Vertical shaft blade and forming method thereof
Technical Field
The invention relates to the field of tidal current energy power generation, in particular to a vertical shaft blade and a forming method thereof.
Background
In the field of energy, tidal current energy is increasingly regarded as a clean renewable energy source. Tidal current energy power generation is a device for converting tidal current energy into mechanical rotation energy, and at present, two forms are mainly adopted, namely a vertical axis water turbine and a horizontal axis water turbine generator. Compared with a horizontal shaft water turbine, the vertical shaft water turbine has some unique advantages, has strong adaptive flow direction, is not influenced by flow direction during working, is simple to maintain, has low noise and difficult cavitation, is suitable for large-scale array arrangement and the like, and a generator room does not influence the flow field of the water turbine.
The blade is an energy capturing device of the tidal current energy generator set, the kinetic energy of the tidal current is converted into the rotating mechanical energy of the impeller mechanism, and the research cost of the blade accounts for about 20% of the whole generator set. The high speed tidal current energy has high energy density, which means that the blade is loaded with large load, and the load is continuously changed along with the turbulent flow. The blade therefore has to be of an efficient shape but also of high strength. The blades of the vertical axis water turbine are underwater, the conventional metal blades are easy to cause seawater corrosion and affect the service life, while some composite blades, such as glass fiber and other materials, have corrosion resistance, but are brittle materials, are easy to break, deform and damage, and are not suitable to be manufactured into longer blades, and carbon fibers have the advantages of high strength, high temperature resistance, corrosion resistance, fatigue resistance and the like, but have weak shearing strength and high manufacturing cost.
Therefore, how to solve the problems of poor corrosion resistance, poor strength, high cost and the like of the blades caused by the materials used for manufacturing the existing blades still remains to be solved by the technical personnel in the field.
Disclosure of Invention
Features and advantages of the invention will be set forth in part in the description which follows, or may be obvious from the description, or may be learned by practice of the invention.
To overcome the problems of the prior art, the present invention provides a vertical axis blade comprising:
the metal framework comprises at least two metal pipes which are arranged in parallel;
the foam part wraps the metal framework and forms the outline of the vertical shaft blade; the foam part comprises a first foam part and a second foam part which are arranged from inside to outside;
and the fiber layer is arranged on the outer side of the foam part.
Optionally, the at least two metal pipes are fixedly connected through a vertical pipe and/or an inclined pipe.
Optionally, the foam section comprises a first foam section and a second foam section; the fiber layer comprises a main beam layer arranged on the outer side of the first foam part and an outer skin layer arranged on the outer side of the second foam part.
Optionally, the first foam portion is located between the at least two metal tubes, the main beam layer wrapping the first foam portion.
Optionally, the second foam portion wraps around the spar layer and forms a profile of the vertical axis blade.
Optionally, the main beam layer is at least one of unidirectional carbon fiber, glass fiber and basalt fiber.
Optionally, the main beam layer is composed of a small number of fabrics that are predominantly unidirectional.
Optionally, the outer skin layer is at least one of glass fiber, carbon fiber and basalt fiber.
Optionally, the cross-section of the metal tube is circular or square.
The invention provides a forming method of a vertical shaft blade, which comprises the following steps:
s1, obtaining a metal framework;
s2, foaming to form a first foam part, wherein the first foam part wraps the metal framework;
s3, forming a main beam layer on the first foam part, and foaming to form a second foam part, wherein the second foam part is used for forming the outline of the vertical axis blade;
and S4, forming an outer skin layer on the outer side of the second foaming part.
According to the vertical shaft blade and the forming method thereof, the metal framework and the fiber main beam are used as main bearing, the fiber layer outer skin improves the corrosion resistance of the blade, the strength is improved, the blade can be manufactured into a longer blade, and meanwhile, the manufacturing cost can be controlled.
The features and content of these solutions will be better understood by those skilled in the art from reading the present description.
Drawings
The advantages and realisation of the invention will be more apparent from the following detailed description, given by way of example, with reference to the accompanying drawings, which are given for the purpose of illustration only, and which are not to be construed in any way as limiting the invention, and in which:
fig. 1 is a schematic view of a vertical axis blade according to an embodiment of the present invention.
Fig. 2 is a schematic structural diagram of a metal framework according to an embodiment of the present invention.
Fig. 3 is a schematic structural diagram of a metal framework according to another embodiment of the present invention.
Detailed Description
As shown in fig. 1, an embodiment of the present invention provides a vertical axis blade, including: metal skeleton 110, foam portion 120, fibrous layer 130. Wherein:
the metal frame 110 includes at least two metal pipes disposed in parallel, and the at least two metal pipes are fixedly connected to each other through vertical pipes and/or oblique pipes. Referring to fig. 2, in the present embodiment, the metal framework 110 includes two metal tubes 111 and 112 disposed in parallel. The two metal pipes are fixedly connected through a vertical pipe 113 and/or an inclined pipe 114. The cross section of the metal tubes 111, 112 may be circular, square, triangular, etc., which is not limited in the present invention; the cross-sections of the metal tubes 111, 112 may be the same or different. The length of the metal tubes 111, 112 can be set according to the need, but the invention is not limited thereto.
The foam part 120 includes a first foam part 121 and a second foam part 122 disposed from the inside to the outside; the fiber layer 130 includes a girder layer 131 disposed at an outer side of the first foam part 121 and an outer skin layer 132 disposed at an outer side of the second foam part 122.
In this embodiment, the first foam part 121 is located between the at least two metal tubes, and the thickness of the first foam part is equal to the thickness of the metal framework, and generally the thickness of the metal framework is equal to the diameter or the side length of the metal tubes. The girder layer 131 wraps the first foam part 121, that is, the girder layer 131 is disposed at upper and lower sides of the metal framework. The second foam portion 122 wraps around the spar layer 131 and forms the contour of the vertical axis blade. The outer skin 132 is wrapped around the exterior of the second foam section 122, i.e. the outer skin 132 covers the entire profile of the vertical axis blade.
The main beam layer 131 may be formed by layering multiple layers of fibers, and the fiber layer fabric is at least one of unidirectional carbon fibers, glass fibers and basalt fibers, for example, by layering multiple layers of unidirectional carbon fiber fabric. In one embodiment of the present invention, the spar layer 131 is comprised of a predominantly unidirectional, low volume fabric. The width of the main beam layer 131 may be gradually increased or decreased in a direction away from the metal skeleton, and may also be kept unchanged, which is not limited by the present invention. The outer skin layer 132 may be formed by layering a plurality of layers of carbon fiber fabric, which is at least one of glass fiber, carbon fiber, and basalt fiber. The outer skin layer 32 can also be formed by alternately layering and laying multiple layers of carbon fiber fabrics and glass fiber fabrics.
The foam part 120 may be formed by foaming PU or PVC, the first and second foam parts may be made of the same material, and the foaming time of the first and second foam parts is different. After the first foaming part is foamed, the main beam layer is firstly formed, and then the second foaming part is formed through foaming.
Outer skin 50 is wrapped outside of fiber spar 40 and/or second foam portion 20. The outer skin 50 is formed by laying a plurality of fiber layers, and includes a carbon fiber fabric, a glass fiber fabric, basalt and the like.
Another embodiment of the present invention provides a vertical axis blade, comprising: metal framework, foam part, fibre layer. The foam portion and the fiber layer are the same as the foam portion 120 and the fiber layer 130 in the embodiment corresponding to fig. 1, and are not described herein again.
Referring to fig. 3, the metal frame 310 in this embodiment is composed of three metal tubes. Three metal pipes 311, 312 and 313 are adopted to form a metal framework, and adjacent metal pipes are fixedly connected by adopting vertical pipes and/or inclined pipes. Although not shown in the figure, the number of the metal pipes in the metal framework can be increased according to the width of the vertical axis turbine blade, and in this case, the number of the metal pipes can be more than 3, for example, 4, 5, etc.
According to the vertical shaft blade and the forming method thereof, the metal framework and the fiber layer main beam are used as main load bearing, the fiber layer outer skin improves the corrosion resistance of the blade, the strength is improved, the blade can be manufactured into a longer blade, and meanwhile, the manufacturing cost can be controlled.
While the preferred embodiments of the present invention have been illustrated in the accompanying drawings, those skilled in the art will appreciate that various modifications can be made to the present invention without departing from the scope and spirit of the invention. For instance, features illustrated or described as part of one embodiment, can be used with another embodiment to yield a still further embodiment. The above description is only for the purpose of illustrating the preferred embodiments of the present invention and is not to be construed as limiting the scope of the present invention, which is defined in the appended claims.