一种手术导航系统
技术领域
本发明涉及医疗设备技术领域,尤其是手术导航系统。
背景技术
穿刺手术是临床外科常见的手术类型之一,具体实例包括但不限于血肿抽吸,囊肿抽吸,水肿抽吸,组织活检、持续给药等。
传统穿刺手术中,对于穿刺针的定位一般根据病人的CT影像对病灶位置进行确认,然后医生会根据病灶位置大致确定穿刺路径并进行穿刺,为了安全起见,通常每进针1-2厘米,做一次CT扫描,以便对穿刺针的行进方向修正,因此,整个手术过程中,患者需接受多次CT扫描,接受辐射较大。这种方法中穿刺路径的设计非常依靠医生的经验判断,还存在扎破血管导致出血,对于小和深的病灶还存在误差较大,不能到达病灶等风险。
手术导航系统包括自问世以来,给医学手术带来了极大便利,但仍有依赖操作者,精度差等问题。
发明内容
有鉴于此,为了解决现有技术中存在的问题,本发明提出了一种手术导航系统,该系统响应速度快,导航定位精准,操作简单,价格低廉。
本发明提供了一种手术导航系统,其包含:
工作站,工作站包含通信接口、处理器、显示装置和输入装置,通讯接口用于进行通讯连接,处理器含有预先加载的软件,显示装置用于显示软件的界面,输入装置用于输入使用者的命令;和
空间定位模块,所述空间定位模块包含:
固定连接装置,用于固定其末端所连接的结构;
位置调整装置,包含基座、动力结构、以及两套移动组件,每套移动组件含有可相对移动的两个部件,动力结构能够促使两个部件进行相对运动;
控制装置,用于调控动力结构以及进行数据通讯;
导向装置,用于引导手术器械;
其中,
位置调整装置与固定连接装置的末端相连接,导向装置与位置调整装置的两套移动组件铰接,使得导向装置根据两套移动组件的移动而到达所需位置。
本发明的手术导航系统中,处理器中预先加载的软件可根据已有的医学图像(例如CT、MRI)数据生成三维影像,或者接收并显示已经生成的三维影像,并将导向装置和其中所引导的手术器械的运动路径等在三维影像中虚拟显示,三维影像中可显示血管,以供使用者参照。
本发明的手术导航系统中,固定连接装置为能够实现将位置调整装置相对于患者固定的任何结构,例如万向臂、支架、和多自由度机械连接结构等。在一个实施方案中,固定连接装置为包含至少一个关节的万向臂,优选地为包含三个或更多个关节的万向臂。在一个优选实施方案中,万向臂包括紧固结构、支撑臂、第一关节、第一调节臂、第二关节、第二调节臂,第三关节、和连接臂;紧固结构与墙壁、载物台、病床等连接,实现对空间定位模块的支撑与大致的位置定位,连接臂与位置调整装置连接。
本发明的第一个方案中,空间定位模块的部分结构能够在医学成像中被监测到位置,例如基座、导向装置或前述二者的一部分能够在磁共振成像(MRI)、X射线计算机断层扫描成像(CT)、或X射线成像中监测到其位置和轮廓。在一个实施方案中,导向装置为尺寸已知的圆柱体,在和病人以相对固定的位置一起进行医学成像时,可以在医学成像中显示其轮廓和位置,从而计算出其在三维影像的坐标系中的坐标,基于此对其进行位置调整。在另一个实施方案中,导向装置的一部分由可在医学成像中清晰可见其位置和轮廓的材料制造,例如两个平行设置且长度不同的弧段,基于此可以计算出导向装置的坐标和空间位置,本领域技术人员可知,此种结构可以有多种设计,只要能够通过其确定导向装置相对于目标部位的位置即可。导向装置含有通孔,根据需要通孔可以有不同尺寸的内径,以配合不同的手术器械使用。
在第二个方案中,本发明的手术导航系统还包含定位标志物,定位标志物可以有多种选择,例如在医学成像中可监测到其位置的标志物,在追踪模块中可以监测到其位置的标志物等。医学成像方法包括现有的各种合适方法,例如磁共振成像(MRI)、X射线计算机断层扫描成像(CT)、或X射线成像等;可在医学成像中监测到其位置的标志物可以有多种不同的几何外形和材料构成,并且可以有多种安装结构,固定或可拆卸的安装均可,数目只要能够确定导向装置的空间位置即可,通常为三个或更多个,例如,可以安装在基座、导向装置、或者与导向装置的连接件上;定位标志物安装在基座上时,由于需要通过动力结构来计算导向装置的空间位置,为了确保距离变化的准确性,加装位置反馈装置,以对动力结构导致的位置变化进行校准;定位标志物安装在导向装置上时,定位最直接;当定位标志物安装在连接件上时,由于连接件有两个,所以需要单独确定每个连接件,再通过连接件的位置确定导向装置的空间位置。
本发明的手术导航系统包含通过追踪模块可以监测到其位置的标志物时还包含追踪模块,追踪模块可以是光学追踪模块、电磁追踪模块等。本发明的手术导航系统的定位标志物为可被光学追踪模块检测到其位置的光学定位标志物的情况下,包含光学定位标志物/定位配件、光学追踪模块、和参考标记。光学定位标志物可以为被光学识别的各种标志物,例如常用的可反射红外线的球型标志物、含角点的图案等,只要能和对应的追踪模块配合使用即可;光学定位标志物还可以装配在刚性结构上,形成定位配件,其中光学定位标志物设置成独特的空间分布,能够确定唯一的坐标系,在一个实施方案中,定位配件为配有四个球型光学定位标志物的刚性结构,包含锥部和体部两部分,其中光学定位标志物可主动发光或被动反光;使用过程中,将定位配件的锥部插入导向导管的通孔,光学定位标志物发出或反射的光被摄像机捕捉后,即可通过运算确定定位配件的位置,从而确定导向导管的空间位置和其通孔的空间位置。参考标记与定位配件配合使用,以进行坐标系转换,参考标记与待手术部位连接,在手术过程中保持固定的位置关系,例如可以通过已经安装在颅骨上的头架、骨钉等与患者头部连接,本发明的主机生成三维影像后,以参考标记为基础坐标系进行配准,使得三维影像中可以虚拟显示定位配件和导向装置,如果目标部位和参考标记在手术过程中一起发生位置变化,则可根据参考标记的变化,重新确定定位配件在三维影像中的相对位置,根据需要调整到所需的位置。追踪模块根据采用的定位标志物具有不同的结构,例如在采用电磁定位标志物的情况下,为电磁定位装置;在使用球型反光标志物的情况下,追踪模块含有光发射单元和摄像单元;在使用带角点的图案作为光学定位标志物的情况下,追踪模块含有摄像单元,优选双目摄像单元。
结合第二方面的一个实例中,追踪模块包含:移动底板、支架、光发射单元和摄像单元;移动底板配有轮子以自由移动,优选地,在一个实施例中具有四个轮子,并含有止动结构,当移动底座移动至所需位置后可以通过止动结构,防止移动底板的位置在手术过程中变化;支架由支柱、第一支架关节、连接杆、第二支架关节、第一调节杆、第三支架关节、第二调节杆组成,通过支架能够调节光发射单元和摄像单元的位置,即高度和角度,使得目标区域位于光发射单元和摄像单元的最佳工作范围内。工作站包含:工作站移动底板、主机、输入装置、显示器;工作站移动底板配有轮子和对应的止动装置,可以进行移动,当到达所需位置时,通过止动结构固定,防止工作站移动底板的位置在手术过程中变化;主机含有处理器和通讯接口,处理器可以根据医学影像完成三维重建,通过通讯接口接收追踪模块采集的信息,生成手术方案,将指令发送至空间定位模块,将空间定位模块配套的手术工具虚拟融合到所形成的三维图像中,并在显示器上展示给使用者,输入装置为键盘、鼠标或者语音输入装置等。
在第三个方案中,本发明的手术导航系统还包含追踪模块和超声模块;追踪模块至少包含图像获取装置,例如摄像机,优选双目摄像机,定位标志物(或定位配件)和参考标记,还可以包含光发射单元;超声模块包含超声探头和超声诊断仪,超声探头上安装有定位标志物,定位标志物或含有定位标志物的定位配件可固定安装或可拆卸的连接到超声探头上,超声诊断仪可独立存在,或者整合到手术导航系统的主机中。
在结合第三个方案的一个实施方案中,本发明的手术导航系统包含工作站、空间定位模块、追踪模块和超声模块;工作站和空间定位模块基本如前所述,追踪模块包含光发射单元、摄像单元、定位配件、和参考标记,定位配件和参考标记均具有若干可反射光的球型定位标志物,独特的结构设计,使得能够唯一的确定其空间位置,定位配件可以是独立的,例如定位配件可包含锥部和体部,锥部用于可拆卸的插入到导向装置的通孔,体部含有若干个光学定位标志物,能够通过反射光线确定其空间位置;定位配件也可以作为导向装置的一部分,与导向装置成为一体;参考标记采用与定位配件相同的光学定位标志物,也具有独特的形状,可以唯一的确定其空间位置,使用过程中参考标记与待手术部位具有确定的相对位置关系,例如与待手术部位连接,例如通过固定在患者的骨钉、头架等连接,基于参考标记建立追踪模块的坐标系;追踪模块同时追踪定位配件、参考标记和超声探头,超声探头采用与导向装置类似的定位配件,超声探头的定位配件可以集成在超声探头中,也可以是可拆卸的,只要与超声探头具有确定的成像位置关系即可;超声诊断仪将超声探头扫描的数据传输给工作站,工作站以参考标记为基准,将超声图像进行坐标变化,并通过显示装置将导向导管的虚拟图形在超声图像中显示,工作站按照需求,规划导向导管位置,并向空间定位模块发出指令,使得导向导管运动到需要的位置和方向。
在结合第三个方案的另一个实施方案中,本发明的手术导航系统包含工作站、空间定位模块、追踪模块和超声模块;工作站和空间定位模块基本如前所述,追踪模块仅包含摄像单元,定位配件具有若干角点,使得能够通过摄像单元和工作站所加载的软件唯一的确定其空间位置,超声探头具有与定位配件相同的定位标志物,即角点;超声诊断仪将超声探头扫描的数据传输给工作站,工作站以超声探头为基准,通过追踪模块,将定位配件以超声探头的定位标志物的坐标系进行位置标定,再通过超声探头与其定位标志物的固定位置关系,将定位配件与超声图像的坐标系进行转换,工作站可以将导向导管或医疗器械与超声图像虚拟融合,并在显示装置中示出。
在结合第三个方案的又一个实施方案中,本发明的手术导航系统包含工作站、空间定位模块、追踪模块和超声模块;追踪模块为电磁追踪模块,超声模块含有磁定位标志物,空间定位模块含有磁定位标志物,电磁追踪模块含磁场发生装置和参考标记,电磁追踪模块可同时追踪空间定位模块、超声模块和参考标记的位置。参考标记在使用时与待检测部位附近的皮肤紧密连接,电磁追踪模块追踪参考标记的位置变化进行校准,消除组织位移导致的追踪误差。电磁追踪模块产生电磁场(第一信号),并由磁定位标志物感测,磁定位标志物响应于第一信号产生第二信号,主机随后基于第二信号确定空间定位模块、超声模块和参考标记的位置。
将超声图像进行坐标变换,并通过显示装置将导向导管的虚拟图形与超声图像融合,工作站按照需求,规划导向导管位置,并向空间定位模块发出指令,使得导向导管运动到需要的位置和方向。
本发明的手术导航系统中,动力结构为电机,优选地,电机为无磁电机,可以在磁共振环境下使用,即本发明的系统可以和磁共振仪(MRI)联合使用。
本发明的其他特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
为使本发明的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。附图中的结构都是示意性的,未必为真实比例的大小。
图1为本发明的手术导航系统的一个方案的示意图;
图2示出了图1中固定连接结构100的一种实施方案;
图3示出了图1中位置调整装置200和导向装置400的一个外观实例;
图4为图3中位置调整装置200部分和导向装置400部分的内部结构图;
图5为本发明的导向装置400含有部分特殊结构的一个实例的示意图;
图6为导向装置400含有定位标志物的一个实例的示意图;
图7为基座含有定位标志物的一个实例的示意图;
图8为连接件各自含有定位标志物的一个实例的示意图;
图9为根据本发明的另一个方案的一个实例的示意图;
图10为图9中追踪模块B的详细结构示意图;
图11示出了定位配件500-1和参考标记500-2的一个实例的示意图;
图12示出了定位配件500-1使用状态下的示意图;
图13示出了本发明的手术导航系统的第二方案的一个实例在使用状态下的部分结构的示意图;
图14示出了定位配件500-3和参考标记500-4的一个实例的示意图;
图15示出了定位配件500-3使用状态下的示意图;
图16示出了本发明的手术导航系统的第二方案的又一个实例在使用状态下的部分结构的示意图;
图17示出了本发明的手术导航系统的第三方案在使用状态下的部分结构的示意图;
图标:
000-固定物;100-固定连接装置;200-位置调整装置;300-控制模块;400-导向装置;101-紧固结构,102-支撑臂,103-第一关节,104-第一调节臂,105-第二关节,106-第二调节臂,107第三关节,108-连接臂;211-第一平面,212-第二平面,213-第一电机,214-第二电机,221-第三平面,222-第四平面,223-第三电机,224-第四电机;215-第一连接件,225-第二连接件,401-导向导管;B10-移动底板,B20-支架,B30-光发射单元和摄像单元,B201-支柱、B202-第一支架关节、B203-连接杆、B204-第二支架关节、B205-第一调节杆、B206-第三支架关节、B207-第二调节杆;C10-移动底板,C20-主机,C30-输入装置,C40-显示器;700-主机、800-输入装置800、900-显示装置;500-1-定位配件、500-3-定位配件、500-5-定位配件,500-2-参考标记、500-4-参考标记;601-定位标志物、602-定位标志物、603-定位标志物、604-定位标志物、605-定位标志物、606-定位标志物。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为便于对本实施例进行理解,首先对本发明实施例所公开的手术导航系统进行详细介绍。
参照附图1,本发明手术导航系统的第一方案包含:空间定位模块、工作站,空间定位模块包含:固定连接装置100;位置调整装置200;控制模块300;导向装置400;工作站包含主机700、输入装置800、显示装置900、以及通讯接口。
附图2示出了空间定位模块的固定连接装置100的一个实施方案,固定连接装置100用于连接固定物与位置调整装置200,固定物000可以是墙壁、载物台、天花板、病床、头架等,优选病床,以保持位置调整装置200相对于患者的距离较近且稳定;紧固结构101连接固定物000与支撑臂102,第一关节103连接支撑臂102和第一调节臂104,优选可以进行万向调节;第二关节105连接第一调节臂104和第二调节臂106,第三关节107连接第二调节臂106和连接臂108;紧固装置101可以为各种夹紧结构,例如弹簧夹。支撑臂102、第一调节臂104、第二调节臂106和连接臂108为长型的刚性结构,例如圆柱体、长方体等。
参照图3和图4,其示出了位置调整装置200和导向装置400的一个实例的示意图,图3中示出了位置调整装置200的一种壳体设计2001。图4示出了位置调整装置200的内部结构,位置调整装置200包括基座201、动力结构、第一移动组件和第二移动组件。第一移动组件包括第一平面211,第二平面212、对应的动力组件为第一电机213,第二电机214;第二移动组件包括第三平面221,第四平面222(此处未示出),对应的动力结构为第三电机223,第四电机224;第一电机213通过运动副控制第一平面211的运动,第二电机214通过运动副控制第二平面212的运动,第二平面212和第一平面211的运动方向相互垂直,从而带动第一平面211所连接的第一连接件215在两个维度上的运动;第三电机223通过运动副控制第三平面221的运动,第四电机224通过运动副控制第四平面222的运动,第四平面222和第三平面221的运动方向相互垂直,从而带动第三平面221所连接的第二连接件225在两个维度上的运动;通过第一连接件215和第二连接件225的运动,实现了导向导管401在三维空间中的受控定位。此处的第一、第二、第三、第四不具有顺序性,仅为了方便描述,某些范围内可互换使用而不会影响调整装置200的功能。
位置调整装置200和导向装置400优选使用合适强度的材料制成(例如工程塑料等),在一个实施例中,电机(即第一电机213、第二电机214、第三电机223和第四电机224)为无磁电机,固定连接装置100、位置调整装置200的其他部分和导向装置400由磁共振兼容材料制成,例如工程塑料和橡胶。使得空间定位模块能够在磁共振条件下使用。
控制模块300,控制位置调整装置200的运动,控制模块300可以是单独的模块,也可以是集成在其他部分中;通过有线或无线连接来控制步进电机,在一个具体实例中控制第一电机213、第二电机214、第三电机223和第四电机224。控制模块300可单独存在,通过有效的通信连接控制位置调整装置200,也可以集成到位置调整装置200上。在另一种情况下,控制模块可以集成到工作站中。
再次参照图4,在一个具体实例中,导向装置400的导向导管401由可在医学成像(CT、MRI、或CT和MRI二者)中易于识别和定位的材料制成,例如无磁性合金、无磁性金属、碳纤维等,从而可以和患者一起进行医学成像获得导向装置相对于患者的相对位置,以此相对位置为基准,设计运动路径,使得导向导管调整到需要的位置和方向。
参见图5,在另一个具体实施例中,导向导管401的一部分402和403由可在医学成像中比较清晰的显示其轮廓和位置的物质组成,402和403是导向导管401管壁的一部分,外形呈现为两条平行的长度不同的弧形结构,从而可以计算出导向导管401的通孔的中心位置和方向。显而易见的,此实施例的结构设计仅仅是示例性的,任何能够通过其计算确定通孔的中心位置和方向的结构,例如十字星等,均包含在本发明的范围内。
在另一个实施方案中,本发明医疗辅助机器人含有能够在医学成像中显示位置的标志物,从而在医学成像中可以定位导向装置400。定位标志物可以根据成像方法而不同,例如可以适合于CT技术的高密度材料制造的定位标志物,适合于MRI技术的定位标志物,或同时满足CT和MRI的要求的钛合金标志物等。
在一个具体实施方案中,参见图6,本发明医疗辅助机器人在导向导管401上镶嵌有三个定位标志物601、602和603,标志物尺寸和镶嵌位置已知,导向导管401的尺寸已知,从而可以在医学成像中,通过三个定位标志物的位置来计算导向导管401的朝向和位置。标志物的数量可以超过三个,在另一个具体实施方案中,定位标志物601、602和603是可拆卸的,通过导向导管上的连接结构在使用前安装。
在另一个具体实施方案中,本发明医疗辅助机器人在基座201或相对于基座201固定的位置上安装有定位标志物,参见图7,示出了三个定位标志物601、602和603,由于安装位置已知,可以在医学成像中通过定位标志物601、602和603来确定基座201的位置,通过控制模块300或主机700基于电机的运动和基座201来计算导向导管401的朝向和位置。为了确保基于电机转动所计算的运动距离正确,在此方案中加装位置反馈装置,以确认基于电机转动所记录的运动距离完全正确。显而易见的是,定位标志物的数量可以超过3个,外形可以是其他能够计算几何中心的形状,定位标志物601、602和603也可以是可拆卸的。
在又一个具体实施方案中,本发明医疗辅助机器人在连接件或与连接件位置关系固定的平面上安装有定位标志物,参见图8,示出一个实例,包括两组定位标志物,第一组标志物601、602和603可以确定第一连接件215的空间位置,第二组标志物604、605和606可以确定第二连接件225的空间位置,从而可以计算出导向导管401的方向和位置。每组定位标志物的数量可以超过3个,外形可以是其他能够计算几何中心的形状,定位标志物601、602和603也可以是可拆卸的。
本发明手术导航系统的第二方案包含:空间定位模块、追踪模块;工作站;其中,追踪模块或者其一部分可以集成在工作站中。
一个实施方案中,空间定位模块包含:固定连接装置、位置调整装置、控制模块、导向装置;追踪模块包含:摄像装置、定位配件和参考标记;工作站包含:主机、输入装置、显示装置、以及通讯接口。
另一个实施方案中,空间定位模块包含:固定连接装置、位置调整装置、控制模块、导向装置;追踪模块包含:光发射部件、摄像装置、定位配件和参考标记;工作站包含:主机、输入装置、显示装置、以及通讯接口。
图9示出了第二方案的一个实例,空间定位模块包含固定连接装置100、位置调整装置200、导向装置400,示出了固定连接装置100的结构,支撑臂102为锥体,第一关节103可实现第一调节臂104相对支撑臂102的旋转,第二关节105可实现第二调节臂106相对于第一调节臂104的旋转,并可实现角度锁定,第三关节107可实现第二调节臂106相对连接臂108旋转;未示出紧固结构101。追踪模块B包含:移动底板B10,支架B20,光发射单元和摄像单元B30、定位配件500-1和参考标记500-2(参见图11,图9中未示出);移动底板B10配有至少3个轮子以自由移动,在一个优选实施例中具有四个轮子,并含有止动结构,当移动底座B10移动至所需位置后可以通过止动结构,防止移动底板B10的位置在手术过程中变化;参见图10,支架B20由支柱B201、第一支架关节B202、连接杆B203、第二支架关节B204、第一调节杆B205、第三支架关节B206、第二调节杆B207组成,通过支架B20能够调节光发射单元和摄像单元B30的位置,使得目标区域位于光发射单元和摄像单元B30的最佳工作范围内。工作站C包含:工作站移动底板C10,主机C20,输入装置C30,显示器C40;工作站移动底板C10配有4个轮子和止动装置,可以进行移动,当到达所需位置时,通过止动结构固定,防止工作站移动底板C10的位置在手术过程中变化;主机C20含有处理器和通讯接口,处理器含有预先加载的软件,可以对数据进行加工处理,规划路径,通过通讯接口接收数据,将指令发送至空间定位模块,将空间定位模块配套的手术工具虚拟融合到软件成像的三维图像中,并在显示器C40上展示给使用者,输入装置C30为键盘、鼠标或者语音输入装置。显示器C40为触摸屏,即同时兼具输入输出功能时,输入装置C30可省略。
控制模块300集成在主机C20中未示出,在另一个实例中,控制模块300仅作为独立模块存在。
定位配件为配有若干光可追踪标志物的刚性结构,其中光学定位标志物设置成独特的空间分布,能够确定唯一的坐标系,光可追踪标志物包括但不限于主动发光标志物、反光标志物、包含角点的图案等。
图11示出了定位配件和参考标记的一个具体实例,定位配件500-1与参考标记500-2配套使用,定位配件500-1配有四个球型光学定位标志物(第一球型光学定位标志物511、第二球型光学定位标志物512、第三球型光学定位标志物513、第四球型光学定位标志物514),参考标记500-2配有四个球型光学定位标志物(第一球型光学定位标志物521、第二球型光学定位标志物522、第三球型光学定位标志物523、第四球型光学定位标志物524),光发射部件发出的光被球型光学定位标志物反射后,被摄像单元接收,然后通过计算确定导向导管401空间位置和其通孔的空间位置。
使用状态参见附图12,将定位配件500-1的锥部502插入导向导管401的通孔,通过定位配件500-1对导向导管401的位置进行标定,在显示器中显示出导管的位置,根据术前的规划进行,将导向导管401调节到所需位置,然后可以将电钻、导丝、电极等手术器械从导向导管401的通孔穿过,从而进行手术。
参照图13描述第二方案的一个实施例的使用方案,根据患者的术前CT和MRI数据,工作站生成或者接收三维影像,将参考标记500-2与患者的待手术部位固定连接,例如通过刚性结构连接头部,使得参考标记500-2与患者的待手术部位在手术过程中保持相对位置不变,以参考标记500-2为参考基准,使用定位配件500-1通过解剖特征点,或者影像与解剖均可见的特征结构点进行配准,将建立的三维影像与待手术部位获得对应关系,然后将500-1插入导向装置400,通过光学追踪模块和软件控制空间定位模块运动,使得导向装置400到达所需的位置。
图14示出了定位配件和参考标记的另一个具体实例,定位配件500-3与参考标记500-4配套使用,定位配件500-3配有四个光学定位标志物(第一角点光学定位标志物531、第二角点光学定位标志物532、第三角点光学定位标志物533、第四角点光学定位标志物534),参考标记500-4配有四个光学定位标志物(第一角点光学定位标志物541、第二角点光学定位标志物542、第三角点光学定位标志物543、第四角点光学定位标志物544)摄像单元直接获取定位配件和参考标记的图像信息,然后通过计算确定导向导管401空间位置和其通孔的空间位置。
使用状态参见附图15,将定位配件500-3的锥部502插入导向导管401的通孔,以参考标记500-4为基准,通过定位配件500-3对导向导管401的位置进行标定,在匹配的显示器中显示出导向导管401的位置,根据术前的规划进行,将导向导管401调节到所需位置,然后可以将电钻、导丝、电极等手术器械从导向导管401的通孔穿过,从而进行手术。
参照图16描述第二方案的一个实施例的使用方案,根据患者的术前CT和MRI数据,工作站生成或者接受三维影像,将参考标记500-4与患者的待手术部位固定连接,例如刚性结构连接头部,使得参考标记500-4与患者的待手术部位在手术过程中保持相对位置不变,以参考标记500-4为参考基准,使用定位配件500-3通过解剖特征点,或者影像与解剖均可见的特征结构点进行配准,将建立的三维影像与待手术部位获得对应关系,然后将定位配件500-3插入导向装置400,通过光学追踪模块和软件控制空间定位模块运动,使得导向装置400到达所需的位置。
参见图17,本发明手术导航系统的第三个方案的一个实施例包含:空间定位模块、追踪模块、工作站、超声模块;其中空间定位模块和工作站如第一方案所述,追踪模块包含摄像装置、定位配件500-3和500-5,以及参考标记500-4,超声模块包含常规的超声设备、定位配件500-5与超声设备的超声探头连接,可以通过定位配件500-5确定超声探头在光学追踪模块的以参考标记500-4为基准的坐标系位置,通过定位配件500-5和超声探头的相对位置关系,将超声图像进行坐标系转换到以参考标记500-4为基准的坐标系中,同时获得空间定位模块的定位配件500-3的位置,借助与参考标记500-4的相对位置关系,将定位配件500-3在图像坐标系中显示,从而获得导向模块400在超声图像中的位置关系。超声模块可是现有的超声仪,在超声探头上加装适配的定位配件500-5即可。定位配件500-5可以是固定安装的,也可以是可拆卸的。
本发明手术导航系统的第三个方案的另一个实施例包含,空间定位模块、追踪模块、工作站、超声模块;其中空间定位模块和工作站如第一方案所述;追踪模块为电磁追踪模块,包含磁场发生装置和参考标记;参考标记含有磁定位标志物,空间定位模块连接磁定位标志物,超声模块连接磁定位标志物,使用时磁场发生装置靠近待检测部位附近,产生电磁场(第一信号),磁定位标志物响应于第一信号产生第二信号,从而能够以参考标记为基准,在同一坐标系中建立空间定位模块、超声模块相对于参考标记的相对位置关系,然后基于磁定位标志物相对于超声探头的空间位置关系,把超声图像与电磁追踪模块的坐标系进行统一,即可实现导向模块400在超声影像中的定位。参考标记优选地可以贴附在待手术部位的皮肤上,在待手术部位随着呼吸等发生变动时,成像可以基于参考标记进行调整,继而避免对定位产生影响。
在本发明实施例的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
最后应说明的是:以上所述实施例,仅为本发明的具体实施方式,用以说明本发明的技术方案,而非对其限制,本发明的保护范围并不局限于此,尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。