CN110995183B - Self-adaptive linearization heterojunction bipolar transistor power amplifier - Google Patents
Self-adaptive linearization heterojunction bipolar transistor power amplifier Download PDFInfo
- Publication number
- CN110995183B CN110995183B CN201911350639.1A CN201911350639A CN110995183B CN 110995183 B CN110995183 B CN 110995183B CN 201911350639 A CN201911350639 A CN 201911350639A CN 110995183 B CN110995183 B CN 110995183B
- Authority
- CN
- China
- Prior art keywords
- transistor
- network
- heterojunction bipolar
- output
- bipolar transistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003044 adaptive effect Effects 0.000 claims abstract description 29
- 230000003321 amplification Effects 0.000 claims abstract description 12
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 12
- 239000003990 capacitor Substances 0.000 claims description 34
- 230000003068 static effect Effects 0.000 abstract 1
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/24—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Amplifiers (AREA)
- Microwave Amplifiers (AREA)
Abstract
本发明公开了一种自适应线性化异质结双极晶体管功率放大器,包括输入CLC匹配网络、自适应线性化偏置网络、三堆叠异质结双极晶体管放大网络、输出CLC匹配网络,本发明核心架构采用三堆叠异质结双极晶体管放大网络在微波段的高功率、高增益特性,同时利用自适应线性化偏置网络调节三堆叠异质结双极晶体管放大网络在进行小信号及大信号功率放大时候的每个堆叠晶体管的静态偏置,使得整个功率放大器获得了良好的高增益、高线性度和高功率输出能力。
The invention discloses an adaptive linearized heterojunction bipolar transistor power amplifier, comprising an input CLC matching network, an adaptive linearized bias network, a three-stacked heterojunction bipolar transistor amplification network, and an output CLC matching network. The core architecture of the invention adopts the high power and high gain characteristics of the three-stacked heterojunction bipolar transistor amplification network in the microwave band, and simultaneously utilizes the adaptive linearized bias network to adjust the static bias of each stacked transistor of the three-stacked heterojunction bipolar transistor amplification network when performing small signal and large signal power amplification, so that the entire power amplifier obtains good high gain, high linearity and high power output capability.
Description
技术领域Technical Field
本发明涉及场效应晶体管射频功率放大器和集成电路领域,特别是针对射频微波收发机末端的发射模块应用的一种自适应线性化异质结双极晶体管功率放大器。The invention relates to the field of field effect transistor radio frequency power amplifiers and integrated circuits, and in particular to an adaptive linearized heterojunction bipolar transistor power amplifier applied to a transmitting module at the end of a radio frequency microwave transceiver.
背景技术Background Art
随着无线通信系统和射频微波电路的快速发展,射频前端收发器也向高性能、高集成、低功耗的方向发展。因此市场迫切的需求发射机的射频与微波功率放大器具有高输出功率、高增益、高效率、低成本等性能,而集成电路正是有望满足该市场需求的关键技术。With the rapid development of wireless communication systems and RF microwave circuits, RF front-end transceivers are also developing towards high performance, high integration and low power consumption. Therefore, the market urgently needs the RF and microwave power amplifiers of transmitters to have high output power, high gain, high efficiency and low cost, and integrated circuits are the key technologies that are expected to meet this market demand.
然而,当采用集成电路工艺设计实现射频与微波功率放大器芯片电路时,其性能和成本受到了一定制约,主要体现:However, when using integrated circuit technology to design and implement RF and microwave power amplifier chip circuits, their performance and cost are subject to certain constraints, mainly reflected in:
(1)高功率、高效率能力受限:传统功率放大器电压摆幅较小,单管输出功率低,往往需要采用多路并联合成结构,或者是分布式结构,这两种结构的合成效率有限,导致一部分功率损耗在合成网络中,限制了高功率、高效率能力。(1) Limited high power and high efficiency capabilities: Traditional power amplifiers have a small voltage swing and low single-tube output power, and often require the use of a multi-path parallel synthesis structure or a distributed structure. The synthesis efficiency of these two structures is limited, resulting in part of the power being lost in the synthesis network, limiting the high power and high efficiency capabilities.
(2)线性度指标受限:典型的功率放大器网络的偏置电路往往设计方法比较单一,无法满足线性度指标的改善,往往需要额外的线性化电路,这就给系统应用带来了复杂因素。(2) Limited linearity indicators: The bias circuit of a typical power amplifier network often has a relatively simple design method and cannot meet the improvement of linearity indicators. It often requires additional linearization circuits, which brings complex factors to the system application.
常见的高增益、高功率放大器的电路结构有很多,最典型的是多级、多路合成单端功率放大器,但是,传统多级、多路合成单端功率放大器要同时满足各项参数的要求十分困难,主要是因为:传统多级、多路合成单端功率放大器采用多路并联合成结构时的输出阻抗较低,因此输出合成网络需要实现高阻抗变换比的阻抗匹配,这样往往需要牺牲放大器的增益、降低功率,因此限制了高功率、高效率能力。There are many common circuit structures of high-gain, high-power amplifiers, the most typical of which is a multi-stage, multi-channel synthesis single-ended power amplifier. However, it is very difficult for a traditional multi-stage, multi-channel synthesis single-ended power amplifier to meet the requirements of various parameters at the same time. This is mainly because: the output impedance of a traditional multi-stage, multi-channel synthesis single-ended power amplifier is low when a multi-channel parallel synthesis structure is used. Therefore, the output synthesis network needs to achieve impedance matching with a high impedance conversion ratio, which often requires sacrificing the gain of the amplifier and reducing the power, thereby limiting the high power and high efficiency capabilities.
除此之外,典型的传统堆叠异质结双极晶体管,往往在最下方的偏置网络中加入了线性化偏置网络,这样的设置对于堆叠放大器的线性度指标的改进比较有限,忽略了上方堆叠晶体管的偏置电路对于线性度的限制。In addition, typical traditional stacked heterojunction bipolar transistors often add a linearization bias network to the bottom bias network. Such a setting has limited improvement on the linearity index of the stacked amplifier and ignores the limitation of the bias circuit of the upper stacked transistor on linearity.
由此可以看出,基于集成电路工艺的高增益、高功率放大器设计难点为:高功率、高效率输出难度较大;典型的传统堆叠异质结双极晶体管在线性度偏置网络设计中存在局限性。From this, it can be seen that the difficulties in designing high-gain, high-power amplifiers based on integrated circuit technology are: high-power, high-efficiency output is difficult; typical traditional stacked heterojunction bipolar transistors have limitations in the design of linear bias networks.
发明内容Summary of the invention
本发明所要解决的技术问题是提供一种自适应线性化异质结双极晶体管功率放大器,结合了异质结双极晶体管堆叠技术、自适应线性化技术的优点,具有在微波频段高功率、高增益且成本低等优点。The technical problem to be solved by the present invention is to provide an adaptive linearized heterojunction bipolar transistor power amplifier, which combines the advantages of heterojunction bipolar transistor stacking technology and adaptive linearization technology, and has the advantages of high power, high gain and low cost in the microwave frequency band.
本发明解决上述技术问题的技术方案如下:一种自适应线性化异质结双极晶体管功率放大器,其特征在于,包括输入CLC匹配网络、自适应线性化偏置网络、三堆叠异质结双极晶体管放大网络、输出CLC匹配网络;The technical solution of the present invention to solve the above technical problems is as follows: an adaptive linearized heterojunction bipolar transistor power amplifier, characterized in that it includes an input CLC matching network, an adaptive linearized bias network, a three-stacked heterojunction bipolar transistor amplification network, and an output CLC matching network;
输入CLC匹配网络的输入端为整个功率放大器的输入端,其输出端与所述三堆叠异质结双极晶体管放大网络的第一输入端连接,进一步的,输入CLC匹配网络的输入端RFin连接微带线TL1,微带线TL1的另一端连接电容Cin1,电容Cin1的另一端连接接地微带线TL2和电容Cin2,电容Cin2的另一端连接输入CLC匹配网络的输出端;The input end of the input CLC matching network is the input end of the entire power amplifier, and the output end thereof is connected to the first input end of the three-stack heterojunction bipolar transistor amplification network. Further, the input end RF in of the input CLC matching network is connected to the microstrip line TL 1 , the other end of the microstrip line TL 1 is connected to the capacitor C in1 , the other end of the capacitor C in1 is connected to the grounded microstrip line TL 2 and the capacitor C in2 , and the other end of the capacitor C in2 is connected to the output end of the input CLC matching network;
上述进一步方案的有益效果是:本发明采用的输入CLC匹配网络除了能实现阻抗匹配外,还能改善电路的低频稳定性;The beneficial effects of the above further solution are: the input CLC matching network adopted by the present invention can not only achieve impedance matching, but also improve the low-frequency stability of the circuit;
自适应线性化偏置网络的输入端、第一输出端、第二输出端、第三输出端分别与三堆叠异质结双极晶体管放大网络的第五输入端、第二输入端、第三输入端和第四输入端连接,进一步的,自适应线性化偏置网络输入端连接晶体管Qf1的集电极、电阻Rg、晶体管Qf2的集电极、晶体管Qf3的集电极;电阻Rg另一端连接晶体管Qf1的基极、晶体管Qf2的基极、晶体管Qf3的基极、晶体管Qd1的集电极和基极、和接地电容Cb1;晶体管Qf1的发射极连接自适应线性化偏置网络的第三输出端和接地电阻Rs1;晶体管Qf2的发射极连接自适应线性化偏置网络的第二输出端和接地电阻Rs2;晶体管Qf3的发射极连接自适应线性化偏置网络的第一输出端和接地电阻Rs3;晶体管Qd1的发射极连接晶体管Qd2的集电极和基极,晶体管Qd2的发射极接地;The input end, the first output end, the second output end and the third output end of the adaptive linearization bias network are respectively connected to the fifth input end, the second input end, the third input end and the fourth input end of the three-stack heterojunction bipolar transistor amplifier network. Further, the input end of the adaptive linearization bias network is connected to the collector of transistor Qf1 , the resistor Rg , the collector of transistor Qf2 and the collector of transistor Qf3 ; the other end of the resistor Rg is connected to the base of transistor Qf1 , the base of transistor Qf2 , the base of transistor Qf3 , the collector and base of transistor Qd1 , and the grounding capacitor Cb1 ; the emitter of transistor Qf1 is connected to the third output end of the adaptive linearization bias network and the grounding resistor Rs1 ; the emitter of transistor Qf2 is connected to the second output end of the adaptive linearization bias network and the grounding resistor Rs2 ; the emitter of transistor Qf3 is connected to the first output end of the adaptive linearization bias network and the grounding resistor Rs3 ; the emitter of transistor Qd1 is connected to the collector and base of transistor Qd2 , and the emitter of transistor Qd3 is connected to the collector and base of transistor Qd2. The emitter of d2 is grounded;
上述进一步方案的有益效果是:本发明自适应线性化偏置网络可以同时针对三个堆叠的异质结双极晶体管的基极偏置进行线性化补偿,从而大大改善堆叠放大器的线性化指标,在小信号状态下,偏置点为常规深AB类,在大信号状态下,放大器的偏置点调整为浅AB类,从而改善线性度指标;The beneficial effects of the above further scheme are: the adaptive linearization bias network of the present invention can simultaneously perform linearization compensation for the base bias of three stacked heterojunction bipolar transistors, thereby greatly improving the linearization index of the stacked amplifier. In the small signal state, the bias point is a conventional deep AB class, and in the large signal state, the bias point of the amplifier is adjusted to a shallow AB class, thereby improving the linearity index;
三堆叠异质结双极晶体管放大网络的输出端与输出CLC匹配网络的输入端连接,进一步的,三堆叠异质结双极晶体管放大网络中的晶体管Qs1的基极连接接地电容Cb2和电阻Rt1,电阻Rt1的另一端连接三堆叠异质结双极晶体管放大网络的第四输入端;晶体管Qs1的集电极连接微带线TL5和三堆叠异质结双极晶体管放大网络的输出端,微带线TL5的另一端连接三堆叠异质结双极晶体管放大网络的第五输入端和偏置电压Vc;晶体管Qs1的发射极连接微带线TL4,微带线TL4的另一端连接晶体管Qs2的集电极;晶体管Qs2的基极连接接地电容Cb3和电阻Rt2,电阻Rt2的另一端连接三堆叠异质结双极晶体管放大网络的第三输入端;晶体管Qs2的发射极连接微带线TL3,微带线TL3的另一端连接晶体管Qs3的集电极;晶体管Qs3的基极连接三堆叠异质结双极晶体管放大网络的第一输入端和电阻Rt3,电阻Rt3的另一端连接三堆叠异质结双极晶体管放大网络的第二输入端晶体管Qs3的发射极直接接地;The output end of the three-stack heterojunction bipolar transistor amplifier network is connected to the input end of the output CLC matching network. Further, the base of the transistor Qs1 in the three-stack heterojunction bipolar transistor amplifier network is connected to the grounded capacitor Cb2 and the resistor Rt1 , and the other end of the resistor Rt1 is connected to the fourth input end of the three-stack heterojunction bipolar transistor amplifier network; the collector of the transistor Qs1 is connected to the microstrip line TL5 and the output end of the three-stack heterojunction bipolar transistor amplifier network, and the other end of the microstrip line TL5 is connected to the fifth input end of the three-stack heterojunction bipolar transistor amplifier network and the bias voltage Vc ; the emitter of the transistor Qs1 is connected to the microstrip line TL4 , and the other end of the microstrip line TL4 is connected to the collector of the transistor Qs2 ; the base of the transistor Qs2 is connected to the grounded capacitor Cb3 and the resistor Rt2 , and the other end of the resistor Rt2 is connected to the third input end of the three-stack heterojunction bipolar transistor amplifier network; the emitter of the transistor Qs2 is connected to the microstrip line TL3 , and the microstrip line TL The other end of 3 is connected to the collector of transistor Q s3 ; the base of transistor Q s3 is connected to the first input end of the three-stack heterojunction bipolar transistor amplifier network and resistor R t3 , the other end of resistor R t3 is connected to the second input end of the three-stack heterojunction bipolar transistor amplifier network, and the emitter of transistor Q s3 is directly grounded;
上述进一步方案的有益效果是:本发明采用的三堆叠异质结双极晶体管放大网络可以增加放大器的电压摆幅,提高功率输出能力和输出阻抗,改善输出匹配;The beneficial effects of the above further scheme are: the three-stacked heterojunction bipolar transistor amplifier network adopted by the present invention can increase the voltage swing of the amplifier, improve the power output capability and output impedance, and improve output matching;
输出CLC匹配网络的输出端为整个功率放大器的输出端,进一步的,输出CLC匹配网络的输入端连接微带线TL6,微带线TL6的另一端连接电容Cload,电容Cload的另一端连接微带线TL7,微带线TL7的另一端连接接地电容C out和微带线TL8,微带线TL8的另一端连接输出CLC匹配网络的输出端;The output end of the output CLC matching network is the output end of the entire power amplifier. Further, the input end of the output CLC matching network is connected to the microstrip line TL 6 , the other end of the microstrip line TL 6 is connected to the capacitor C load , the other end of the capacitor C load is connected to the microstrip line TL 7 , the other end of the microstrip line TL 7 is connected to the grounding capacitor C out and the microstrip line TL 8 , and the other end of the microstrip line TL 8 is connected to the output end of the output CLC matching network;
上述进一步方案的有益效果是:本发明采用的输出CLC匹配网络可以实现高效率、低插损的输出阻抗匹配,同时具备射频信号隔直功能。The beneficial effect of the above further solution is that the output CLC matching network adopted by the present invention can achieve high-efficiency, low-insertion-loss output impedance matching, and at the same time has the function of direct-current isolation of RF signals.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明功率放大器原理框图;FIG1 is a block diagram of a power amplifier according to the present invention;
图2为本发明功率放大器电路图。FIG. 2 is a circuit diagram of a power amplifier according to the present invention.
具体实施方式DETAILED DESCRIPTION
现在将参考附图来详细描述本发明的示例性实施方式。应当理解,附图中示出和描述的实施方式仅仅是示例性的,意在阐释本发明的原理和精神,而并非限制本发明的范围。Now, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. It should be understood that the embodiments shown and described in the accompanying drawings are only exemplary and are intended to explain the principles and spirit of the present invention, rather than to limit the scope of the present invention.
本发明实施例提供了一种自适应线性化异质结双极晶体管功率放大器,包括输入CLC匹配网络、自适应线性化偏置网络、三堆叠异质结双极晶体管放大网络、输出CLC匹配网络。The embodiment of the present invention provides an adaptive linearized heterojunction bipolar transistor power amplifier, comprising an input CLC matching network, an adaptive linearized bias network, a three-stacked heterojunction bipolar transistor amplification network, and an output CLC matching network.
如图1所示,输入CLC匹配网络的输入端为整个功率放大器的输入端,其输出端与三堆叠异质结双极晶体管放大网络的第一输入端连接;As shown in FIG1 , the input end of the input CLC matching network is the input end of the entire power amplifier, and its output end is connected to the first input end of the three-stack heterojunction bipolar transistor amplification network;
自适应线性化偏置网络的输入端、第一输出端、第二输出端、第三输出端分别与三堆叠异质结双极晶体管放大网络的第五输入端、第二输入端、第三输入端和第四输入端连接;The input terminal, the first output terminal, the second output terminal, and the third output terminal of the adaptive linearization bias network are respectively connected to the fifth input terminal, the second input terminal, the third input terminal, and the fourth input terminal of the three-stack heterojunction bipolar transistor amplifier network;
三堆叠异质结双极晶体管放大网络的输出端与输出CLC匹配网络的输入端连接;The output end of the three-stack heterojunction bipolar transistor amplifier network is connected to the input end of the output CLC matching network;
输出CLC匹配网络的输出端为整个功率放大器的输出端。The output end of the output CLC matching network is the output end of the entire power amplifier.
如图2所示,输入CLC匹配网络的输入端RFin连接微带线TL1,微带线TL1的另一端连接电容Cin1,电容Cin1的另一端连接接地微带线TL2和电容Cin2,电容Cin2的另一端连接输入CLC匹配网络的输出端;As shown in FIG2 , the input terminal RF in of the input CLC matching network is connected to the microstrip line TL 1 , the other end of the microstrip line TL 1 is connected to the capacitor C in1 , the other end of the capacitor C in1 is connected to the grounded microstrip line TL 2 and the capacitor C in2 , and the other end of the capacitor C in2 is connected to the output terminal of the input CLC matching network;
自适应线性化偏置网络输入端连接晶体管Qf1的集电极、电阻Rg、晶体管Qf2的集电极、晶体管Qf3的集电极;电阻Rg另一端连接晶体管Qf1的基极、晶体管Qf2的基极、晶体管Qf3的基极、晶体管Qd1的集电极和基极、和接地电容Cb1;晶体管Qf1的发射极连接自适应线性化偏置网络的第三输出端和接地电阻Rs1;晶体管Qf2的发射极连接自适应线性化偏置网络的第二输出端和接地电阻Rs2;晶体管Qf3的发射极连接自适应线性化偏置网络的第一输出端和接地电阻Rs3;晶体管Qd1的发射极连接晶体管Qd2的集电极和基极,晶体管Qd2的发射极接地;The input end of the adaptive linearization bias network is connected to the collector of transistor Qf1 , resistor Rg , collector of transistor Qf2 , and collector of transistor Qf3 ; the other end of resistor Rg is connected to the base of transistor Qf1 , base of transistor Qf2 , base of transistor Qf3 , collector and base of transistor Qd1 , and grounded capacitor Cb1 ; the emitter of transistor Qf1 is connected to the third output end of the adaptive linearization bias network and grounded resistor Rs1 ; the emitter of transistor Qf2 is connected to the second output end of the adaptive linearization bias network and grounded resistor Rs2 ; the emitter of transistor Qf3 is connected to the first output end of the adaptive linearization bias network and grounded resistor Rs3 ; the emitter of transistor Qd1 is connected to the collector and base of transistor Qd2 , and the emitter of transistor Qd2 is grounded;
三堆叠异质结双极晶体管放大网络中的晶体管Qs1的基极连接接地电容Cb2和电阻Rt1,电阻Rt1的另一端连接三堆叠异质结双极晶体管放大网络的第四输入端;晶体管Qs1的集电极连接微带线TL5和三堆叠异质结双极晶体管放大网络的输出端,微带线TL5的另一端连接三堆叠异质结双极晶体管放大网络的第五输入端和偏置电压Vc;晶体管Qs1的发射极连接微带线TL4,微带线TL4的另一端连接晶体管Qs2的集电极;晶体管Qs2的基极连接接地电容Cb3和电阻Rt2,电阻Rt2的另一端连接三堆叠异质结双极晶体管放大网络的第三输入端;晶体管Qs2的发射极连接微带线TL3,微带线TL3的另一端连接晶体管Qs3的集电极;晶体管Qs3的基极连接三堆叠异质结双极晶体管放大网络的第一输入端和电阻Rt3,电阻Rt3的另一端连接三堆叠异质结双极晶体管放大网络的第二输入端晶体管Qs3的发射极直接接地;The base of transistor Qs1 in the three-stack heterojunction bipolar transistor amplifier network is connected to the grounded capacitor Cb2 and the resistor Rt1 , and the other end of the resistor Rt1 is connected to the fourth input end of the three-stack heterojunction bipolar transistor amplifier network; the collector of transistor Qs1 is connected to the microstrip line TL5 and the output end of the three-stack heterojunction bipolar transistor amplifier network, and the other end of the microstrip line TL5 is connected to the fifth input end of the three-stack heterojunction bipolar transistor amplifier network and the bias voltage Vc ; the emitter of transistor Qs1 is connected to the microstrip line TL4 , and the other end of the microstrip line TL4 is connected to the collector of transistor Qs2 ; the base of transistor Qs2 is connected to the grounded capacitor Cb3 and the resistor Rt2 , and the other end of the resistor Rt2 is connected to the third input end of the three-stack heterojunction bipolar transistor amplifier network; the emitter of transistor Qs2 is connected to the microstrip line TL3 , and the other end of the microstrip line TL3 is connected to the collector of transistor Qs3 ; The base of s3 is connected to the first input terminal of the three-stack heterojunction bipolar transistor amplifier network and the resistor R t3 , and the other end of the resistor R t3 is connected to the second input terminal of the three-stack heterojunction bipolar transistor amplifier network. The emitter of transistor Q s3 is directly grounded;
输出CLC匹配网络的输入端连接微带线TL6,微带线TL6的另一端连接电容Cload,电容Cload的另一端连接微带线TL7,微带线TL7的另一端连接接地电容C out和微带线TL8,微带线TL8的另一端连接输出CLC匹配网络的输出端。The input end of the output CLC matching network is connected to microstrip line TL 6 , the other end of microstrip line TL 6 is connected to capacitor C load , the other end of capacitor C load is connected to microstrip line TL 7 , the other end of microstrip line TL 7 is connected to ground capacitor C out and microstrip line TL 8 , and the other end of microstrip line TL 8 is connected to the output end of the output CLC matching network.
下面结合图2对本发明的具体工作原理及过程进行介绍:The specific working principle and process of the present invention are introduced below in conjunction with FIG2:
射频输入信号通过输入端RFin进入电路,通过输入CLC匹配网络匹配后,进入三堆叠异质结双极晶体管放大网络的第一输入端,通过放大网络进行功率放大后,从三堆叠异质结双极晶体管放大网络输出端输出,再经过输出CLC匹配网络的阻抗匹配后从输出端RFout输出。同时,自适应线性化偏置网络的输入端、第一输出端、第二输出端、第三输出端分别与所述三堆叠异质结双极晶体管放大网络的第五输入端、第二输入端、第三输入端和第四输入端连接,为电路提供合适的工作状态。The RF input signal enters the circuit through the input terminal RF in , enters the first input terminal of the three-stack heterojunction bipolar transistor amplifier network after matching through the input CLC matching network, is power amplified through the amplifier network, is output from the output terminal of the three-stack heterojunction bipolar transistor amplifier network, and is output from the output terminal RF out after impedance matching through the output CLC matching network. At the same time, the input terminal, the first output terminal, the second output terminal, and the third output terminal of the adaptive linearization bias network are respectively connected to the fifth input terminal, the second input terminal, the third input terminal, and the fourth input terminal of the three-stack heterojunction bipolar transistor amplifier network to provide a suitable working state for the circuit.
基于上述电路分析,本发明提出的一种自适应线性化异质结双极晶体管功率放大器与以往的基于集成电路工艺的放大器结构的不同之处在于核心架构采用带有自适应线性化偏置网络的三堆叠异质结双极晶体管放大网络:Based on the above circuit analysis, the adaptive linearized heterojunction bipolar transistor power amplifier proposed by the present invention is different from the previous amplifier structure based on integrated circuit technology in that the core architecture adopts a three-stacked heterojunction bipolar transistor amplifier network with an adaptive linearized bias network:
三堆叠异质结双极晶体管与传统单一晶体管在结构上有很大不同,此处不做赘述;The triple-stacked heterojunction bipolar transistor is very different in structure from the conventional single transistor, which will not be described here;
三堆叠异质结双极晶体管与Cascode放大器的不同之处在于:Cascode晶体管的共射管的堆叠基极补偿电容是容值较大的电容,用于实现基极的交流接地,而三堆叠异质结双极晶体管共射管的堆叠基极补偿电容是容值很小的电容,用于实现基极的交流同步摆动,非交流接地。The difference between the three-stack heterojunction bipolar transistor and the cascode amplifier is that the stacked base compensation capacitor of the common-emitter tube of the cascode transistor is a capacitor with a large capacitance value, which is used to achieve AC grounding of the base, while the stacked base compensation capacitor of the common-emitter tube of the three-stack heterojunction bipolar transistor is a capacitor with a very small capacitance value, which is used to achieve AC synchronous swing of the base, non-AC grounding.
自适应线性化偏置网络可以同时针对三个堆叠的异质结双极晶体管的基极偏置进行线性化补偿,从而大大改善堆叠放大器的线性化指标,在小信号状态下,偏置点为常规深AB类,在大信号状态下,放大器的偏置点调整为浅AB类,从而改善线性度指标。The adaptive linearization bias network can simultaneously perform linearization compensation for the base bias of three stacked heterojunction bipolar transistors, thereby greatly improving the linearization index of the stacked amplifier. In the small signal state, the bias point is the conventional deep class AB, and in the large signal state, the bias point of the amplifier is adjusted to the shallow class AB, thereby improving the linearity index.
在整个一种自适应线性化异质结双极晶体管功率放大器中,晶体管的尺寸和其他电阻、电容的大小是综合考虑整个电路的增益、带宽和输出功率等各项指标后决定的,通过后期的版图设计与合理布局,可以更好地实现所要求的各项指标,实现在高功率输出能力、高功率增益、良好的输入输出匹配特性。In the entire adaptive linearized heterojunction bipolar transistor power amplifier, the size of the transistor and the sizes of other resistors and capacitors are determined after comprehensive consideration of various indicators such as the gain, bandwidth and output power of the entire circuit. Through subsequent layout design and reasonable layout, the required indicators can be better achieved, and high power output capability, high power gain, and good input-output matching characteristics can be achieved.
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above description is only a preferred embodiment of the present invention and is not intended to limit the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and principle of the present invention should be included in the protection scope of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911350639.1A CN110995183B (en) | 2019-12-24 | 2019-12-24 | Self-adaptive linearization heterojunction bipolar transistor power amplifier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911350639.1A CN110995183B (en) | 2019-12-24 | 2019-12-24 | Self-adaptive linearization heterojunction bipolar transistor power amplifier |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110995183A CN110995183A (en) | 2020-04-10 |
CN110995183B true CN110995183B (en) | 2024-10-29 |
Family
ID=70076293
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911350639.1A Active CN110995183B (en) | 2019-12-24 | 2019-12-24 | Self-adaptive linearization heterojunction bipolar transistor power amplifier |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110995183B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112865717B (en) * | 2021-01-15 | 2022-06-10 | 青海民族大学 | A High Gain Power Amplifier Based on Adaptive Linearization Technology |
CN114567270B (en) * | 2022-04-29 | 2022-08-16 | 成都嘉纳海威科技有限责任公司 | Low-cost linear power amplifier |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN211701985U (en) * | 2019-12-24 | 2020-10-16 | 青海民族大学 | Linear high-gain heterojunction bipolar transistor power amplifier |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6198347B1 (en) * | 1999-07-29 | 2001-03-06 | Tropian, Inc. | Driving circuits for switch mode RF power amplifiers |
JP6341461B2 (en) * | 2013-09-11 | 2018-06-13 | 株式会社村田製作所 | Power amplifier |
CN108768323B (en) * | 2018-08-14 | 2023-09-01 | 成都嘉纳海威科技有限责任公司 | High-power high-efficiency high-gain reverse F-class stacked power amplifier |
CN109286376A (en) * | 2018-10-18 | 2019-01-29 | 成都嘉纳海威科技有限责任公司 | A kind of high-efficiency double-frequency J class stacking power amplifier based on second harmonic control |
CN110601668B (en) * | 2019-09-20 | 2024-03-08 | 重庆桴之科科技发展有限公司 | High-efficiency power amplifier for Internet of vehicles communication |
-
2019
- 2019-12-24 CN CN201911350639.1A patent/CN110995183B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN211701985U (en) * | 2019-12-24 | 2020-10-16 | 青海民族大学 | Linear high-gain heterojunction bipolar transistor power amplifier |
Also Published As
Publication number | Publication date |
---|---|
CN110995183A (en) | 2020-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107332517B (en) | High-linearity broadband stacked low-noise amplifier based on gain compensation technology | |
CN215990714U (en) | Radio frequency power amplifier and radio frequency front end architecture applied to 5G communication system | |
CN110896300B (en) | A broadband low noise amplifier | |
CN216162678U (en) | Radio frequency power amplifier | |
CN109245734A (en) | A kind of Ka wave band SiGe BiCMOS radio-frequency power amplifier | |
CN108574464B (en) | Low-power-consumption high-linearity dual-mode millimeter wave broadband stacked low-noise amplifier | |
CN106533367A (en) | High-gain CMOS low-noise amplifier for TD-LTE (Time Division Long Term Evolution) | |
CN113328712A (en) | Variable gain linear power amplifier and chip | |
WO2023040238A1 (en) | Differential power amplifier | |
CN112202408A (en) | Cascode radio frequency amplifier of GaN technology | |
CN110995183B (en) | Self-adaptive linearization heterojunction bipolar transistor power amplifier | |
CN112910417A (en) | Broadband high-efficiency microwave power amplifier | |
WO2023065843A1 (en) | Transformer matching-based three-power synthesis radio frequency power amplifier | |
CN112865717B (en) | A High Gain Power Amplifier Based on Adaptive Linearization Technology | |
WO2023045543A1 (en) | Three-stage power amplifier based on transformer matching, and radio frequency front-end architecture | |
KR101590605B1 (en) | Linear power amplifier for wireless transmitter | |
CN110086441A (en) | Power amplifier | |
CN211701985U (en) | Linear high-gain heterojunction bipolar transistor power amplifier | |
CN118100817A (en) | High-linearity low-noise amplifier based on grid inductance | |
CN210431351U (en) | High-power high-frequency amplifier based on heterojunction triode | |
CN114759885B (en) | Ultra-wideband variable gain amplifier, wireless communication device, and gain adjustment method | |
CN117375544A (en) | Ultra-wideband distributed low-noise amplifier with triple cascade structure | |
CN211046877U (en) | High-power cascode broadband amplifier | |
CN101527542A (en) | Multi-stage amplifier circuit, method and integrated circuit for minimizing common mode oscillation | |
CN211046881U (en) | Two-way distributed high-gain broadband power amplifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
CB03 | Change of inventor or designer information |
Inventor after: Lin Qian Inventor after: Wu Haifeng Inventor before: Lin Qian Inventor before: Wu Haifeng Inventor before: Chen Shanji Inventor before: Chen Cong |
|
CB03 | Change of inventor or designer information | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |