300-350nm, the height is 350-400nm, and the distance between adjacent micro-nano structures is 10-120nm.
S5、在阵列结构硅基点阵表面沉积金属氧化物层S5. Depositing a metal oxide layer on the surface of the array structure silicon-based lattice
将去除微纳米球后的硅片采用磁控溅射镀膜系统沉积金属氧化层,沉积厚度为50nm,此时硅片截面示意图如图3(g)所示,金属氧化物层为TiO2层时点样区微观结构如图10、图11所示其中这个金属氧化物层也可以是Al2O3、ZnO、TiO2、ZrO2。Deposit the metal oxide layer on the silicon wafer after removing micro-nano balls by magnetron sputtering coating system, the deposition thickness is 50nm. At this time, the cross-sectional schematic diagram of the silicon wafer is shown in Figure 3 (g). The microstructure of the spotting area is shown in Figure 10 and Figure 11, where the metal oxide layer can also be Al 2 O 3 , ZnO, TiO 2 , ZrO 2 .
实施例4:Example 4:
S1、硅片准备S1. Wafer preparation
选取一双面抛光的硅片,并对硅片进行RCA标准清洗以去除表面各种杂质和污染物。Select a double-sided polished silicon wafer, and perform RCA standard cleaning on the silicon wafer to remove various impurities and pollutants on the surface.
S2、阵列结构硅基点阵点样区的制备S2. Preparation of silicon-based lattice dot-like area with array structure
采用模板光刻的方法制备点阵点样区,首先在洗净的硅片上旋涂正性光刻胶,旋涂机参数为转速2500rpm,时间为30秒,然后将其置于96℃加热板上烘胶4分钟。(截面如图3中(a)示意图所示)Use template photolithography to prepare dot-matrix sample areas. First, spin-coat positive photoresist on the cleaned silicon wafer. The parameters of the spin-coating machine are 2500 rpm and 30 seconds, and then heat it at 96 ° C. Bake the glue on the board for 4 minutes. (The cross-section is shown in (a) schematic diagram in Figure 3)
将涂有光刻胶的硅片置于无掩膜激光直写光刻系统进行光刻,曝光图形为边长为5mm的正三角形图案,其中相邻图案间距为10mm曝光结束后立即放置于显影液中震荡显影60秒以去除被曝光区域的光刻胶,随后用去离子水冲洗一分钟后氮气吹干,获得正三角形点样区,相邻点样区之间的距离为10mm,截面如图3中(b)示意图所示。Place the silicon wafer coated with photoresist in a maskless laser direct writing lithography system for photolithography. The exposure pattern is an equilateral triangle pattern with a side length of 5mm, and the distance between adjacent patterns is 10mm. Place it in the developer solution immediately after exposure Shake and develop for 60 seconds to remove the photoresist in the exposed area, then rinse with deionized water for one minute and blow dry with nitrogen to obtain a regular triangle spotting area, the distance between adjacent spotting areas is 10mm, the cross section is shown in Figure 3 In (b) schematic diagram.
再将光刻后的硅片置于电感耦合等离子刻蚀系统进行刻蚀,刻蚀时间1000s,刻蚀深度为10μm,获得如图12所示结果,此时硅基点阵点样区形成凹槽,凹槽深度为10μm。Then place the photoetched silicon wafer in an inductively coupled plasma etching system for etching. The etching time is 1000s and the etching depth is 10μm. The result shown in Figure 12 is obtained. At this time, the silicon-based lattice pattern area forms groove , the groove depth is 10 μm.
S3、阵列结构硅基点阵点样区中微纳米结构阵列的制备S3. Preparation of micro-nano structure array in the array structure silicon-based lattice spot area
采用溶液法在光刻后的硅片表面自组装单层聚苯乙烯(PS)微纳米球。具体步骤如下:首先配制PS微纳米球分散液,将质量分数为5%的直径为360nm PS微纳米球悬浮液与正丁醇按体积比为1:1混合获得360nm的PS微纳米球分散液;然后如图4所示,采用微注射器将40μL的360nm的PS微纳米球分散液缓慢注射进置有硅片的水溶液中使PS微纳米球铺满水面(水淹没硅片,微注射器与水平面夹角为30-45度,注射器针尖部分正好接触水溶液),然后打开氧化铝坩埚底部小孔后,使水缓慢流逝,从而使PS微纳米球成功覆盖在硅片表面,最后放置于通风橱使其自然风干。Monolayer polystyrene (PS) micro-nanospheres were self-assembled on the surface of silicon wafer after photolithography by solution method. The specific steps are as follows: first prepare the PS micronanosphere dispersion, mix the PS micronanosphere suspension with a mass fraction of 5% and a diameter of 360nm with n-butanol at a volume ratio of 1:1 to obtain a 360nm PS micronanosphere dispersion Then as shown in Figure 4, the PS micro-nanosphere dispersion of 40 μ L of 360nm is slowly injected into the aqueous solution with silicon wafers using a micro-injector to make the PS micro-nano-spheres cover the water surface (water submerges the silicon wafer, and the micro-injector and the horizontal surface The included angle is 30-45 degrees, the needle tip of the syringe just touches the aqueous solution), then open the small hole at the bottom of the alumina crucible, let the water flow slowly, so that the PS micro-nano balls are successfully covered on the surface of the silicon wafer, and finally placed in the fume hood for use It is air dried naturally.
将表面涂有PS微纳米球的硅片置于电感耦合等离子刻蚀系统进行刻蚀,刻蚀时间60s,刻蚀深度为400nm,此时硅基点阵点样区凹陷深度为10.4μm,点样区的凹陷深度为微纳米结构的高度和凹槽深度加和值。Place the silicon wafer coated with PS micro-nano spheres on the surface of the inductively coupled plasma etching system for etching, the etching time is 60s, and the etching depth is 400nm. The depression depth of the region is the sum of the height of the micro-nano structure and the depth of the groove.
S4、去除阵列结构硅基点阵表面光刻胶及微纳米球S4. Removing the photoresist and micro-nano balls on the surface of the array structure silicon-based lattice
将刻蚀后的硅片放置于丙酮溶液中并震荡10分钟以去除表面光刻胶及光刻胶表面PS微纳米球,随后用去离子水冲洗5分钟,并用氮气吹干。The etched silicon wafer was placed in an acetone solution and shaken for 10 minutes to remove the surface photoresist and PS micro-nanospheres on the surface of the photoresist, then rinsed with deionized water for 5 minutes, and dried with nitrogen.
随后将硅片放置于四氢呋喃溶液中浸泡24小时以去除硅片点样区PS微纳米球,硅基点阵点样区微纳米结构为柱状,纳米柱平均直径为300-350nm,相邻微纳米结构之间的距离为10-120nm,此时硅片截面示意图如图13所示。Then place the silicon wafer in tetrahydrofuran solution and soak for 24 hours to remove the PS micro-nanospheres in the spotting area of the silicon wafer. The distance between them is 10-120 nm. At this time, the cross-sectional schematic diagram of the silicon wafer is shown in FIG. 13 .
S5、在阵列结构硅基点阵表面沉积金属氮化物层S5. Depositing a metal nitride layer on the surface of the array structure silicon-based lattice
将去除微纳米球后的硅片采用磁控溅射镀膜系统沉积金属氮化物层,沉积厚度为100nm,其中这个金属氮化物层也可以是AlN、GaN。The silicon wafer after removing the micro-nano balls is deposited with a magnetron sputtering coating system with a thickness of 100nm to deposit a metal nitride layer, wherein the metal nitride layer can also be AlN or GaN.
实施例5:Example 5:
S1、硅片准备:S1. Wafer preparation:
选取一双面抛光的硅片,并对硅片进行RCA标准清洗以去除表面各种杂质和污染物。Select a double-sided polished silicon wafer, and perform RCA standard cleaning on the silicon wafer to remove various impurities and pollutants on the surface.
S2、阵列结构硅基点阵点样区的制备S2. Preparation of silicon-based lattice dot-like area with array structure
采用模板光刻的方法制备点阵点样区,首先在洗净的硅片表面旋涂正性光刻胶,旋涂机参数为转速2500rpm,时间为30秒,然后将其置于96℃加热板上烘胶4分钟。(截面如图3中(a)示意图所示)Use template photolithography to prepare dot-matrix sample areas. First, spin-coat positive photoresist on the surface of the cleaned silicon wafer. The parameters of the spin-coating machine are 2500 rpm and 30 seconds, and then heat it at 96 ° C. Bake the glue on the board for 4 minutes. (The cross-section is shown in (a) schematic diagram in Figure 3)
将涂有光刻胶的硅片置于光刻机进行光刻,采用的光刻掩膜版为5寸镉板,透光部分为直径为5mm的圆形图案,其中相邻图案间距为5mm,曝光时间为12秒,曝光结束后立即放置于显影液中震荡显影120秒以去除被曝光区域的光刻胶,随后用去离子水冲洗一分钟后氮气吹干,获得圆形点样区,相邻点样区之间的距离为5mm,截面如图3中(b)示意图所示。Place the silicon wafer coated with photoresist in a photolithography machine for photolithography. The photolithography mask used is a 5-inch cadmium plate, and the light-transmitting part is a circular pattern with a diameter of 5 mm. The distance between adjacent patterns is 5 mm. The time is 12 seconds. Immediately after the exposure, it is placed in the developer solution and developed for 120 seconds to remove the photoresist in the exposed area. Then it is rinsed with deionized water for one minute and then dried with nitrogen to obtain a circular spotting area. The distance between the spotting areas is 5 mm, and the cross-section is shown in (b) schematic diagram in Figure 3.
S3、阵列结构硅基点阵点样区中微纳米结构阵列的制备S3. Preparation of micro-nano structure array in the array structure silicon-based lattice spot area
采用溶液法在光刻后的硅片表面自组装单层二氧化硅微纳米球。具体步骤如下:首先配制二氧化硅微纳米球分散液,将质量分数为10%的直径为2μm的二氧化硅微纳米球悬浮液与正丁醇按体积比为1:1混合获得2μm二氧化硅微纳米球分散液;然后如图4所示,采用微注射器将40μL的2μm二氧化硅微纳米球分散液缓慢注射进置有硅片的水溶液中使二氧化硅微纳米球铺满水面(水淹没硅片,微注射器与水平面夹角为30-45度,注射器针尖部分正好接触水溶液),然后打开氧化铝坩埚底部小孔后,使水缓慢流逝,从而使二氧化硅微纳米球成功覆盖在硅片表面,最后放置于通风橱使其自然风干,获得如图3中(c)所示结果。A solution method is used to self-assemble a single layer of silicon dioxide micro-nanospheres on the surface of a silicon wafer after photolithography. The specific steps are as follows: first prepare the silica micro-nanosphere dispersion, mix the silica micro-nanosphere suspension with a mass fraction of 10% and a diameter of 2 μm with n-butanol at a volume ratio of 1:1 to obtain a 2 μm silica Silicon micro-nanosphere dispersion; then as shown in Figure 4, the 2 μm silicon dioxide micro-nanosphere dispersion of 40 μ L is slowly injected into the aqueous solution with silicon wafers using a micro-injector to make the silicon dioxide micro-nanospheres cover the water surface ( The silicon wafer is submerged in water, the angle between the micro-injector and the horizontal plane is 30-45 degrees, and the needle tip of the syringe just touches the aqueous solution), and then the small hole at the bottom of the alumina crucible is opened to allow the water to flow slowly, so that the silica micro-nano balls are successfully covered On the surface of the silicon wafer, it is finally placed in a fume hood to let it dry naturally, and the result shown in (c) in Figure 3 is obtained.
将表面涂有二氧化硅微纳米球的硅片置于电感耦合等离子刻蚀系统进行刻蚀,刻蚀时间400秒,刻蚀深度为2μm,此时硅基点阵点样区凹陷深度为2μm。The silicon wafer coated with silicon dioxide micro-nanospheres was placed in an inductively coupled plasma etching system for etching. The etching time was 400 seconds, and the etching depth was 2 μm. At this time, the depression depth of the silicon-based lattice spot area was 2 μm.
S4、去除阵列结构硅基点阵表面光刻胶及微纳米球S4. Removing the photoresist and micro-nano balls on the surface of the array structure silicon-based lattice
先将硅片放置于浓度为1mol/L的氢氧化钠溶液中震荡15分钟以去除表面二氧化硅微纳米球,此时形成的微纳米结构为柱状,再通过调控刻蚀时间调控硅纳米柱的形状及尺寸。First place the silicon wafer in a sodium hydroxide solution with a concentration of 1mol/L and shake it for 15 minutes to remove the silicon dioxide micro-nano balls on the surface. shape and size.
将刻蚀后的硅片放置于丙酮溶液中并震荡10分钟以去除表面光刻胶,随后用去离子水冲洗5分钟,并用氮气吹干。The etched silicon wafer was placed in an acetone solution and shaken for 10 minutes to remove the surface photoresist, then rinsed with deionized water for 5 minutes, and blown dry with nitrogen.
此时硅基点阵点样区微纳米结构为锥状,底面圆直径为2.0-2.1μm,高度为2μm,相邻微纳米结构之间的距离为8-10μm,获得如图14所示结果。At this time, the micro-nanostructures in the silicon-based lattice spot area are cone-shaped, the diameter of the bottom circle is 2.0-2.1 μm, the height is 2 μm, and the distance between adjacent micro-nanostructures is 8-10 μm. The results shown in Figure 14 are obtained.
S5、在阵列结构硅基点阵表面沉积金属层S5. Depositing a metal layer on the surface of the array structure silicon-based lattice
将去除二氧化硅纳米球的硅片采用磁控溅射镀膜系统沉积金属层,沉积厚度为20nm Au,其中这个Au层也可以是Ag、Cu、Al、Ti、Ni、Pt。The silicon wafer from which the silica nanospheres have been removed is deposited by a magnetron sputtering coating system with a thickness of 20nm Au, where the Au layer can also be Ag, Cu, Al, Ti, Ni, Pt.
相比于采用旋涂法自组装微纳米球掩膜,本发明所采用自组装微纳米掩膜法工艺简单、耗材少,而且可以使其仅在特定点样区具有三维微纳米结构阵列,造成点样区与非点样区的性质差异,同时由于光在阵列结构硅基点阵点样区与非点样区的反射差异,无需在点样区添加其他标记物质的情况下可直接肉眼区分,从而便于点样。Compared with the self-assembled micro-nanosphere mask by the spin coating method, the self-assembled micro-nano mask method adopted in the present invention has simple process and less consumables, and it can only have a three-dimensional micro-nano structure array in a specific spot area, resulting in The properties of the spotting area and the non-spotting area are different, and due to the difference in the reflection of light in the array structure silicon-based lattice spotting area and the non-spotting area, it can be directly distinguished by naked eyes without adding other marking substances to the spotting area. This makes it easier to sample.
本发明的制备方法,可以在阵列结构硅基点阵表面形成滴定样品的圆形、方形或者三角形点样区孔与孔外区。其中,点样区根据需要,制备有不同尺寸的锥状、柱状、桶状或者半球状等特殊三维微纳米结构。可通过等离子体刻蚀、光刻、化学气相沉积、磁控溅射等半导体微纳米加工工艺,在硅基点阵点样区制备一系列三维微纳米结构阵列,一方面,排列规整的三维结构阵列,可使点样区的分析物分布更为均匀;另一方面,硅基三维结构阵列有利于形成耦合电场,促进分子的电离。此外,还可在结构阵列表面溅射Au、Ag、Cu、Al、Ti、Ni、Pt等金属纳米粒子,利用金属纳米结构的局域表面等离激元共振特性,促进分析样品的解吸电离,从而在生物化学样品分析,光电信息领域具有潜在应用前景。The preparation method of the present invention can form round, square or triangular spotting area holes and outer areas of the titration samples on the surface of the silicon-based dot matrix of the array structure. Among them, the spotting area is prepared with special three-dimensional micro-nano structures of different sizes such as cones, columns, barrels or hemispheres according to needs. A series of three-dimensional micro-nano structure arrays can be prepared in the silicon-based lattice spot area through plasma etching, photolithography, chemical vapor deposition, magnetron sputtering and other semiconductor micro-nano processing techniques. On the one hand, the regular three-dimensional structure array , which can make the analyte distribution in the sample area more uniform; on the other hand, the silicon-based three-dimensional structure array is conducive to the formation of a coupled electric field and promote the ionization of molecules. In addition, Au, Ag, Cu, Al, Ti, Ni, Pt and other metal nanoparticles can be sputtered on the surface of the structure array, and the local surface plasmon resonance characteristics of the metal nanostructure can be used to promote the desorption ionization of the analyzed sample. Therefore, it has potential application prospects in the fields of biochemical sample analysis and photoelectric information.
本发明通过采用微纳米加工工艺制备具有三维微纳米结构阵列的阵列结构硅基点阵,进而发挥微纳米结构阵列优势,及特有的光电性质,以期应用于生物化学分析检测,提高样品检测效果。The present invention prepares a silicon-based lattice with an array structure of a three-dimensional micro-nano structure array by adopting a micro-nano processing technology, and further exerts the advantages of the micro-nano structure array and its unique photoelectric properties, so as to be applied to biochemical analysis and detection and improve the sample detection effect.
本发明提供一种阵列结构硅基点阵在质谱检测中的应用,阵列结构硅基点阵是以本发明实施例中的方法所制成。质谱为电子轰击质谱(EI-MS)、场解吸附质谱(FD-MS)、快原子轰击质谱(FAB-MS)、基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)或电子喷雾质谱(ESI-MS)。本发明质谱检测适用的检测样品包括但不限于各类有机无机小分子、高分子化合物、病毒、微生物、核苷酸、核苷、寡核苷酸、核酸、氨基酸、肽、蛋白质、脂质、糖类、碳水化合物、抗原、抗体、细胞及细胞代谢产物中的至少一种,但不限于此。The present invention provides an application of a silicon-based lattice with an array structure in mass spectrometry detection. The silicon-based lattice with an array structure is made by the method in the embodiment of the present invention. Mass spectrometry was electron impact mass spectrometry (EI-MS), field desorption mass spectrometry (FD-MS), fast atom bombardment mass spectrometry (FAB-MS), matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) or electron spray mass spectrometry ( ESI-MS). The detection samples applicable to the mass spectrometry detection of the present invention include but are not limited to various organic and inorganic small molecules, polymer compounds, viruses, microorganisms, nucleotides, nucleosides, oligonucleotides, nucleic acids, amino acids, peptides, proteins, lipids, At least one of sugars, carbohydrates, antigens, antibodies, cells and cell metabolites, but not limited thereto.
本发明的阵列结构硅基点阵还可以用于拉曼检测中,采用本发明的阵列结构硅基点阵用作拉曼检测衬底。其方法具体包括:首先配置浓度为10-4到10-8mol/L的罗丹明(Rhodamine6G,R6G)试剂作为探针分子,并将其滴涂在阵列结构硅基点阵的衬底上阵列芯片上进行拉曼谱图的测试,采用XploRA拉曼仪,测试条件:入射光波长为532nm,激光功率为0.2mW,扫描时间为5s。The silicon-based lattice with an array structure of the present invention can also be used in Raman detection, and the silicon-based lattice with an array structure of the present invention can be used as a Raman detection substrate. The method specifically includes: first configuring rhodamine (Rhodamine6G, R6G) reagent with a concentration of 10 -4 to 10 -8 mol/L as a probe molecule, and drip-coating it on the substrate of the array structure silicon-based lattice array chip The Raman spectrogram is tested on the XploRA Raman instrument, and the test conditions are: the incident light wavelength is 532nm, the laser power is 0.2mW, and the scanning time is 5s.
本发明的阵列结构硅基点阵还可以用于生物传感器中或光电探测器中的应用。The silicon-based lattice with the array structure of the present invention can also be used in biosensors or photodetectors.
与现有技术相比,本发明的有益效果是:Compared with prior art, the beneficial effect of the present invention is:
(1)本发明采用溶液法来自组装微纳米球掩膜,相比于采用旋涂法自组装微纳米球掩膜,工艺简单、耗材少,而且可以使其仅在点样区具有三维微纳米结构阵列,造成点样区与非点样区的性质差异;(1) The present invention uses the solution method to self-assemble the micro-nanosphere mask. Compared with the self-assembled micro-nanosphere mask by the spin coating method, the process is simple and the consumables are less, and it can only have three-dimensional micro-nanospheres in the spotting area. Structural arrays, resulting in differences in the properties of the spotting area and the non-spotting area;
(2)本发明点样区阵列结构表面溅射Au、Ag、Cu、Al、Ti、Ni、Pt等金属纳米粒子,利用金属纳米结构的局域表面等离激元共振特性,促进分析样品的解吸电离;在表面溅射TiO2、Al2O3、ZnO、ZrO2层则可以使三维微纳米结构阵列具有光催化等特性;在表面溅射高分子层则可以使阵列结构表面具有优异的疏水性。这些性质使其在生物化学样品分析,光催化领域以及光电信息领域具有潜在应用前景。(2) Metal nanoparticles such as Au, Ag, Cu, Al, Ti, Ni, Pt, etc. are sputtered on the surface of the array structure of the spotting area of the present invention, and the local surface plasmon resonance characteristics of the metal nanostructure are used to promote the analysis of samples. Desorption and ionization; sputtering TiO 2 , Al 2 O 3 , ZnO, ZrO 2 layers on the surface can make the three-dimensional micro-nano structure array have photocatalytic properties; sputtering a polymer layer on the surface can make the surface of the array structure have excellent Hydrophobic. These properties make it a potential application prospect in biochemical sample analysis, photocatalysis and optoelectronic information.
(3)本发明所提供的制备方法工艺简单,通过简单的半导体加工工艺组合就可制备具有三维微纳米结构阵列的阵列结构硅基点阵,相比于传统一般在平整衬底表面制备微纳米结构阵列,本发明可在阶梯状衬底表面制备三维微纳米结构阵列的阵列结构硅基点阵,同时本发明所制得的三维微纳米结构阵列形貌一致,排列紧密、整齐划一。(3) The preparation method provided by the present invention has a simple process, and an array structure silicon-based lattice with a three-dimensional micro-nano structure array can be prepared through a simple combination of semiconductor processing techniques. Compared with the traditional preparation of micro-nano structures on the surface of a flat substrate array, the present invention can prepare a three-dimensional micro-nano structure array array structure silicon-based lattice on the surface of a stepped substrate, and at the same time, the three-dimensional micro-nano structure array prepared by the present invention has the same appearance, tight and uniform arrangement.
上述实施例用于例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟习此项技艺的人士均可在不违背本发明的精神及范畴下,对上述实施例进行修改。因此本发明的权利保护范围,应如权利要求所列。The above-mentioned embodiments are used to illustrate the principles and effects of the present invention, but not to limit the present invention. Anyone skilled in the art can modify the above-mentioned embodiments without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be listed in the claims.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911148319.8A CN111017868B (en) | 2019-11-21 | 2019-11-21 | Preparation method and application of array structure silicon-based lattice |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911148319.8A CN111017868B (en) | 2019-11-21 | 2019-11-21 | Preparation method and application of array structure silicon-based lattice |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111017868A CN111017868A (en) | 2020-04-17 |
CN111017868B true CN111017868B (en) | 2023-08-22 |
Family
ID=70206091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911148319.8A Active CN111017868B (en) | 2019-11-21 | 2019-11-21 | Preparation method and application of array structure silicon-based lattice |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111017868B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113522379B (en) * | 2020-04-20 | 2023-04-07 | 中国科学院化学研究所 | Micro-wall array and preparation method and application thereof, micro-channel and preparation method thereof, micro-channel reactor and application thereof |
CN112984858B (en) * | 2021-03-18 | 2022-07-26 | 哈尔滨工业大学 | Preparation method and application of microstructure radiation refrigeration device |
CN114620675B (en) * | 2022-03-18 | 2024-06-04 | 北京航空航天大学 | A method for preparing multi-dimensional patterned silicon-based nanograss and its application |
CN116093506A (en) * | 2023-03-07 | 2023-05-09 | 荣耀终端有限公司 | Membrane material, shell, battery cover, terminal equipment and preparation method of membrane material |
CN119161945A (en) * | 2023-06-20 | 2024-12-20 | 深圳市真迈生物科技有限公司 | Chip and method for preparing the same |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101275073B (en) * | 2007-09-26 | 2010-07-21 | 浙江大学 | A kind of preparation method of ZnO quantum dot |
CN103213933B (en) * | 2013-03-27 | 2016-03-09 | 厦门大学 | A kind of silicon based three-dimensional micro cell nano pole structure |
CN103257178A (en) * | 2013-04-25 | 2013-08-21 | 南通大学 | One-dimensional nanometer electrode material, and preparation method and application thereof |
CN103529081B (en) * | 2013-10-21 | 2016-02-03 | 苏州慧闻纳米科技有限公司 | A kind of preparation method of multiple layer metal oxide porous membrane gas-sensitive nano material |
CN106315505B (en) * | 2016-08-24 | 2018-11-06 | 深圳先进技术研究院 | A method of the adhesion strength between enhancing polyimide substrate and conductive metal layer |
-
2019
- 2019-11-21 CN CN201911148319.8A patent/CN111017868B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN111017868A (en) | 2020-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111017868B (en) | Preparation method and application of array structure silicon-based lattice | |
CN102169088B (en) | Monomolecular detection method | |
KR101111231B1 (en) | Microwell array chip and its manufacturing method | |
KR101878600B1 (en) | Method of fabricating periodic metal nanopatterns for optical biosensors | |
CN103499847A (en) | Method for preparing hollow nanocone array film with optical anti-reflection function | |
JP2005144569A (en) | Two-dimensional array structure substrate and fine particles peeled from the substrate | |
CN107857236A (en) | A kind of preparation method of the high conformal nanoscale minus structure of high-aspect-ratio | |
CN114324560A (en) | Preparation method and application of chip with hydrophilic-super-hydrophobic composite interface | |
WO2011121968A1 (en) | Sensor device | |
TW202007971A (en) | Patterned microfluidic devices and methods for manufacturing the same | |
CN1279184C (en) | Structural Design and Manufacturing Method of Polymerase Chain Reaction Microchip | |
CN110902646B (en) | Array structure silicon-based target substrate and application thereof | |
CN104803342B (en) | The preparation method of bowl-shape metal Nano structure | |
CN100494045C (en) | Preparation method of micron/submicron metal ring and split metal ring | |
CN102928387B (en) | Molecular vector for single molecule detection | |
CN104808269B (en) | Bowl-shaped metallic nanostructures | |
KR101180386B1 (en) | Patterned substrate for immobilizing biomolecule, manufacturing method of the same, and microarray sensor of biochip | |
CN103105378A (en) | Biosensor, manufacturing method thereof and biosensor testing system | |
CN110745777B (en) | Regular pyramid as well as preparation method and application thereof | |
KR20230005380A (en) | Nanofabrication of collapse-free high aspect ratio nanostructures | |
CN102712466A (en) | Environment sensitive devices | |
CN111122543A (en) | Roughened silicon column array structure and preparation method thereof | |
CN102901809B (en) | Production method for microporous polymer film biochip | |
CN112334229A (en) | Patterned microfluidic devices and methods of making the same | |
US10012646B2 (en) | Sensing chip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |