[go: up one dir, main page]

CN110951717B - A kind of L-arabinose isomerase isomer and its application - Google Patents

A kind of L-arabinose isomerase isomer and its application Download PDF

Info

Publication number
CN110951717B
CN110951717B CN201911384932.XA CN201911384932A CN110951717B CN 110951717 B CN110951717 B CN 110951717B CN 201911384932 A CN201911384932 A CN 201911384932A CN 110951717 B CN110951717 B CN 110951717B
Authority
CN
China
Prior art keywords
leu
ala
glu
gly
val
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911384932.XA
Other languages
Chinese (zh)
Other versions
CN110951717A (en
Inventor
柳志强
贾东旭
孙晨奕
郑裕国
金利群
彭晨
陈德水
廖承军
程新平
李勉
毛宝兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201911384932.XA priority Critical patent/CN110951717B/en
Priority to PCT/CN2019/130811 priority patent/WO2021128432A1/en
Publication of CN110951717A publication Critical patent/CN110951717A/en
Application granted granted Critical
Publication of CN110951717B publication Critical patent/CN110951717B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y503/00Intramolecular oxidoreductases (5.3)
    • C12Y503/01Intramolecular oxidoreductases (5.3) interconverting aldoses and ketoses (5.3.1)
    • C12Y503/01004L-Arabinose isomerase (5.3.1.4)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明涉及一种L‑阿拉伯糖差向异构酶突变体,及其在微生物催化D‑半乳糖异构化制备D‑塔格糖中的应用。所述L‑阿拉伯糖差向异构酶突变体,由所示氨基酸经定点突变而得,所述点突变位点为下列中的一个或多个:(1)第304位、(2)第75位、(3)第274位、(4)第167位。本发明有益效果主要体现在:本发明提供了一种全新的L‑阿拉伯糖差向异构酶及其突变体,该突变体具有高最适反应温度75℃,其酶活与原始酶相比提高280%。使用本突变体生产D‑tagatose,产物得率最高可达73.3%。将重组酶进行固定化并连续催化30批次,转化率均大于73%。该突变体的转化水平展示了优良的工业应用前景。The invention relates to an L-arabinose epimerase mutant and its application in the preparation of D-tagatose by microorganism-catalyzed D-galactose isomerization. The L-arabinose epimerase mutant is obtained by site-directed mutation of the indicated amino acids, and the point mutation site is one or more of the following: (1) 304th, (2) 75th, (3) 274th, (4) 167th. The beneficial effects of the present invention are mainly reflected in: the present invention provides a brand-new L-arabinose epimerase and its mutant, which has a high optimum reaction temperature of 75°C, and its enzyme activity is compared with that of the original enzyme 280% improvement. Using this mutant to produce D-tagatose, the product yield can reach up to 73.3%. The recombinant enzyme was immobilized and continuously catalyzed for 30 batches, and the conversion rates were all greater than 73%. The transformation level of the mutant shows excellent industrial application prospects.

Description

一种L-阿拉伯糖异构酶异构体及其应用A kind of L-arabinose isomerase isomer and its application

(一)技术领域(1) Technical field

本发明涉及一种L-阿拉伯糖异构酶异构体突变体,及其在微生物催化D-半乳糖异构化制备D-塔格糖中的应用。The invention relates to an L-arabinose isomerase isomer mutant and its application in the preparation of D-tagatose by microorganism-catalyzed isomerization of D-galactose.

(二)背景技术(2) Background technology

D-塔格糖(D-tagatose)是自然界中发现的稀有己酮糖,是D-半乳糖的异构体。它最早被发现存在于一种热带长青植物的树胶中,后来在酸奶、奶酪中也有发现。D-tagatose具有甜度高、热量低、吸收率低、有效降低血糖及抗龋齿、改善肠道菌群等性质与功效。美国食品及药物管理局已通过对D-tagatose的安全认证,准许其用于食品领域。D-tagatose的生产方法主要有化学法和生物法。化学法存在成本较高、酸碱用量高、污染严重、产物成分复杂、分离纯化难等问题。相比之下,生物法制备D-tagatose更具有优势,近年来逐渐成为研究热点。D-tagatose is a rare ketohexose found in nature and is an isomer of D-galactose. It was first found in the gum of a tropical evergreen plant, and later found in yogurt and cheese. D-tagatose has the properties and effects of high sweetness, low calorie, low absorption rate, effectively lowering blood sugar, anti-caries, and improving intestinal flora. The US Food and Drug Administration has passed the safety certification of D-tagatose, allowing it to be used in the food field. The production methods of D-tagatose mainly include chemical method and biological method. The chemical method has problems such as high cost, high acid and alkali consumption, serious pollution, complex product components, and difficult separation and purification. In contrast, the biological preparation of D-tagatose has more advantages, and has gradually become a research hotspot in recent years.

生物法制备D-tagatose的工艺是以D-半乳糖为原料,利用L-阿拉伯糖异构酶(L-arabinose isomerase,简称LAI)进行催化反应,一步法生成D-tagatose。其中,原料D-半乳糖廉价易得、整体反应过程温和易控、反应过程符合环保要求,是一种替代化学法的最优制糖方法。研究报道指出,高温和弱酸性的反应条件更有利于D-tagatose的生物转化。当前,生物法催化D-半乳糖制备D-tagatose时底物浓度偏低,均处于100g/L以下,不利于应用到工业化生产中。除此之外,可开发的酶源较少,该弊端制约着D-tagatose的生产水平。The process of preparing D-tagatose by biological method is to use D-galactose as raw material, utilize L-arabinose isomerase (L-arabinose isomerase, LAI for short) to carry out catalytic reaction, and generate D-tagatose in one step. Among them, the raw material D-galactose is cheap and easy to obtain, the overall reaction process is mild and easy to control, and the reaction process meets environmental protection requirements. It is an optimal sugar production method that replaces chemical methods. Research reports pointed out that the reaction conditions of high temperature and weak acidity are more conducive to the biotransformation of D-tagatose. At present, the substrate concentration of D-tagatose prepared from D-galactose by biological method is low, all below 100g/L, which is not conducive to the application in industrial production. In addition, there are few enzyme sources that can be developed, which restricts the production level of D-tagatose.

生物信息学以核酸、蛋白质等生物大分子数据库为主要对象,辅助计算机对生物信息进行比较分析,从中获取基因编码、蛋白质结构功能及其相互关系等理性信息。在此背景下,利用生物信息学和基因工程等现代生物技术手段,筛选改造获得新型耐高温耐酸的LAI酶制剂,对于满足人民群众日益增长的摄糖需求具有重要意义。Bioinformatics takes nucleic acid, protein and other biomacromolecular databases as the main object, and assists computers to compare and analyze biological information, and obtain rational information such as gene codes, protein structure and function, and their relationship. In this context, using modern biotechnology methods such as bioinformatics and genetic engineering to screen and transform new high-temperature and acid-resistant LAI enzyme preparations is of great significance for meeting the growing sugar intake needs of the people.

(三)发明内容(3) Contents of the invention

本发明目的是提供一种耐高温耐酸的L-阿拉伯糖异构酶异构体突变体,及其在微生物催化D-半乳糖异构化制备D-塔格糖中的应用。The purpose of the present invention is to provide a high-temperature and acid-resistant L-arabinose isomerase isomer mutant and its application in the preparation of D-tagatose by microorganism-catalyzed isomerization of D-galactose.

本发明采用的技术方案是:The technical scheme adopted in the present invention is:

一种L-阿拉伯糖差向异构酶突变体,由序列如SEQ ID NO.3所示氨基酸经定点突变而来,所述突变的位点为下列中的一个或多个:(1)第304位、(2)第75位、(3)第274位、(4)第167位。An L-arabinose epimerase mutant, which is obtained by site-directed mutation of the amino acid sequence shown in SEQ ID NO.3, and the mutation site is one or more of the following: (1) 304th, (2) 75th, (3) 274th, (4) 167th.

优选的,所述突变体由序列如SEQ ID NO.3所示氨基酸经下列之一或多个位点突变而得:(1)第304位甘氨酸G突变为组氨酸H、异亮氨酸I、酪氨酸Y或色氨酸W,(2)第75位甘氨酸G突变为赖氨酸K、蛋氨酸M、苯丙氨酸F或脯氨酸P,(3)第274位丙氨酸G突变为丝氨酸S、苏氨酸T、酪氨酸Y、缬氨酸V或半胱氨酸C,(4)167位丙氨酸A突变为天冬酰胺N、天冬氨酸D或精氨酸R。Preferably, the mutant is obtained by mutating the amino acid sequence shown in SEQ ID NO.3 through one or more of the following sites: (1) Glycine G at position 304 is mutated to histidine H, isoleucine I. Tyrosine Y or tryptophan W, (2) 75th glycine G is mutated to lysine K, methionine M, phenylalanine F or proline P, (3) 274th alanine G is mutated to serine S, threonine T, tyrosine Y, valine V or cysteine C, (4) alanine A at position 167 is mutated to asparagine N, aspartic acid D or arginine amino acid R.

进一步,所述耐高温TIM barrel蛋白酶突变体由序列如SEQ ID NO.3所示氨基酸经下列之一或多个位点突变而得:(1)第304位甘氨酸G突变为酪氨酸Y、(2)第75位甘氨酸G突变为苯丙氨酸F、(3)第274位丙氨酸G突半胱氨酸变C、(4)167位丙氨酸A突变为精氨酸R。Further, the high-temperature-resistant TIM barrel protease mutant is obtained by mutating the amino acids shown in SEQ ID NO.3 through one or more of the following sites: (1) Glycine G at position 304 is mutated into tyrosine Y, (2) Glycine G at position 75 is mutated to phenylalanine F, (3) Alanine G at position 274 is mutated to cysteine C, and (4) Alanine A at position 167 is mutated to arginine R.

更为优选的,所述L-阿拉伯糖差向异构酶突变体序列如SEQ ID NO.7所示(其编码基因如SEQ ID NO.8所示)。More preferably, the sequence of the L-arabinose epimerase mutant is shown in SEQ ID NO.7 (its coding gene is shown in SEQ ID NO.8).

本发明还涉及所述L-阿拉伯糖差向异构酶突变体在催化D-半乳糖异构化制备D-塔格糖中的应用。The present invention also relates to the application of the L-arabinose epimerase mutant in catalyzing the isomerization of D-galactose to prepare D-tagatose.

具体的,所述应用为:以含L-阿拉伯糖差向异构酶编码基因的重组基因工程菌经发酵培养获得的湿菌体或湿菌体经超声破碎后获得的上清液或菌体细胞经固定化获得的固定化酶制剂作为催化剂,以D-半乳糖为底物,在Mn2+和/或Co2+存在下,在6.0~7.0的KH2PO4-NaOH缓冲液中,65~80℃温度下反应,反应结束后,反应液分离纯化,获得D-塔格糖。Specifically, the application is: the supernatant or the thalline obtained by fermenting and culturing the recombinant genetically engineered bacteria containing the gene encoding L-arabinose epimerase or the wet thalline after ultrasonic crushing The immobilized enzyme preparation obtained by immobilizing cells is used as a catalyst, with D-galactose as a substrate, in the presence of Mn 2+ and/or Co 2+ , in 6.0-7.0 KH 2 PO 4 -NaOH buffer, The reaction is carried out at a temperature of 65-80° C. After the reaction is completed, the reaction liquid is separated and purified to obtain D-tagatose.

所述固定化酶制剂制备方法如下:称取菌体细胞,用Na2HPO4-NaH2PO4缓冲液(pH6.5)悬浮,加入Celite 545,适当搅拌。加入聚乙烯亚胺水溶液在25℃、100r/min条件下絮凝,再加入三羟甲基磷(THP)水溶液,在25℃、100r/min条件下交联反应2h。然后抽滤,滤饼用蒸馏水洗涤后用轴向挤压机挤压成长条状,室温风干后,粉碎成粒(优选粒径为0.5~2mm),获得酶的固定化颗粒。The preparation method of the immobilized enzyme preparation is as follows: weigh bacterial cells, suspend them with Na 2 HPO 4 -NaH 2 PO 4 buffer solution (pH6.5), add Celite 545, and stir properly. Add polyethyleneimine aqueous solution to flocculate at 25°C and 100r/min, then add trihydroxymethylphosphine (THP) aqueous solution, and conduct crosslinking reaction at 25°C and 100r/min for 2 hours. Then suction filtration, the filter cake is washed with distilled water, extruded into long strips with an axial extruder, air-dried at room temperature, and crushed into granules (preferably 0.5-2 mm in diameter) to obtain enzyme immobilized granules.

优选的,所述L-阿拉伯糖差向异构酶突变体编码基因序列如SEQ ID NO.8所示。Preferably, the coding gene sequence of the L-arabinose epimerase mutant is shown in SEQ ID NO.8.

本发明有益效果主要体现在:本发明提供了一种全新的L-阿拉伯糖差向异构酶及其突变体,该突变体具有较高最适反应温度75℃,其酶活与原始酶相比提高280%。使用本突变体生产D-tagatose,产物得率最高可达73.3%。将重组酶进行固定化并连续催化30批次,转化率均大于73%。本发明解决了现有酶催化制备D-tagatose效率低下的难题,获得的优于文献报道的连续转化效果对提升D-tagatose工业化水平具有重要意义。The beneficial effects of the present invention are mainly reflected in: the present invention provides a brand-new L-arabinose epimerase and its mutant, which has a higher optimum reaction temperature of 75°C, and its enzyme activity is comparable to that of the original enzyme. Ratio increased by 280%. Using the mutant to produce D-tagatose, the highest product yield can reach 73.3%. The recombinant enzyme was immobilized and continuously catalyzed for 30 batches, and the conversion rates were all greater than 73%. The invention solves the problem of low efficiency of the existing enzyme-catalyzed preparation of D-tagatose, and obtains a continuous conversion effect better than that reported in literature, which is of great significance for improving the industrialization level of D-tagatose.

(四)附图说明(4) Description of drawings

图1为重组酶的最适温度示意图;Fig. 1 is the optimal temperature schematic diagram of recombinase;

图2为金属离子对重组酶活力的影响示意图;Figure 2 is a schematic diagram of the impact of metal ions on the activity of recombinases;

(五)具体实施方式(5) Specific implementation methods

下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此:The present invention is further described below in conjunction with specific embodiment, but protection scope of the present invention is not limited thereto:

实施例1:新型LAI的筛选与活力测定Example 1: Screening and activity determination of novel LAI

1、酶的来源与重组菌的构建1. Source of enzyme and construction of recombinant bacteria

从NCBI数据库中获得新型LAI,分别来源于Novibacillus thermophilus(GenBank编号WP_077718551.1)、Lactobacillus oris(GenBank编号WP_003716014.1)、Pseudothermotoga thermarum(GenBank编号WP_013932424.1),并命名为NtLAI、LoLAI和PtLAI。根据氨基酸序列,依据大肠杆菌密码子偏好性进行密码子优化,通过基因工程的常规操作以全合成的方法合成了三条选择的核苷酸序列,分别如SEQ ID NO.2、SEQ ID NO.4和SEQ ID NO.6所示;编码酶的氨基酸序列分别如SEQ ID NO.1、SEQ ID NO.3和SEQ IDNO.5所示。在核酸序列末端加入6×His-tag标签,两端加入酶切位点Xba I和Xho I,将该基因克隆至pET28b(+)对应的Xba I和Xho I位点,获得重组表达质粒pET28b/NtLAI、pET28b/LoLAI和pET28b/PtLAI。The new LAIs were obtained from the NCBI database, respectively from Novibacillus thermophilus (GenBank No. WP_077718551.1), Lactobacillus oris (GenBank No. WP_003716014.1), Pseudothermotoga thermarum (GenBank No. WP_013932424.1), and named NtLAI, LoLAI and PtLAI. According to the amino acid sequence, the codon was optimized according to the codon preference of Escherichia coli, and three selected nucleotide sequences were synthesized by the method of total synthesis through the conventional operation of genetic engineering, such as SEQ ID NO.2, SEQ ID NO.4 and shown in SEQ ID NO.6; the amino acid sequences encoding the enzyme are shown in SEQ ID NO.1, SEQ ID NO.3 and SEQ ID NO.5 respectively. Add 6×His-tag tags at the end of the nucleic acid sequence, add restriction sites Xba I and Xho I at both ends, clone the gene into the Xba I and Xho I sites corresponding to pET28b(+), and obtain the recombinant expression plasmid pET28b/ NtLAI, pET28b/LoLAI and pET28b/PtLAI.

2、重组菌的转化与诱导表达2. Transformation and induced expression of recombinant bacteria

将获得的重组表达质粒pET28b/NtLAI、pET28b/LoLAI和pET28b/PtLAI转化至Escherichia coli BL21(DE3)受体菌中,涂布于含终浓度为100μg/mL卡那霉素的LB琼脂平板上,37℃下培养过夜,第2天于平板上长出的菌落中随机挑取克隆并抽提质粒进行琼脂糖凝胶电泳鉴定,获得含LAI基因的基因工程菌。The obtained recombinant expression plasmids pET28b/NtLAI, pET28b/LoLAI and pET28b/PtLAI were transformed into Escherichia coli BL21 (DE3) recipient bacteria, spread on LB agar plates containing a final concentration of 100 μg/mL kanamycin, Cultivate overnight at 37°C, and on the second day, randomly pick clones from the colonies grown on the plate and extract the plasmids for identification by agarose gel electrophoresis to obtain genetically engineered bacteria containing the LAI gene.

LB液体培养基组成:胰蛋白胨10g/L,酵母粉5g/L,NaCl 10g/L,溶剂为水,pH值自然;LB固体培养基在LB液体培养基中添加15g/L琼脂;121℃高压灭菌20min;使用前添加终浓度100μg/mL卡那霉素。LB liquid medium composition: tryptone 10g/L, yeast powder 5g/L, NaCl 10g/L, solvent is water, pH value is natural; LB solid medium is added 15g/L agar in LB liquid medium; 121℃ high pressure Sterilize for 20 minutes; add kanamycin at a final concentration of 100 μg/mL before use.

将基因工程菌接种至含终浓度100μg/mL卡那霉素的LB液体培养基,在37℃、150r/min培养至OD600约0.6~0.8,获得种子液;将种子液以体积浓度2%(v/v)接种量接种至新鲜的含有终浓度100μg/mL卡那霉素的LB培养基中,于37℃、150r/min培养OD600至0.4~0.6,再向培养液中加入终浓度0.5mM的IPTG,于28℃下诱导表达12h后,4℃、6000r/min离心10min,弃去上清液,用0.85%的生理盐水清洗两遍湿菌体,并收集湿菌体,备用。Inoculate genetically engineered bacteria into LB liquid medium containing kanamycin at a final concentration of 100 μg/mL, and culture them at 37°C and 150 r/min until the OD 600 is about 0.6-0.8 to obtain seed liquid; (v/v) Inoculum amount was inoculated into fresh LB medium containing kanamycin with a final concentration of 100 μg/mL, cultured at 37°C and 150 r/min to OD 600 to 0.4-0.6, and then added to the culture medium with the final concentration 0.5mM IPTG, induced expression at 28°C for 12h, centrifuged at 4°C, 6000r/min for 10min, discarded the supernatant, washed the wet cells twice with 0.85% normal saline, collected the wet cells, and set aside.

3、重组菌的酶活测定3. Determination of enzyme activity of recombinant bacteria

采用超声破碎方法对湿菌体进行超声破碎。取1g制备的湿菌体,用50mL 50mMKH2PO4-NaOH缓冲液(pH 6.5)悬浮,在39W条件下超声破碎15min,制备获得超声破碎后的混悬液,离心,收集上清液。Ultrasonic disruption was performed on the wet bacteria. Take 1 g of the prepared wet bacteria, suspend it with 50 mL of 50 mM KH 2 PO 4 -NaOH buffer (pH 6.5), and sonicate it at 39W for 15 minutes to prepare a sonicated suspension, centrifuge, and collect the supernatant.

酶活反应体系:50g/L的D-半乳糖、1mM MnCl2、50μL上述上清液(酶液),再加入适量50mM KH2PO4-NaOH缓冲液(pH 6.5)至总体积1mL。反应条件:于40℃条件下反应10min,沸水煮沸10min终止反应,稀释10倍后,使用0.22μm滤膜过膜;采用HPLC检测D-tagatose浓度。分析柱为Aminex HPX-87H柱(300×7.8mm,9μm,伯乐生命医学产品有限公司)。Waters 2414示差折光检测器,Waters 1525泵,Waters 717进样器。Enzyme activity reaction system: 50 g/L D-galactose, 1 mM MnCl 2 , 50 μL of the above supernatant (enzyme solution), and then add an appropriate amount of 50 mM KH 2 PO 4 -NaOH buffer (pH 6.5) to a total volume of 1 mL. Reaction conditions: react at 40°C for 10 minutes, boil in boiling water for 10 minutes to terminate the reaction, dilute 10 times, and pass through a 0.22 μm filter membrane; use HPLC to detect the concentration of D-tagatose. The analytical column is an Aminex HPX-87H column (300×7.8mm, 9 μm, Bio-Rad Life Medical Products Co., Ltd.). Waters 2414 differential refractive index detector, Waters 1525 pump, Waters 717 injector.

酶活定义:40℃和pH 6.5下,每分钟将D-半乳糖异构化生成1μmolD-tagatose所需酶量定义为一个酶活单位(U)。Definition of enzyme activity: at 40°C and pH 6.5, the amount of enzyme required to isomerize D-galactose into 1 μmol D-tagatose per minute is defined as one enzyme activity unit (U).

表1:重组酶的酶活测定Table 1: Enzyme Activity Assays for Recombinases

实施例2:LoLAI单位点突变体的构建与筛选Example 2: Construction and screening of LoLAI single point mutants

1、突变体构建1. Mutant construction

根据LoLAI亲本序列设计定点突变的突变引物,利用快速PCR技术,以重组载体pET28b/LoLAI为模板,对第304位引入单突变,引物为:Design the mutation primers for site-directed mutation according to the LoLAI parental sequence, and use the rapid PCR technology to introduce a single mutation at position 304 with the recombinant vector pET28b/LoLAI as a template. The primers are:

正向引物304G:Forward primer 304G:

ATGGCTATGGCTTCNNNGCAGAAGGTGACTTCAAAA(下划线为突变碱基)ATGGCTATGGCTTC NNN GCAGAAGGTGACTTCAAAA (the underline is the mutated base)

反向引物304G:Reverse primer 304G:

TTTTGAAGTCACCTTCTGCNNNGAAGCCATAGCCAT(下划线为突变碱基)TTTTGAAGTCACCTTCTGC NNN GAAGCCATAGCCAT (the underline is the mutated base)

PCR反应体系:2×Phanta Max Buffer(含Mg2+)25μL,dNTPs 10mM,正向引物304G 2μL(5pmol/μL,下同),反向引物304G 2μL(5pmol/μL,下同),模板DNA 1μL(20ng/μL,下同),Phanta Max Super-Fidelity DNA Polymerase 50U,加入ddH2O至50μL。PCR reaction system: 2×Phanta Max Buffer (containing Mg 2+ ) 25 μL, dNTPs 10 mM, forward primer 304G 2 μL (5 pmol/μL, the same below), reverse primer 304G 2 μL (5 pmol/μL, the same below), template DNA 1 μL (20ng/μL, the same below), Phanta Max Super-Fidelity DNA Polymerase 50U, add ddH 2 O to 50 μL.

PCR扩增条件为95℃3min;(95℃15s,64℃15s,72℃6.5min)30循环;72℃5min。The PCR amplification conditions were 95°C for 3min; (95°C for 15s, 64°C for 15s, 72°C for 6.5min) for 30 cycles; 72°C for 5min.

2、突变体转化表达2. Transformation and expression of mutants

取5μL的PCR产物,加入100μL冰浴的E.coli BL21(DE3)感受态细胞悬液中,冰上静置30min,将转化产物于42℃热击90s,迅速置于冰上冷却5min,向管中加入600μL的LB液体培养基,37℃,150r/min培养60min,取100μL上述菌液涂板,待菌液完全被培养基吸收后,37℃倒置培养12h。Take 5 μL of the PCR product, add it to 100 μL of E.coli BL21(DE3) competent cell suspension in an ice bath, let it stand on ice for 30 minutes, heat-shock the transformed product at 42°C for 90 seconds, and quickly place it on ice to cool for 5 minutes. Add 600 μL of LB liquid medium to the tube, incubate at 37°C for 60 minutes at 150 r/min, take 100 μL of the above bacterial solution to smear the plate, and after the bacterial solution is completely absorbed by the medium, incubate at 37°C for 12 hours.

3、高通量筛选阳性转化子3. High-throughput screening of positive transformants

反应混合液组成:5g/L的D-半乳糖、1mM MnCl2,再加入50mM KH2PO4-NaOH缓冲液(pH 6.5)至总反应体系1L,备用。The composition of the reaction mixture: 5 g/L D-galactose, 1 mM MnCl 2 , and 50 mM KH 2 PO 4 -NaOH buffer solution (pH 6.5) were added to make the total reaction system 1 L, and set aside.

在96孔聚苯乙烯微孔培养板中每孔加入100μL含有终浓度100μg/mL卡那霉素的LB培养液,接种不同的转化菌落,于37℃、150r/min培养OD600至0.4~0.6,再向培养液中加入终浓度为0.5mM的IPTG,于28℃下诱导表达10h后,4℃、6000r/min离心10min,弃去上清液。取100μL上述反应混合液加入含有菌体的96孔板中,振荡器振荡混匀后在40℃、600r/min反应10min,冰浴10min停止反应。取2μL反应液以半胱氨酸-咔唑显色法筛选突变体,反应体系包括2μL反应液、5μL的1.5%(w/v)半胱氨酸盐酸盐、150μL的70%(w/w)浓硫酸、5μL的0.12%(w/v)咔唑乙醇,60℃下保温10min后观察颜色变化。以重组菌E.coli BL21(DE3)/pET28b/LoLAI的反应为对照,取颜色比E.coli BL21(DE3)/pET28b/LoLAI的反应深的突变株进行酶活精准测定。Add 100 μL of LB culture solution containing a final concentration of 100 μg/mL kanamycin to each well of a 96-well polystyrene microwell culture plate, inoculate different transformed colonies, and culture at 37°C and 150 r/min to OD 600 to 0.4-0.6 , and then add IPTG with a final concentration of 0.5mM to the culture medium, induce expression at 28°C for 10h, centrifuge at 6000r/min at 4°C for 10min, and discard the supernatant. Take 100 μL of the above reaction mixture and add it to a 96-well plate containing bacteria, shake and mix with an oscillator, react at 40°C, 600 r/min for 10 minutes, and stop the reaction in an ice bath for 10 minutes. Take 2 μL of reaction solution to screen mutants by cysteine-carbazole chromogenic method, and the reaction system includes 2 μL of reaction solution, 5 μL of 1.5% (w/v) cysteine hydrochloride, 150 μL of 70% (w/v) w) Concentrated sulfuric acid, 5 μL of 0.12% (w/v) carbazole ethanol, and observe the color change after incubation at 60° C. for 10 minutes. Taking the reaction of recombinant bacteria E.coli BL21(DE3)/pET28b/LoLAI as a control, the mutant strains with a darker color than the reaction of E.coli BL21(DE3)/pET28b/LoLAI were used for accurate determination of enzyme activity.

4、阳性转化子酶活的精准测定4. Accurate determination of enzyme activity of positive transformants

操作同实施例1的“重组菌的酶活测定”。The operation is the same as that of "Determination of Enzyme Activity of Recombinant Bacteria" in Example 1.

该实施例的结果为:对665株重组转化菌初筛,筛选出4株酶活提高的突变株,再对其进行酶活精准测定,具体结果见表2。经分析确定,其余661株重组菌酶活保持不变或下降的原因是第304位甘氨酸(G)突变为H、I、Y和W外的其他氨基酸。The results of this example are: 665 strains of recombinant transformed bacteria were initially screened, and 4 mutant strains with improved enzyme activity were screened out, and then the enzyme activity was accurately measured. The specific results are shown in Table 2. After analysis, it was determined that the enzyme activity of the remaining 661 strains of recombinant bacteria remained unchanged or decreased because the 304th glycine (G) was mutated to other amino acids other than H, I, Y and W.

表2:单点突变重组菌的酶活测定Table 2: Enzyme Activity Determination of Single Point Mutation Recombinant Bacteria

将酶活提高最多的LoLAI-G304Y突变体记为LoLAI-1,获得重组菌E.coli BL21(DE3)/pET28b/LoLAI-1。The LoLAI-G304Y mutant with the most improved enzyme activity was designated as LoLAI-1, and the recombinant strain E.coli BL21(DE3)/pET28b/LoLAI-1 was obtained.

实施例3:LoLAI双位点突变体的构建与筛选Example 3: Construction and screening of LoLAI double-site mutants

根据实施例2构建的单突变体LoLAI-1序列设计定点突变的突变引物,利用快速PCR技术,以重组载体pET28b/LoLAI-1为模板,对第75位引入单突变,引物为:According to the single mutant LoLAI-1 sequence constructed in Example 2, the mutation primers for site-directed mutation were designed, and the rapid PCR technology was used to introduce a single mutation at the 75th position with the recombinant vector pET28b/LoLAI-1 as a template. The primers were:

正向引物75G:CGACAAAGTTGCANNNGTGATGACCT(下划线为突变碱基)Forward primer 75G: CGACAAAGTTGCA NNN GTGATGACCT (the underline is the mutated base)

反向引物75G:AGGTCATCACNNNTGCAACTTTGTCG(下划线为突变碱基)Reverse primer 75G: AGGTCATCAC NNN TGCAACTTTGTCG (the underline is the mutated base)

PCR反应体系:2×Phanta Max Buffer(含Mg2+)25μL,dNTPs 10mM,正向引物75G 2μL,反向引物75G 2μL,模板DNA1μL,Phanta Max Super-Fidelity DNA Polymerase 50U,加入ddH2O至50μL。PCR reaction system: 2×Phanta Max Buffer (containing Mg 2+ ) 25 μL, dNTPs 10 mM, forward primer 75G 2 μL, reverse primer 75G 2 μL, template DNA 1 μL, Phanta Max Super-Fidelity DNA Polymerase 50U, add ddH 2 O to 50 μL .

PCR扩增条件为95℃3min;(95℃15s,60.5℃15s,72℃6.5min)30循环;72℃5min。The PCR amplification conditions were 95°C for 3min; (95°C for 15s, 60.5°C for 15s, 72°C for 6.5min) for 30 cycles; 72°C for 5min.

PCR产物转化E.coli BL21(DE3)感受态细胞,挑单克隆于含100μg/mL卡那霉素的LB液体培养基中,37℃培养过夜。利用半胱氨酸咔唑法显色法对突变体进行初筛(操作同实施例2的“高通量筛选阳性转化子”),阳性克隆进行酶活精准测定(操作同实施例1的“阳性转化子酶活测定”)。The PCR product was transformed into E.coli BL21(DE3) competent cells, and a single clone was picked in LB liquid medium containing 100 μg/mL kanamycin, and cultured overnight at 37°C. The mutants were initially screened by the cysteine carbazole chromogenic method (the operation is the same as in the "high-throughput screening of positive transformants" in Example 2), and the positive clones were subjected to precise enzyme activity determination (the operation was the same as in the "Positive Transformants" in Example 1). Enzyme activity assay of positive transformants").

该实施例的结果为:对399株重组转化菌初筛,筛选出4株酶活提高的突变株,再对其进行酶活精准测定,具体结果见表3。经分析确定,其余395株重组菌酶活保持不变或下降的原因是第75位甘氨酸(G)突变为K、M、F和P外的其他氨基酸。The results of this example are: 399 strains of recombinant transformed bacteria were initially screened, and 4 mutant strains with improved enzyme activity were screened out, and then the enzyme activity was accurately measured. The specific results are shown in Table 3. It was determined by analysis that the enzyme activity of the remaining 395 recombinant strains remained unchanged or decreased because the 75th glycine (G) was mutated to other amino acids other than K, M, F and P.

表3:双点突变重组菌的酶活测定Table 3: Enzyme Activity Determination of Double Point Mutation Recombinant Bacteria

将酶活提高最多的LoLAI-G304Y-G75F突变体记为LoLAI-2,获得重组菌E.coliBL21(DE3)/pET28b/LoLAI-2。The LoLAI-G304Y-G75F mutant with the most improved enzyme activity was designated as LoLAI-2, and the recombinant strain E.coliBL21(DE3)/pET28b/LoLAI-2 was obtained.

实施例4:LoLAI三位点突变体的构建与筛选Example 4: Construction and screening of LoLAI three-site mutants

根据实施例3构建的突变体LoLAI-2序列设计定点突变的突变引物,利用快速PCR技术,以重组载体pET28b/LoLAI-2为模板,对第274位引入单突变,引物为:According to the mutant LoLAI-2 sequence constructed in Example 3, the mutation primers for site-directed mutation were designed, using the rapid PCR technology, using the recombinant vector pET28b/LoLAI-2 as a template, and introducing a single mutation at position 274, the primers were:

正向引物274G:GGTTATGATNNNTTCACCACCAACTTCCAGG(下划线为突变碱基)Forward primer 274G: GGTTATGAT NNN TTCACCACCAACTTCCAGG (the underline is the mutated base)

反向引物274G:CCTGGAAGTTGGTGGTGAANNNATCATAACC(下划线为突变碱基)Reverse primer 274G: CCTGGAAGTTGGTGGTGAA NNN ATCATAACC (the underline is the mutated base)

PCR反应体系:2×Phanta Max Buffer(含Mg2+)25μL,dNTPs 10mM,正向引物274G 2μL,反向引物274G 2μL,模板DNA 1μL,Phanta Max Super-Fidelity DNA Polymerase 50U,加入ddH2O至50μL。PCR reaction system: 2×Phanta Max Buffer (containing Mg 2+ ) 25 μL, dNTPs 10 mM, forward primer 274G 2 μL, reverse primer 274G 2 μL, template DNA 1 μL, Phanta Max Super-Fidelity DNA Polymerase 50U, add ddH 2 O to 50 μL.

PCR扩增条件为95℃3min;(95℃15s,59.5℃15s,72℃6.5min)30循环;72℃5min。The PCR amplification conditions were 95°C for 3min; (95°C for 15s, 59.5°C for 15s, 72°C for 6.5min) for 30 cycles; 72°C for 5min.

PCR产物转化E.coli BL21(DE3)感受态细胞,挑单克隆于含100μg/mL卡那霉素的LB液体培养基中,37℃培养过夜。利用半胱氨酸咔唑法显色法对突变体进行初筛(操作同实施例2的“高通量筛选阳性转化子”),阳性克隆进行酶活精准测定(操作同实施例1的“阳性转化子酶活测定”)。The PCR product was transformed into E.coli BL21(DE3) competent cells, and a single clone was picked in LB liquid medium containing 100 μg/mL kanamycin, and cultured overnight at 37°C. The mutants were initially screened by the cysteine carbazole chromogenic method (the operation is the same as in the "high-throughput screening of positive transformants" in Example 2), and the positive clones were subjected to precise enzyme activity determination (the operation was the same as in the "Positive Transformants" in Example 1). Enzyme activity assay of positive transformants").

该实施例的结果为:对735株重组转化菌初筛,筛选出5株酶活提高的突变株,再对其进行酶活测定,具体结果见表4。经分析确定,其余730株重组菌酶活保持不变或下降的原因是第274位丙氨酸(G)突变为S、T、Y、V和C外的其他氨基酸。The results of this example are: 735 strains of recombinant transformed bacteria were initially screened, and 5 mutants with improved enzyme activity were screened out, and then their enzyme activity was determined. The specific results are shown in Table 4. It was determined by analysis that the enzyme activity of the remaining 730 recombinant strains remained unchanged or decreased because the 274th alanine (G) was mutated to other amino acids other than S, T, Y, V and C.

表4:三点突变重组菌的酶活测定Table 4: Enzyme Activity Determination of Three-point Mutation Recombinant Bacteria

将酶活提高最多的LoLAI-G304Y-G75F-G274C突变体记为LoLAI-3,获得重组菌E.coli BL21(DE3)/pET28b/LoLAI-3。The LoLAI-G304Y-G75F-G274C mutant with the most improved enzyme activity was designated as LoLAI-3, and the recombinant strain E.coli BL21(DE3)/pET28b/LoLAI-3 was obtained.

实施例5:LoLAI四位点突变体的构建与筛选Example 5: Construction and screening of LoLAI four-site mutants

根据实施例4构建的突变体LoLAI-3序列设计定点突变的突变引物,利用快速PCR技术,以重组载体pET28b/LoLAI-3为模板,对第167位引入单突变,引物为:According to the mutant LoLAI-3 sequence constructed in Example 4, the mutation primers for site-directed mutagenesis were designed, and the recombinant vector pET28b/LoLAI-3 was used as a template to introduce a single mutation at position 167 using rapid PCR technology. The primers were:

正向引物167A:GGCAGAAAGTGNNNATTGCATACGATATGAGC(下划线为突变碱基)Forward primer 167A: GGCAGAAAGTG NNN ATTGCATACGATATGAGC (the underline is the mutated base)

反向引物167A:GCTCATATCGTATGCAATNNNCACTTTCTGCC(下划线为突变碱基)Reverse primer 167A: GCTCATATCGTATGCAAT NNN CACTTTCTGCC (the underline is the mutated base)

PCR反应体系:2×Phanta Max Buffer(含Mg2+)25μL,dNTPs 10mM,正向引物167A 2μL,反向引物167A 2μL,模板DNA 1μL,Phanta Max Super-Fidelity DNA Polymerase 50U,加入ddH2O至50μL。PCR reaction system: 2×Phanta Max Buffer (containing Mg 2+ ) 25 μL, dNTPs 10 mM, forward primer 167A 2 μL, reverse primer 167A 2 μL, template DNA 1 μL, Phanta Max Super-Fidelity DNA Polymerase 50U, add ddH 2 O to 50 μL.

PCR扩增条件为95℃3min;(95℃15s,59℃15s,72℃6.5min)30循环;72℃5min。The PCR amplification conditions were 95°C for 3min; (95°C for 15s, 59°C for 15s, 72°C for 6.5min) for 30 cycles; 72°C for 5min.

PCR产物转化E.coli BL21(DE3)感受态细胞,挑单克隆于含100μg/mL卡那霉素的LB液体培养基中,37℃培养过夜。利用半胱氨酸咔唑法显色法对突变体进行初筛(操作同实施例2的“高通量筛选阳性转化子”),进行酶活精准测定(操作同实施例1的“阳性转化子酶活测定”)。The PCR product was transformed into E.coli BL21(DE3) competent cells, and a single clone was picked in LB liquid medium containing 100 μg/mL kanamycin, and cultured overnight at 37°C. Utilize the cysteine carbazole color method to carry out primary screening on the mutant (operation is the same as the "high-throughput screening positive transformant" in Example 2), and carry out accurate determination of enzyme activity (operation is the same as the "positive transformation" in Example 1 Subenzyme activity assay").

该实施例的结果为:对444株重组转化菌初筛,筛选出3株酶活提高的突变株,再对其进行酶活测定,具体结果见表5。经分析确定,其余441株重组菌酶活保持不变或下降的原因是第167位丙氨酸(A)突变为N、D和R外的其他氨基酸。The results of this example are: 444 strains of recombinant transformed bacteria were initially screened, and 3 mutant strains with improved enzyme activity were screened out, and then their enzyme activity was determined. The specific results are shown in Table 5. It was determined by analysis that the enzyme activity of the remaining 441 recombinant strains remained unchanged or decreased because the 167th alanine (A) was mutated to amino acids other than N, D and R.

表5:四位点突变重组菌的酶活测定Table 5: Enzyme Activity Determination of Four-site Mutation Recombinant Bacteria

将酶活提高最多的LoLAI-G304Y-G75F-G274C-A167R突变体记为LoLAI-4,获得重组菌E.coli BL21(DE3)/pET28b/LoLAI-4。The LoLAI-G304Y-G75F-G274C-A167R mutant with the most improved enzyme activity was designated as LoLAI-4, and the recombinant strain E.coli BL21(DE3)/pET28b/LoLAI-4 was obtained.

实施例6:重组大肠杆菌发酵产酶与纯化Embodiment 6: Recombinant Escherichia coli fermentation enzyme production and purification

分别将重组菌E.coli BL21(DE3)/pET28b/LoLAI、E.coli BL21(DE3)/pET28b/LoLAI-1、E.coli BL21(DE3)/pET28b/LoLAI-2、E.coli BL21(DE3)/pET28b/LoLAI-3、E.coli BL21(DE3)/pET28b/LoLAI-4接种至含终浓度100μg/mL卡那霉素的LB液体培养基,在37℃、150r/min培养OD600约0.6~0.8,获得种子液;将种子液以2%(v/v)接种量接种至新鲜的含有终浓度100μg/mL卡那霉素的LB液体培养基中,于37℃、150r/min培养OD600至0.4~0.6,再向培养液中加入终浓度为0.5mM的IPTG,于28℃下诱导表达12h后,4℃、6000r/min离心10min,弃去上清液,用0.85%的生理盐水清洗两遍湿菌体,并收集湿菌体。The recombinant bacteria E.coli BL21(DE3)/pET28b/LoLAI, E.coli BL21(DE3)/pET28b/LoLAI-1, E.coli BL21(DE3)/pET28b/LoLAI-2, E.coli BL21(DE3 )/pET28b/LoLAI-3, E.coli BL21(DE3)/pET28b/LoLAI-4 were inoculated into LB liquid medium containing a final concentration of 100 μg/mL kanamycin, and cultured at 37°C and 150 r/min at an OD 600 of about 0.6 to 0.8 to obtain seed liquid; inoculate the seed liquid with 2% (v/v) inoculum into fresh LB liquid medium containing kanamycin with a final concentration of 100 μg/mL, and cultivate at 37°C and 150r/min OD 600 to 0.4-0.6, then add IPTG with a final concentration of 0.5mM to the culture medium, induce expression at 28°C for 12h, centrifuge at 6000r/min at 4°C for 10min, discard the supernatant, and replace with 0.85% physiological Wash the wet cells twice with salt water, and collect the wet cells.

采用超声破碎方法对湿菌体进行超声破碎,收集上清液。Ultrasonic disruption was performed on the wet bacteria, and the supernatant was collected.

使用nickel-NTA琼脂糖凝胶柱进行纯化,用平衡缓冲液(20mM磷酸盐缓冲液,300mM NaCl,20mM咪唑,pH 8.0)平衡层析柱,再使用洗脱液(50mM磷酸盐缓冲液,300mMNaCl,500mM咪唑,pH 8.0)进行洗脱,根据紫外检测器的信号响应,收集相应的洗脱液,即为各自纯酶液。Purify using a nickel-NTA agarose gel column, equilibrate the chromatography column with an equilibration buffer (20mM phosphate buffer, 300mM NaCl, 20mM imidazole, pH 8.0), and then use an eluent (50mM phosphate buffer, 300mM NaCl , 500mM imidazole, pH 8.0) for elution, according to the signal response of the ultraviolet detector, collect the corresponding eluate, which is the respective pure enzyme solution.

实施例7:纯化LoLAI及其突变体的最适反应温度Embodiment 7: the optimal reaction temperature of purifying LoLAI and mutants thereof

将实施例6中的纯酶液作为转化用酶,测定酶的最适反应温度。反应体系为:50g/L的D-半乳糖、1mM MnCl2、50μL上述实施例获得的纯酶液,再加入50mM KH2PO4-NaOH缓冲液(pH 6.5)至总体系1mL。分别于不同转化温度:60、65、70、75、80、85、90℃测定重组LAI的活力(操作方法同实施例1的“重组菌的酶活测定”)。由图1中可知,LoLAI-4的最适反应温度为75℃,比原始酶LoLAI提高10℃。The pure enzyme solution in Example 6 was used as the enzyme for transformation, and the optimum reaction temperature of the enzyme was determined. The reaction system was: 50 g/L D-galactose, 1 mM MnCl 2 , 50 μL of the pure enzyme solution obtained in the above examples, and then 50 mM KH 2 PO 4 -NaOH buffer solution (pH 6.5) was added to make the total system 1 mL. The activity of the recombinant LAI was measured at different transformation temperatures: 60, 65, 70, 75, 80, 85, and 90° C. (the operation method was the same as that of “Determination of Enzyme Activity of Recombinant Bacteria” in Example 1). It can be seen from Figure 1 that the optimum reaction temperature of LoLAI-4 is 75°C, which is 10°C higher than that of the original enzyme LoLAI.

实施例8:金属离子对LAI最优突变体酶活的影响Embodiment 8: Effect of metal ions on LAI optimal mutant enzyme activity

将实施例6中的纯酶液作为转化用酶,测定金属离子对重组酶酶活的影响。1mL反应体系包括:50mM KH2PO4-NaOH缓冲液(pH 6.5)、50g/L D-半乳糖、50μL纯酶液和1mM不同金属离子(阴离子为Cl-)。其中,金属离子的选择如下:(1)选用单金属离子:Mn2+、Co2+、Mg2+、Cu2 +、Zn2+、Ba2+、Fe2+、和Ca2+。于40℃测定LAI的活力。(2)设置组合金属离子,分别为1mM Mn2+和0.5mM Co2+、1mM Mn2+和0.5mM Zn2+、1mM Mn2+和0.5mM Mg2+进行酶活测定。以不加金属离子作为对照。由图2可知,Mn2+对LAI的酶活有极大的促进作用,并且比组合金属的效果更为明显。The pure enzyme solution in Example 6 was used as the enzyme for transformation, and the influence of metal ions on the enzyme activity of the recombinase was determined. The 1 mL reaction system includes: 50 mM KH 2 PO 4 -NaOH buffer solution (pH 6.5), 50 g/L D-galactose, 50 μL pure enzyme solution and 1 mM different metal ions (the anion is Cl ). Among them, the selection of metal ions is as follows: (1) Single metal ions are selected: Mn 2+ , Co 2+ , Mg 2+ , Cu 2+ , Zn 2+ , Ba 2+ , Fe 2+ , and Ca 2+ . The activity of LAI was determined at 40°C. (2) Set combined metal ions, respectively 1mM Mn 2+ and 0.5mM Co 2+ , 1mM Mn 2+ and 0.5mM Zn 2+ , 1mM Mn 2+ and 0.5mM Mg 2+ for enzyme activity determination. No metal ions were used as a control. It can be seen from Figure 2 that Mn 2+ greatly promotes the enzymatic activity of LAI, and the effect is more obvious than that of combined metals.

实施例9:原始酶与突变酶突变重组菌全细胞制备D-tagatoseExample 9: Preparation of D-tagatose from whole cells of the original enzyme and mutant enzyme mutant recombinant bacteria

按实施例6的发酵方法,大规模发酵获得重组菌E.coli BL21(DE3)/pET28b/LoLAI、E.coli BL21(DE3)/pET28b/LoLAI-1、E.coli BL21(DE3)/pET28b/LoLAI-2、E.coliBL21(DE3)/pET28b/LoLAI-3、E.coli BL21(DE3)/pET28b/LoLAI-4。分别以上述湿菌体作为生物催化剂,以D-半乳糖为底物,生物转化制备D-tagatose。催化体系包括:不同浓度的D-半乳糖、1mM MnCl2、15g/L湿菌体,再加入适量50mM KH2PO4-NaOH缓冲液(pH 6.5)至总体系100mL。反应体系于65℃、150r/min条件下反应8h。每隔1h取样、离心,用0.22μm膜过滤后进行HPLC检测D-tagatose浓度。由表6可知,E.coli BL21(DE3)/pET28b/LoLAI-4的产物得率最终达到73.3%,高于原始酶E.coli BL21(DE3)/pET28b/LoLAI和其他突变酶的得率。According to the fermentation method of Example 6, large-scale fermentation obtained recombinant bacteria E.coli BL21(DE3)/pET28b/LoLAI, E.coli BL21(DE3)/pET28b/LoLAI-1, E.coli BL21(DE3)/pET28b/ LoLAI-2, E.coli BL21(DE3)/pET28b/LoLAI-3, E.coli BL21(DE3)/pET28b/LoLAI-4. D-tagatose was prepared by biotransformation with the above-mentioned wet bacteria as a biocatalyst and D-galactose as a substrate. The catalytic system includes: different concentrations of D-galactose, 1mM MnCl 2 , 15g/L wet bacteria, and then add an appropriate amount of 50mM KH 2 PO 4 -NaOH buffer solution (pH 6.5) to make the total system 100mL. The reaction system was reacted at 65°C and 150r/min for 8h. Samples were taken every 1 hour, centrifuged, filtered through a 0.22 μm membrane, and the concentration of D-tagatose was detected by HPLC. It can be seen from Table 6 that the product yield of E.coli BL21(DE3)/pET28b/LoLAI-4 finally reached 73.3%, which was higher than that of the original enzyme E.coli BL21(DE3)/pET28b/LoLAI and other mutant enzymes.

表6:各重组菌得率的比较Table 6: Comparison of the yield of each recombinant bacteria

实施例10:E.coli BL21(DE3)/pET28b/LoLAI-4的固定化与连续转化Example 10: Immobilization and continuous transformation of E.coli BL21(DE3)/pET28b/LoLAI-4

制备30%(v/v)THP水溶液:取31.8g的四羟甲基硫酸磷溶于80mL去离子水,3.4g的氢氧化钾溶于10mL去离子水,室温25℃、100r/min条件下将两者缓慢混合,制得30%(v/v)THP水溶液,现用现配,四羟甲基硫酸磷和氢氧化钾按摩尔比1:0.995。Preparation of 30% (v/v) THP aqueous solution: Take 31.8g of tetrakis hydroxymethyl phosphorus sulfate dissolved in 80mL of deionized water, 3.4g of potassium hydroxide dissolved in 10mL of deionized water, room temperature 25 ℃, 100r/min conditions The two are slowly mixed to obtain a 30% (v/v) THP aqueous solution, which is ready-to-use, and the molar ratio of four hydroxymethyl phosphorus sulfate and potassium hydroxide is 1:0.995.

称取5g重组E.coli BL21(DE3)/pET28b/LoLAI-4细胞,分别用50mL的Na2HPO4-NaH2PO4缓冲液(pH 6.5)悬浮,加入0.3g Celite 545,适当搅拌。加入2mL 5%(v/v)聚乙烯亚胺水溶液在25℃、100r/min条件下絮凝,再加入0.25mL体积浓度30%THP水溶液,在25℃、100r/min条件下交联反应2h。然后抽滤,滤饼用蒸馏水洗涤后用轴向挤压机挤压成长条状,室温风干后,粉碎成粒(优选粒径为0.5~2mm),获得LoLAI-5突变体的固定化颗粒。Weigh 5 g of recombinant E.coli BL21(DE3)/pET28b/LoLAI-4 cells, suspend them with 50 mL of Na 2 HPO 4 -NaH 2 PO 4 buffer solution (pH 6.5), add 0.3 g of Celite 545, and stir properly. Add 2mL of 5% (v/v) polyethyleneimine aqueous solution to flocculate at 25°C and 100r/min, then add 0.25mL of 30% THP aqueous solution, and conduct crosslinking reaction at 25°C and 100r/min for 2h. Then suction filtration, the filter cake was washed with distilled water and then extruded into long strips with an axial extruder. After air-drying at room temperature, it was pulverized into granules (preferably with a particle size of 0.5-2 mm) to obtain immobilized granules of the LoLAI-5 mutant.

以上述固定化颗粒为生物催化剂,以D-半乳糖为底物,生物转化制备D-tagatose。100mL催化体系包括:50mM Na2HPO4/NaH2PO4缓冲液(pH 6.5)、500g/L D-半乳糖、1mM MnCl2、6g/L固定化颗粒。反应于65℃、200r/min、异构化2h。反应液于4℃离心,少量上清液经0.22μm膜过滤后用HPLC检测D-tagatose浓度;收集固定化颗粒,经缓冲液洗涤进行下一批转化。实验结果表明,连续催化30批次,产物得率均大于73%。The above-mentioned immobilized particles are used as a biocatalyst and D-galactose is used as a substrate to prepare D-tagatose through biotransformation. 100mL catalytic system includes: 50mM Na 2 HPO 4 /NaH 2 PO 4 buffer (pH 6.5), 500g/L D-galactose, 1mM MnCl 2 , 6g/L immobilized particles. Reaction at 65°C, 200r/min, isomerization for 2h. The reaction solution was centrifuged at 4°C, and a small amount of the supernatant was filtered through a 0.22 μm membrane, and then the concentration of D-tagatose was detected by HPLC; the immobilized particles were collected and washed with buffer for the next batch of transformation. The experimental results show that the product yields are all greater than 73% after continuous catalysis for 30 batches.

序列表sequence listing

<110> 浙江工业大学<110> Zhejiang University of Technology

<120> 一种L-阿拉伯糖异构酶异构体及其应用<120> A kind of L-arabinose isomerase isomer and its application

<160> 8<160> 8

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 500<211> 500

<212> PRT<212> PRT

<213> Novibacillus thermophilus<213> Novibacillus thermophilus

<400> 1<400> 1

Met Ile Ala Leu Lys Pro Tyr Glu Phe Trp Phe Val Thr Gly Ser GlnMet Ile Ala Leu Lys Pro Tyr Glu Phe Trp Phe Val Thr Gly Ser Gln

1 5 10 151 5 10 15

His Leu Tyr Gly Glu Glu Thr Leu Gln Glu Val Glu Ala His Ala ArgHis Leu Tyr Gly Glu Glu Thr Leu Gln Glu Val Glu Ala His Ala Arg

20 25 30 20 25 30

Gln Val Ile Asp Gly Leu Asn Ala Asp Ser Ser Ile Pro Phe Pro IleGln Val Ile Asp Gly Leu Asn Ala Asp Ser Ser Ile Pro Phe Pro Ile

35 40 45 35 40 45

Ala Phe Lys Pro Val Leu Thr Glu Pro Asp Ala Ile Leu Arg Leu CysAla Phe Lys Pro Val Leu Thr Glu Pro Asp Ala Ile Leu Arg Leu Cys

50 55 60 50 55 60

Leu Asp Ala Asn Arg Asp Glu Lys Cys Ala Gly Ile Val Thr Trp MetLeu Asp Ala Asn Arg Asp Glu Lys Cys Ala Gly Ile Val Thr Trp Met

65 70 75 8065 70 75 80

His Thr Phe Ser Pro Ala Lys Met Trp Ile Ala Gly Leu Ser Ala LeuHis Thr Phe Ser Pro Ala Lys Met Trp Ile Ala Gly Leu Ser Ala Leu

85 90 95 85 90 95

Gln Lys Pro Leu Leu His Leu His Thr Gln Phe Asn Arg Asp Ile ProGln Lys Pro Leu Leu His Leu His Thr Gln Phe Asn Arg Asp Ile Pro

100 105 110 100 105 110

Trp Ser Ser Ile Asp Met Asp Phe Met Asn Leu Asn Gln Ser Ala HisTrp Ser Ser Ile Asp Met Asp Phe Met Asn Leu Asn Gln Ser Ala His

115 120 125 115 120 125

Gly Asp Arg Glu Tyr Gly Phe Ile Gly Ser Arg Met Asn Val Arg ArgGly Asp Arg Glu Tyr Gly Phe Ile Gly Ser Arg Met Asn Val Arg Arg

130 135 140 130 135 140

Lys Val Val Val Gly His Trp Lys Ser Lys Ala Val Arg Glu Arg IleLys Val Val Val Gly His Trp Lys Ser Lys Ala Val Arg Glu Arg Ile

145 150 155 160145 150 155 160

Gly Gly Trp Met Arg Val Ala Val Ala Tyr Val Glu Gly Lys Gln LeuGly Gly Trp Met Arg Val Ala Val Ala Tyr Val Glu Gly Lys Gln Leu

165 170 175 165 170 175

Lys Val Ala Arg Phe Gly Asp Asn Met Arg Glu Val Ala Val Thr GluLys Val Ala Arg Phe Gly Asp Asn Met Arg Glu Val Ala Val Thr Glu

180 185 190 180 185 190

Gly Asp Lys Val Glu Ala Gln Ile Gln Phe Gly Trp Ser Ile Asn GlyGly Asp Lys Val Glu Ala Gln Ile Gln Phe Gly Trp Ser Ile Asn Gly

195 200 205 195 200 205

Tyr Gly Val Gly Asp Leu Val Gln Arg Ile Asn Asp Ile Gln Glu AlaTyr Gly Val Gly Asp Leu Val Gln Arg Ile Asn Asp Ile Gln Glu Ala

210 215 220 210 215 220

Glu Val Asn Ala Leu Leu Asp Glu Tyr Ala Glu Gln Tyr Asp Ile AlaGlu Val Asn Ala Leu Leu Asp Glu Tyr Ala Glu Gln Tyr Asp Ile Ala

225 230 235 240225 230 235 240

Pro Glu Gly Leu Lys Glu Gly Ala Val Arg Asp Ser Val Arg Glu GlnPro Glu Gly Leu Lys Glu Gly Ala Val Arg Asp Ser Val Arg Glu Gln

245 250 255 245 250 255

Ala Arg Ile Glu Leu Gly Leu Lys Ala Phe Leu Gln Glu Gly Gly PheAla Arg Ile Glu Leu Gly Leu Lys Ala Phe Leu Gln Glu Gly Gly Phe

260 265 270 260 265 270

Thr Ala Phe Thr Thr Thr Phe Glu Asp Leu His Gly Met Lys Gln LeuThr Ala Phe Thr Thr Thr Thr Phe Glu Asp Leu His Gly Met Lys Gln Leu

275 280 285 275 280 285

Pro Gly Leu Ala Val Gln Arg Leu Met Ala Glu Gly Tyr Gly Phe GlyPro Gly Leu Ala Val Gln Arg Leu Met Ala Glu Gly Tyr Gly Phe Gly

290 295 300 290 295 300

Gly Glu Gly Asp Trp Lys Thr Ala Ala Leu Val Arg Met Met Lys IleGly Glu Gly Asp Trp Lys Thr Ala Ala Leu Val Arg Met Met Lys Ile

305 310 315 320305 310 315 320

Leu Ala Asp Asn Glu Gly Thr Ser Phe Met Glu Asp Tyr Thr Tyr HisLeu Ala Asp Asn Glu Gly Thr Ser Phe Met Glu Asp Tyr Thr Tyr His

325 330 335 325 330 335

Phe Glu Pro Asp Asn Glu Leu Val Leu Gly Ser His Met Leu Glu ValPhe Glu Pro Asp Asn Glu Leu Val Leu Gly Ser His Met Leu Glu Val

340 345 350 340 345 350

Cys Pro Thr Val Ala Ala Thr Lys Pro Arg Val Glu Val His Pro LeuCys Pro Thr Val Ala Ala Thr Lys Pro Arg Val Glu Val His Pro Leu

355 360 365 355 360 365

Ser Ile Gly Gly Lys Glu Asp Pro Ala Arg Leu Val Phe Asp Gly LysSer Ile Gly Gly Lys Glu Asp Pro Ala Arg Leu Val Phe Asp Gly Lys

370 375 380 370 375 380

Ser Gly Ala Ala Leu Asn Ala Ser Leu Val Asp Met Gly Asn Arg PheSer Gly Ala Ala Leu Asn Ala Ser Leu Val Asp Met Gly Asn Arg Phe

385 390 395 400385 390 395 400

Arg Leu Leu Val Asn Glu Val Asp Ala Val Gln Pro Glu Cys Ala MetArg Leu Leu Val Asn Glu Val Asp Ala Val Gln Pro Glu Cys Ala Met

405 410 415 405 410 415

Pro Lys Leu Pro Val Ala Arg Val Leu Trp Lys Pro Ala Pro Ser LeuPro Lys Leu Pro Val Ala Arg Val Leu Trp Lys Pro Ala Pro Ser Leu

420 425 430 420 425 430

Ser Glu Ala Ala Glu Cys Trp Ile Val Ala Gly Gly Ala His His ThrSer Glu Ala Ala Glu Cys Trp Ile Val Ala Gly Gly Ala His His Thr

435 440 445 435 440 445

Cys Phe Ser Tyr Arg Val Thr Thr Glu Gln Leu Ile Asp Trp Ala AspCys Phe Ser Tyr Arg Val Thr Thr Glu Gln Leu Ile Asp Trp Ala Asp

450 455 460 450 455 460

Met Ala Gly Ile Glu Cys Val Val Ile Asp Lys Asp Thr Arg Arg HisMet Ala Gly Ile Glu Cys Val Val Ile Asp Lys Asp Thr Arg Arg His

465 470 475 480465 470 475 480

Ala Phe Arg Asn Glu Leu Lys Trp Asn Glu Val Val Tyr Gly His HisAla Phe Arg Asn Glu Leu Lys Trp Asn Glu Val Val Tyr Gly His His

485 490 495 485 490 495

His His His HisHis His His His

500 500

<210> 2<210> 2

<211> 1500<211> 1500

<212> DNA<212>DNA

<213> Novibacillus thermophilus<213> Novibacillus thermophilus

<400> 2<400> 2

atgatcgcac tgaaaccgta tgagttctgg ttcgttaccg gcagccagca tctgtatggc 60atgatcgcac tgaaaccgta tgagttctgg ttcgttaccg gcagccagca tctgtatggc 60

gaagaaacct tacaggaagt ggaagcacat gcacgccagg tgattgatgg cctgaatgcc 120gaagaaacct tacaggaagt ggaagcacat gcacgccagg tgattgatgg cctgaatgcc 120

gatagcagta ttccgttccc gattgcattc aaaccggtgc tgaccgaacc ggatgcaatt 180gatagcagta ttccgttccc gattgcattc aaaccggtgc tgaccgaacc ggatgcaatt 180

ctgcgcctgt gcctggatgc aaatcgtgat gaaaaatgcg ccggcattgt tacctggatg 240ctgcgcctgt gcctggatgc aaatcgtgat gaaaaatgcg ccggcattgt tacctggatg 240

cataccttca gtccggcaaa aatgtggatt gcaggcctga gcgcactgca gaaaccgctg 300cataccttca gtccggcaaa aatgtggatt gcaggcctga gcgcactgca gaaaccgctg 300

ctgcatctgc atacccagtt caatcgtgat attccgtgga gtagtattga tatggacttc 360ctgcatctgc atacccagtt caatcgtgat attccgtgga gtagtattga tatggacttc 360

atgaatctga atcagagtgc acatggtgat cgtgaatatg gcttcattgg cagtcgtatg 420atgaatctga atcagagtgc acatggtgat cgtgaatatg gcttcattgg cagtcgtatg 420

aatgtgcgcc gcaaagttgt tgttggtcat tggaaaagca aagcagttcg cgaacgcatt 480aatgtgcgcc gcaaagttgt tgttggtcat tggaaaagca aagcagttcg cgaacgcatt 480

ggcggctgga tgcgcgtggc agtggcatac gttgaaggca aacagctgaa agtggcacgc 540ggcggctgga tgcgcgtggc agtggcatac gttgaaggca aacagctgaa agtggcacgc 540

ttcggtgata atatgcgcga agtggcagtg accgaaggtg ataaagttga agcccagatt 600ttcggtgata atatgcgcga agtggcagtg accgaaggtg ataaagttga agcccagatt 600

cagttcggtt ggagcattaa tggttatggc gttggcgatc tggttcagcg tattaatgat 660cagttcggtt ggagcattaa tggttatggc gttggcgatc tggttcagcg tattaatgat 660

attcaggaag ccgaagtgaa tgcactgctg gatgaatatg ccgaacagta tgatattgca 720attcaggaag ccgaagtgaa tgcactgctg gatgaatatg ccgaacagta tgatattgca 720

ccggaaggtc tgaaagaagg tgcagttcgt gatagcgtgc gtgaacaggc ccgtattgaa 780ccggaaggtc tgaaagaagg tgcagttcgt gatagcgtgc gtgaacaggc ccgtattgaa 780

ctgggtctga aagccttcct gcaggaaggt ggcttcaccg cattcaccac caccttcgaa 840ctgggtctga aagccttcct gcaggaaggt ggcttcaccg cattcaccac caccttcgaa 840

gatctgcatg gcatgaaaca gctgccgggc ctggccgtgc agcgtcttat ggcagaaggc 900gatctgcatg gcatgaaaca gctgccgggc ctggccgtgc agcgtcttat ggcagaaggc 900

tatggcttcg gcggcgaagg tgattggaaa accgccgccc tggttcgtat gatgaaaatt 960tatggcttcg gcggcgaagg tgattggaaa accgccgccc tggttcgtat gatgaaaatt 960

ctggccgata atgaaggtac cagcttcatg gaagattata cctatcactt cgaaccggat 1020ctggccgata atgaaggtac cagcttcatg gaagattata cctatcactt cgaaccggat 1020

aatgaactgg ttctgggtag ccacatgctg gaagtgtgtc cgaccgtggc cgccaccaaa 1080aatgaactgg ttctgggtag ccacatgctg gaagtgtgtc cgaccgtggc cgccaccaaa 1080

ccgcgtgtgg aagtgcatcc gctgagcatt ggcggtaaag aagatccggc ccgtctggtg 1140ccgcgtgtgg aagtgcatcc gctgagcatt ggcggtaaag aagatccggc ccgtctggtg 1140

ttcgatggta aaagcggcgc cgcactgaat gccagcctgg ttgatatggg caatcgcttc 1200ttcgatggta aaagcggcgc cgcactgaat gccagcctgg ttgatatggg caatcgcttc 1200

cgtctgctgg tgaatgaagt tgatgccgtt cagccggaat gcgccatgcc gaaactgccg 1260cgtctgctgg tgaatgaagt tgatgccgtt cagccggaat gcgccatgcc gaaactgccg 1260

gtggcacgcg tgctgtggaa accggcaccg agcctgagtg aagccgccga atgttggatt 1320gtggcacgcg tgctgtggaa accggcaccg agcctgagtg aagccgccga atgttggatt 1320

gttgccggtg gcgcccatca tacctgcttc agctatcgcg ttaccaccga acagctgatt 1380gttgccggtg gcgcccatca tacctgcttc agctatcgcg ttaccaccga acagctgatt 1380

gattgggcag atatggccgg tattgaatgc gtggttattg ataaagatac ccgtcgccat 1440gattgggcag atatggccgg tattgaatgc gtggttatg ataaagatac ccgtcgccat 1440

gcattccgta atgaactgaa atggaatgaa gttgtgtatg gtcatcatca tcatcaccat 1500gcattccgta atgaactgaa atggaatgaa gttgtgtatg gtcatcatca tcatcaccat 1500

<210> 3<210> 3

<211> 480<211> 480

<212> PRT<212> PRT

<213> Lactobacillus oris<213> Lactobacillus oris

<400> 3<400> 3

Met Leu Lys Thr Pro Asp Tyr Glu Phe Trp Phe Ala Val Gly Ser GlnMet Leu Lys Thr Pro Asp Tyr Glu Phe Trp Phe Ala Val Gly Ser Gln

1 5 10 151 5 10 15

Pro Leu Tyr Gly Pro Glu Ala Leu Glu Gln Val Glu Lys Asp Gly ArgPro Leu Tyr Gly Pro Glu Ala Leu Glu Gln Val Glu Lys Asp Gly Arg

20 25 30 20 25 30

Lys Leu Val Asp Gly Leu Asn Ala Ser Gly Lys Leu Pro Tyr Lys ValLys Leu Val Asp Gly Leu Asn Ala Ser Gly Lys Leu Pro Tyr Lys Val

35 40 45 35 40 45

Val Phe Lys Leu Val Ala Thr Thr Ala Asp Ser Ile Thr Lys Phe MetVal Phe Lys Leu Val Ala Thr Thr Thr Ala Asp Ser Ile Thr Lys Phe Met

50 55 60 50 55 60

Lys Asp Ala Asn Tyr Asn Asp Lys Val Ala Gly Val Met Thr Trp MetLys Asp Ala Asn Tyr Asn Asp Lys Val Ala Gly Val Met Thr Trp Met

65 70 75 8065 70 75 80

His Thr Phe Ser Pro Ala Lys Asn Trp Ile Arg Gly Thr Gln Leu LeuHis Thr Phe Ser Pro Ala Lys Asn Trp Ile Arg Gly Thr Gln Leu Leu

85 90 95 85 90 95

Gln Lys Pro Leu Leu His Leu Ala Thr Gln Met Leu Asp His Ile ProGln Lys Pro Leu Leu His Leu Ala Thr Gln Met Leu Asp His Ile Pro

100 105 110 100 105 110

Phe Asp Thr Ile Asp Phe Asp Tyr Met Asn Leu Asn Gln Ser Ala HisPhe Asp Thr Ile Asp Phe Asp Tyr Met Asn Leu Asn Gln Ser Ala His

115 120 125 115 120 125

Gly Asp Arg Glu Tyr Asp Tyr Ile Asn Ala Arg Leu Gly Val Pro GluGly Asp Arg Glu Tyr Asp Tyr Ile Asn Ala Arg Leu Gly Val Pro Glu

130 135 140 130 135 140

Lys Ile Val Tyr Gly Trp Trp Asn Asp Pro Glu Val Gln Glu Glu IleLys Ile Val Tyr Gly Trp Trp Asn Asp Pro Glu Val Gln Glu Glu Ile

145 150 155 160145 150 155 160

Ala Asp Trp Gln Lys Val Ala Ile Ala Tyr Asp Met Ser Phe Lys IleAla Asp Trp Gln Lys Val Ala Ile Ala Tyr Asp Met Ser Phe Lys Ile

165 170 175 165 170 175

Lys Ile Ala Arg Phe Gly Asp Thr Met Arg Asp Val Ala Val Thr GluLys Ile Ala Arg Phe Gly Asp Thr Met Arg Asp Val Ala Val Thr Glu

180 185 190 180 185 190

Gly Asp Lys Val Ala Ala Gln Ile Lys Leu Gly Trp Thr Val Asp TyrGly Asp Lys Val Ala Ala Gln Ile Lys Leu Gly Trp Thr Val Asp Tyr

195 200 205 195 200 205

Trp Pro Val Ala Glu Leu Val Ala Ala Val Asn Ala Val Ser Glu AlaTrp Pro Val Ala Glu Leu Val Ala Ala Val Asn Ala Val Ser Glu Ala

210 215 220 210 215 220

Glu Ile Asp Glu Gln Tyr Lys Arg Leu Glu Glu Asn Tyr Asp Met ValGlu Ile Asp Glu Gln Tyr Lys Arg Leu Glu Glu Asn Tyr Asp Met Val

225 230 235 240225 230 235 240

Glu Gly Asp Asn Asp His Asp Lys Tyr Val His Ser Val Arg Tyr GlnGlu Gly Asp Asn Asp His Asp Lys Tyr Val His Ser Val Arg Tyr Gln

245 250 255 245 250 255

Leu Arg Glu Tyr Leu Gly Ile Lys His Phe Leu Asp Glu Lys Gly TyrLeu Arg Glu Tyr Leu Gly Ile Lys His Phe Leu Asp Glu Lys Gly Tyr

260 265 270 260 265 270

Asp Ala Phe Thr Thr Asn Phe Gln Asp Leu Glu Gly Leu Glu Gln LeuAsp Ala Phe Thr Thr Asn Phe Gln Asp Leu Glu Gly Leu Glu Gln Leu

275 280 285 275 280 285

Pro Gly Leu Ala Val Gln Leu Leu Met Ile Asp Gly Tyr Gly Phe GlyPro Gly Leu Ala Val Gln Leu Leu Met Ile Asp Gly Tyr Gly Phe Gly

290 295 300 290 295 300

Ala Glu Gly Asp Phe Lys Ser Ala Gly Leu Ser Arg Leu Leu Lys IleAla Glu Gly Asp Phe Lys Ser Ala Gly Leu Ser Arg Leu Leu Lys Ile

305 310 315 320305 310 315 320

Ala Ala Glu Asn Lys Glu Thr Ala Phe Met Glu Asp Tyr Thr Leu AspAla Ala Glu Asn Lys Glu Thr Ala Phe Met Glu Asp Tyr Thr Leu Asp

325 330 335 325 330 335

Leu Arg Ser Gly His Gln Ala Ile Met Gly Ser His Met Leu Glu ValLeu Arg Ser Gly His Gln Ala Ile Met Gly Ser His Met Leu Glu Val

340 345 350 340 345 350

Asp Pro Thr Leu Ala Ser Asp Lys Pro Arg Val Glu Val His Pro LeuAsp Pro Thr Leu Ala Ser Asp Lys Pro Arg Val Glu Val His Pro Leu

355 360 365 355 360 365

Asp Ile Gly Asp Lys Ala Asp Pro Ala Arg Leu Val Phe Thr Gly SerAsp Ile Gly Asp Lys Ala Asp Pro Ala Arg Leu Val Phe Thr Gly Ser

370 375 380 370 375 380

Glu Gly Glu Gly Ile Asp Val Thr Leu Ser Tyr Phe Asp Asp Gly TyrGlu Gly Glu Gly Ile Asp Val Thr Leu Ser Tyr Phe Asp Asp Gly Tyr

385 390 395 400385 390 395 400

Lys Phe Ile Ala Tyr Asp Val Asp Cys Ala Lys Pro Glu Lys Glu MetLys Phe Ile Ala Tyr Asp Val Asp Cys Ala Lys Pro Glu Lys Glu Met

405 410 415 405 410 415

Pro Asn Leu Pro Val Ala Lys Gln Met Trp Thr Pro Lys Cys Gly LeuPro Asn Leu Pro Val Ala Lys Gln Met Trp Thr Pro Lys Cys Gly Leu

420 425 430 420 425 430

Lys Lys Gly Ala Thr Ala Trp Met His Asn Gly Gly Gly His His ThrLys Lys Gly Ala Thr Ala Trp Met His Asn Gly Gly Gly His His Thr

435 440 445 435 440 445

Val Leu Ser Met Asn Leu Ser Met Asp Gln Met Ala Thr Leu Ala AsnVal Leu Ser Met Asn Leu Ser Met Asp Gln Met Ala Thr Leu Ala Asn

450 455 460 450 455 460

Leu Phe Gly Ile Glu Leu Ile Asp Ile Lys His His His His His HisLeu Phe Gly Ile Glu Leu Ile Asp Ile Lys His His His His His His His His

465 470 475 480465 470 475 480

<210> 4<210> 4

<211> 1440<211> 1440

<212> DNA<212>DNA

<213> Lactobacillus oris<213> Lactobacillus oris

<400> 4<400> 4

atgctgaaaa cacctgatta tgagttctgg ttcgccgttg gtagccagcc gctgtatggt 60atgctgaaaa cacctgatta tgagttctgg ttcgccgttg gtagccagcc gctgtatggt 60

ccggaagcac tggaacaggt ggaaaaagat ggccgcaaac tggtggatgg cctgaatgca 120ccggaagcac tggaacaggt ggaaaaagat ggccgcaaac tggtggatgg cctgaatgca 120

agcggcaaac tgccgtataa agttgtgttc aaactggttg ccaccaccgc cgatagcatt 180agcggcaaac tgccgtataa agttgtgttc aaactggttg ccaccaccgc cgatagcatt 180

accaaattca tgaaagatgc aaattacaac gacaaagttg caggcgtgat gacctggatg 240accaaattca tgaaagatgc aaattacaac gacaaagttg caggcgtgat gacctggatg 240

cataccttca gtccggccaa aaattggatt cgtggcaccc agctgctgca gaaaccgctg 300cataccttca gtccggccaa aaattggatt cgtggcaccc agctgctgca gaaaccgctg 300

ctgcatctgg caacccagat gctggatcat attccgttcg ataccattga cttcgattat 360ctgcatctgg caacccagat gctggatcat attccgttcg ataccattga cttcgattat 360

atgaatctga atcagagcgc acatggtgat cgcgaatatg attatattaa tgcacgcctg 420atgaatctga atcagagcgc acatggtgat cgcgaatatg attatattaa tgcacgcctg 420

ggcgttccgg aaaaaattgt gtatggttgg tggaatgatc cggaagttca ggaagaaatt 480ggcgttccgg aaaaaattgt gtatggttgg tggaatgatc cggaagttca ggaagaaatt 480

gcagattggc agaaagtggc aattgcatac gatatgagct tcaaaattaa gattgcccgc 540gcagattggc agaaagtggc aattgcatac gatatgagct tcaaaattaa gattgcccgc 540

ttcggcgata ccatgcgtga tgttgcagtg accgaaggcg ataaagtggc cgcacagatt 600ttcggcgata ccatgcgtga tgttgcagtg accgaaggcg ataaagtggc cgcacagatt 600

aaactgggtt ggaccgttga ttattggccg gtggccgaac tggtggcagc cgtgaatgca 660aaactgggtt ggaccgttga ttatggccg gtggccgaac tggtggcagc cgtgaatgca 660

gttagcgaag ccgaaattga tgaacagtat aaacgtctgg aagaaaatta tgatatggtt 720gttagcgaag ccgaaattga tgaacagtat aaacgtctgg aagaaaatta tgatatggtt 720

gaaggcgata atgatcatga taaatatgtt catagcgtgc gctatcagct gcgcgaatat 780gaaggcgata atgatcatga taaatatgtt catagcgtgc gctatcagct gcgcgaatat 780

ctgggtatta aacacttcct ggatgaaaaa ggttatgatg cattcaccac caacttccag 840ctgggtatta aacacttcct ggatgaaaaa ggttatgatg cattcaccac caacttccag 840

gatctggaag gtctggaaca gctgccgggc ctggccgtgc agctgttaat gattgatggc 900gatctggaag gtctggaaca gctgccgggc ctggccgtgc agctgttaat gattgatggc 900

tatggcttcg gcgcagaagg tgacttcaaa agcgcaggcc tgagccgtct gctgaaaatt 960tatggcttcg gcgcagaagg tgacttcaaa agcgcaggcc tgagccgtct gctgaaaatt 960

gcagccgaaa ataaagaaac cgcattcatg gaagattata ccctggatct gcgcagcggt 1020gcagccgaaa ataaagaaac cgcattcatg gaagattata ccctggatct gcgcagcggt 1020

catcaggcaa ttatgggtag tcacatgctg gaagttgatc cgaccctggc aagcgataaa 1080catcaggcaa ttatgggtag tcacatgctg gaagttgatc cgaccctggc aagcgataaa 1080

ccgcgtgttg aagttcatcc gctggatatt ggtgataaag cagatccggc ccgtctggtg 1140ccgcgtgttg aagttcatcc gctggatatt ggtgataaag cagatccggc ccgtctggtg 1140

ttcaccggca gcgaaggtga aggcattgat gttaccctga gctacttcga tgatggttat 1200ttcaccggca gcgaaggtga aggcattgat gttaccctga gctacttcga tgatggttat 1200

aaattcattg cctatgatgt tgattgcgcc aaaccggaaa aagaaatgcc gaatctgccg 1260aaattcattg cctatgatgt tgattgcgcc aaaccggaaa aagaaatgcc gaatctgccg 1260

gttgccaaac agatgtggac cccgaaatgc ggtctgaaaa aaggtgcaac cgcctggatg 1320gttgccaaac agatgtggac cccgaaatgc ggtctgaaaa aaggtgcaac cgcctggatg 1320

cataatggcg gcggccatca taccgtgctg agtatgaatc tgagtatgga tcagatggcc 1380cataatggcg gcggccatca taccgtgctg agtatgaatc tgagtatgga tcagatggcc 1380

accctggcca atctgttcgg cattgaactg attgatatta aacatcatca ccatcatcac 1440accctggcca atctgttcgg cattgaactg attgatatta aacatcatca ccatcatcac 1440

<210> 5<210> 5

<211> 500<211> 500

<212> PRT<212> PRT

<213> Pseudothermotoga thermarum<213> Pseudothermotoga thermarum

<400> 5<400> 5

Met Ile Asp Leu Lys Lys Tyr Glu Phe Trp Leu Leu Val Gly Ser GlnMet Ile Asp Leu Lys Lys Tyr Glu Phe Trp Leu Leu Val Gly Ser Gln

1 5 10 151 5 10 15

His Leu Tyr Gly Ser Glu Thr Leu Lys Lys Val Glu Gln Gln Ala ArgHis Leu Tyr Gly Ser Glu Thr Leu Lys Lys Val Glu Gln Gln Ala Arg

20 25 30 20 25 30

Lys Ile Val Glu Glu Leu Ser Lys Asp Leu Pro Ser Pro Leu Leu PheLys Ile Val Glu Glu Leu Ser Lys Asp Leu Pro Ser Pro Leu Leu Phe

35 40 45 35 40 45

Lys Gly Val Leu Thr Thr Pro Glu Glu Ile Leu Arg Thr Phe Glu GlnLys Gly Val Leu Thr Thr Pro Glu Glu Ile Leu Arg Thr Phe Glu Gln

50 55 60 50 55 60

Ala Asn Ala Gln Thr Asn Cys Ala Gly Val Ile Thr Trp Met His ThrAla Asn Ala Gln Thr Asn Cys Ala Gly Val Ile Thr Trp Met His Thr

65 70 75 8065 70 75 80

Phe Ser Pro Ser Lys Met Trp Ile Lys Gly Leu Leu Ala Asn Lys LysPhe Ser Pro Ser Lys Met Trp Ile Lys Gly Leu Leu Ala Asn Lys Lys

85 90 95 85 90 95

Pro Leu Leu His Leu His Thr Gln Phe Asn Arg Glu Ile Pro Trp AspPro Leu Leu His Leu His Thr Gln Phe Asn Arg Glu Ile Pro Trp Asp

100 105 110 100 105 110

Thr Ile Asp Met Asp Tyr Met Asn Leu Asn Gln Ser Ala His Gly AspThr Ile Asp Met Asp Tyr Met Asn Leu Asn Gln Ser Ala His Gly Asp

115 120 125 115 120 125

Arg Glu His Gly Tyr Ile His Ala Arg Leu Arg Leu Pro Arg Lys ValArg Glu His Gly Tyr Ile His Ala Arg Leu Arg Leu Pro Arg Lys Val

130 135 140 130 135 140

Val Val Gly His Trp Gln Asp Ser Glu Val Lys Arg Glu Ile Ser LysVal Val Gly His Trp Gln Asp Ser Glu Val Lys Arg Glu Ile Ser Lys

145 150 155 160145 150 155 160

Trp Met Arg Val Ala Cys Ala Ile Ala Asp Gly Arg Ser Gly Gln IleTrp Met Arg Val Ala Cys Ala Ile Ala Asp Gly Arg Ser Gly Gln Ile

165 170 175 165 170 175

Val Arg Phe Gly Asp Asn Met Arg Glu Val Ala Ser Thr Glu Ala AspVal Arg Phe Gly Asp Asn Met Arg Glu Val Ala Ser Thr Glu Ala Asp

180 185 190 180 185 190

Lys Val Glu Ala Gln Ile Lys Ile Gly Trp Ser Ile Asn Thr Trp GlyLys Val Glu Ala Gln Ile Lys Ile Gly Trp Ser Ile Asn Thr Trp Gly

195 200 205 195 200 205

Val Gly Glu Leu Ala Glu Arg Val Lys Ser Val Ser Glu Asn Leu ValVal Gly Glu Leu Ala Glu Arg Val Lys Ser Val Ser Glu Asn Leu Val

210 215 220 210 215 220

Glu Asp Leu Ile Lys His Tyr Ala Glu Lys Tyr Val Leu Pro Ser GlyGlu Asp Leu Ile Lys His Tyr Ala Glu Lys Tyr Val Leu Pro Ser Gly

225 230 235 240225 230 235 240

Glu Tyr Glu Leu Lys Ala Ile Lys Glu Gln Ala Arg Ile Glu Ile AlaGlu Tyr Glu Leu Lys Ala Ile Lys Glu Gln Ala Arg Ile Glu Ile Ala

245 250 255 245 250 255

Leu Arg Glu Phe Leu Lys Glu Lys Asn Ala Ile Ala Phe Thr Thr ThrLeu Arg Glu Phe Leu Lys Glu Lys Asn Ala Ile Ala Phe Thr Thr Thr Thr

260 265 270 260 265 270

Phe Glu Asp Leu His Asp Leu Pro Gln Leu Pro Gly Leu Ala Val GlnPhe Glu Asp Leu His Asp Leu Pro Gln Leu Pro Gly Leu Ala Val Gln

275 280 285 275 280 285

Arg Leu Met Glu Glu Gly Tyr Gly Phe Gly Ala Glu Gly Asp Trp LysArg Leu Met Glu Glu Gly Tyr Gly Phe Gly Ala Glu Gly Asp Trp Lys

290 295 300 290 295 300

Val Ala Gly Leu Val Arg Ala Leu Lys Val Met Gly Val Gly Leu LysVal Ala Gly Leu Val Arg Ala Leu Lys Val Met Gly Val Gly Leu Lys

305 310 315 320305 310 315 320

Gly Gly Thr Ser Phe Met Glu Asp Tyr Thr Tyr His Leu Pro Glu GlyGly Gly Thr Ser Phe Met Glu Asp Tyr Thr Tyr His Leu Pro Glu Gly

325 330 335 325 330 335

Asn Glu Leu Val Leu Gly Ala His Met Leu Glu Ile Cys Pro Ser IleAsn Glu Leu Val Leu Gly Ala His Met Leu Glu Ile Cys Pro Ser Ile

340 345 350 340 345 350

Ala Lys Glu Lys Pro Arg Ile Glu Val His Pro Leu Ser Ile Gly GlyAla Lys Glu Lys Pro Arg Ile Glu Val His Pro Leu Ser Ile Gly Gly

355 360 365 355 360 365

Lys Ala Asp Pro Ala Arg Leu Val Phe Glu Ala Gln Val Gly Glu AlaLys Ala Asp Pro Ala Arg Leu Val Phe Glu Ala Gln Val Gly Glu Ala

370 375 380 370 375 380

Leu Asn Ala Ser Ile Val Asp Leu Gly Asn Arg Phe Arg Leu Val ValLeu Asn Ala Ser Ile Val Asp Leu Gly Asn Arg Phe Arg Leu Val Val

385 390 395 400385 390 395 400

Asn Lys Val Ile Ser Val Pro Leu Val Lys Pro Met Pro Lys Leu ProAsn Lys Val Ile Ser Val Pro Leu Val Lys Pro Met Pro Lys Leu Pro

405 410 415 405 410 415

Val Ala Arg Val Leu Trp Lys Pro Leu Pro Asn Phe Lys Ala Ala AlaVal Ala Arg Val Leu Trp Lys Pro Leu Pro Asn Phe Lys Ala Ala Ala

420 425 430 420 425 430

Thr Ala Trp Ile Leu Ala Gly Gly Ser His His Thr Ala Phe Ser ThrThr Ala Trp Ile Leu Ala Gly Gly Ser His His Thr Ala Phe Ser Thr

435 440 445 435 440 445

Ala Val Asp Pro Ser Tyr Leu Ile Asp Trp Ala Glu Met Leu Asp IleAla Val Asp Pro Ser Tyr Leu Ile Asp Trp Ala Glu Met Leu Asp Ile

450 455 460 450 455 460

Glu Cys Val Val Ile Asp Glu Lys Leu Asp Leu Glu Arg Phe Lys AlaGlu Cys Val Val Ile Asp Glu Lys Leu Asp Leu Glu Arg Phe Lys Ala

465 470 475 480465 470 475 480

Glu Leu Arg Ala Asn Glu Val Tyr Trp Gly Phe Phe Lys Lys His HisGlu Leu Arg Ala Asn Glu Val Tyr Trp Gly Phe Phe Lys Lys His His His

485 490 495 485 490 495

His His His HisHis His His His

500 500

<210> 6<210> 6

<211> 1500<211> 1500

<212> DNA<212>DNA

<213> Pseudothermotoga thermarum<213> Pseudothermotoga thermarum

<400> 6<400> 6

atgatcgatc tgaaaaagta cgagttctgg ctgctggttg gcagtcagca tctgtatggt 60atgatcgatc tgaaaaagta cgagttctgg ctgctggttg gcagtcagca tctgtatggt 60

agcgaaacct taaaaaaagt tgaacagcag gcccgcaaaa ttgttgaaga actgagcaaa 120agcgaaacct taaaaaaagt tgaacagcag gcccgcaaaa ttgttgaaga actgagcaaa 120

gatctgccga gcccgctgct gttcaaaggt gttctgacca ccccggaaga aattctgcgt 180gatctgccga gcccgctgct gttcaaaggt gttctgacca ccccggaaga aattctgcgt 180

accttcgaac aggccaatgc ccagaccaat tgcgcaggcg ttattacctg gatgcatacc 240accttcgaac aggccaatgc ccagaccaat tgcgcaggcg ttattacctg gatgcatacc 240

ttcagcccga gtaaaatgtg gattaaaggc ctgctggcca ataaaaaacc gctgctgcat 300ttcagcccga gtaaaatgtggattaaaggc ctgctggcca ataaaaaacc gctgctgcat 300

ctgcataccc agttcaatcg tgaaattccg tgggatacca ttgatatgga ttatatgaat 360ctgcataccc agttcaatcg tgaaattccg tgggatacca ttgatatgga ttatatgaat 360

ctgaaccaga gtgcccacgg tgatcgcgaa catggttata ttcatgcccg tctgcgtctg 420ctgaaccaga gtgcccacgg tgatcgcgaa catggttata ttcatgcccg tctgcgtctg 420

ccgcgtaaag tggtggtggg ccattggcag gatagtgaag tgaaacgcga aattagtaaa 480ccgcgtaaag tggtggtggg ccattggcag gatagtgaag tgaaacgcga aattagtaaa 480

tggatgcgcg tggcatgtgc cattgcagat ggccgtagtg gccagattgt gcgcttcggt 540tggatgcgcg tggcatgtgc cattgcagat ggccgtagtg gccagattgt gcgcttcggt 540

gataatatgc gtgaagttgc aagtaccgaa gcagataaag tggaagccca gattaaaatt 600gataatatgc gtgaagttgc aagtaccgaa gcagataaag tggaagccca gattaaaatt 600

ggttggagta ttaatacctg gggtgttggc gaactggcag aacgcgtgaa aagtgtgagt 660ggttggagta ttaatacctg gggtgttggc gaactggcag aacgcgtgaa aagtgtgagt 660

gaaaatctgg tggaagatct gattaaacat tatgccgaaa aatacgttct gccgagtggt 720gaaaatctgg tggaagatct gattaaacat tatgccgaaa aatacgttct gccgagtggt 720

gaatatgaac tgaaagccat taaagaacag gcacgcattg aaattgcact gcgcgagttc 780gaatatgaac tgaaagccat taaagaacag gcacgcattg aaattgcact gcgcgagttc 780

ctgaaagaaa aaaatgccat tgcattcacc accaccttcg aagatctgca tgatctgccg 840ctgaaagaaa aaaatgccat tgcattcacc accaccttcg aagatctgca tgatctgccg 840

cagctgccgg gcctggccgt tcaacgtctg atggaagaag gttatggctt cggtgccgaa 900cagctgccgg gcctggccgt tcaacgtctg atggaagaag gttatggctt cggtgccgaa 900

ggtgattgga aagtggcagg cctggtgcgc gcactgaaag ttatgggcgt tggcctgaaa 960ggtgattgga aagtggcagg cctggtgcgc gcactgaaag ttatgggcgt tggcctgaaa 960

ggcggcacca gcttcatgga agattatacc tatcatctgc cggaaggtaa tgaactggtg 1020ggcggcacca gcttcatgga agattatacc tatcatctgc cggaaggtaa tgaactggtg 1020

ctgggtgcac acatgctgga aatctgtccg agcattgcaa aagaaaaacc gcgtattgaa 1080ctgggtgcac acatgctgga aatctgtccg agcattgcaa aagaaaaacc gcgtattgaa 1080

gttcatccgc tgagtattgg tggtaaagca gatccggccc gcctggtgtt cgaagcacag 1140gttcatccgc tgagtattgg tggtaaagca gatccggccc gcctggtgtt cgaagcacag 1140

gtgggtgaag ccctgaatgc cagtattgtt gatctgggca atcgcttccg tctggtggtg 1200gtgggtgaag ccctgaatgc cagtattgtt gatctgggca atcgcttccg tctggtggtg 1200

aataaagtga ttagcgttcc gctggttaaa ccgatgccga aactgccggt tgcacgcgtt 1260aataaagtga ttagcgttcc gctggttaaa ccgatgccga aactgccggt tgcacgcgtt 1260

ctgtggaaac cgctgccgaa cttcaaagcc gccgccaccg catggattct ggccggtggt 1320ctgtggaaac cgctgccgaa cttcaaagcc gccgccaccg catggattct ggccggtggt 1320

agtcatcata ccgcattcag taccgccgtt gatccgagtt atctgattga ttgggccgaa 1380agtcatcata ccgcattcag taccgccgtt gatccgagtt atctgattga ttgggccgaa 1380

atgctggata ttgaatgcgt tgtgattgat gaaaaactgg atctggaacg cttcaaagcc 1440atgctggata ttgaatgcgt tgtgattgat gaaaaactgg atctggaacg cttcaaagcc 1440

gaactgcgtg caaatgaagt gtattggggc ttcttcaaaa aacatcatca tcatcaccat 1500gaactgcgtg caaatgaagt gtattggggc ttcttcaaaa aacatcatca tcatcaccat 1500

<210> 7<210> 7

<211> 480<211> 480

<212> PRT<212> PRT

<213> 人工序列(Unknown)<213> Artificial sequence (Unknown)

<400> 7<400> 7

Met Leu Lys Thr Pro Asp Tyr Glu Phe Trp Phe Ala Val Gly Ser GlnMet Leu Lys Thr Pro Asp Tyr Glu Phe Trp Phe Ala Val Gly Ser Gln

1 5 10 151 5 10 15

Pro Leu Tyr Gly Pro Glu Ala Leu Glu Gln Val Glu Lys Asp Gly ArgPro Leu Tyr Gly Pro Glu Ala Leu Glu Gln Val Glu Lys Asp Gly Arg

20 25 30 20 25 30

Lys Leu Val Asp Gly Leu Asn Ala Ser Gly Lys Leu Pro Tyr Lys ValLys Leu Val Asp Gly Leu Asn Ala Ser Gly Lys Leu Pro Tyr Lys Val

35 40 45 35 40 45

Val Phe Lys Leu Val Ala Thr Thr Ala Asp Ser Ile Thr Lys Phe MetVal Phe Lys Leu Val Ala Thr Thr Thr Ala Asp Ser Ile Thr Lys Phe Met

50 55 60 50 55 60

Lys Asp Ala Asn Tyr Asn Asp Lys Val Ala Phe Val Met Thr Trp MetLys Asp Ala Asn Tyr Asn Asp Lys Val Ala Phe Val Met Thr Trp Met

65 70 75 8065 70 75 80

His Thr Phe Ser Pro Ala Lys Asn Trp Ile Arg Gly Thr Gln Leu LeuHis Thr Phe Ser Pro Ala Lys Asn Trp Ile Arg Gly Thr Gln Leu Leu

85 90 95 85 90 95

Gln Lys Pro Leu Leu His Leu Ala Thr Gln Met Leu Asp His Ile ProGln Lys Pro Leu Leu His Leu Ala Thr Gln Met Leu Asp His Ile Pro

100 105 110 100 105 110

Phe Asp Thr Ile Asp Phe Asp Tyr Met Asn Leu Asn Gln Ser Ala HisPhe Asp Thr Ile Asp Phe Asp Tyr Met Asn Leu Asn Gln Ser Ala His

115 120 125 115 120 125

Gly Asp Arg Glu Tyr Asp Tyr Ile Asn Ala Arg Leu Gly Val Pro GluGly Asp Arg Glu Tyr Asp Tyr Ile Asn Ala Arg Leu Gly Val Pro Glu

130 135 140 130 135 140

Lys Ile Val Tyr Gly Trp Trp Asn Asp Pro Glu Val Gln Glu Glu IleLys Ile Val Tyr Gly Trp Trp Asn Asp Pro Glu Val Gln Glu Glu Ile

145 150 155 160145 150 155 160

Ala Asp Trp Gln Lys Val Asn Ile Ala Tyr Asp Met Ser Phe Lys IleAla Asp Trp Gln Lys Val Asn Ile Ala Tyr Asp Met Ser Phe Lys Ile

165 170 175 165 170 175

Lys Ile Ala Arg Phe Gly Asp Thr Met Arg Asp Val Ala Val Thr GluLys Ile Ala Arg Phe Gly Asp Thr Met Arg Asp Val Ala Val Thr Glu

180 185 190 180 185 190

Gly Asp Lys Val Ala Ala Gln Ile Lys Leu Gly Trp Thr Val Asp TyrGly Asp Lys Val Ala Ala Gln Ile Lys Leu Gly Trp Thr Val Asp Tyr

195 200 205 195 200 205

Trp Pro Val Ala Glu Leu Val Ala Ala Val Asn Ala Val Ser Glu AlaTrp Pro Val Ala Glu Leu Val Ala Ala Val Asn Ala Val Ser Glu Ala

210 215 220 210 215 220

Glu Ile Asp Glu Gln Tyr Lys Arg Leu Glu Glu Asn Tyr Asp Met ValGlu Ile Asp Glu Gln Tyr Lys Arg Leu Glu Glu Asn Tyr Asp Met Val

225 230 235 240225 230 235 240

Glu Gly Asp Asn Asp His Asp Lys Tyr Val His Ser Val Arg Tyr GlnGlu Gly Asp Asn Asp His Asp Lys Tyr Val His Ser Val Arg Tyr Gln

245 250 255 245 250 255

Leu Arg Glu Tyr Leu Gly Ile Lys His Phe Leu Asp Glu Lys Gly TyrLeu Arg Glu Tyr Leu Gly Ile Lys His Phe Leu Asp Glu Lys Gly Tyr

260 265 270 260 265 270

Asp Cys Phe Thr Thr Asn Phe Gln Asp Leu Glu Gly Leu Glu Gln LeuAsp Cys Phe Thr Thr Asn Phe Gln Asp Leu Glu Gly Leu Glu Gln Leu

275 280 285 275 280 285

Pro Gly Leu Ala Val Gln Leu Leu Met Ile Asp Gly Tyr Gly Phe TyrPro Gly Leu Ala Val Gln Leu Leu Met Ile Asp Gly Tyr Gly Phe Tyr

290 295 300 290 295 300

Ala Glu Gly Asp Phe Lys Ser Ala Gly Leu Ser Arg Leu Leu Lys IleAla Glu Gly Asp Phe Lys Ser Ala Gly Leu Ser Arg Leu Leu Lys Ile

305 310 315 320305 310 315 320

Ala Ala Glu Asn Lys Glu Thr Ala Phe Met Glu Asp Tyr Thr Leu AspAla Ala Glu Asn Lys Glu Thr Ala Phe Met Glu Asp Tyr Thr Leu Asp

325 330 335 325 330 335

Leu Arg Ser Gly His Gln Ala Ile Met Gly Ser His Met Leu Glu ValLeu Arg Ser Gly His Gln Ala Ile Met Gly Ser His Met Leu Glu Val

340 345 350 340 345 350

Asp Pro Thr Leu Ala Ser Asp Lys Pro Arg Val Glu Val His Pro LeuAsp Pro Thr Leu Ala Ser Asp Lys Pro Arg Val Glu Val His Pro Leu

355 360 365 355 360 365

Asp Ile Gly Asp Lys Ala Asp Pro Ala Arg Leu Val Phe Thr Gly SerAsp Ile Gly Asp Lys Ala Asp Pro Ala Arg Leu Val Phe Thr Gly Ser

370 375 380 370 375 380

Glu Gly Glu Gly Ile Asp Val Thr Leu Ser Tyr Phe Asp Asp Gly TyrGlu Gly Glu Gly Ile Asp Val Thr Leu Ser Tyr Phe Asp Asp Gly Tyr

385 390 395 400385 390 395 400

Lys Phe Ile Ala Tyr Asp Val Asp Cys Ala Lys Pro Glu Lys Glu MetLys Phe Ile Ala Tyr Asp Val Asp Cys Ala Lys Pro Glu Lys Glu Met

405 410 415 405 410 415

Pro Asn Leu Pro Val Ala Lys Gln Met Trp Thr Pro Lys Cys Gly LeuPro Asn Leu Pro Val Ala Lys Gln Met Trp Thr Pro Lys Cys Gly Leu

420 425 430 420 425 430

Lys Lys Gly Ala Thr Ala Trp Met His Asn Gly Gly Gly His His ThrLys Lys Gly Ala Thr Ala Trp Met His Asn Gly Gly Gly His His Thr

435 440 445 435 440 445

Val Leu Ser Met Asn Leu Ser Met Asp Gln Met Ala Thr Leu Ala AsnVal Leu Ser Met Asn Leu Ser Met Asp Gln Met Ala Thr Leu Ala Asn

450 455 460 450 455 460

Leu Phe Gly Ile Glu Leu Ile Asp Ile Lys His His His His His HisLeu Phe Gly Ile Glu Leu Ile Asp Ile Lys His His His His His His His His

465 470 475 480465 470 475 480

<210> 8<210> 8

<211> 1440<211> 1440

<212> DNA<212>DNA

<213> 人工序列(Unknown)<213> Artificial sequence (Unknown)

<400> 8<400> 8

atgctgaaaa cacctgatta tgagttctgg ttcgccgttg gtagccagcc gctgtatggt 60atgctgaaaa cacctgatta tgagttctgg ttcgccgttg gtagccagcc gctgtatggt 60

ccggaagcac tggaacaggt ggaaaaagat ggccgcaaac tggtggatgg cctgaatgca 120ccggaagcac tggaacaggt ggaaaaagat ggccgcaaac tggtggatgg cctgaatgca 120

agcggcaaac tgccgtataa agttgtgttc aaactggttg ccaccaccgc cgatagcatt 180agcggcaaac tgccgtataa agttgtgttc aaactggttg ccaccaccgc cgatagcatt 180

accaaattca tgaaagatgc aaattacaac gacaaagttg catttgtgat gacctggatg 240accaaattca tgaaagatgc aaattacaac gacaaagttg catttgtgat gacctggatg 240

cataccttca gtccggccaa aaattggatt cgtggcaccc agctgctgca gaaaccgctg 300cataccttca gtccggccaa aaattggatt cgtggcaccc agctgctgca gaaaccgctg 300

ctgcatctgg caacccagat gctggatcat attccgttcg ataccattga cttcgattat 360ctgcatctgg caacccagat gctggatcat attccgttcg ataccattga cttcgattat 360

atgaatctga atcagagcgc acatggtgat cgcgaatatg attatattaa tgcacgcctg 420atgaatctga atcagagcgc acatggtgat cgcgaatatg attatattaa tgcacgcctg 420

ggcgttccgg aaaaaattgt gtatggttgg tggaatgatc cggaagttca ggaagaaatt 480ggcgttccgg aaaaaattgt gtatggttgg tggaatgatc cggaagttca ggaagaaatt 480

gcagattggc agaaagtgaa tattgcatac gatatgagct tcaaaattaa gattgcccgc 540gcagattggc agaaagtgaa tattgcatac gatatgagct tcaaaattaa gattgcccgc 540

ttcggcgata ccatgcgtga tgttgcagtg accgaaggcg ataaagtggc cgcacagatt 600ttcggcgata ccatgcgtga tgttgcagtg accgaaggcg ataaagtggc cgcacagatt 600

aaactgggtt ggaccgttga ttattggccg gtggccgaac tggtggcagc cgtgaatgca 660aaactgggtt ggaccgttga ttatggccg gtggccgaac tggtggcagc cgtgaatgca 660

gttagcgaag ccgaaattga tgaacagtat aaacgtctgg aagaaaatta tgatatggtt 720gttagcgaag ccgaaattga tgaacagtat aaacgtctgg aagaaaatta tgatatggtt 720

gaaggcgata atgatcatga taaatatgtt catagcgtgc gctatcagct gcgcgaatat 780gaaggcgata atgatcatga taaatatgtt catagcgtgc gctatcagct gcgcgaatat 780

ctgggtatta aacacttcct ggatgaaaaa ggttatgatt gtttcaccac caacttccag 840ctgggtatta aacacttcct ggatgaaaaa ggttatgatt gtttcaccac caacttccag 840

gatctggaag gtctggaaca gctgccgggc ctggccgtgc agctgttaat gattgatggc 900gatctggaag gtctggaaca gctgccgggc ctggccgtgc agctgttaat gattgatggc 900

tatggcttct atgcagaagg tgacttcaaa agcgcaggcc tgagccgtct gctgaaaatt 960tatggcttct atgcagaagg tgacttcaaa agcgcaggcc tgagccgtct gctgaaaatt 960

gcagccgaaa ataaagaaac cgcattcatg gaagattata ccctggatct gcgcagcggt 1020gcagccgaaa ataaagaaac cgcattcatg gaagattata ccctggatct gcgcagcggt 1020

catcaggcaa ttatgggtag tcacatgctg gaagttgatc cgaccctggc aagcgataaa 1080catcaggcaa ttatgggtag tcacatgctg gaagttgatc cgaccctggc aagcgataaa 1080

ccgcgtgttg aagttcatcc gctggatatt ggtgataaag cagatccggc ccgtctggtg 1140ccgcgtgttg aagttcatcc gctggatatt ggtgataaag cagatccggc ccgtctggtg 1140

ttcaccggca gcgaaggtga aggcattgat gttaccctga gctacttcga tgatggttat 1200ttcaccggca gcgaaggtga aggcattgat gttaccctga gctacttcga tgatggttat 1200

aaattcattg cctatgatgt tgattgcgcc aaaccggaaa aagaaatgcc gaatctgccg 1260aaattcattg cctatgatgt tgattgcgcc aaaccggaaa aagaaatgcc gaatctgccg 1260

gttgccaaac agatgtggac cccgaaatgc ggtctgaaaa aaggtgcaac cgcctggatg 1320gttgccaaac agatgtggac cccgaaatgc ggtctgaaaa aaggtgcaac cgcctggatg 1320

cataatggcg gcggccatca taccgtgctg agtatgaatc tgagtatgga tcagatggcc 1380cataatggcg gcggccatca taccgtgctg agtatgaatc tgagtatgga tcagatggcc 1380

accctggcca atctgttcgg cattgaactg attgatatta aacatcatca ccatcatcac 1440accctggcca atctgttcgg cattgaactg attgatatta aacatcatca ccatcatcac 1440

Claims (3)

1. An L-arabinose epimerase mutant, which is obtained by site-directed mutagenesis of an amino acid with a sequence shown in SEQ ID NO.3, wherein the mutation is one of the following: (1) glycine G at position 304 is mutated to tyrosine Y; (2) Glycine G at position 304 is mutated to tyrosine Y and glycine G at position 75 is mutated to phenylalanine F; (3) Glycine G at position 304 to tyrosine Y, glycine G at position 75 to phenylalanine F, and alanine a at position 274 to cysteine C; (4) Glycine G at position 304 was mutated to tyrosine Y, glycine G at position 75 was mutated to phenylalanine F, alanine a at position 274 was mutated to cysteine C, and alanine a at position 167 was mutated to arginine R.
2. Use of the L-arabinose epimerase mutant according to claim 1 for catalyzing isomerization of D-galactose to prepare D-tagatose.
3. The application according to claim 2, characterized in that it is: wet thalli or wet bacteria obtained by fermenting and culturing recombinant genetic engineering bacteria containing L-arabinose epimerase mutant coding genesImmobilized enzyme preparation obtained by immobilizing supernatant or somatic cells obtained by ultrasonic disruption of the body is used as a catalyst, D-galactose is used as a substrate, and Mn is used as a catalyst 2+ And/or Co 2+ In the presence of KH of 6.0-7.0 2 PO 4 And (3) reacting in NaOH buffer solution at 65-80 ℃, and separating and purifying the reaction solution after the reaction is finished to obtain the D-tagatose.
CN201911384932.XA 2019-12-28 2019-12-28 A kind of L-arabinose isomerase isomer and its application Active CN110951717B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201911384932.XA CN110951717B (en) 2019-12-28 2019-12-28 A kind of L-arabinose isomerase isomer and its application
PCT/CN2019/130811 WO2021128432A1 (en) 2019-12-28 2019-12-31 L-arabinose isomerase isomer and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911384932.XA CN110951717B (en) 2019-12-28 2019-12-28 A kind of L-arabinose isomerase isomer and its application

Publications (2)

Publication Number Publication Date
CN110951717A CN110951717A (en) 2020-04-03
CN110951717B true CN110951717B (en) 2023-08-18

Family

ID=69984701

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911384932.XA Active CN110951717B (en) 2019-12-28 2019-12-28 A kind of L-arabinose isomerase isomer and its application

Country Status (2)

Country Link
CN (1) CN110951717B (en)
WO (1) WO2021128432A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119162147B (en) * 2024-11-13 2025-02-18 山东天力药业有限公司 Polyphosphate kinase mutant, recombinant genetically engineered bacterium expressing same and application thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008593A2 (en) * 2001-07-16 2003-01-30 Bioteknologisk Institut A thermostable isomerase and use thereof in particular for producing tagatose
CN101215554A (en) * 2008-01-08 2008-07-09 江南大学 A high temperature resistant L-arabinose isomerase and its gene sequence
WO2009066127A1 (en) * 2007-11-23 2009-05-28 Institut National De La Recherche Agronomique (Inra) L-arabinose isomerase for converting d-galactose into d-tagatose in a dairy product which contains d-galactose
KR20100016948A (en) * 2008-08-05 2010-02-16 씨제이제일제당 (주) L-arabinose isomerase variant having improved activity
CN101768581A (en) * 2010-02-20 2010-07-07 江南大学 Mutant enzyme L20A of L-arabinose isomerase with D-tagatose high-yield capability and mutation method thereof
CN101845429A (en) * 2010-04-21 2010-09-29 南京工业大学 A kind of high temperature resistant L-arabinose isomerase and its application
CN104073481A (en) * 2014-07-10 2014-10-01 江南大学 Higher-acid-resistance L-arabinose isomerase mutant
CN104152430A (en) * 2014-09-01 2014-11-19 江南大学 Mutant enzyme D478N of L-arabinose isomerase with improved catalytic activity and reduced optimal pH
CN106480006A (en) * 2016-10-13 2017-03-08 南京林业大学 A kind of L Arabinose isomerase and its application

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1765978A2 (en) * 2004-05-19 2007-03-28 Biotechnology Research And Development Corporation Methods for production of xylitol in microorganisms
DK3115453T3 (en) * 2014-03-05 2018-08-06 Cj Cheiljedang Corp L-ARABINOSE ISOMERASE VARIANT FOR PREPARING D-TAGATOSE

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008593A2 (en) * 2001-07-16 2003-01-30 Bioteknologisk Institut A thermostable isomerase and use thereof in particular for producing tagatose
WO2009066127A1 (en) * 2007-11-23 2009-05-28 Institut National De La Recherche Agronomique (Inra) L-arabinose isomerase for converting d-galactose into d-tagatose in a dairy product which contains d-galactose
CN101215554A (en) * 2008-01-08 2008-07-09 江南大学 A high temperature resistant L-arabinose isomerase and its gene sequence
KR20100016948A (en) * 2008-08-05 2010-02-16 씨제이제일제당 (주) L-arabinose isomerase variant having improved activity
CN101768581A (en) * 2010-02-20 2010-07-07 江南大学 Mutant enzyme L20A of L-arabinose isomerase with D-tagatose high-yield capability and mutation method thereof
CN101845429A (en) * 2010-04-21 2010-09-29 南京工业大学 A kind of high temperature resistant L-arabinose isomerase and its application
CN104073481A (en) * 2014-07-10 2014-10-01 江南大学 Higher-acid-resistance L-arabinose isomerase mutant
CN104152430A (en) * 2014-09-01 2014-11-19 江南大学 Mutant enzyme D478N of L-arabinose isomerase with improved catalytic activity and reduced optimal pH
CN106480006A (en) * 2016-10-13 2017-03-08 南京林业大学 A kind of L Arabinose isomerase and its application

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于同源建模和定点突变技术研究嗜热型L-阿拉伯糖异构酶与D-半乳糖的亲和作用;李贵祥;徐铮;李莎;徐虹;;催化学报(10);第121-127页 *

Also Published As

Publication number Publication date
CN110951717A (en) 2020-04-03
WO2021128432A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
CN109750009B (en) A kind of glufosinate-ammonium dehydrogenase mutant and its application
CN111254129B (en) Polyphosphate kinase mutant and application thereof
CN110791494B (en) Aspartase mutant, recombinant expression vector comprising aspartase mutant, recombinant bacteria and application
CN109609530B (en) Trehalose synthetase and application thereof in trehalose production
CN112553178A (en) Nicotinamide ribokinase mutant with enhanced thermal stability and activity and coding gene and application thereof
CN108034648A (en) The D-Psicose 3- epimerism enzyme mutants that a kind of heat endurance improves
CN110904088B (en) High-temperature-resistant D-psicose3-epimerase, mutant and application thereof
CN109609478B (en) α-Transaminases and mutants and their application in asymmetric synthesis of L-glufosinate
CN113637617B (en) Method for synthesizing methylselenocysteine by using bacillus subtilis
CN110862980A (en) D-psicose3-epimerase mutant and application thereof
CN106929499A (en) A kind of Glucosamine synthase mutant of directional transformation and its application
CN113801240B (en) A kind of D-psicose-3-epimerase active aggregate and its preparation method and application
CN114761553A (en) Nucleic acids, vectors, host cells and methods for producing beta-fructofuranosidase from aspergillus niger
CN110129305B (en) Cephalosporin C acylase mutant for preparing 7-ACA
CN108048440A (en) A kind of high-temperature resistance glucose isomerase mutant and its application
CN110951717B (en) A kind of L-arabinose isomerase isomer and its application
CN114350631A (en) Glufosinate-ammonium dehydrogenase mutant, engineering bacteria, immobilized cell and application
CN111454918B (en) A kind of alkenol reductase mutant and its application in the preparation of (R)-citronellal
CN105349516A (en) Threonine deaminase, coding gene, carrier, engineering bacterium and applications
CN111057697B (en) High-temperature-resistant TIM barrel protein mutant and application thereof
CN113151240B (en) Glucose isomerase, mutant and coding gene and application thereof
CN115786319A (en) D-psicose 3-epimerase with improved thermal stability and mutant
CN113512544B (en) Mannose isomerase mutant with improved heat stability
CN113621629B (en) A method for the in vitro enzymatic synthesis of naringenin based on the regeneration of malonyl-CoA
CN109609476B (en) α-Transaminases and mutants and their application in asymmetric synthesis of L-glufosinate

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant