CN110957796B - Wireless charging circuit and system - Google Patents
Wireless charging circuit and system Download PDFInfo
- Publication number
- CN110957796B CN110957796B CN201911279433.4A CN201911279433A CN110957796B CN 110957796 B CN110957796 B CN 110957796B CN 201911279433 A CN201911279433 A CN 201911279433A CN 110957796 B CN110957796 B CN 110957796B
- Authority
- CN
- China
- Prior art keywords
- scc
- sar
- circuit
- capacitor
- charging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000007600 charging Methods 0.000 title claims description 126
- 239000003990 capacitor Substances 0.000 claims abstract description 57
- 230000005540 biological transmission Effects 0.000 claims abstract description 44
- 238000000034 method Methods 0.000 claims description 21
- 230000000295 complement effect Effects 0.000 claims description 12
- 238000005259 measurement Methods 0.000 claims description 3
- 238000012546 transfer Methods 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 13
- 230000008569 process Effects 0.000 description 12
- 238000004088 simulation Methods 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 5
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 5
- 230000001939 inductive effect Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000010277 constant-current charging Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
- H02J50/12—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/70—Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及一种无线充电电路和系统。The invention relates to a wireless charging circuit and system.
背景技术Background Art
无线感应电能传输(IPT)是一项不断发展的技术,一般用于不方便或不可能实现物理连接供电的应用,具有简化充电操作和消除与电气元件连接相关的安全问题的优点。该项技术适合应用于很多不同场景,例如消费电子设备、植入式人体设备及工业电子设备等。Wireless inductive power transfer (IPT) is a growing technology that is generally used in applications where physical connection for power supply is inconvenient or impossible. It has the advantages of simplifying charging operations and eliminating safety issues associated with connecting electrical components. This technology is suitable for many different scenarios, such as consumer electronic devices, implantable human devices, and industrial electronic devices.
需要一种新的设备和系统,提高IPT的充电效率以迎合市场需求。A new device and system are needed to improve the charging efficiency of IPT to meet market demand.
发明内容Summary of the invention
示例性实施例提供了一种无线电力传输电路,其利用由所述电路的初级侧的初级线圈在电路的次级侧中的次级线圈感应的交流(AC)电源向可变电阻的负载供电,该无线电力传输电路包括:连接至交流电源的可控制开关电容器(SCC)和连接到SCC的输出端以对SCC的输出进行整流的半控整流桥(SAR)。SCC包括第一电容器和与第一电容器并联的两个电控开关,所述两个电控开关串联连接。SAR包括一个桥式电路,该桥式电路包括两个电控开关。所述SCC中的两个开关各导通半个周期并且彼此互补,其断开时间相对于所述交流电源的零交叉点具有时间延迟,所述时间延迟为SCC的控制角。SAR中的两个开关各导通半个周期并且彼此互补,其断开时间相对于交流电源的零交叉点具有时间延迟,所述时间延迟为SAR的导通角。所述无线电力传输电路通过调节SCC的控制角和SAR的导通角,以提供与线圈的阻抗匹配的负载阻抗,从而提供恒定的功率输出并提高功率传输效率。An exemplary embodiment provides a wireless power transmission circuit, which uses an alternating current (AC) power induced by a primary coil on the primary side of the circuit in a secondary coil on the secondary side of the circuit to supply power to a load of a variable resistor, and the wireless power transmission circuit includes: a controllable switched capacitor (SCC) connected to the AC power supply and a half-controlled rectifier bridge (SAR) connected to the output terminal of the SCC to rectify the output of the SCC. The SCC includes a first capacitor and two electrically controlled switches connected in parallel with the first capacitor, and the two electrically controlled switches are connected in series. The SAR includes a bridge circuit, which includes two electrically controlled switches. The two switches in the SCC are each turned on for half a cycle and are complementary to each other, and their off time has a time delay relative to the zero crossing point of the AC power supply, and the time delay is the control angle of the SCC. The two switches in the SAR are each turned on for half a cycle and are complementary to each other, and their off time has a time delay relative to the zero crossing point of the AC power supply, and the time delay is the conduction angle of the SAR. The wireless power transmission circuit provides a load impedance that matches the impedance of the coil by adjusting the control angle of the SCC and the conduction angle of the SAR, thereby providing a constant power output and improving the power transmission efficiency.
示例性实施例还提供了一种提高电池充电效率的无线充电系统,其通过电路的初级侧中的初级线圈在电路的次级侧中的次级线圈处感应出的交流电源为电池充电,该无线充电系统包括:与次级线圈连接的可控制开关电容器(SCC)、半控整流桥(SAR)、传感器、控制器和信号发生器。SCC包括两个串联的电控开关和与该两个电控开关并联的第一电容器;SAR连接到SCC的输出端以对SCC的输出进行整流,其包括一个桥式电路,该桥式电路包括两个电控开关;多个传感器,用于测量电池的充电电压和充电电流;控制器,用于根据传感器的测量值和预定的功率值,计算出SAR的导通角和SCC的控制角;至少一个信号发生器,用于根据导通角和控制角产生控制信号,并将控制信号提供给SCC和SAR中的电控开关。其中所述SCC中的两个开关各导通半个周期并且彼此互补,其断开时间相对于所述交流电源的零交叉点具有时间延迟,所述时间延迟为SCC的控制角;SAR中的两个开关各导通半个周期并且彼此互补,其断开时间相对于交流电源的零交叉点具有时间延迟,所述时间延迟为SAR的导通角。所述无线电力传输电路通过调节SCC的控制角和SAR的导通角,以提供与线圈阻抗相匹配的负载阻抗,从而以恒定功率对电池进行充电,提高充电效率。An exemplary embodiment also provides a wireless charging system for improving battery charging efficiency, which charges the battery through an AC power induced by a primary coil in the primary side of the circuit at a secondary coil in the secondary side of the circuit, and the wireless charging system includes: a controllable switched capacitor (SCC) connected to the secondary coil, a half-controlled rectifier bridge (SAR), a sensor, a controller, and a signal generator. The SCC includes two electrically controlled switches connected in series and a first capacitor connected in parallel with the two electrically controlled switches; the SAR is connected to the output end of the SCC to rectify the output of the SCC, and includes a bridge circuit, which includes two electrically controlled switches; a plurality of sensors for measuring the charging voltage and charging current of the battery; a controller for calculating the conduction angle of the SAR and the control angle of the SCC according to the measured values of the sensors and the predetermined power value; and at least one signal generator for generating a control signal according to the conduction angle and the control angle, and providing the control signal to the electrically controlled switches in the SCC and the SAR. The two switches in the SCC are each turned on for half a cycle and complement each other, and their disconnection time has a time delay relative to the zero crossing point of the AC power source, and the time delay is the control angle of the SCC; the two switches in the SAR are each turned on for half a cycle and complement each other, and their disconnection time has a time delay relative to the zero crossing point of the AC power source, and the time delay is the conduction angle of the SAR. The wireless power transmission circuit provides a load impedance that matches the coil impedance by adjusting the control angle of the SCC and the conduction angle of the SAR, thereby charging the battery at a constant power and improving the charging efficiency.
示例性实施例还提供了一种通过无线充电系统实现的提高电池充电效率的无线充电方法,其通过电路的初级侧中的初级线圈在电路的次级侧中的次级线圈处感应出的交流电源为电池充电,其中所述交流电源连接到可控制开关电容器(SCC)再连接到半控整流桥(SAR),SAR的输出端连接到充电电池。其中SCC包括第一电容器和与第一电容器并联连接的两个串联的电控开关,SAR包括一个桥式电路,该桥式电路包括两个上支路和两个下支路,每个上支路包括一个二极管,每个下支路包括一个电控开关。该无线充电方法包括以下步骤:由控制器计算SAR的导通角以提供与线圈的阻抗匹配的负载电阻,其中所述导通角为SAR的可控开关的断开时间相对于所述交流电源的电流零交叉点的时间延迟;由控制器计算SCC的控制角以抵消次级侧的电抗,其中所述控制角为SCC的可控开关的断开时间相对于所述交流电源的电流零交叉点的时间延迟;通过第一控制信号根据所述导通角控制SAR中的开关;和通过第二控制信号根据所述控制角度控制所述SCC中的开关。所述无线充电方法能够以恒定的功率对电池进行充电,从而提高充电效率。The exemplary embodiment also provides a wireless charging method for improving battery charging efficiency by a wireless charging system, wherein the battery is charged by an AC power source induced by a primary coil in the primary side of the circuit at a secondary coil in the secondary side of the circuit, wherein the AC power source is connected to a controllable switched capacitor (SCC) and then to a half-controlled rectifier bridge (SAR), and the output end of the SAR is connected to a charging battery. The SCC includes a first capacitor and two series-connected electrically controlled switches connected in parallel with the first capacitor, and the SAR includes a bridge circuit, the bridge circuit includes two upper branches and two lower branches, each upper branch includes a diode, and each lower branch includes an electrically controlled switch. The wireless charging method comprises the following steps: the controller calculates the conduction angle of the SAR to provide a load resistance matching the impedance of the coil, wherein the conduction angle is the time delay of the disconnection time of the controllable switch of the SAR relative to the current zero crossing point of the AC power source; the controller calculates the control angle of the SCC to offset the reactance of the secondary side, wherein the control angle is the time delay of the disconnection time of the controllable switch of the SCC relative to the current zero crossing point of the AC power source; controls the switch in the SAR according to the conduction angle through a first control signal; and controls the switch in the SCC according to the control angle through a second control signal. The wireless charging method can charge the battery at a constant power, thereby improving the charging efficiency.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为根据一个示例性实施例的无线充电电路示意图。FIG. 1 is a schematic diagram of a wireless charging circuit according to an exemplary embodiment.
图2为根据一个示例性实施例的半控整流桥(SAR)的开关顺序和工作波形。FIG. 2 illustrates a switching sequence and operating waveforms of a half-controlled bridge rectifier (SAR) according to an exemplary embodiment.
图3为根据一个示例性实施例的可控制开关电容(SCC)的开关顺序和工作波形。FIG. 3 illustrates a switching sequence and operating waveforms of a controllable switched capacitor (SCC) according to an exemplary embodiment.
图4为根据一个示例性实施例的SCC的等效阻抗与可控角度的关系曲线图。FIG. 4 is a graph showing the relationship between the equivalent impedance and the controllable angle of an SCC according to an exemplary embodiment.
图5为根据一个示例性实施例的等效无线电力传输电路图。FIG. 5 is a diagram of an equivalent wireless power transmission circuit according to an exemplary embodiment.
图6A为根据一个示例性实施例的SAR导通角及等效负载阻抗与负载电阻之间的关系图。FIG. 6A is a graph showing the relationship between a SAR conduction angle and an equivalent load impedance and a load resistance according to an exemplary embodiment.
图6B为根据一个示例性实施例的SCC可控角及等效次级侧电容的阻抗与SAR导通角之间的关系图。6B is a graph showing the relationship between the SCC controllable angle and the impedance of the equivalent secondary-side capacitance and the SAR conduction angle according to an exemplary embodiment.
图7为根据一个示例性实施例的仿真电路参数表。FIG. 7 is a table of simulation circuit parameters according to an exemplary embodiment.
图8为根据一个示例性实施例的恒功率(CP)输出和最高效率的等效无线充电电路图。FIG. 8 is a diagram of an equivalent wireless charging circuit for constant power (CP) output and maximum efficiency according to an exemplary embodiment.
图9为根据一个示例性实施例的输出功率和效率与SAR导通角的关系图。9 is a graph of output power and efficiency versus SAR conduction angle according to an exemplary embodiment.
图10为根据一个示例性实施例的无线充电系统的控制框图。FIG. 10 is a control block diagram of a wireless charging system according to an exemplary embodiment.
图11为根据一个示例性实施例的SCC电压应力图。FIG. 11 is a graph of SCC voltage stress according to an exemplary embodiment.
图12为根据一个示例性实施例的损耗阻值比率以及充电效率与电池内阻的关系图。FIG. 12 is a graph showing the relationship between the loss resistance ratio and the charging efficiency and the internal resistance of the battery according to an exemplary embodiment.
图13为根据一个示例性实施例的充电电路参数表。FIG. 13 is a table of charging circuit parameters according to an exemplary embodiment.
图14为根据一个示例性实施例的工作点与电池电阻的测量结果关系图。FIG. 14 is a graph showing the relationship between the operating point and the battery resistance measurement results according to an exemplary embodiment.
图15A为根据一个示例性实施例的系统的输出电流和电压与电池电阻的关系的测量結果图。15A is a graph showing the measured output current and voltage versus battery resistance of a system according to an exemplary embodiment.
图15B为根据一个示例性实施例的功率和效率与电池电阻的关系的测量結果图。15B is a graph showing measurement results of power and efficiency versus battery resistance according to an exemplary embodiment.
图16为根据一个实施例的电路输出参数的暂态波形图。FIG. 16 is a transient waveform diagram of a circuit output parameter according to an embodiment.
图17为根据一个实施例的无线充电电路示意图。FIG. 17 is a schematic diagram of a wireless charging circuit according to an embodiment.
图18为根据一个实施例的等效无线电力传输电路示意图。FIG. 18 is a schematic diagram of an equivalent wireless power transmission circuit according to one embodiment.
具体实施方式DETAILED DESCRIPTION
示例性实施例包括一种无线充电电路,其通过在接收侧采用可控制开关电容(SCC)和半控整流桥(SAR),并通过操作SCC和SAR来模拟谐振器的最佳阻抗和次级负载,结合了与负载无关的传输特性和匹配负载阻抗的优点,从而在整个充电过程实现恒功率输出,并维持最大传输效率。An exemplary embodiment includes a wireless charging circuit that combines the advantages of load-independent transmission characteristics and matched load impedance by adopting a controllable switched capacitor (SCC) and a half-controlled rectifier (SAR) on the receiving side and operating the SCC and SAR to simulate the optimal impedance and secondary load of the resonator, thereby achieving constant power output throughout the charging process and maintaining maximum transmission efficiency.
目前广泛使用的电池充电技术主要为恒流充电(CC)。在恒流充电过程中,开始充电时充电功率最小,直到充电完成时充电功率增加至最大值,高功率水平下充电持续的时间较短,因此采用恒流充电策略的充电器的功率容量利用率较低。The battery charging technology widely used at present is mainly constant current charging (CC). In the constant current charging process, the charging power is the smallest at the beginning of charging, and the charging power increases to the maximum value until the charging is completed. The charging time at a high power level is short, so the power capacity utilization rate of the charger using the constant current charging strategy is low.
为了提高充电功率容量的利用率,充电器可将输出功率控制到预定的最大值,从而提供恒定功率(CP)充电。对于接触式充电器,在电池管理系统进行恒功率充电相对容易,但是,感应电能传输充电器要求在某些特定工作频率下工作,并需要具有与负载无关的传输特性,由此才能减少控制复杂度,增加最高效率。除此之外,IPT变换器需要具备负载匹配能力,在负载不匹配的情况下,传输效率可能会显著降低。目前已有的单级IPT变换器难以实现恒功率充电并且在整个充电过程中保持最大充电效率。In order to improve the utilization of the charging power capacity, the charger can control the output power to a predetermined maximum value, thereby providing constant power (CP) charging. For contact chargers, it is relatively easy to perform constant power charging in the battery management system. However, the inductive power transfer charger is required to operate at certain specific operating frequencies and needs to have load-independent transmission characteristics, thereby reducing control complexity and increasing maximum efficiency. In addition, the IPT converter needs to have load matching capabilities. In the case of load mismatch, the transmission efficiency may be significantly reduced. The existing single-stage IPT converters are difficult to achieve constant power charging and maintain maximum charging efficiency throughout the charging process.
一种实现恒功率充电的方法是通过多级变换器级联的IPT系统。例如,One method to achieve constant power charging is through an IPT system with a multi-level converter cascade. For example,
使用发射侧前级变换器用于调制输入幅值,或者使用接收侧后级变换器级联到IPT变换器进行功率调节。但是,由于增加了额外的变换器级数,功率损耗及控制的复杂性也会相应增加。此外,还需要增加发射侧和接收侧之间的无线信号反馈装置。The transmitter-side pre-stage converter is used to modulate the input amplitude, or the receiver-side post-stage converter is cascaded to the IPT converter for power regulation. However, due to the addition of additional converter stages, the power loss and control complexity will also increase accordingly. In addition, a wireless signal feedback device between the transmitter and receiver is also required.
为了克服以上提及的技术问题,示例性实施例提供了一种无线充电电路,其包括单级IPT转换器,该无线充电电路在电池充电的主导阶段保持恒定的输出功率而不是提供恒定的输出电流,因此可以充分发挥其功率能力,从而实现更快的充电速率。该无线充电电路采用串联补偿,在接收侧采用可控制开关电容(SCC)和半控整流桥(SAR),通过控制SCC的可控角和SAR的导通角来模拟谐振器的最佳阻抗和次级负载,结合了与负载无关的传输特性和匹配负载阻抗的优点,因此能够在整个充电器过程实现恒功率输出以及维持最大传输效率。In order to overcome the above-mentioned technical problems, an exemplary embodiment provides a wireless charging circuit, which includes a single-stage IPT converter, and the wireless charging circuit maintains a constant output power in the dominant stage of battery charging instead of providing a constant output current, so that its power capacity can be fully utilized to achieve a faster charging rate. The wireless charging circuit adopts series compensation, and adopts a controllable switched capacitor (SCC) and a half-controlled rectifier bridge (SAR) on the receiving side. By controlling the controllable angle of the SCC and the conduction angle of the SAR to simulate the optimal impedance and secondary load of the resonator, it combines the advantages of load-independent transmission characteristics and matching load impedance, so that constant power output can be achieved throughout the charger process and maximum transmission efficiency can be maintained.
示例性实施例至少可以实现以下技术效果:The exemplary embodiments can achieve at least the following technical effects:
(1)充电电路工作在恒功率的条件下,可以充分发挥其功率用量,进而具有更快更安全的充电速率。(1) The charging circuit works under constant power conditions, which can give full play to its power usage and thus have a faster and safer charging rate.
(2)采用SCC和SAR来模拟谐振器的最佳阻抗和次级负载实现了与负载无关特性以及匹配负载阻抗的优点,从而能在整个充电过程中维持着最大的传输效率。(2) Using SCC and SAR to simulate the optimal impedance and secondary load of the resonator achieves the advantages of load-independent characteristics and matching load impedance, thereby maintaining the maximum transmission efficiency throughout the charging process.
(3)实现定频工作,控制实现简单,控制仅需在接收侧实现,而无需发射侧和接收侧之间的无线信号反馈。(3) Fixed-frequency operation is achieved, and control is simple to implement. Control only needs to be implemented on the receiving side, without the need for wireless signal feedback between the transmitting side and the receiving side.
(4)采用单级变换器结构,所有开关管实现软开关,从而降低损耗。(4) A single-stage converter structure is adopted, and all switch tubes realize soft switching, thereby reducing losses.
下面结合附图与具体实施方式对本发明作进一步详细描述。在以下描述中,Xsubscript用于表达其下标(subscript)所示的元器件的阻抗。The present invention is further described in detail below in conjunction with the accompanying drawings and specific embodiments. In the following description, X subscript is used to express the impedance of the component indicated by its subscript.
图1为根据一个示例性实施例的无线充电电路结构示意图。图1中,无线充电电路100包括初级电路110和次级电路120。初级电路110为发射侧电路,次级电路120为接收侧电路。初级电路110包括串联连接的直流源111、具有四个开关Q1-Q4的全桥逆变器112、初级补偿电容113、和初级线圈114。其中直流源111电压值为VI,初级补偿电容113具有固定电容值CP。FIG1 is a schematic diagram of a wireless charging circuit structure according to an exemplary embodiment. In FIG1 , the
次级电路包括串联连接的次级线圈124、次级补偿电容123、SCC121和SAR122。其中次级补偿电容123具有固定电容值C1。输出端滤波电容Cf与SCC121、SAR122以及充电电池127并联连接。The secondary circuit includes a
图1中,SCC121包括并联连接的电容1211和两个电控开关1212,电容1211具有固定电容值C2,电控开关1212包括串联连接的两个金属氧化物半导体场效应晶体管(MOSFET),分别标记为Qa和Qb。其中Qa和Qb的漏极相连接,源极分别连接到电容1211的两端,门级接收控制信号。Qa和Qb分别反并联一个二极管,标记为Da和Db。SCC两端的电压值表示为vSCC,流经开关1212的电流值表示为iSCC,SCC等效电容值表示为CSCC。在次级电路120中,串联次级补偿电容123用于减小SCC中开关的电压应力。In FIG1 , the
SAR122包含了上支路中的两个二极管1221,分别标记为D5和D7,以及下支路中的两个电控开关1222。每个电控开关1222包括一个MOSFET分别标记为Q6和Q8,其中Q6和Q8的漏极分别连接到两个上支路,源极互相连接。SAR122 includes two
每个MOSFET Q6和Q8包括一个反并联二极管,分别标记为D6和D8。Each MOSFET Q6 and Q8 includes an anti-parallel diode, labeled D6 and D8, respectively.
初级线圈114和次级线圈124形成一个磁耦合器130,其互感值为M,The
例如磁耦合器130为松耦合变压器。耦合系数定义为初级线圈114具有初级自感LP和电阻RP,w,其中电阻RP,w为初级线圈损耗。次级线圈124具有次级自感LS和电阻RS,w,其中电阻RS,w为次级线圈损耗。For example, the
在无线充电电路100中,直流源111经逆变器112将直流电压VI转为电压为vp角频率为ω的交流电,用于驱动初级线圈114在次级线圈124中感应生成交流电流iS,进而在SCC输出端形成交流电压vS。所述感应电压和感应电流输入SAR122中进行整流,再经过电容126滤波,输出为直流电压VO和直流电流IO,即电池127的充电电压和充电电流。In the
在一个实施例中,SAR122中的开关Q6和Q8在其反并联二极管导通时开通,由此实现零电压开关(zero voltage switching,ZVS)。开关Q6和Q8分别开通半个电流周期并且开通时间互补。因此,Q6和Q8的关断时间与电流iS的过零点之间存在时间延迟π-θ∈[0,π],将θ定义为SAR的导通角。导通角θ最大值为π,最小值为0。导通角θ的变化影响vS和iS之间的相位角。In one embodiment, switches Q6 and Q8 in SAR122 are turned on when their anti-parallel diodes are turned on, thereby achieving zero voltage switching (ZVS). Switches Q6 and Q8 are turned on for half a current cycle respectively and their turn-on times are complementary. Therefore, there is a time delay π-θ∈[0,π] between the turn-off time of Q6 and Q8 and the zero-crossing point of current i S , and θ is defined as the conduction angle of SAR. The maximum value of the conduction angle θ is π and the minimum value is 0. The change of the conduction angle θ affects the phase angle between v S and i S.
在一个实施例中,SCC中的开关Qa和Qb与电流iS同步,并与电流iS的过零点之间存在可控角开关Qa和Qb分别开通半个电流周期并且开通时间互补。例如,Qa和Qb在vSCC零电压时开关,由此实现软开关以减少开关损耗。在半个电流周期内,电容C2的充电时间(或放电时间)为其随的增大而减小,vSCC的均方根值随之减小。由此,SCC的等效电容即CSCC可以通过改变可控角来进行调整。In one embodiment, switches Qa and Qb in the SCC are synchronized with the current iS and have a controllable angle with the zero crossing of the current iS . Switches Qa and Qb are turned on for half a current cycle respectively and their on-times are complementary. For example, Qa and Qb are switched when v SCC is zero voltage, thereby achieving soft switching to reduce switching losses. In half a current cycle, the charging time (or discharging time) of capacitor C2 is Its follow As the controllable angle increases, the RMS value of v SCC decreases accordingly. Therefore, the equivalent capacitance of SCC, i.e., C SCC, can be changed by changing the controllable angle to make adjustments.
在一个实施例中,调整SAR122的导通角和SCC121的可控角以提供匹配的负载阻抗,使得无线充电电路100以恒功率为电池127充电,由此提高充电效率。In one embodiment, the conduction angle of the
在一个实施例中,SCC和SAR中的电控开关包括MOSFET开关,在其他实施例中也可以为其他晶体管开关。In one embodiment, the electronically controlled switches in the SCC and the SAR include MOSFET switches, and in other embodiments, they may also be other transistor switches.
图2为根据一个示例性实施例的半控整流桥(SAR)的开关顺序和工作波形200。图2中,SAR122的电控开关Q6和Q8在其反并联二极管导通时开通,以实现零电压开关。Q6和Q8都开通半个电流周期并且开通时间互补。因此,Q6和Q8与is的过零点之间具有π-θ∈[0,π]的时间延迟,θ为SAR122的导通角。vs,1是vs的基本分量,它滞后于is,其相位角由γ=π-θ/2给出。因此,充电电路的等效负载是阻抗Zeq而不是纯电阻。FIG. 2 is a switching sequence and
与无线充电电路的操作周期相比,电池充电是个缓慢的过程,因此电池可以建模为由充电电压和充电电流确定的电阻器,即Battery charging is a slow process compared to the operation cycle of the wireless charging circuit, so the battery can be modeled as a resistor determined by the charging voltage and charging current, that is,
上述SAR122等效的基波阻抗为:The equivalent fundamental impedance of the above SAR122 is:
Zeq=Req+jXeq, (1)Z eq = R eq + jX eq , (1)
其中Req为等效电阻,Xeq为等效电抗,Where R eq is the equivalent resistance, X eq is the equivalent reactance,
图3为根据一个示例性实施例的SCC的开关顺序和工作波形300。图3中,电控开关Qa和Qb的驱动信号与is同步,并且与is的过零点之间具有可控角Qa和Qb各开通半个周期,并且开通时间互补。由于Qa和Qb在vSCC零电压下开通和关断,由此实现软开关以最小化开关损耗。FIG3 is a switching sequence and
SCC的等效阻抗即XCscc可以表示为式(4),并通过二次曲线拟合简化为式(5):The equivalent impedance of SCC, X Cscc, can be expressed as formula (4), and simplified to formula (5) through quadratic curve fitting:
其中 in
图4为根据一个示例性实施例的SCC的等效阻抗与可控角度的关系曲线图400。FIG. 4 is a
如图4所示,SCC的等效阻抗与可控角度的精确关系表示为曲线401,近似关系表示为曲线402。当从0.5π变化到π时,XCscc可以从标称电抗XC2调制到零。As shown in FIG4 , the exact relationship between the equivalent impedance of the SCC and the controllable angle is represented by
图5为根据一个示例性实施例的等效充电电路图500。FIG. 5 is a diagram 500 of an equivalent charging circuit according to an exemplary embodiment.
图5为图1所示电路的等效电路图。其中,初级电路包括串联连接的电源511、电阻512、初级补偿电容513、电感514以及初级侧感生电动势515。电阻512具有等效阻值Rp,其代表初级线圈114和逆变器112上的损耗。初级补偿电容513的电容值表示为Cp,FIG5 is an equivalent circuit diagram of the circuit shown in FIG1 . The primary circuit includes a
次级电路包括相互串联连接的等效感生交流电流源525、电感524、次级补偿电容523、可变电容521和负载522。可变电容521电容值表示为Cscc,即SCC121的等效电容。负载522由等效阻抗Zeq表示,其中包括串联的电阻Req和电抗Xeq,如式(1)所示。电阻RS代表次级线圈124,SCC121以及SAR122的损耗之和。The secondary circuit includes an equivalent induced AC
例如,Vp,Ip,Vs和Is分别用于表示变量vp,ip,vs和is的基波分量的相量表示。C1,CScc和Xeq在次级电路中提供电容电抗,其可以用等效的二次补偿电容CS,eq表示如式(6):For example, Vp , Ip , Vs and Is are used to represent the phasor representation of the fundamental components of variables vp , ip , vs and is respectively. C1 , CScc and Xeq provide capacitive reactance in the secondary circuit, which can be represented by an equivalent secondary compensation capacitor CS,eq as shown in formula (6):
通过分析图5中的等效电路,可得到以下关系式:By analyzing the equivalent circuit in Figure 5, the following relationship can be obtained:
(RP+jXLp+jXCp)IP-jXMIS=VP (7)(R P +jX Lp +jX Cp )I P -jX M I S =V P (7)
-(RS+Req+jXLS+jXCs,eq)Is-jXMIP=0 (8)-(R S +R eq +jX LS +jX Cs,eq )I s -jX M I P =0 (8)
其中XM为初级线圈和次级线圈的互感,XLP为初级电路的感抗,XCP为初级电Where XM is the mutual inductance of the primary coil and the secondary coil, XLP is the inductive reactance of the primary circuit, and XCP is the primary current.
路的容抗,XM=ωM,XLs=ωLs。The capacitive reactance of the circuit, X M = ω M, XLs =ωLs.
Vp、Vs和Is的幅值分别由式(9)(10)和(11)给出:The amplitudes of V p , V s and Is are given by equations (9), (10) and (11) respectively:
图5的等效电路效率如式(12)所示:The equivalent circuit efficiency of Figure 5 is shown in equation (12):
假设以及在选定的工作频率ω下,当满足(13)和(14)时,传输效率最大,其表达式如式(15)所示,其中XCS,eq,opt和Req,opt分别为使传输效率最大化的XCS,eq和Req的优化值。Assumptions as well as At the selected operating frequency ω, when (13) and (14) are satisfied, the transmission efficiency is maximum, and its expression is shown in formula (15), where X CS,eq,opt and R eq,opt are the optimized values of X CS,eq and R eq that maximize the transmission efficiency, respectively.
XLs+XCs,eq,opt=0 (13)X Ls +X Cs, eq, opt = 0 (13)
由于在充电过程中电池内阻RL变化范围很大,根据式(14),该内阻需要经由SAR转换为匹配电阻Req,opt,以实现最高传输效率。因此,根据式(2)和(14),可以将SAR的导通角θ表示为式(16):Since the battery internal resistance R L varies greatly during the charging process, according to equation (14), the internal resistance needs to be converted into a matching resistance R eq,opt via SAR to achieve the highest transmission efficiency. Therefore, according to equations (2) and (14), the conduction angle θ of SAR can be expressed as equation (16):
根据式(3),导通角θ的变化也会影响负载电抗Xeq,其表示为式(17):According to equation (3), the change of conduction angle θ will also affect the load reactance X eq , which is expressed as equation (17):
对示例性实施例的充电电路的以上分析通过仿真实验进行验证。如无其他特别说明,以下所述仿真实验的参数皆如图7的表格所示。The above analysis of the charging circuit of the exemplary embodiment is verified by simulation experiments. Unless otherwise specified, the parameters of the simulation experiments described below are all shown in the table of FIG. 7 .
图6A中的图形600A显示了导通角θ随负载电阻的变化曲线。图6A中,曲线601表示SAR导通角θ随RL的改变而相应变化,由此在仿真中实现优化的负载电阻。由曲线603可以看出,通过控制导通角θ,等效负载电阻Req可以保持在优化负载阻值Req,opt。但是,曲线602显示,随着导通角θ变小,电抗Xeq的幅值增大。
要保证式(14)中的条件以达到最大充电效率,Cs,eq需要在固定的频率充分补偿到Ls,因此,示例性实施例通过改变SCC的可控角的大小,进而改变电抗XCscc,最终得到目标电抗XCS,eq,opt=-XLS。结合式(5),(6)和(17),SCC的可控角表达式如下:To ensure the condition in equation (14) to achieve the maximum charging efficiency, C s,eq needs to be fully compensated to L s at a fixed frequency. Therefore, the exemplary embodiment changes the controllable angle of SCC by The size of the SCC is then changed to change the reactance X Cscc , and finally the target reactance X CS,eq,opt =-X LS is obtained. Combining equations (5), (6) and (17), the controllable angle of SCC is The expression is as follows:
在控制的过程中满足上述分析步骤,便能使系统工作于最大传输效率。Meeting the above analysis steps during the control process can enable the system to operate at maximum transmission efficiency.
图6B显示了仿真实验中SCC的可控角导通角θ和等效次级侧补偿感抗XCS,eq之间的关系图600B。在图6B中,曲线604显示了仿真实验中可控角与导通角θ的联合控制。从曲线605可以看出,该联合控制使得等效次级补偿感抗XCS,eq几乎恒定保持在优化值XCS,eq,opt,由此能够实现最高效率。Figure 6B shows the controllable angle of SCC in the simulation experiment. The relationship between the conduction angle θ and the equivalent secondary side compensation inductance X CS,eq is shown in FIG600B. In FIG6B ,
如上所述,示例性实施例的无线充电电流能够通过在次级电路中匹配优化负载电阻以及保持零电抗,而实现最高充电效率。而当电抗为零时,感应能量传输系统能够实现负载无关的输出电流,因此,将上述两点结合,即可同时实现恒功率输出和最高效率。As described above, the wireless charging current of the exemplary embodiment can achieve the highest charging efficiency by matching and optimizing the load resistance in the secondary circuit and maintaining zero reactance. When the reactance is zero, the inductive energy transfer system can achieve load-independent output current. Therefore, by combining the above two points, constant power output and maximum efficiency can be achieved at the same time.
图8显示了一种能同时实现恒功率输出和最高效率的IPT电路800。在电路800中,初级电路801和次级电路802工作于固定谐振频率ω。次级电路802的电抗为零,负载电阻保持在优化值Req,opt。根据式(14),优化负载电阻Req,opt大致为恒定值。理论上,如忽略电气元件上损耗,当初级电路的输入电压为vp时,次级电路与负载无关的输出电流幅值可表达为:FIG8 shows an
因此,在整个充电过程中,对于固定输入电压,示例性实施例能保证恒定功率输出,并且维持在最高效率,其表达式如下:Therefore, during the entire charging process, for a fixed input voltage, the exemplary embodiment can ensure constant power output and maintain the highest efficiency, which is expressed as follows:
其中下标RMS表示均方根值。The subscript RMS represents the root mean square value.
结合式(9)-(11)、(19)、(20),恒定充电功率,输出的直流电压以及直流电流可分别表达为式(21)、(22)和(23):Combining equations (9)-(11), (19), and (20), the constant charging power, the output DC voltage, and the DC current can be expressed as equations (21), (22), and (23), respectively:
假设等效负载电抗Xeq可以通过适当控制SCC的电抗XCSCC而被抵消,Assuming that the equivalent load reactance Xeq can be cancelled by properly controlling the reactance XCSCC of the SCC,
则输出功率PO可仅与等效负载电阻Req有关,输出功率表示为Then the output power P O is only related to the equivalent load resistance R eq , and the output power is expressed as
PO≈|IS|2 RMS Req。P O ≈|I S | 2 RMS R eq .
根据式(2),等效负载电阻可以通过控制导通角θ进行调整,因此,输出功率PO与导通角θ具有单调关系(monotonic relationship)。According to equation (2), the equivalent load resistance can be adjusted by controlling the conduction angle θ. Therefore, the output power P O and the conduction angle θ have a monotonic relationship.
图9示出了示例性实施例中输出功率、效率与SAR导通角的关系图900。FIG. 9 illustrates a
图9中,输出功率PO与导通角θ的关系由曲线910、920和930表示,效率η与导通角θ的关系由曲线940、950和960表示,每组曲线分别对应于电池电阻值RL为30Ω,40Ω,和50Ω。当PO为式(20)中的恒定值时,充电电路效率最高,如交点901、902、903所示。因此,可以通过在控制器中将PO,constant作为参考值PO,ref,以实现恒功率输出以及保持最高效率。In FIG9 , the relationship between the output power P O and the conduction angle θ is represented by
图10示出了示例性实施例的一种无线充电系统1000。无线充电系统1000包括用于为电池充电的无线充电电路1010,用于测量输出电压和输出电流的多个传感器1020,用于为无线充电电路1010提供控制信号的信号处理单元1040,以及用于为控制信号计算控制角的控制器1030。无线充电电路1010进一步包括能够通过控制信号进行调整的SCC和SAR。例如,无线充电电路1010为图1所示的无线充电电路。FIG10 shows a
在一个实施例中,充电电压Vo和充电电流Io由传感器1020测量,测量值输入控制器1030的乘法器和除法器中,分别用于计算充电功率和负载阻值。控制器进一步通过PI控制,根据充电功率测量值与参考值之间的差值,计算SAR的导通角。同时,在SAR导通角和电池阻值已知的条件下,根据式(18)计算SCC的控制角。其后,信号发生单元1040根据计算得到的导通角和控制角,通过信号发生器1和信号发生器2分别生成SCC和SAR的控制信号。信号发生单元1040还包括过零点探测器,用于探测次级电路中线圈电流iS的过零点,并为信号发生器生成同步信号。In one embodiment, the charging voltage Vo and the charging current Io are measured by the
在一个实施例中,控制器1030为能够实现控制算法的微控制器或微处理器。In one embodiment, the
在一个实施例中,控制器1030包括比例控制器、积分控制器和微分控制器中的任意一种或两种以上的结合。In one embodiment, the
在一个实施例中,功率参考值PO,ref确定为式(21)中的恒定功率值。In one embodiment, the power reference value P O,ref is determined as a constant power value in equation (21).
在一个实施例中,SCC的控制角根据SCC的控制角和SAR的导通角的测量值之间的关系进行计算。In one embodiment, the control angle of the SCC is calculated based on the relationship between the control angle of the SCC and the measured value of the conduction angle of the SAR.
在一个实施例中,SCC和SAR的控制信号由一个以上信号发生器生成。In one embodiment, the control signals for the SCC and SAR are generated by more than one signal generator.
由于初级电路的工作频率固定,实现恒功率和最高效率充电仅需要对次级电路的阻抗进行控制,因此该无线充电系统不需要在初级电路和次级电路之间进行无线通信,从而简化了电路设计,并减少次级电路的能量损耗。Since the operating frequency of the primary circuit is fixed, achieving constant power and highest efficiency charging only requires controlling the impedance of the secondary circuit. Therefore, the wireless charging system does not require wireless communication between the primary circuit and the secondary circuit, thereby simplifying the circuit design and reducing the energy loss of the secondary circuit.
图11示出了SCC的电压应力与次级电路补偿电容之间的关系图1100。FIG. 11 shows a
根据式(3)和(5),|Xeq|随电池阻值RL变化而变化,其最小值表示为|Xeq|min,最大值为|Xeq|max。当SCC控制角从π变化到0.5π时,|XCSCC|从零变化到|XC2|。XCSCC用来抵消Xeq的变化,使得XCS,eq能够保持在优化值XCS,eq,opt,从而有效补偿XLS。According to equations (3) and (5), |X eq | changes with the battery resistance RL , and its minimum value is represented by |X eq | min and its maximum value is |X eq | max . When the SCC control angle changes from π to 0.5π, |X CSCC | changes from zero to |X C2 |. X CSCC is used to offset the change of X eq , so that X CS,eq can be maintained at the optimized value X CS,eq,opt , thereby effectively compensating X LS .
根据式(14),C1需要完全补偿次级电路的电抗,即:According to equation (14), C1 needs to fully compensate the reactance of the secondary circuit, that is:
SCC开关的电压应力由SCC两端的最大电压确定,即:The voltage stress of the SCC switch is determined by the maximum voltage across the SCC, which is:
|VSCC,max|=|XC2||IS|. (26)|V SCC,max |=|X C2 ||I S |. (26)
为了降低SCC开关的电压应力,应最小化|XC2|值。因此,根据式(24),应最大化|XC1|值。结合式(25),|XC1|的最大值可表达为式(27):In order to reduce the voltage stress of the SCC switch, the |X C2 | value should be minimized. Therefore, according to equation (24), the |X C1 | value should be maximized. Combined with equation (25), the maximum value of |X C1 | can be expressed as equation (27):
图11中的曲线1110显示了电压应力|VSCC,max|与电抗|XC1|之间的关系,可见较大的|XC1|值可以降低电压应力|VSCC,max|。
当SCC的控制角最大即时,SCC的电流应力最大。因为此时,SCC中的电容C2被开关Qa和Qb短路。由于根据式(19),输出电流为恒值,SCC开关的最大电流应力可以表达为式(28):When the control angle of SCC is maximum, When , the current stress of SCC is the largest. Because at this time, the capacitor C2 in SCC is short-circuited by switches Qa and Qb . Since according to equation (19), the output current is constant, the maximum current stress of SCC switch can be expressed as equation (28):
|ISCC,max|=|IS|. (28)| ISCC,max |=| IS |. (28)
图12示出了损耗电阻率和效率与等效电池电阻之间的关系图1200。FIG. 12 shows a
在一个实施例中,充电系统工作于初级电路的输入电压vP与输入电流iP为零相位角的状态下。In one embodiment, the charging system operates in a state where the input voltage v P and the input current i P of the primary circuit are at a zero phase angle.
在一个实施例中,输入阻抗有微小电感,使得开关Q1-Q4实现零电压开关以降低开关损耗。可以轻微降低初级频率ωP以满足上述要求,而不会对输出功率和效率产生太大影响。因此,初级电路的损耗RP可以通过初级线圈电阻和逆变器开关的导通损耗进行估算,如式(29)所示:In one embodiment, the input impedance has a small inductance, so that the switches Q1 - Q4 achieve zero voltage switching to reduce switching losses. The primary frequency ωP can be slightly reduced to meet the above requirements without significantly affecting the output power and efficiency. Therefore, the loss R P of the primary circuit can be estimated by the primary coil resistance and the conduction loss of the inverter switch, as shown in equation (29):
RP=RP,w+2Ron,1, (29)R P = R P, w +2R on, 1 , (29)
其中Ron,1为逆变器开关的导通电阻。RP可看作恒值。Where R on,1 is the on-resistance of the inverter switch. R P can be regarded as a constant value.
由于SCC的两个开关Qa和Qb都为软开关,SCC的开关导通损耗可以由式(30)进行估算:Since both switches Qa and Qb of the SCC are soft switches, the switch conduction loss of the SCC can be estimated by equation (30):
其中Ron,2和Vf,2分别为开关Qa和Qb的开通电阻和体二极管正向电压。流经Qa和Qb的电流均方根值ISCC,RMS和均值ISCC,avg分别由式(31)和(32)计算:Where R on,2 and V f,2 are the on-resistance and body diode forward voltage of switches Q a and Q b , respectively. The root mean square value ISCC,RMS and the average value ISCC,avg of the current flowing through Q a and Q b are calculated by equations (31) and (32), respectively:
类似的,忽略SAR开关Q6and Q8ZVS导致的少量开关损耗,SAR的导通损耗可以估计为式(33):Similarly, ignoring the small amount of switching loss caused by the ZVS of SAR switches Q 6 and Q 8 , the conduction loss of the SAR can be estimated as follows:
其中Ron,3为开关Q6和Q8的开通电阻,Vf,3为体二极管D5-D8的正向电压。iS,RMS和iS,avg分别为注入SAR的电流均方根值和均值,其中 Where R on,3 is the on-resistance of switches Q 6 and Q 8 , V f,3 is the forward voltage of body diodes D 5 -D 8. i S,RMS and i S,avg are the root mean square value and average value of the current injected into SAR, respectively.
结合SCC和SAR中的损耗,可以将次级电路损耗的等效电阻RS表示为:Combining the losses in SCC and SAR, the equivalent resistance R S of the secondary circuit loss can be expressed as:
图12中通过曲线1210展示了损耗电阻率该比率随电池内阻RL的变化而从1.1变化到1.3。根据式(15),优化负载电阻Req,opt随而变化,但是,轻微偏离该优化值对充电效率影响不大。在一个实施例中,Req,opt固定在如图7所示的值以简化计算。仿真实验的充电效率如曲线1220所示,其由于RS的增加而稍微下降,但是在整个负载范围内大致上都保持在最大值。The loss resistivity is shown in FIG. 12 by
充电系统的可行性通过电路实验进行了验证。图13为根据一个示例性实施例的充电电路的实验参数表1300。根据表1300,充电过程中,等效电池内阻由电子负载模拟,变化范围大致为18Ω到50Ω。输入直流功率和输出直流功率由Yokogawa PX8000精密功率示波器测量。The feasibility of the charging system is verified by circuit experiments. FIG13 is an experimental parameter table 1300 of a charging circuit according to an exemplary embodiment. According to table 1300, during the charging process, the equivalent battery internal resistance is simulated by an electronic load, and the variation range is approximately 18Ω to 50Ω. The input DC power and the output DC power are measured by a Yokogawa PX8000 precision power oscilloscope.
实验中逆变器工作频率固定在85kHz,通过调整SAR的导通角和SCC的控制角实现恒功率输出和最大效率。图14示出了测量的工作点图1400,其中SCC的控制角从0.53π变化到0.83π,SAR的导通角θ从0.95π变化到0.57π。In the experiment, the inverter operating frequency is fixed at 85kHz, and constant power output and maximum efficiency are achieved by adjusting the conduction angle of the SAR and the control angle of the SCC. FIG14 shows a measured operating point diagram 1400, where the control angle of the SCC varies from 0.53π to 0.83π, and the conduction angle θ of the SAR varies from 0.95π to 0.57π.
图15A显示了输出电流和电压的测量值与电池电阻之间的关系图1500A。图15B显示了输出功率和效率的测量值与电池电阻之间的关系图1500B。在图15A中,曲线1501显示了充电电流,其与曲线1502显示的充电电压变化方向相反。由曲线1503表示的输出功率基本稳定在147瓦,最高效率如曲线1504所示,保持在88%左右。图15A和15B所示的实验结果确认了本发明的无线充电电路能够在充电全程实现恒功率充电,并保持最高效率。FIG. 15A shows the relationship between the measured values of the output current and voltage and the battery resistance, FIG. 1500A. FIG. 15B shows the relationship between the measured values of the output power and efficiency and the battery resistance, FIG. 1500B. In FIG. 15A,
在一个实施例中,测量了逆变器、SCC和SAR在充电开始、中段和结束时的波形。实验结果显示逆变器、SCC和SAR都实现了零电压开关。SCC开关的最大电压应力大约为55V,与式(26)的分析吻合。In one embodiment, the waveforms of the inverter, SCC and SAR at the beginning, middle and end of charging are measured. The experimental results show that the inverter, SCC and SAR all achieve zero voltage switching. The maximum voltage stress of the SCC switch is about 55V, which is consistent with the analysis of formula (26).
在一个实施例中,无线充电系统在次级电路采用了如图10所示的闭环控制,其次级阻抗由微处理器控制,从而实现恒功率充电和最高功率。图16显示了阶梯负载电阻的瞬时波形1600变化。其中负载电阻由20Ω变化到40Ω再变化到20Ω。In one embodiment, the wireless charging system uses a closed-loop control as shown in FIG10 in the secondary circuit, and the secondary impedance is controlled by a microprocessor to achieve constant power charging and maximum power. FIG16 shows the
在图16中,输出电压和输出电流如曲线1601和1602所示。SAR导通角和SCC控制角如曲线1603和1604所示。输出功率由输出电压和输出电流的乘积计算,如曲线1605所示,输出功率由SAR的导通角严格控制,而SCC的控制角由导通角和电池负载协调控制。系统控制过程中无需无线反馈或无线传输。In FIG16 , the output voltage and the output current are shown as
图17为根据一个实施例的无线充电电路示意图。图17中,无线充电电路1700包括SCC 1721和SAR 1722。SCC 1721包括一个固定电容C2和两个电控开关Qa和Qb,Qa和Qb串联连接,再与电容C2并联。SCC 1721与固定电容C1串联之后,与次级线圈1724并联连接。FIG17 is a schematic diagram of a wireless charging circuit according to an embodiment. In FIG17 , the
SAR 1722的设置与图1相同。但是,由于SCC 1721的设置与图1不同,The setting of
电路1700的次级电路中采用滤波电感1726与电池1727串联,而不是采用图1中与电池并联的滤波电容。In the secondary circuit of
图18为图17的等效无线电力传输电路示意图。如图18所示,等效电路1800包括与等效电阻1822并联的等效电容1821。通过调整SAR的导通角和SCC的控制角,在次级电路中实现优化负载电阻,并通过等效电容1821的容抗抵消次级线圈的感抗,使得次级电路零电抗,由此实现恒功率传输并最大化传输效率。FIG18 is a schematic diagram of an equivalent wireless power transmission circuit of FIG17. As shown in FIG18, the
在本说明书和权利要求书中,“连接”为直接或间接的电连接。In this specification and claims, "connected" means direct or indirect electrical connection.
因此,在介绍了几个实施例之后,本领域的技术人员可以认识到,不同的改动、另外的结构、等同物,都可以被使用而不会背离本发明的本质。相应的,以上的描述不应该被视为对如以下的权利要求所确定的本发明范围的限制。Therefore, after introducing several embodiments, those skilled in the art will recognize that different modifications, other structures, equivalents, can be used without departing from the essence of the present invention. Accordingly, the above description should not be regarded as limiting the scope of the present invention as determined by the following claims.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911279433.4A CN110957796B (en) | 2019-12-12 | 2019-12-12 | Wireless charging circuit and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911279433.4A CN110957796B (en) | 2019-12-12 | 2019-12-12 | Wireless charging circuit and system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110957796A CN110957796A (en) | 2020-04-03 |
CN110957796B true CN110957796B (en) | 2023-05-02 |
Family
ID=69981381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911279433.4A Active CN110957796B (en) | 2019-12-12 | 2019-12-12 | Wireless charging circuit and system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110957796B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112421973B (en) * | 2020-11-09 | 2022-01-25 | 上海交通大学 | Wireless power transmission two-stage rectifying circuit and impedance adjusting method thereof |
CN112421972B (en) * | 2020-11-09 | 2022-01-25 | 上海交通大学 | Wireless power transmission single-bridge power circuit and impedance adjusting method thereof |
CN112366964B (en) * | 2020-11-09 | 2022-01-25 | 上海交通大学 | Wireless power transmission two-stage AC-DC conversion circuit and impedance adjusting method thereof |
CN118899931B (en) * | 2024-07-16 | 2025-04-01 | 广东工业大学 | A wireless energy transfer charging optimization method for lithium battery and its control circuit |
CN119315684B (en) * | 2024-12-19 | 2025-04-04 | 西北工业大学 | A wireless power transmission system with constant power output |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009303386A (en) * | 2008-06-13 | 2009-12-24 | Toko Inc | Resonant switching power supply |
CN108631603A (en) * | 2018-05-25 | 2018-10-09 | 哈尔滨工程大学 | A kind of control method that the DC bus-bar voltage oscillation based on full-bridge converter inhibits |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4123168B4 (en) * | 1990-07-13 | 2011-06-09 | Hitachi Koki Co., Ltd. | Battery charger for charging a battery |
JP2007185075A (en) * | 2006-01-10 | 2007-07-19 | Sony Corp | Switching power supply circuit |
JP2008104275A (en) * | 2006-10-18 | 2008-05-01 | Matsushita Electric Works Ltd | Constant current controlled dc-dc converter circuit with function for interrupting no-load oscillation |
US8750007B2 (en) * | 2010-03-23 | 2014-06-10 | Qualcomm Incorporated | Power conversion |
WO2013115814A1 (en) * | 2012-02-01 | 2013-08-08 | Schneider Electric It Corporation | Offline power supply |
CN104518570A (en) * | 2013-09-27 | 2015-04-15 | 中兴通讯股份有限公司 | Control method and apparatus of electric car wireless electric energy transmission system |
US10424968B2 (en) * | 2014-12-23 | 2019-09-24 | Uvic Industry Partnerships Inc. | Methods and devices for controlling wireless power transfer levels |
CN104852442B (en) * | 2015-04-23 | 2017-12-05 | 同济大学 | A kind of civil power to on-vehicle battery bag radio energy transmission system and its control method |
CN106740220B (en) * | 2017-01-05 | 2023-04-18 | 西安特来电智能充电科技有限公司 | Wireless charging circuit of constant-current constant-voltage composite topology |
US10919401B2 (en) * | 2017-01-12 | 2021-02-16 | Ford Global Technologies, Llc | Integrated wireless power transfer system |
CN107425610B (en) * | 2017-05-10 | 2023-07-04 | 北京交通大学长三角研究院 | Wireless power transmission system for load compensation of parallel energy system and control method |
CN107749639B (en) * | 2017-09-30 | 2020-12-18 | 澳门大学 | Hybrid grid-connected power generation inverter system with power quality compensation |
CN108162775B (en) * | 2017-12-13 | 2021-03-16 | 中国科学院电工研究所 | Electric vehicle wireless energy transfer device for constant power charging |
CN109088545B (en) * | 2018-06-19 | 2019-09-13 | 华中科技大学 | A Phase Synchronization Method for Two-way Wireless Power Transmission System |
CN108667359B (en) * | 2018-06-27 | 2023-10-27 | 沈阳工业大学 | Control device and method for high-voltage circuit breaker switched capacitor network motor operating mechanism |
CN109067184B (en) * | 2018-08-29 | 2020-04-21 | 武汉理工大学 | An inductive power transmission system with seamless switching of constant current and constant voltage |
CN109217493B (en) * | 2018-10-08 | 2021-07-20 | 中国科学院电工研究所 | Input impedance calculation method of rectifier bridge for wireless charging system in discontinuous working mode |
CN110071562B (en) * | 2019-05-15 | 2023-01-03 | 武汉大学 | Transmitting side switching hybrid topology constant-current constant-voltage induction type wireless charging method and system |
CN110350673A (en) * | 2019-07-12 | 2019-10-18 | 江南大学 | A kind of impedance matching network optimization method of radio energy transmission system under maximal efficiency tracking |
CN110429718B (en) * | 2019-08-05 | 2021-08-24 | 西南交通大学 | A constant current/constant voltage control method for wireless power transfer system based on primary side parameter identification |
-
2019
- 2019-12-12 CN CN201911279433.4A patent/CN110957796B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009303386A (en) * | 2008-06-13 | 2009-12-24 | Toko Inc | Resonant switching power supply |
CN108631603A (en) * | 2018-05-25 | 2018-10-09 | 哈尔滨工程大学 | A kind of control method that the DC bus-bar voltage oscillation based on full-bridge converter inhibits |
Also Published As
Publication number | Publication date |
---|---|
CN110957796A (en) | 2020-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110957796B (en) | Wireless charging circuit and system | |
Zhang et al. | A wireless power transfer system with dual switch-controlled capacitors for efficiency optimization | |
KR101851995B1 (en) | Resonant converter for wireless charger and method for implementing thereof | |
US11201503B2 (en) | Wireless charging circuit and system | |
WO2020029312A1 (en) | Phase shift control method for charging circuit | |
CN106849374B (en) | A kind of induction type wireless charging system becoming secondary structure | |
CN114189059B (en) | Wireless power transmission device and control method | |
CN113659684A (en) | Secondary CL/S constant-current constant-voltage IPT charging system and parameter design method thereof | |
CN106208269B (en) | A kind of constant current constant voltage induction type wireless charging system | |
CN115593250B (en) | Constant power wireless charging system | |
CN109462290A (en) | A kind of the SP offset-type constant current wireless charging power supply and charging method of transmitting terminal Buck control | |
CN109256840A (en) | A kind of the SS offset-type constant current wireless charging power supply and charging method of transmitting terminal Buck control | |
Robertson et al. | High power IPT stage lighting controller | |
CN108736581A (en) | A kind of radio energy transmission system | |
CN112260416B (en) | A constant current and constant voltage inductive wireless charging system based on variable primary parameters | |
Zou et al. | Primary-frequency-tuning and secondary-impedance-matching IPT converter with programmable constant power output and optimal efficiency tracking against variation of coupling coefficient | |
CN113595256B (en) | Method for improving light load efficiency of SS structure WPT system based on hybrid modulation technology | |
EP3669438B1 (en) | Contactless electrical energy transfer system and operating method thereof | |
CN112332485B (en) | Wireless charging system and method | |
CN113410913A (en) | MC-WPT system based on Sepic circuit impedance matching and maximum efficiency tracking method thereof | |
CN114364570A (en) | Vehicle-grid-home power interface | |
Zhang et al. | A unique design approach of double-sided LCC compensated IPT system for misalignment-tolerant characteristic | |
CN116317204A (en) | Anti-offset detuning LCL-S type compensation wireless power transmission system based on reconstruction rectifier | |
CN111903048A (en) | Converter with a voltage regulator | |
CN208849525U (en) | A kind of SP offset-type constant current wireless charging power supply of transmitting terminal Buck control |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |