CN110963796B - 一种巨介电常数低损耗x8r型陶瓷电容器材料及其制备方法 - Google Patents
一种巨介电常数低损耗x8r型陶瓷电容器材料及其制备方法 Download PDFInfo
- Publication number
- CN110963796B CN110963796B CN201911354157.3A CN201911354157A CN110963796B CN 110963796 B CN110963796 B CN 110963796B CN 201911354157 A CN201911354157 A CN 201911354157A CN 110963796 B CN110963796 B CN 110963796B
- Authority
- CN
- China
- Prior art keywords
- dielectric constant
- ceramic capacitor
- loss
- giant dielectric
- capacitor material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims abstract description 29
- 239000003985 ceramic capacitor Substances 0.000 title claims abstract description 20
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 238000000498 ball milling Methods 0.000 claims abstract description 20
- 239000000843 powder Substances 0.000 claims abstract description 19
- 239000000919 ceramic Substances 0.000 claims abstract description 17
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 10
- 239000001257 hydrogen Substances 0.000 claims abstract description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 8
- 238000005245 sintering Methods 0.000 claims abstract description 6
- 239000011230 binding agent Substances 0.000 claims abstract description 5
- 239000003292 glue Substances 0.000 claims abstract description 5
- 239000004615 ingredient Substances 0.000 claims abstract description 3
- 239000000126 substance Substances 0.000 claims abstract description 3
- 229910010413 TiO 2 Inorganic materials 0.000 claims abstract 6
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 claims abstract 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 34
- 238000001035 drying Methods 0.000 claims description 14
- 238000002156 mixing Methods 0.000 claims description 6
- 238000000227 grinding Methods 0.000 claims description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 239000007858 starting material Substances 0.000 claims description 2
- 239000013590 bulk material Substances 0.000 claims 2
- 238000003825 pressing Methods 0.000 claims 1
- 238000010298 pulverizing process Methods 0.000 claims 1
- 229910010293 ceramic material Inorganic materials 0.000 abstract description 20
- QZQVBEXLDFYHSR-UHFFFAOYSA-N gallium(III) oxide Inorganic materials O=[Ga]O[Ga]=O QZQVBEXLDFYHSR-UHFFFAOYSA-N 0.000 abstract description 11
- 238000000137 annealing Methods 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 abstract description 2
- 239000008187 granular material Substances 0.000 abstract 1
- 239000004408 titanium dioxide Substances 0.000 description 10
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 9
- 235000015895 biscuits Nutrition 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 1
- 238000002083 X-ray spectrum Methods 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/46—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
- H01G4/1209—Ceramic dielectrics characterised by the ceramic dielectric material
- H01G4/1218—Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
- H01G4/1227—Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3286—Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6582—Hydrogen containing atmosphere
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/661—Multi-step sintering
- C04B2235/662—Annealing after sintering
- C04B2235/664—Reductive annealing
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Ceramic Capacitors (AREA)
- Inorganic Insulating Materials (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明涉及一种巨介电常数低损耗X8R型陶瓷电容器材料,该材料的名义化学式为95mol%TiO2‑5mol%Ga2O3。其制备方法如下:按照TiO2:Ga2O3=95:5的摩尔比进行配料后以无水乙醇为球磨介质,球磨混合均匀后烘干;然后于1000‑1100℃预烧2.5‑3.5h得预烧后的粉体,粉碎,再以无水乙醇为球磨介质球磨混合均匀、烘干、研磨成粉状;加入PVA粘结剂,造粒、压片、排胶得到陶瓷素胚体;在1330‑1370℃烧结3‑5h,得陶瓷块体材料;在900‑1000℃氩氢气气氛中退火1.5‑2.5h即得产物。本发明制备工艺简单,成本低廉,对环境无害,且获得的X8R陶瓷材料的介电常数高,损耗低,频率及热稳定性好,具有良好的产业化前景。
Description
技术领域
本发明属于电子陶瓷材料应用技术领域,具体涉及一种巨介电常数低损耗X8R型陶瓷电容器材料及其制备方法。
背景技术
当今社会,随着电子及微电子技术的快速发展,以及电子产品的小型化,集成化及多功能化的需求,具有高介电常数的材料得到前所未有的关注。相比较于其它高介电常数材料,巨介电陶瓷材料因其拥有极高的介电常数,良好的机械强度、抗腐蚀及温度稳定性等优点,被视为潜在的一类可以广泛应用于集成电路以及高储能密度电容器的一类材料。
在过去十几年关于巨介电陶瓷材料的研究中,研究者们发现了一系列对环境友好的巨介电陶瓷材料,例如钙铜钛氧、类钙铜钛氧、钛酸钡、钛酸锶、氧化镍等。2013年澳大利亚国立大学刘芸教授团队利用(In,Nb)受主-施主双掺杂金红石型二氧化钛陶瓷,成功制备出了介电常数高达50000以上,且损耗低于0.05并且拥有优异温度及频率稳定性的巨介电陶瓷材料。因此,通过掺杂改性金红石型二氧化钛陶瓷成为目前巨介电陶瓷方向的研究热点。
发明内容
本发明的目的是:提供一种巨介电常数低损耗X8R型陶瓷电容器材料及其制备方法。
为了实现上述目的,本发明提供如下技术方案:
一种巨介电常数低损耗X8R型陶瓷电容器材料,该材料的名义化学式为(95~97)mol%TiO2-(3~5)mol%Ga2O3。
一种巨介电常数低损耗X8R型陶瓷电容器材料的制备方法,具体步骤如下:
(1)将TiO2、Ga2O3作为起始原料,按照TiO2:Ga2O3=(95~97):(3~5)的摩尔比进行配料后以无水乙醇为球磨介质,球磨混合均匀后烘干;
(2)把步骤(1)制得的烘干粉体于1000-1100℃预烧2.5-3.5h,制得预烧后的粉体;
(3)将步骤(2)制得的预烧后的粉体粉碎,再以无水乙醇为球磨介质球磨混合均匀、烘干、研磨成微米级粉状;
(4)将步骤(3)制备的粉体加入PVA粘结剂,造粒、压片、排胶得到陶瓷素胚体;
(5)将陶瓷素胚体在1330-1370℃烧结3-5h,得到相应的陶瓷块体材料;
(6)将陶瓷块体材料在900-1000℃氩氢气气氛中退火1.5-2.5h,即制得巨介电常数低损耗X8R型陶瓷电容器材料。
优选地,步骤(1)中TiO2为金红石型,TiO2的纯度为99.99%。
优选地,步骤(1)中球磨时间为11-13h,烘干温度为95-105℃,烘干时间为11-13h。
优选地,步骤(3)中球磨时间为11-13h,烘干温度为95-105℃,烘干时间为11-13h。
优选地,步骤(4)中压片模具的直径为11-13mm,压力为75-85MPa,保压时间为2-4分钟。
优选地,步骤(4)中排胶温度为580-620℃,排胶时间为1.8-2.2h。
优选地,步骤(4)中步骤(3)制备的粉体与PVA粘结剂的质量比为2:1。
优选地,步骤(6)中氩氢气气氛中氢气的浓度为4-6%。
本发明的有益效果在于:
本发明制备工艺简单,成本低廉,对环境无害,且获得的X8R陶瓷材料的介电常数高,损耗低,频率及热稳定性好。本发明所提供的金红石型二氧化钛基巨介电低损耗X8R陶瓷材料,具有良好的产业化前景。
附图说明
图1为本发明实施例1制得的95mol%TiO2-5 mol%Ga2O3二氧化钛基巨介电常数低损耗X8R陶瓷材料的X射线图谱。
图2为本发明实施例1制得的95mol%TiO2-5 mol%Ga2O3二氧化钛基巨介电常数低损耗X8R陶瓷材料的显微形貌照片。
图3为本发明实施例1制得的95mol%TiO2-5 mol%Ga2O3二氧化钛基巨介电常数低损耗X8R陶瓷材料室温条件下的介电常数及损耗随频率变化的规律图。
图4为本发明实施例1制得的95mol%TiO2-5 mol%Ga2O3二氧化钛基巨介电常数低损耗X8R陶瓷材料在不同频率条件下的介电常数及损耗随温度变化的规律图。
图5为本发明实施例1制得的95mol%TiO2-5 mol%Ga2O3二氧化钛基巨介电常数低损耗X8R陶瓷材料在不同频率条件下的介电常数变化率随温度变化的规律图。
具体实施方式
本发明采用传统的固相法制备二氧化钛基陶瓷材料,并利用在还原性气氛中退火的工艺获得一种热稳定性金红石型二氧化钛基巨介电常数低损耗X8R陶瓷材料。
下面将以实施例对本发明予以具体说明。下述实施例是说明性的,不是限定性的,不能以下述实施例来限定本发明的保护范围。
实施例1
一种巨介电常数低损耗X8R型陶瓷电容器材料的其制备方法,具体步骤如下:
(1)将纯度为99.99%的TiO2(金红石型)、Ga2O3原料按化学计量比为95mol%TiO2-5 mol%Ga2O3配料放入球磨罐中,选择氧化锆球和尼龙罐,混合球磨时间为12h,转速为300转/分,球磨介质为无水乙醇。将球磨后所得产物置于100℃烘箱中烘干12h。
(2)把步骤(1)制得的烘干粉体以3℃/分的升温速率升至1050℃预烧结3h。
(3)取出预烧后的粉体研碎,再以无水乙醇为球磨介质球磨12h混合均匀,于100℃下烘干12h后研磨成粉状。
(4)取10g粉体加入5mL PVA溶液(PVA 5wt%)中并进行充分研磨;取0.7g充分研磨后的粉体将其放置在直径为12mm的模具中,在80MPa下保压3分钟,压好之后的块体在600℃下排胶2h。
(5)将排胶后所得到的陶瓷素胚体在1350℃烧结4h制得相应的陶瓷块体材料。
(6)将陶瓷块体材料在950℃氩氢气气氛中退火2h,即制得金红石型二氧化钛基陶瓷材料,此处,氩氢气气氛中氢气的浓度为5%。
将本实施例1制得的金红石型二氧化钛基陶瓷材料,在不同频率及温度条件下测试其介电常数及损耗的变化,如附图3、4、5所示,这种金红石型二氧化钛基陶瓷材料在100-1M Hz条件下介电常数都可以保持在105附近,且在频率为1k Hz时损耗仅为0.04。此外,在-55℃~150℃的温度范围内,多个频率下的介电常数变化率在-12.98~14.64范围内。显而易见,本发明巨介电陶瓷材料均具有高的温度稳定性,满足X8R陶瓷电容器的行业标准(-15%≤静电容量变化率≤15%),实用性强,有望在电子陶瓷市场应用。
Claims (8)
1.一种巨介电常数低损耗X8R型陶瓷电容器材料,其特征在于:该材料的名义化学式为(95~97)mol%TiO2-(3~5)mol%Ga2O3;
所述的巨介电常数低损耗X8R型陶瓷电容器材料的制备方法,具体步骤如下:
(1)将TiO2、Ga2O3作为起始原料,按照TiO2:Ga2O3=(95~97):(3~5)的摩尔比进行配料后以无水乙醇为球磨介质,球磨混合均匀后烘干;
(2)把步骤(1)制得的烘干粉体于1000-1100℃预烧2.5-3.5h,制得预烧后的粉体;
(3)将步骤(2)制得的预烧后的粉体粉碎,再以无水乙醇为球磨介质球磨混合均匀、烘干、研磨成微米级粉状;
(4)将步骤(3)制备的粉体加入PVA粘结剂,造粒、压片、排胶得到陶瓷素胚体;
(5)将陶瓷素胚体在1330-1370℃烧结3-5h,得到相应的陶瓷块体材料;
(6)将陶瓷块体材料在950℃氩氢气气氛中退火2h,即制得巨介电常数低损耗X8R型陶瓷电容器材料。
2.根据权利要求1所述的巨介电常数低损耗X8R型陶瓷电容器材料,其特征在于:步骤(1)中TiO2为金红石型,TiO2的纯度为99.99%。
3.根据权利要求1所述的巨介电常数低损耗X8R型陶瓷电容器材料,其特征在于:步骤(1)中球磨时间为11-13h,烘干温度为95-105℃,烘干时间为11-13h。
4.根据权利要求1所述的巨介电常数低损耗X8R型陶瓷电容器材料,其特征在于:步骤(3)中球磨时间为11-13h,烘干温度为95-105℃,烘干时间为11-13h。
5.根据权利要求1所述的巨介电常数低损耗X8R型陶瓷电容器材料,其特征在于:步骤(4)中压片模具的直径为11-13mm,压力为75-85MPa,保压时间为2-4分钟。
6.根据权利要求1所述的巨介电常数低损耗X8R型陶瓷电容器材料,其特征在于:步骤(4)中排胶温度为580-620℃,排胶时间为1.8-2.2h。
7.根据权利要求1所述的巨介电常数低损耗X8R型陶瓷电容器材料,其特征在于:步骤(4)中步骤(3)制备的粉体与PVA粘结剂的质量比为2:1。
8.根据权利要求1所述的巨介电常数低损耗X8R型陶瓷电容器材料,其特征在于:步骤(6)中氩氢气气氛中氢气的浓度为4-6%。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911354157.3A CN110963796B (zh) | 2019-12-25 | 2019-12-25 | 一种巨介电常数低损耗x8r型陶瓷电容器材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911354157.3A CN110963796B (zh) | 2019-12-25 | 2019-12-25 | 一种巨介电常数低损耗x8r型陶瓷电容器材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110963796A CN110963796A (zh) | 2020-04-07 |
CN110963796B true CN110963796B (zh) | 2021-12-28 |
Family
ID=70036307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911354157.3A Active CN110963796B (zh) | 2019-12-25 | 2019-12-25 | 一种巨介电常数低损耗x8r型陶瓷电容器材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110963796B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113061025A (zh) * | 2021-05-21 | 2021-07-02 | 安徽大学 | 一种无铅钛酸铋钠基x9r型陶瓷电容器材料及其制备方法 |
CN116947481A (zh) * | 2023-07-26 | 2023-10-27 | 山东云海国创云计算装备产业创新中心有限公司 | 一种巨介电常数介质材料及其制备方法和应用 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4989198A (zh) * | 1972-12-28 | 1974-08-26 | ||
JP2004091266A (ja) * | 2002-08-30 | 2004-03-25 | Daiken Kagaku Kogyo Kk | ガリウム添加形誘電体磁器組成物、誘電体共振器及びマイクロ波通信装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000143341A (ja) * | 1998-09-11 | 2000-05-23 | Murata Mfg Co Ltd | 誘電体セラミック組成物及び積層セラミック部品 |
KR100365294B1 (ko) * | 2000-04-21 | 2002-12-18 | 한국과학기술연구원 | 저온소결 저손실 고주파유전체 세라믹스 조성물 및 그 제조방법 |
CN1271003C (zh) * | 2004-07-14 | 2006-08-23 | 广州大学 | 掺杂TiO2低压压敏陶瓷及制作方法 |
AU2012308108B2 (en) * | 2011-09-16 | 2015-11-19 | The Australian National University | Giant dielectric constant material |
JP5910317B2 (ja) * | 2012-05-28 | 2016-04-27 | Tdk株式会社 | 誘電体磁器組成物および電子部品 |
CN106006726B (zh) * | 2016-05-03 | 2018-11-27 | 广东风华高新科技股份有限公司 | 掺杂锐钛矿二氧化钛材料、其制备方法及其应用 |
CN107311644A (zh) * | 2017-07-31 | 2017-11-03 | 焦作市金川电子科技有限公司 | 一种中介电常数微波介质陶瓷及其制备方法 |
CN108546112B (zh) * | 2018-04-11 | 2021-02-09 | 广东风华高新科技股份有限公司 | 一种环形压敏电阻材料、其制备方法及应用 |
-
2019
- 2019-12-25 CN CN201911354157.3A patent/CN110963796B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4989198A (zh) * | 1972-12-28 | 1974-08-26 | ||
JP2004091266A (ja) * | 2002-08-30 | 2004-03-25 | Daiken Kagaku Kogyo Kk | ガリウム添加形誘電体磁器組成物、誘電体共振器及びマイクロ波通信装置 |
Also Published As
Publication number | Publication date |
---|---|
CN110963796A (zh) | 2020-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104446468B (zh) | 一种x9r型陶瓷电容器介质材料及其制备方法 | |
CN101805185B (zh) | 一种制备铌镁酸铅钛酸铅弛豫铁电陶瓷的方法 | |
CN109133915A (zh) | 一种高储能钛酸钡基介质材料及其制备方法 | |
CN101671174B (zh) | 一种高介电低损耗绝缘钛酸铜钙陶瓷的制备方法 | |
CN110963796B (zh) | 一种巨介电常数低损耗x8r型陶瓷电容器材料及其制备方法 | |
CN104058741B (zh) | 一种超宽温稳定的介质陶瓷及其制备方法 | |
CN111484325A (zh) | 一种钛酸锶钡基陶瓷材料及其制备方法和应用 | |
CN106699166A (zh) | 锂‑钠共掺杂的巨介电陶瓷及其制备方法 | |
CN111004030B (zh) | 一种MgTiO3基微波介质陶瓷及其制备方法 | |
CN108530056B (zh) | 一种巨介电低损耗钛酸锶钡陶瓷及其制备方法 | |
CN107473732B (zh) | 一种钛酸锶基高储能密度和低介电损耗陶瓷材料及其制备方法 | |
CN105948737A (zh) | 一种新型CaTiO3基线性储能介质陶瓷材料及其制备方法 | |
CN108218423A (zh) | 一种x8r型陶瓷电容器介质材料及其制备方法 | |
CN109456058B (zh) | 一种锆钛酸钡和铌锌酸钡的复合电容器瓷料及其制备方法 | |
CN109516799B (zh) | 一种具有高温度稳定性的高介陶瓷电容器材料及其制备方法 | |
CN101723664A (zh) | 介电可调介质陶瓷材料的制备方法 | |
CN107640970A (zh) | 低频低介电损耗的AgNb共掺二氧化钛基介电陶瓷材料及其制备方法 | |
CN113620702A (zh) | 一种Yb3+掺杂的巨介电常数低损耗陶瓷及其制备方法 | |
CN110423116B (zh) | 一种x7r型陶瓷电容器介质材料及其制备方法 | |
CN107500756A (zh) | 一种高介电常数低损耗SrTiO3基介质材料及其制备方法 | |
CN111253151A (zh) | 具有高储能密度和高功率密度的铁酸铋钛酸钡基陶瓷及制备方法 | |
CN110511026B (zh) | 一种x8r型陶瓷电容器介质材料及其制备方法 | |
CN115536388B (zh) | 一种高熵陶瓷电介质材料及其制备方法 | |
CN103864415B (zh) | 一种锡酸锌掺杂的钛酸钡高介电陶瓷及其制备方法 | |
CN101503293A (zh) | 一种掺杂钛酸锶钡高介电性铁电陶瓷材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |