[go: up one dir, main page]

CN110945126A - Method for multiplex detection of alleles associated with corneal dystrophy - Google Patents

Method for multiplex detection of alleles associated with corneal dystrophy Download PDF

Info

Publication number
CN110945126A
CN110945126A CN201880033645.1A CN201880033645A CN110945126A CN 110945126 A CN110945126 A CN 110945126A CN 201880033645 A CN201880033645 A CN 201880033645A CN 110945126 A CN110945126 A CN 110945126A
Authority
CN
China
Prior art keywords
probe
tgfbi
sequence
labeled
reaction mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880033645.1A
Other languages
Chinese (zh)
Other versions
CN110945126B (en
Inventor
C.赵-沈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avellino Lab USA Inc
Original Assignee
Avellino Lab USA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avellino Lab USA Inc filed Critical Avellino Lab USA Inc
Publication of CN110945126A publication Critical patent/CN110945126A/en
Application granted granted Critical
Publication of CN110945126B publication Critical patent/CN110945126B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/16Primer sets for multiplex assays

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Analytical Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present disclosure provides a method for detecting corneal dystrophy in a subject comprising a reaction mixture comprising one or more labeled probes comprising a mutated TGFBI nucleotide sequence; the reaction mixture further comprises at least one amplification primer pair for amplifying the TGFBI gene sequence of a biological sample from the subject; and detecting 1,2, 3,4, 5 or 6 mutations selected from the group consisting of G623D, M502V, R124S, a546D, H572R and H626R mutations in the TGFBI gene, wherein detecting comprises detecting the one or more mutations using a labeled detection probe. The invention also provides a reaction kit comprising the reaction mixture.

Description

Method for multiplex detection of alleles associated with corneal dystrophy
Technical Field
The present application relates generally to probes for detecting or diagnosing corneal dystrophy, and methods of detecting or diagnosing corneal dystrophy.
Background
Real-time PCR can be used to detect differences between nucleic acid sequences having substantially the same sequence. By using differentially labeled fluorescent nucleic acid probes, such as probes that bind to wild-type sequences and probes that bind to mutant sequences, single nucleotide changes in the human genome can be detected quickly and reliably. This resolution has been applied in medical diagnostics, where Single Nucleotide Polymorphisms (SNPs), i.e. single base changes found within coding and/or non-coding sequences of proteins, are associated with human diseases.
However, real-time PCR analysis is highly dependent on the collection and separation of high quality samples. Poor sample collection and/or separation requires the use of longer assay conditions and larger amounts of real-time PCR reagents, both of which result in increased cost and reduced productivity. Furthermore, failure of real-time PCR single nucleotide polymorphism detection assays may result in the need to collect additional samples, resulting in even greater loss of time and resources.
Thus, there is a great need for methods that result in improved sample collection and separation, which increase the overall success rate of the assay, reduce the reagents required for the assay, and reduce the need to subsequently collect additional samples. In addition, methods for real-time PCRSNP detection assays using smaller amounts of sample material will also reduce the challenges associated with the collection and isolation of high quality samples.
The cornea is the avascular clear tissue in the front of the eye that begins the process of focusing light onto the retina and accounts for about two thirds of the light intensity of the eye a number of genetic diseases affect the clarity of the cornea and are classified by the affected corneal layers as posterior, stromal or superficial autosomal dominant inheritance (AD), X-linked recessive inheritance (XR) and autosomal recessive inheritance (AR), and in many cases the loci of the disease have been located and pathogenic genes have been identified the most studied corneal dystrophies are those caused by autosomal dominant missense mutations in the transforming growth factor β -induced gene (TGFBI) located on chromosome 5q31.1, which encodes extracellular matrix proteins that are believed to play a key role in physiological and pathological responses by mediating cell adhesion, migration, proliferation and differentiation, to date, 62 hgtgi mutations have been reported in dyhuman gene mutations (fbke) resulting in a series of different corneal stroma proteins with amyloid and non-like proteins and a series of corneal dystrophy-corneal stroma-type mutations that have been documented in the corneal dystrophy-type hgtgfbi-type corneal dystrophy, which has been previously been reported by the two corneal dystrophy-type nutritive mutations that have been reported on corneal stroma and corneal stroma, and corneal dystrophy, which have been reported by beckheielli-type corneal dystrophy.
Laser in situ keratomileusis (LASIK) is a surgical procedure that provides vision correction for myopia (nearsightedness), hyperopia (farsightedness), and astigmatism. A thin flap in the corneal epithelium is cut and folded, and the exposed stromal layer is reshaped by a laser to change its corneal focusing power. Small incision lensectomy (SMILE) is a less invasive procedure to correct myopia. A small incision is made in the epithelial layer by laser, and a small piece of stroma (lens) is removed to reshape the stroma. Laser optical keratectomy (PRK) and light therapeutic keratectomy (PTK) surgery affect vision correction or treat a variety of ocular diseases by removing haze and surface irregularities from the corneal surface. These invasive corneal surgeries cause wounds in the stromal layers, which leads to upregulation of TGFBI expression, leading to corneal amyloid deposition in individuals carrying TGFBI mutations, leading to pathologies associated with corneal dystrophy. LASIK is contraindicated in individuals with Granular Corneal Dystrophy (GCD). Commercially available genetic tests can detect the five most common mutations associated with the five more common types of corneal dystrophy within the TGFBI gene: granular corneal dystrophy type 2R 124H, latticed corneal dystrophy type 1R 124C, Reis-Buckler corneal dystrophy R124L, granular corneal dystrophy type 1R 555W, Thiel-Behnke corneal dystrophy R555Q. These five mutant gene tests were originally designed for the korean and japanese population, and most of TGFBI corneal dystrophy cases were diagnosed as GCD2 caused by the R124H mutation. In korea and japan, this test is mainly used as a screening tool before refractive surgery. However, in the united states and europe, this test is used both to screen refractive surgical candidates and as a confirmatory test for clinical diagnosis of corneal dystrophic diseases.
In view of the above background, there is a need in the art to examine the prevalence of different TGFBI mutations in various populations and geographic locations to improve genetic testing for different populations worldwide.
Disclosure of Invention
In one aspect, the present disclosure provides a reaction mixture for detecting corneal dystrophy in a subject, the reaction mixture comprising a labeled probe comprising a sequence selected from the group consisting of SEQ ID NOs: 25-30, 36 and 54. The reaction mixture may further comprise a corresponding labeled probe comprising a sequence selected from the group consisting of seq id NOs: 19-24, 33 and 50. In some embodiments, the label probe consists of a sequence selected from SEQ id nos: 25-30, 36 and 54; and/or the corresponding labeled probe consists of a nucleotide sequence selected from the group consisting of SEQ ID NO: 19-24, 33 and 50. In other embodiments, the reaction mixture comprises a labeled TGFBIG623D probe comprising the nucleotide sequence set forth in SEQ ID NO: 33 or 36; and a labeled TGFBI M502V probe comprising SEQ ID NO: 24 or 30. In still other embodiments, the labeled TGFBI G623D probe comprises SEQ id no: 36; and the labeled TGFBI M502V probe comprises SEQ ID NO: 30.
In some embodiments, the labeled probe is fluorescently labeled. In other embodiments, each of the labeled probes comprises a different probe. In still other embodiments, each of the labeled probes comprises a different probe independently labeled with VIC, FAM, ABY, or JUN.
In some embodiments, the reaction mixture further comprises at least one amplification primer pair for amplifying TGFBI gene sequences from a biological sample from a subject. In other embodiments, the reaction mixture comprises (a) a corresponding forward primer comprising a sequence selected from the group consisting of SEQ ID NOs: 7-12 and 41; and (b) a corresponding reverse primer comprising a sequence selected from SEQ ID NOs: 13-18 and 47. When the reaction mixture comprises a nucleic acid comprising SEQ ID NO: 33 or 36 and a labeled TGFBI G623D probe comprising the nucleotide sequence of SEQ ID NO: 24 or 30, the reaction mixture may further comprise (a) a corresponding forward primer comprising the nucleotide sequence of SEQ ID NO: 10 and 12; (b) a corresponding reverse primer; and (b) a corresponding reverse primer comprising SEQ ID NO: 16 and 18.
In one aspect, the present disclosure provides a reaction kit comprising a reaction mixture described herein. In one aspect, the reaction kit comprises a reaction mixture comprising detection probes for G623D and M502V mutations in TGBI genes. In some embodiments, the reaction kit further comprises one or more detection probes for R124S, a546D, H572R, and H626R mutations in the TGBI gene. In one aspect, the present disclosure provides a reaction kit comprising a reaction mixture as described herein and one or more marker probes for one or more TGFBI mutations selected from R124S, a546D, H572R and H626R. In some embodiments, the one or more labeled probes are separate from the reaction mixture. In other embodiments, the one or more label probes are selected from the group consisting of SEQ id nos: 19. 25, 20, 26, 21, 27, 23, 29, 50 and 54. In still other embodiments, the reaction kit comprises a labeled TGFBI R124S probe comprising the sequence of SEQ id no: 19 or 25. In still other embodiments, the reaction kit comprises a labeled TGFBI a546D probe comprising the sequence of SEQ ID NO: 20 or 26. In still other embodiments, the reaction kit comprises a labeled TGFBI H572R probe comprising the sequence of SEQ id no: 21 or 27. In still other embodiments, the reaction kit comprises a labeled TGFBI H626R probe comprising the sequence of SEQ ID NO: 23. 29, 50 or 54. In still other embodiments, the reaction kit further comprises an additional amplification primer set. In still other embodiments, the reaction kit further comprises a third amplification primer set for amplifying the TGFBI gene comprising the R124S mutation, a fourth amplification primer set for amplifying the TGFBI gene comprising the a546D mutation, a fifth amplification primer set for amplifying the TGFBI gene comprising the H572R mutation, and/or a sixth amplification primer set for amplifying the TGFBI gene comprising the H626R mutation.
In one aspect, the present disclosure provides a method for detecting corneal dystrophy, comprising detecting one, two, three, four, five or six mutations selected from: G623D, M502V, R124S, a546D, H572R and H626R mutations in the TGFBI gene. In some embodiments, detecting comprises sequencing the TGFBI gene. In other embodiments, detecting comprises detecting the mutation using a labeled detection probe.
In one aspect, the present disclosure provides a method for detecting corneal dystrophy, the method comprising: (a-1) amplifying a first TGFBI gene sequence from a biological sample from a subject using a reaction mixture comprising at least a first amplification primer pair and a set of at least two detection probes; (B-1) hybridizing the first detection probe and the second detection probe in the group having at least two detection probes with the first TGFBI gene sequence having the G623D mutation and the second TGFBI gene sequence having the M502V mutation, respectively; and (C-1) detecting one, two or more mutations in the TGFBI gene sequence based on hybridization of the first and second detection probes to the first and second TGFBI gene sequences, respectively. In some embodiments, the method further comprises (a-2) amplifying a third TGFBI gene sequence from the biological sample, wherein the reaction mixture further comprises a third marker probe for a third TGFBI mutation selected from the group consisting of R124S, a546D, H572R, and H626R; (B-2) hybridizing the third label probe with the third TGFBI gene sequence; (C-2) detecting a mutation in the third TGFBI gene sequence based on hybridization of the third detection probe to the third TGFBI gene sequence.
Drawings
Fig. 1A shows a world map of reported cases with multiple TGFBI mutations. The bubbles on each region or country/region contain reported case information such as race, mutation, and case number. The figure shows TGFBI mutation cases reported worldwide except in regions of limited study capacity or difficult language publishing. There are few cases reported in south america, and nothing was reported in africa or russia. Fig. 1B shows a red arrow pointing into the uk as an example of the information contained in the bubble. The legend on the left shows the reported mutations, ethnicity, and total number of cases for each reported mutation.
Fig. 2 provides a comparison by geographic area. In 1600 reported cases, the original gene test with five mutations, six additional mutations, and the proposed extended 11 mutation sets was modeled. The detection rates of available genetic tests with five mutations between europe and asia are very close.
Figure 3 provides a table ranking the five most common mutations in reported cases from highest to lowest. In addition, it lists six additional cases of mutation from high to low.
FIG. 4 provides a table showing the theoretical results of available gene testing for R124C, R555W, R124H, R555Q, and R124L. This test detected 90% of the 68 TGFBI CD cohorts identified by the Moorfield corneal dystrophy study. The table also shows the results of six additional mutations identified by literature studies. They increased the detection rate by 7% and led to an overall detection rate of 97% in the uk.
Fig. 5A-5C provide exemplary sequences of targets, primers, and probes used in the examples.
Fig. 6A and 6B show the discrimination map results of example 4 using M502V and G623D TGFBI probes.
Detailed Description
I. Introduction to the design reside in
The present disclosure is based, at least in part, on the discovery of reaction mixtures, reaction kits to improve the detection of corneal dystrophy.
In asia, the reported prevalence of TGFBI corneal dystrophy is 870 in korea and 416 in china. Asia, which is highly myopic, Holden et al, predicted that by 2050, myopia prevalence was the highest in the asian population, 66.4% of all populations, compared to 49.8% of the global prevalence. Due to the high prevalence of myopia in these asian populations, the use of LASIK vision correction surgery has increased and is expected to continue to increase. Mutation testing is important in asian populations due to the known prevalence of TGFBI mutations and high myopia rates; subsequently, five mutant gene tests were initially introduced in the asian-pacific population.
Since the first description of TGFBI mutations as a cause of granular corneal dystrophy in Folberg et al 1988, our understanding and appreciation of the disease has steadily increased. The most common R124 and R555 mutations are well documented, and additional mutations are being examined more closely to understand the next level of common variants. The present disclosure provides a review of literature reports on various TGFBI corneal dystrophies to understand the prevalence of the disease. The global prevalence of this disease is unknown; however, the consequences of this disease are debilitating. The ultimate treatment is corneal transplantation, and the recurrent nature of this disease often requires subsequent corneal transplants, which are both traumatic and costly to both the patient and the ophthalmologist. Therefore, prevention and pre-screening by molecular diagnostic tests to detect mutations is critical.
In some embodiments, it is an object to provide enhanced testing capabilities in a pre-screening test prior to refractive surgery. Another objective is to narrow the gap between the detection rates obtained from genetic testing and clinical diagnosis.
Selection definition
The term "invention" or "present invention" as used herein is not intended to limit any particular embodiment of the invention, but applies generally to any and all embodiments of the invention described in the claims and specification.
As used herein, singular terms include plural meanings unless the context clearly dictates otherwise. Thus, for example, reference to "a method" includes one or more methods and/or steps of the type described herein, as will be apparent to those skilled in the art upon reading this disclosure.
As used herein, the term "polymorphism" and variants thereof refer to the presence of two or more alternative genomic sequences or alleles between or among different genomes or individuals. The term "genetic mutation" or "genetic variation" and variants thereof include polymorphisms.
As used herein, the term "single nucleotide polymorphism" ("SNP") and variants thereof refer to a site of one nucleotide that varies between alleles. Single Nucleotide Polymorphisms (SNPs) are single base changes or point mutations, but also include so-called "insertion/deletion" mutations (insertions or deletions of nucleotides), resulting in genetic variation between individuals. SNPs account for about 90% of all human genetic variations, occurring once every 100 to 300 bases in a 30 hundred million base human genome. SNPs can occur in coding or non-coding regions of the genome. SNPs in the coding region may or may not alter the amino acid sequence of the protein product. SNPs in non-coding regions may alter promoter or processing sites and may affect gene transcription and/or processing. Knowledge of whether an individual has a particular SNP in a target genomic region may provide sufficient information to develop diagnostic, prophylactic and therapeutic applications for a variety of diseases. In some embodiments, the present disclosure relates to the detection of SNPs in coding regions that alter the amino acid sequence, resulting in mutations in the amino acid sequence of the product from the TGBI gene. For example, the present disclosure relates to the detection of SNPs causing mutations in G623D, M502V, R124S, a546D, H572R, H626R, G623D, R124S, H403Q, R124C, and/or R124H in the TGFBI gene.
The term "primer" and variants thereof refer to an oligonucleotide that serves as a point of initiation of DNA synthesis in a PCR reaction. The primer is typically about 15 to about 35 nucleotides in length and hybridizes to a region complementary to the target sequence.
The term "probe" and variants thereof (e.g., detection probes) refers to an oligonucleotide that hybridizes to a target nucleic acid in a PCR reaction. The target sequence refers to the region of nucleic acid to be analyzed and contains the polymorphic site of interest.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, various embodiments of the methods and materials are specifically described herein.
Reaction mixture
In one aspect, the present disclosure provides a reaction mixture for detecting corneal dystrophy in a subject, the reaction mixture comprising a detection probe for detecting a mutation in TGBI. In some embodiments, the detection probe detects a SNP that causes an amino acid mutation described herein. In one aspect, the present disclosure provides a reaction mixture for detecting corneal dystrophy in a subject, the reaction mixture comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 25-30, 36 and 54. The reaction mixture further comprises a corresponding labeled probe comprising a sequence selected from the group consisting of SEQ ID NOs: 19-24, 33 and 50. In some embodiments, the labeled probe consists of a sequence selected from SEQ ID NOs: 25-30, 36 and 54; and/or the corresponding labeled probe consists of a nucleotide sequence selected from the group consisting of SEQ ID NO: 19-24, 33 and 50. In other embodiments, the reaction mixture comprises a labeled TGFBI G623D probe comprising seq id NO: 33 or 36; and a labeled TGFBI M502V probe comprising SEQ ID NO: 24 or 30. In yet other embodiments, the labeled TGFBI G623D probe comprises SEQ ID NO: 36; and the labeled TGFBI M502V probe comprises SEQ ID NO: 30.
In some embodiments, the reaction mixture further comprises at least one amplification primer pair for amplifying the TGFBI gene sequence from a biological sample of the subject. In other embodiments, the reaction mixture comprises (a) a corresponding forward primer comprising a sequence selected from the group consisting of SEQ ID NOs: 7-12 and 41; and (b) a corresponding reverse primer comprising a sequence selected from SEQ ID NOs: 13-18 and 47. When the reaction mixture comprises a nucleic acid comprising SEQ ID NO: 33 or 36 and a labeled TGFBI G623D probe comprising the nucleotide sequence of SEQ ID NO: 24 or 30, the reaction mixture may further comprise (a) a TGFBI M502V probe comprising the nucleotide sequence of SEQ ID NO: 10 and 12, respectively; (b) comprises the amino acid sequence of SEQ ID NO: 16 and 18, respectively.
In some embodiments, the labeled probe is fluorescently labeled. In other embodiments, each of the labeled probes comprises a different probe. In still other embodiments, each of the labeled probes is independently labeled with VIC, FAM, ABY, or JUN.
IV. diagnostic kit
In one aspect, any or all of the reagents described herein are packaged into a diagnostic kit. Such kits include any combination of any and/or all of the primers, probes, buffers, and/or other reagents described herein.
In one aspect, the present disclosure provides a reaction kit comprising a primer set, detection probes and/or reagents for detecting R124S, a546D, H572R, H626R, G623D and M502V mutations in TGBI genes. In one aspect, the present disclosure provides a reaction kit comprising a primer set, a detection probe and/or a reagent for detecting G623D and M502V mutations in TGBI genes together with a separate reaction mixture comprising a combination of primer set, probe and/or reagent for detecting G623D and M502V. In some embodiments, the reaction kit further comprises one, two, three or four primer sets, detection probes and/or reagents for detecting one, two, three or four TGFBI mutations selected from R124S, a546D, H572R and H626R. In other embodiments, the reaction kit further comprises one, two, three, four or five primer sets, detection probes and/or reagents for detecting one, two, three, four or five TGFBI mutations selected from G623D, R124S, H403Q, R124C and R124H.
In one aspect, the present disclosure provides a reaction kit comprising the above-described reaction mixture and one or more additional reagents. In some embodiments, the reaction kit further comprises one, two, three or four primer sets, labeled probes and/or reagents for detecting one, two, three or four TGFBI mutations selected from R124S, a546D, H572R and H626R. In some embodiments, one, two, three or four primer sets, labeled probes and/or reagents for detecting one, two, three or four TGFBI mutations selected from R124S, a546D, H572R and H626R are separate from the reaction mixture in the kit. In other embodiments, the reaction kit comprises 1,2, 3,4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 labeled probes selected from the group consisting of: comprises the amino acid sequence of SEQ ID NO: 19-24, 33, 50, 25-30, 36 and 54, respectively. In still other embodiments, the reaction kit comprises a labeled TGFBI R124S normal probe comprising SEQ ID NO: 19; and/or a labeled TGFBI R124S mutation probe comprising the amino acid sequence of SEQ id no: 25. In other embodiments, the reaction kit comprises a labeled TGFBI a546D normal probe comprising SEQ ID NO: 20; and/or a labeled TGFBI a546D mutation probe comprising SEQ ID NO: 26. In still other embodiments, the reaction kit comprises a labeled TGFBI H572R normal probe comprising the sequence of SEQ ID NO: 21; and/or the labeled TGFBI H572R mutation probe comprises SEQ ID NO: 27. In other embodiments, the reaction kit comprises a nucleic acid comprising SEQ ID NO: 23 or 50, and/or a TGFBI H626R normal probe comprising the nucleotide sequence of SEQ ID NO: 29 or 54, and a TGFBI H626R mutation probe. In other embodiments, the reaction kit does not include a kit in which the TGFBI G623D probe is stored alone or not mixed with the TGBI M502V probe. In other embodiments, the reaction kit further comprises an additional amplification primer set. In still other embodiments, the reaction kit further comprises a third amplification primer set for amplifying the TGFBI gene comprising the R124S mutation, a fourth amplification primer set for amplifying the TGFBI gene comprising the a546D mutation, a fifth amplification primer set for amplifying the TGFBI gene comprising the H572R mutation, and/or a sixth set of amplification primers for amplifying the TGFBI gene comprising the H626R mutation. Herein, the TGFBI gene comprising the R124S mutation may refer to a TGFBI gene comprising a SNP resulting in a R124S mutation in a TGBI protein product.
In other embodiments, the reaction kit further comprises one, two, three, four or five primer sets, detection probes and/or reagents to detect one, two, three, four or five TGFBI mutations selected from G623D, R124S, H403Q, R124C and R124H.
In some embodiments, the reagents in the kit are included as lyophilized powders. In some embodiments, the reagents in the kit are included as lyophilized powders with instructions for reconstitution. In some embodiments, the reagents in the kit are included as liquids. In some embodiments, the reagents are contained in plastic and/or glass vials or other suitable containers. In some embodiments, the primers and probes are all contained in separate containers within the kit. In some embodiments, the primers are packaged together in one container and the probes are packaged in another container. In some embodiments, the primer and probe are packaged together in a single container.
In some embodiments, the kit further comprises a control gDNA and/or DNA sample. In some embodiments, the control DNA sample included is a TGFBI sample having a G623 normal sequence and/or a TGFBI sample having an M502 normal sequence. In some embodiments, the control DNA sample included corresponds to the mutation detected, including R124S, a546D, H572R, and H626R. In some embodiments, a control DNA sample corresponding to TGFBI R124 normal and a mutant DNA sample corresponding to R124C, R124H, R124L, R555W, R555Q and/or H626P are included. In some embodiments, a control DNA sample corresponding to TGFBI R124 normal and a mutant DNA sample corresponding to R124C, R124H, R124L, R555W and/or R555Q are included. In some embodiments, a control DNA sample corresponding to TGFBI R124 normal and a mutant DNA sample corresponding to R124C, R124H, and/or R124L are included. In some embodiments, a control DNA sample corresponding to TGFBI R124 normal and a mutant DNA sample corresponding to R555W and/or R555Q are included. In some embodiments, a control DNA sample corresponding to TGFBI R124 normal and a mutant DNA sample corresponding to R124C are included. In some embodiments, a control DNA sample corresponding to TGFBI R124 normal DNA and a mutant DNA sample corresponding to R124H are included. In some embodiments, a control DNA sample corresponding to TGFBI R124 normal and a mutant DNA sample corresponding to R124L are included. In some embodiments, a control DNA sample corresponding to TGFBI R124 normal DNA and a mutant DNA sample corresponding to R555W are included. In some embodiments, a control DNA sample corresponding to TGFBI R124 normal and a mutant DNA sample corresponding to R555Q are included. In some embodiments, a control DNA sample corresponding to TGFBI R124 normal and a mutant DNA sample corresponding to H626P are included.
In some embodiments, the concentration of the control DNA sample is 5 ng/. mu.L, 10 ng/. mu.L, 20 ng/. mu.L, 30 ng/. mu.L, 40 ng/. mu.L, 50 ng/. mu.L, 60 ng/. mu.L, 70 ng/. mu.L, 80 ng/. mu.L, 90 ng/. mu.L, 100 ng/. mu.L, 110 ng/. mu.L, 120 ng/. mu.L, 130 ng/. mu.L, 140 ng/. mu.L, 150 ng/. mu.L, 160 ng/. mu.L, 170 ng/. mu.L, 180 ng/. mu.L, 190 ng/. mu.L, or 200 ng/. mu.L. In some embodiments, the concentration of the control DNA sample is 50 ng/. mu.L, 100 ng/. mu.L, 150 ng/. mu.L, or 200 ng/. mu.L. In some embodiments, the concentration of the control DNA sample is 100 ng/. mu.L. In some embodiments, the control DNA samples have the same concentration. In some embodiments, the control DNA samples have different concentrations.
In some embodiments, the kit may further comprise a buffer, such as GTXpress
Figure BDA0002282545080000101
A reagent mixture or any equivalent buffer. In some embodiments, the buffer comprises any buffer described herein.
In some embodiments, the kit may further comprise reagents for cloning, such as vectors (including, for example, the M13 vector).
In some embodiments, the kit further comprises reagents for purifying DNA.
In some embodiments, the kit further comprises instructions for using the kit to detect corneal dystrophy in a subject. In some embodiments, these specifications include various aspects of the protocols described herein.
Analysis of nucleic acids
In one aspect, the present disclosure provides a method for detecting corneal dystrophy, the method comprising detecting one, two, three, four, five or six TGFBI mutations selected from G623D, M502V, R124S, a546D, H572R and H626R in the TGFBI gene. In some embodiments, the method may further comprise detecting one, two, three, four or five TGFBI mutations selected from G623D, R124S, H403Q, R124C and R124H.
In some embodiments, detecting comprises sequencing the TGFBI gene. In other embodiments, detecting comprises detecting the mutation using a labeled detection probe.
In one aspect, the present disclosure provides a method for detecting corneal dystrophy, comprising: (a-1) amplifying a first TGFBI gene sequence from a biological sample of a subject using a reaction mixture comprising at least a first amplification primer pair and a set of at least two detection probes; (B-1) hybridizing the first detection probe and the second detection probe in the group having at least two detection probes with the first TGFBI gene sequence having the G623D mutation and the second TGFBI gene sequence having the M502V mutation, respectively; (C-1) detecting one, two or more mutations in the TGFBI gene sequence based on hybridization of the first detection probe and the second detection probe to the first TGFBI gene sequence and the second TGFBI gene sequence, respectively. In some embodiments, the method further comprises (a-2) amplifying a third TGFBI gene sequence from the biological sample, wherein the reaction mixture further comprises a third marker probe for a third TGFBI mutation selected from the group consisting of R124S, a546D, H572R, and H626R; (B-2) hybridizing the third marker probe with the third TGFBI gene sequence; and (C-2) detecting a mutation in the third TGFBI gene sequence based on hybridization of the third detection probe to the third TGFBI gene sequence.
In some embodiments, the methods herein further comprise isolating the genomic sample. In some embodiments, the method comprises providing a cell sample from the subject. In other embodiments, the subject may be a human. In some embodiments, the cells are collected by contacting the cell surface of the patient with a matrix capable of reversibly immobilizing the cells on the matrix.
The disclosed methods are applicable to a variety of cell types obtained from a variety of samples. In some embodiments, cell types used with the disclosed methods include, but are not limited to, epithelial cells, endothelial cells, connective tissue cells, skeletal muscle cells, endocrine cells, cardiac muscle cells, urinary cells, melanocytes, keratinocytes, blood cells, leukocytes. Buffy coat, hair cells (including, for example, hairy root cells), and/or salivary cells. In some embodiments, the cell is an epithelial cell. In some embodiments, the cells are subcapsular-perivascular (epithelial type 1), pallor (epithelial type 2), intermediate grade (epithelial type 3); dark (epithelial type 4), undifferentiated (epithelial type 5), and medullary (epithelial type 6). In some embodiments, the cell is a buccal epithelial cell (e.g., an epithelial cell collected using buccal exchange). In some embodiments, the cell sample used in the disclosed methods comprises any combination of the cell types identified above. In some embodiments, the provided cell is a buccal epithelial cell.
In some embodiments, it is advantageous to collect the sample in a non-invasive manner, and sample collection itself is done by anyone anywhere. For example, in some embodiments, the sample is collected at a physician's office, the subject's home, or at the site where LASIK surgery is or will be performed. In some embodiments, the patient's doctor, nurse or physician's assistant or other clinician collects the sample.
Various methods for analyzing SNPs of a sample (including, for example, but not limited to, genomic dna (gdna) samples) are known in the art, and may include PCR methods such as real-time PCR analysis, microarray analysis, hybridization analysis, and nucleic acid sequence analysis, as well as other various methods known to those skilled in the art of analyzing nucleic acid composition. See, e.g., molecular cloning (Triplex, Cold spring harbor laboratory Press, 2012) and the Manual of laboratory guides (genetics and genomics; molecular biology; 2003-.
a. Real-time PCR
With respect to the design of real-time PCR assays, several sections are adjusted, including DNA fragments (commonly referred to as amplicons) that flank the two primers and are subsequently amplified, the two primers used, and one or more detection probes.
Real-time PCR relies on the visual emission of fluorescent dyes conjugated to short polynucleotides (referred to as "detection probes"), which are related to genomic alleles in a sequence-specific manner. Real-time PCR probes that differ by only a single nucleotide can be distinguished in a real-time PCR assay by conjugating and detecting probes that fluoresce at different wavelengths. Real-time PCR finds use in detection applications (diagnostic applications), quantification applications, and genotyping applications.
Various related methods for performing real-time PCR are disclosed in the art, including relying on
Figure BDA0002282545080000121
The probe assay (U.S. Pat. Nos. 5,210,015 and 5,487,972, and Lee et al, Nucleic Acids Res.21: 3761-19, 6,1993), the molecular beacon probe (U.S. Pat. Nos. 5,925,517 and 6,103,476, and Tyagi and Kramer, nat. Biotechnol.14:303-8,1996), the self-probing amplicon (scorpion) (U.S. Pat. No. 6,326,145, and Whitcombe et al, nat. Biotechnol.17:804-7,1999), Amplissenor (Chen et al, Appl. environ. Microbiol.64:4210-6,1998), Amplifluor (U.S. Pat. No. 6,117,635, and Nazarko et al, Nucleic Acids Res. Res.25:2516,1997), the displacement probe (Li et al, Clcichl. 30: 30-1997, and the proximity PCR detection probe (Toquest. 22, 2000: 22, 2000-90, and Biotech. Pat. 22-2000-134).
In one aspect, the disclosure relates to the detection of SNPs causing mutations in G623D, M502V, R124S, a546D, H572R, H626R, G623D, R124S, H403Q, R124C, and/or R124H in the TGFBI gene. In some cases, real-time PCR may result in the detection of a variety of gene mutations, including, for example, but not limited to, SNPs. In some embodiments, real-time PCR is employed to detect SNPs in a particular gene candidate based on the use of intramolecular quenching of fluorescent molecules through the use of tethered quencher moieties. Thus, according to some exemplary embodiments, the real-time PCR method further comprises using molecular beacon technology. Molecular beacon technology utilizes hairpin-like molecules with internally quenched fluorophores whose fluorescence is restored by binding to the target DNA (see, e.g., R. et al Nat. Biotechnol.14:303-308, 1996). In some embodiments, increased binding of molecular beacon probes to accumulated PCR products is used to specifically detect SNPs present in genomic DNA.
One of the many suitable genotyping procedures is
Figure BDA0002282545080000131
And (4) carrying out allele identification determination. In some cases of this assay, an oligonucleotide probe labeled with a fluorescent reporter dye at the 5 'end of the probe and a quencher dye at the 3' end of the probe is utilizedAnd (3) a needle. The proximity of the quencher to the intact probe keeps the fluorescence of the reporter gene low. During the PCR reaction, the 5' nuclease activity of the DNA polymerase cleaves the probe and separates the dye and quencher. This results in an increase in the fluorescence of the reporter gene. The accumulation of PCR products was directly detected by monitoring the increase in fluorescence of the reporter dye. The 5' nuclease activity of the DNA polymerase cleaves the probe between the reporter and the quencher only when the probe hybridizes to the target and is amplified during PCR. Only when a specific SNP allele is present, the probe is designed to span the target SNP location and hybridize to the nucleic acid molecule.
By way of example, to amplify SNPs located on exon 4 of the TGFBI gene that are associated with Avellino corneal dystrophy, a forward PCR primer pair and a reverse PCR primer pair were constructed as described in U.S. patent publication No. 2012/0077200, the disclosures of which are incorporated herein by reference.
b. Real-time PCR cycling
Real-time PCR methods include multiple steps or cycles as part of the amplification process. These cycles include denaturing the double-stranded nucleic acid, annealing the forward primer, reverse primer and detection probe of the target genomic DNA sequence, and synthesizing (i.e., copying) the second-strand DNA from the annealed forward and reverse primers. The three step process is referred to herein as a loop.
In some embodiments, about 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, or 60 cycles are employed. In some embodiments, about 10 to about 60 cycles, about 20 to about 50 cycles, or about 30 to about 40 cycles are employed. In some embodiments, 40 cycles are employed.
In some embodiments, the step of denaturing the double stranded nucleic acid is performed at a temperature of about 80 ℃ to 100 ℃, about 85 ℃ to about 99 ℃, about 90 ℃ to about 95 ℃ for about 1 second to about 5 seconds, about 2 seconds to about 5 seconds, or about 3 seconds to about 4 seconds. In some embodiments, the step of denaturing the double stranded nucleic acid is performed at a temperature of 95 ℃ for about 3 seconds.
In some embodiments, the step of annealing the forward primer, the reverse primer, and the detection probe of the target genomic DNA sequence is performed at about 40 ℃ to about 80 ℃, about 50 ℃ to about 70 ℃, about 55 ℃ to about 65 ℃ for about 15 seconds to about 45 seconds, about 20 seconds to about 40 seconds, about 25 seconds to about 35 seconds. In some embodiments, the step of annealing the forward primer, reverse primer and detection probe of the target genomic DNA sequence is performed at about 60 ℃ for about 30 seconds.
In some embodiments, synthesizing (i.e., replicating) second strand DNA from the annealed forward and reverse primers is performed at about 40 ℃ to about 80 ℃, about 50 ℃ to about 70 ℃, about 55 ℃ to about 65 ℃ for about 15 seconds to about 45 seconds, about 20 seconds to about 40 seconds, about 25 seconds to about 35 seconds. In some embodiments, the step of annealing the forward primer, reverse primer and detection probe of the target genomic DNA sequence is performed at about 60 ℃ for about 30 seconds.
In some embodiments, it was found that about 1 μ L, about 2 μ L, about 3 μ L, about 4 μ L, or about 5 μ L of a genomic DNA sample prepared according to the methods described herein was combined with only about 0.05 μ L, about 0.10 μ L, about 0.15 μ L, about 0.20 μ L, about 0.25 μ L, or about 0.25 μ L of 30X, 35X, 40X, 45X, 50X, or 100X real-time PCR assay mix and distilled water to form a PCR master mix. In some embodiments, the final volume of the PCR master mix is about 1.5. mu.L, about 2.5. mu.L, about 5. mu.L, about 6. mu.L, about 7. mu.L, about 8. mu.L, about 9. mu.L, about 0. mu.L, about 11. mu.L, about 12. mu.L, about 13. mu.L, about 14. mu.L, about 15. mu.L, about 16. mu.L, about 17. mu.L, about 18. mu.L, about 19. mu.L, or about 20. mu.L or more. In some embodiments, it was found that 2 μ L of the genomic DNA sample prepared as described above was combined with only about 0.15 μ L of the 40X real-time PCR assay mixture and 2.85 μ L of distilled water to form a PCR master mix.
Although exemplary reactions are described herein, one skilled in the art understands how to vary the temperature and time based on probe design. Further, any combination of the above times and temperatures are contemplated by the present methods.
PCR primers and primer design
In some embodiments, the primers are tested and designed in a laboratory setting. In some embodiments, the primers are designed by a computer-based electronic (in silico) method. The primer sequence is based on the amplicon sequence or target nucleic acid sequence to be amplified. Short amplicons generally replicate more efficiently and result in more efficient amplification than long amplicons.
In designing primers, the skilled artisan will appreciate the need to consider melting temperatures (T.sub.T) based on GC and AT content of the designed primer and secondary structure considerations (increased GC content may lead to increased secondary structure)m(ii) a The temperature at which half of the primer-target duplex dissociates and becomes single-stranded, and is an indication of duplex stability; t ismAn increase indicates an increase in stability). T can be calculated using a variety of methods known in the artMAnd those skilled in the art will readily understand the various techniques for calculating TMSuch a method of (a). Such methods include, for example, but are not limited to, on-line tools (such as T available on the world Wide Web promega. com/techserv/tools/biograph/calc 11.htmMCalculator). Primer specificity is defined by its complete sequence in combination with the 3' end sequence (the part extended by Taq polymerase). In some embodiments, the 3' end should have at least 5 to 7 unique nucleotides that are not found anywhere else in the target sequence to help reduce false priming and false amplification product production. The forward and reverse primers typically bind to the target with similar efficiency. In some cases, alignment and primer design can be aided using tools (e.g., as NCBI BLAST, on the world wide web NCBI.
An additional aspect of primer design is primer complexity or linguistic sequence complexity (see, Kalendar R, et al (Genomics,98(2):137-&Chemistry 23: 263-274 (1999) and Y.L.Orlov, V.N.Potapov, compliance: an internet resource for analysis of DNA sequencecomplete, Nucleic Acids Res.32: W628-W633 (2004)), and is calculated as the sum of the observed ranges of 1 to L word lengths (xi) in the sequence divided by the sum of the expected (E) values for that sequence length. Some G-rich (and C-rich) nucleic acid sequences fold into stacked four-stranded DNA structures containing G tetraploids (see, world wide web quadruplex. In some cases, these tetraploids are formed by intermolecular association of two or four DNA molecules (dimerization of sequences comprising two G bases) or intermolecular folding of a single strand containing four guanine units (see, P.S.Ho, PNAS,91: 9549-; in some cases, due to its low complexity of language (for (TTAGGG)4LC ═ 32%), these were eliminated by primer design.
These methods include various bioinformatic tools on CG content and melting temperature to model sequences with GC bias, (G-C)/(G + C), AT bias, (a-T)/(a + T), CG-AT bias, (S-W)/(S + W) or purine-pyrimidine (R-Y)/(R + Y) bias, and provide tools for determining language sequence complexity profiles. For example, the GC offset in a sliding window of n (where n is a positive integer), bases are calculated in steps of one base according to the formula (G-C)/(G + C), where G is the total number of guanines and C is the total number of cytosines for all sequences in the window (Y. Benita, et al, nucleic acids Res.31: e99 (2003)). A positive GC offset indicates G base excess, while a negative GC offset indicates C base excess. Similarly, other offsets in the sequence are calculated. In some embodiments, such methods and others are employed to determine primer complexity.
According to some non-limiting exemplary embodiments, exonuclease primers are used: (
Figure BDA0002282545080000161
Probe) for real-time PCR. In these embodiments, the primers utilize the 5' exonuclease activity of a thermostable polymerase (e.g., Taq) to cleave double-labeled probes present in the amplification reaction (see, e.g., Wittwer, C. et al, Biotechniques 22:130-138, 1997). Although complementary to the PCR product, the primer probe used in this assay is different from the PCR primer and is doubly labeled with a molecule capable of fluorescence and a molecule capable of quenching fluorescence. When the probe is intact, intramolecular quenching of the fluorescent signal within the DNA probe results in little to no signal. When the fluorescent molecule is released by exonuclease activity of Taq during amplification, the quenching is greatly reduced, resulting in an increase in the fluorescent signal. Non-limiting examples of fluorescent probes include 6-carboxy-fluorescein moieties and the like. Exemplary quenchers include Black Hole Quencher 1 moieties and the like.
Exemplary primers include, but are not limited to, those described herein. Primers for use in the disclosed methods are also found in U.S. patent publication No. 20120077200, which is incorporated herein by reference for all purposes. In some embodiments, PCR primers for use in the methods of the present disclosure include, but are not limited to, those listed below in the tables of fig. 5B and 5C, and are found for use in TGFBI gene detection. The biophysical parameters of each primer can be calculated using world wide web primer digital.com/tools/primer analyzer.
In some embodiments, the linguistic sequence complexity of the real-time PCR primers used in the disclosed methods is at least 70%, at least 72%, at least 75%, at least 77%, at least 80%, at least 82%, at least 85%, at least 88%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99%.
d. Design of detection probe and detection probe
Detection probes commonly used by those skilled in the art include, but are not limited to, hydrolysis probes (also referred to as hydrolysis probes)
Figure BDA0002282545080000171
Probes, 5' nuclease probes or double-labeled probes), hybridizationProbe and Scorpion primer (which binds primer and detection probe in one molecule). In some embodiments, the probe is designed to have a higher T than the primermTo facilitate efficient signal generation. Calculating T using any of a variety of methods known in the artmAnd those skilled in the art will readily understand that such is used to calculate TmThe various methods of (1); thus, such methods include, for example, those available in on-line tools, such as the calculator available on the world Wide Web promega.com/techserv/tools/bioomath/calc 11. htm.
In some embodiments, the detection probes contain various modifications. In some embodiments, the detection probes comprise modified nucleic acid residues such as, but not limited to, 2' -O-methyl ribonucleotide modifications, phosphorothioate backbone modifications, phosphorodithioate backbone modifications, phosphoramidate backbone modifications, methylphosphonate backbone modifications, 3' terminal phosphate modifications, and/or 3' alkyl substitutions.
In some embodiments, the affinity of the detection probe for the target sequence is increased as a result of the modification. Such detection probes include detection probes having increased length as well as detection probes containing chemical modifications. Such modifications include, but are not limited to, 2 '-fluoro (2' -deoxy-2 '-fluoro-nucleoside) modifications, LNA (locked nucleic acid), PNA (peptide nucleic acid), ZNA (zipper nucleic acid), morpholino, methylphosphonate, phosphoramidate, polycation conjugates, and 2' -pyrene modifications. In some embodiments, the detection probes contain one or more modifications, including 2' fluoro modifications (also known as 2' -deoxy-2 ' -fluoro-nucleosides), LNA (locked nucleic acids), PNA (peptide nucleic acids), ZNA (zipper nucleic acids), morpholinos, methylphosphonates, phosphoramidates, and/or polycation conjugates.
In some embodiments, the detection probe contains a detectable moiety, such as those described herein and any detectable moiety known to those of skill in the art. Such detectable moieties include, for example, but are not limited to, fluorescent labels and chemiluminescent labels. Examples of such detectable moieties may also include members of a FRET pair. In some embodiments, the detection probe contains a detectable entity.
Fluorescent markersExamples of (B) include, but are not limited to, ABY, JUN, AMCA, DEAC (7-diethylaminocoumarin-3-carboxylic acid), 7-hydroxy-4-methylcoumarin-3, 7-hydroxycoumarin-3, MCA (7-methoxycoumarin-4-acetic acid), 7-methoxycoumarin-3, AMF (4' - (aminomethyl) fluorescein), 5-DTAF (5- (4, 6-dichlorotriazinyl) aminofluorescein), 6-DTAF (6- (4, 6-dichlorotriazinyl) aminofluorescein), 6-FAM (6-carboxyfluorescein; also known as FAM, including
Figure BDA0002282545080000181
FAMTM)、TAQMAN
Figure BDA0002282545080000182
5(6) -FAM cadaverine, 5(6) -FAM ethylenediamine, 5-FITC (FITC isomer I; fluorescein 5-isothiocyanate), 5-FITC cadaverine, fluorescein-5-maleimide, 5-IAF (5-iodoacetamido fluorescein), 6-JOE (6-carboxy-4 ',5' -dichloro-2 ',7' -dimethoxy fluorescein), 5-CR110 (5-carboxyrhodamine 110), 6-CR110 (6-carboxyrhodamine 110), 5-CR6G (5-carboxyrhodamine 6G), 6-CR6G (6-carboxyrhodamine 6G), 5(6) -rhodamine 6G cadaverine, 5(6) -carboxyrhodamine 6G ethylenediamine, 5-ROX (5-carboxy-X-rhodamine), 6-ROX (6-carboxy-X-rhodamine), 5-TAMRA (5-carboxytetramethylrhodamine), 6-TAMRA (6-carboxytetramethylrhodamine), 5-TAMRA cadaverine, 6-TAMRA cadaverine, 5-TAMRA ethylenediamine, 6-TAMRA ethylenediamine, 5-TMR C6 maleimide, 6-TMR C6 maleimide, TR C2 maleimide; TR cadaverine, 5-TRITC, the G isomer (tetramethylrhodamine 5-isothiocyanate), 6-TRITC, the R isomer (tetramethylrhodamine-6-isothiocyanate), dansylcadaverine (5-dimethylaminonaphthalene-1- (N- (5-aminopentyl)) sulfonamide), EDANS C2 maleimide, fluoroamine, NBD, and pyrromethene (pyrromethene) and derivatives thereof.
Examples of chemiluminescent labels include, but are not limited to, those used with the Southern Blot and Western Blot protocols (see, e.g., Sambrook and Russell, molecular cloning: A laboratory Manual (3 rd edition) (2001), incorporated herein by reference in its entirety). Examples include, but are not limited to- (2' -spiroadamantane) -4-methoxy-4- (3 "-phosphoryloxy) phenyl-1, 2-dioxane (AMPPD), acridinium esters, and adamantyl-stabilized 1, 2-dioxane and derivatives thereof.
In some embodiments, the labeled probe is used to hybridize within the amplified region during amplification. Probes may be modified to avoid them acting as primers for amplification. The detection probe may be labeled with two fluorescent dyes, one capable of quenching the fluorescence of the other. One dye is attached to the 5' end of the probe and the other dye is attached at an internal site, so quenching occurs when the probe is in a non-hybridized state.
Typically, real-time PCR probes consist of a dye pair (reporter and acceptor) that participates in Fluorescence Resonance Energy Transfer (FRET), whereby the acceptor dye quenches the emission of the reporter dye. In general, fluorescently labeled probes improve the specificity of amplicon quantification.
In view of the present disclosure, the real-time PCR used in some embodiments of the disclosed methods also includes the use of one or more hybridization probes (i.e., detection probes), as determined by one of skill in the art. By way of non-limiting example, such hybridization probes include, but are not limited to, one or more of those provided in the methods. Exemplary probes (e.g., HEX channel and/or FAM channel probes) are understood by those of skill in the art.
According to some exemplary embodiments, detection probes and primers are conveniently selected, for example, using electronic analysis of primer design software and cross-referencing available nucleotide databases of genes and genomes maintained at the National Center for Biotechnology Information (NCBI). In some embodiments, some additional guidelines may be used to select primers and/or probes. For example, in some embodiments, the primers and probes are selected so that they are close together but do not overlap. In some embodiments, the primers may have the same (or close T's)M) (e.g., about 58 ℃ to about 60 ℃). In some embodiments, T of the probeMRatio of TMT selected by primerMAbout 10 c higher. In some embodiments, the length of the probe and primer is selected to be about 17 to 39 bases equivalent. In some cases, the skilled artisan will select the appropriate primer and/or probeThese and other guidelines are used.
Probes useful in the methods of the invention include, but are not limited to, the following exemplary probes listed in fig. 5B and 5C.
Examples
Example 1: global document search
Interrogation of the HGMD database revealed 62 different TGFBI mutations. The HGMD database was used to identify papers in which these mutations were described in order to construct global profiles (fig. 1A and 1B). Each marker in the world map contains a summary of mutations reported in a particular region or country/region. Summary includes race, mutation and total number of cases reported for each mutation (fig. 1A). There was no significant difference in the distribution of mutations in a particular population or geographic region. There are few cases reported in south america, and nothing was reported in africa or russia. The map may be used to extract information for a particular country/region, such as london, indicated by the red arrow in fig. 1B.
Worldwide, 75% of TGFBI mutations reported in more than 1,600 cases consist of one of five mutations currently detected by available genetic tests. Although it is possible to issue new TGFBI mutations reported, in contrast, the most common TGFBI mutations found at codons R124 and R555 were not reported. Therefore, it is difficult to obtain an accurate assessment of the true global detection rate of TGFBI malnutrition in the literature.
Based on the ranking of the highest number of reported cases in our study, the effect on the detection rate of TGFBI mutations was evaluated by adding six mutations to the available gene test panel. The table of figure 3 shows the number of reported cases for each of the five most common mutations and six additional mutations proposed for the extension test. Notably, H626R is the fourth most prevalent mutation next to R124L. This finding supports the incorporation of this mutation into the extended group for the diagnosis of TGFBI corneal dystrophy. Although only 4 TGFBI corneal dystrophies associated with M502V were reported in the literature (supplementary material), a heterozygous mutation for M502V was detected in one sample. Therefore, it is included in the extended set.
From the literature reported cases, the addition of 6 new mutations in the existing group can increase global detection rates from 75% to 90% (fig. 2). The addition of additional mutations to the available gene tests theoretically resulted in a 32% increase in detection rate in south america and a 30% increase in north america. Both european and asian detection rates increased 13% and also benefited from the eleven mutation panel proposed (fig. 2).
Example 2: analysis of globally available genetic test data
Since 2008, over 600,000 samples have been tested worldwide by available genetic testing; most samples were from korea and japan, with the test being for pre-refractive surgical screening. Analysis of global test data showed that the detection rate in korea was about 15 out of 10,000, with a reported prevalence of 1 out of 87010In close proximity. The detection rate of TGFBI mutations in Japan (3 out of 10,000) is lower than that in Korea. In korea, this test is a routine screening for all candidates for refractive surgery, whereas in japan, patients are first subjected to a rigorous clinical examination, and only those patients for whom no corneal abnormality is detected submit samples for genetic testing.
Korean and japanese clinics/hospitals use genetic testing for screening purposes as it forms part of the refractive surgery practice guidelines. In the united states, some clinics/hospitals use this test for screening at the pre-operative exam of vision correction surgery, while others use it as confirmation of clinical diagnosis, or to rule out TGFBI mutations if the surgeon has any doubt about the defect noted in the patient's cornea. European clinics primarily utilize this test for this type of clinical validation.
Example 3: evaluation of expanded groups with six additional mutations
Few studies of populations with corneal dystrophy such as 2016UCLMoorfield performed Sanger sequencing of the entire TGFBI gene. This study provides us with a set of data based on which to evaluate the addition of six new mutation sites to increase the pointing rate of a given population. Briefly, the study consisted of 91 unrelated TGFBI corneal dystrophy cases, 68 of which were diagnosed as epithelial interstitial TGFBI-related dystrophies (RBCD, TBCD, LCD and r)GCD), 23 cases diagnosed as bilateral Epithelial Basement Membrane Dystrophy (EBMD)4. For the uk population, six TGFBI mutation groups were evaluated to determine whether these mutations were suitable for combination with the five mutant gene test. The data show that the detection rate in the uk population increased from 90% to 97% (table in figure 4). Other candidate mutations, such as V625D and a620D in the table of fig. 4, may be considered to increase the detection rate to almost 100%. This finding indicates that the inclusion of six additional mutations in the available gene tests, while increasing the index rate, still missed some of the important mutations found in the uk population.
16 of the 19 samples with clinical indications (negative with the original gene test) remained negative (84.2% of the total), while three tests in the expanded group were positive (15.7% of the total). WES results for maternal-child pairs with late clinical diagnosis of LCD were positive for the heterozygous TGFBI H626R mutation. Parallel real-time PCR testing showed the same heterozygous H626R mutation. The third sample was found to be heterozygous for M502V. Sanger sequencing confirmed the results. Subsequent patient history revealed very little corneal scarring on the patient's left cornea. There was no family history of corneal dystrophy or haze.
Based on evidence in the literature, the addition of six mutations to available genetic tests resulted in a 15% increase in detection rate. This is consistent with a 15.7% improvement in the detection of our sample cohort (3 out of 19 samples). No geographic or demographic differences were detected; therefore, six additional mutations newly proposed are suitable for use worldwide as an enhancement to current genetic testing. The new mutation greatly improves the mutation detection rate.
With respect to the presence of 6 additional mutations in the extension set, testing of 19 samples demonstrated that the extension gene test improved the detectability of TGFBI mutations.
Example 4: multiplex detection of mutations
First, for each mutation as shown in fig. 5B, a form 1(V1, version 1) primer, a VIC label probe having a normal sequence, and a FAM label probe having a mutant sequence were combined to detect the mutation. Detection of each of R124S, a546D, H572R, G623D, H626R, and M502V was successful. Next, for each of the a546D, H572R, and G623D mutations shown in fig. 5B, the V1 primer, the ABY label probe having a normal sequence, and the JUN label probe having a mutant sequence were combined to detect the mutation. Only the detection of the G623D mutation was successful. Third, for each of the R124S, H626R, and M502V mutations shown in fig. 5C, the form 2(V2) primer, a VIC marker probe having a normal sequence, and a FAM marker probe having a mutated sequence were combined to detect the mutations. Only the detection of H626R was successful. Fourth, for each of the a546D, H572R, and G623D mutations shown in fig. 5C, the V2 primer, the ABY label probe having a normal sequence, and the JUN label probe having a mutated sequence were combined to detect the mutation. Mutations were not correctly detected. Fifth, in a single reaction mixture, primers and probes are mixed to detect different combinations of mutations.
The following PCR master mix volume calculations and PCT conditions were used:
volume of TaqPath ProAmp Master mix; 2.5uL per test
Forward and reverse primers for M502V V1 primer, and volume of VIC and FAM probe mixture; 0.05uL per test
Forward and reverse primer volumes of G623D 20pM V1 primer: 0.05uL per test
G623D 50pM V1 ABY probe volume: 0.025uL per test
G623D 50pM V1 JUN probe volume: 0.025uL per test
Volume of water: 2.35uL per test
PCR fluorescence detection amplification cycle number and conditions:
cycle number: 40 cycles
Cycling conditions;
pre-PCR read (hold state): 60.0-01: 00 min
And (3) a heat preservation stage: 95.0-00: 20 min
And (3) circulating state: 40 cycles of 95.0 deg.C-00: 30 minutes
post-PCR read (hold phase): 60.0-01: 00 min
In addition to the primers and probes used for different combinations of mutations in a single reaction mixture, only the V1M 502V primer, the VIC and FAM probes with the V1G 623D primer, and the ABY and JUN probes successfully detected two mutations in a single reaction mixture, as shown in fig. 6A and 6B. The reagent combinations of R124S and a546D and H626R and H572R failed to detect mutations correctly.
The GRCh38.p7 homo sapiens transforming growth factor β induced (TGFBI), RefSeqGene on chromosome 5, NCBI reference sequence NG-012646.1 (SEQ ID NO: 61) are shown below.
Figure BDA0002282545080000231
Figure BDA0002282545080000241
Figure BDA0002282545080000251
Figure BDA0002282545080000261
Figure BDA0002282545080000271
Figure BDA0002282545080000281
Figure BDA0002282545080000291
Figure BDA0002282545080000301
Figure BDA0002282545080000311
Figure BDA0002282545080000321
Figure BDA0002282545080000331
Figure BDA0002282545080000341
Figure BDA0002282545080000351
The TGFBI gene protein product (β IG-H3 protein sequence; NCBI reference NG-012646.1) (SEQ ID NO: 62) is shown below.
Figure BDA0002282545080000352
All headings and section designations are used for clarity and reference purposes only and should not be construed as limiting in any way. For example, those skilled in the art will recognize the usefulness of combining various aspects from different headings as appropriate in view of the spirit and scope of the present invention as described herein.
All references cited herein are hereby incorporated by reference in their entirety and for all purposes to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference in its entirety for all purposes.
As will be apparent to those skilled in the art, many modifications and variations of this application can be made without departing from the spirit and scope of the invention. The specific embodiments and examples described herein are offered by way of example only, and the application is to be limited only by the terms of the appended claims, along with the full scope of equivalents to which such claims are entitled.
Sequence listing
<110> Abelino, USA labs GmbH
Chao-Shern, Connie
<120> method for multiplex detection of alleles associated with corneal dystrophy
<130>070335-5012
<150>62/624,661
<151>2018-01-31
<150>62/624,660
<151>2018-01-31
<150>62/573,537
<151>2017-10-17
<150>62/483,588
<151>2017-04-10
<160>62
<170>PatentIn version 3.5
<210>1
<211>100
<212>DNA
<213> Artificial sequence
<220>
<223> R124S target sequence
<220>
<221>misc_feature
<222>(50)..(50)
<223> n is c or a
<400>1
acgagaccct ggagtcgttg gatccaccac cactcagctg tacacggacn gcacggagaa 60
gctgaggcct gagatggagg ggcccggcag cttcaccatc 100
<210>2
<211>101
<212>DNA
<213> Artificial sequence
<220>
<223> A546D target sequence
<220>
<221>misc_feature
<222>(51)..(51)
<223> n is c or a
<400>2
gaccctcaac cgggaaggag tctacacagt ctttgctccc acaaatgaag ncttccgagc 60
cctgccacca agagaacgga gcagactctt gggtaaagac c 101
<210>3
<211>105
<212>DNA
<213> Artificial sequence
<220>
<223> H572R target sequence
<220>
<221>misc_feature
<222>(53)..(53)
<223> n is a or g
<400>3
cttgccaaca tcctgaaata ccccaaggaa cttgccaaca tcctgaaata ccncattggt 60
gatgaaatcc tggttagcgg aggcatcggg gccctggtgc ggcta 105
<210>4
<211>101
<212>DNA
<213> Artificial sequence
<220>
<223> G623D target sequence
<220>
<221>misc_feature
<222>(51)..(51)
<223> n is g or a
<400>4
gagtgtcaac aaggagcctg ttgccgagcc tgacatcatg gccacaaatg ncgtggtcca 60
tgtcatcacc aatgttctgc agcctccagg taagtgtcgc a 101
<210>5
<211>101
<212>DNA
<213> Artificial sequence
<220>
<223> H626R target sequence
<220>
<221>misc_feature
<222>(50)..(50)
<223> n is a or g
<400>5
aaggagcctg ttgccgagcc tgacatcatg gccacaaatg gcgtggtccn tgtcatcacc 60
aatgttctgc agcctccagg taagtgtcgc atccccactg a 101
<210>6
<211>121
<212>DNA
<213> Artificial sequence
<220>
<223> M502V target sequence
<220>
<221>misc_feature
<222>(61)..(61)
<223> n is a or g
<400>6
cacgacaaga gggggaggta cgggaccctg ttcacgatgg accgggtgct gaccccccca 60
ntggggactg tcatggatgt cctgaaggga gacaatcgct ttaggtaatt agttccatcc 120
c 121
<210>7
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> R124S Forward primer
<400>7
ccaccaccac tcagctgtac 20
<210>8
<211>23
<212>DNA
<213> Artificial sequence
<220>
<223> A546D Forward primer
<400>8
tctacacagt ctttgctccc aca 23
<210>9
<211>19
<212>DNA
<213> Artificial sequence
<220>
<223> H572R Forward primer
<400>9
ccaaggaact tgccaacat 19
<210>10
<211>18
<212>DNA
<213> Artificial sequence
<220>
<223> G623D Forward primer
<400>10
ttgccgagcc tgacatca 18
<210>11
<211>22
<212>DNA
<213> Artificial sequence
<220>
<223> H626R Forward primer
<400>11
ctgacatcat ggccacaaat gg 22
<210>12
<211>16
<212>DNA
<213> Artificial sequence
<220>
<223> M502V Forward primer
<400>12
ggaccgggtg ctgacc 16
<210>13
<211>19
<212>DNA
<213> Artificial sequence
<220>
<223> R124S reverse primer
<400>13
tccatctcag gcctcagct 19
<210>14
<211>19
<212>DNA
<213> Artificial sequence
<220>
<223> A546D reverse primer
<400>14
ctccgttctc ttggtggca 19
<210>15
<211>23
<212>DNA
<213> Artificial sequence
<220>
<223> H572R reverse primer
<400>15
cctccgctaa ccaggatttc atc 23
<210>16
<211>23
<212>DNA
<213> Artificial sequence
<220>
<223> G623D reverse primer
<400>16
tgcagaacat tggtgatgac atg 23
<210>17
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> H626R reverse primer
<400>17
ggaggctgca gaacattggt 20
<210>18
<211>18
<212>DNA
<213> Artificial sequence
<220>
<223> M502V reverse primer
<400>18
ctcccttcag gacatcca 18
<210>19
<211>15
<212>DNA
<213> Artificial sequence
<220>
<223> R124S VIC Probe (Normal)
<400>19
ctccgtgcgg tccgt 15
<210>20
<211>16
<212>DNA
<213> Artificial sequence
<220>
<223> A546D VIC Probe (Normal)
<400>20
ctcggaaggc ttcatt 16
<210>21
<211>18
<212>DNA
<213> Artificial sequence
<220>
<223> H572R VIC Probe (Normal)
<400>21
cctgaaatac cacattgg 18
<210>22
<211>16
<212>DNA
<213> Artificial sequence
<220>
<223> G623D VIC Probe (Normal)
<400>22
cacaaatggc gtggtc 16
<210>23
<211>16
<212>DNA
<213> Artificial sequence
<220>
<223> H626R VIC Probe (Normal)
<400>23
cgtggtccat gtcatc 16
<210>24
<211>17
<212>DNA
<213> Artificial sequence
<220>
<223> M502V VIC Probe (Normal)
<400>24
tgacagtccc cattggg 17
<210>25
<211>16
<212>DNA
<213> Artificial sequence
<220>
<223> R124S FAM Probe (mutation)
<400>25
tctccgtgct gtccgt 16
<210>26
<211>16
<212>DNA
<213> Artificial sequence
<220>
<223> A546D FAM Probe (mutation)
<400>26
ctcggaagtc ttcatt 16
<210>27
<211>18
<212>DNA
<213> Artificial sequence
<220>
<223> H572R FAM Probe (mutation)
<400>27
cctgaaatac cgcattgg 18
<210>28
<211>17
<212>DNA
<213> Artificial sequence
<220>
<223> G623D FAM Probe (mutant)
<400>28
ccacaaatga cgtggtc 17
<210>29
<211>14
<212>DNA
<213> Artificial sequence
<220>
<223> H626R FAM Probe (mutant)
<400>29
tggtccgtgt catc 14
<210>30
<211>17
<212>DNA
<213> Artificial sequence
<220>
<223> M502V FAM Probe (mutation)
<400>30
tgacagtccc cactggg 17
<210>31
<211>32
<212>DNA
<213> Artificial sequence
<220>
<223> A546D ABY Probe (Normal) -NN complementation
<400>31
cttggtggca gggctcggaa ggcttcattt gt 32
<210>32
<211>33
<212>DNA
<213> Artificial sequence
<220>
<223> H572R ABY Probe (Normal) -NN complementation
<400>32
cttgccaaca tcctgaaata ccacattggt gat 33
<210>33
<211>31
<212>DNA
<213> Artificial sequence
<220>
<223> G623D ABY Probe (Normal) -NN complementation
<400>33
catcatggcc acaaatggcg tggtccatgt c 31
<210>34
<211>32
<212>DNA
<213> Artificial sequence
<220>
<223> A546D JUN Probe (mutation) HH complementation (complement)
<400>34
cttggtggca gggctcggaa gtcttcattt gt 32
<210>35
<211>33
<212>DNA
<213> Artificial sequence
<220>
<223> H572R JUN Probe (mutation) HH complementation (complement)
<400>35
cttgccaaca tcctgaaata ccgcattggt gat 33
<210>36
<211>31
<212>DNA
<213> Artificial sequence
<220>
<223> G623D JUN Probe (mutation) HH complementation (complement)
<400>36
catcatggcc acaaatgacg tggtccatgt c 31
<210>37
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> R124S Forward primer
<400>37
gaccctggag tcgttggatc 20
<210>38
<211>24
<212>DNA
<213> Artificial sequence
<220>
<223> A546D Forward primer
<400>38
cgggaaggag tctacacagt cttt 24
<210>39
<211>21
<212>DNA
<213> Artificial sequence
<220>
<223> H572R Forward primer
<400>39
tgaaataccc caaggaactt g 21
<210>40
<211>18
<212>DNA
<213> Artificial sequence
<220>
<223> G623D Forward primer
<400>40
aggagcctgt tgccgagc 18
<210>41
<211>22
<212>DNA
<213> Artificial sequence
<220>
<223> H626R Forward primer
<400>41
ttgccgagcc tgacatcatg gc 22
<210>42
<211>16
<212>DNA
<213> Artificial sequence
<220>
<223> M502V Forward primer
<400>42
gttcacgatg gaccgg 16
<210>43
<211>18
<212>DNA
<213> Artificial sequence
<220>
<223> R124S reverse primer
<400>43
cccggcagct tcaccatc 18
<210>44
<211>21
<212>DNA
<213> Artificial sequence
<220>
<223> A546D reverse primer
<400>44
aagagtctgc tccgttctct t 21
<210>45
<211>24
<212>DNA
<213> Artificial sequence
<220>
<223> H572R reverse primer
<400>45
gccccgatgc ctccgctaac cagg 24
<210>46
<211>24
<212>DNA
<213> Artificial sequence
<220>
<223> G623D reverse primer
<400>46
cctggaggct gcagaacatt ggtg 24
<210>47
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> H626R reverse primer
<400>47
cacttacctg gaggcgcaga 20
<210>48
<211>18
<212>DNA
<213> Artificial sequence
<220>
<223> M502V reverse primer
<400>48
agcgattgtc tcccttca 18
<210>49
<211>27
<212>DNA
<213> Artificial sequence
<220>
<223> R124S VIC Probe (Normal)
<400>49
cgacttctcc gtgcggtccg tgtacag 27
<210>50
<211>16
<212>DNA
<213> Artificial sequence
<220>
<223> H626R VIC Probe (Normal)
<400>50
tggcgtggtc catgtc 16
<210>51
<211>17
<212>DNA
<213> Artificial sequence
<220>
<223> M502V VIC Probe (Normal)
<400>51
tccccattgg ggggggt 17
<210>52
<211>40
<212>DNA
<213> Artificial sequence
<220>
<223> R124S FAM Probe (mutation)
<400>52
cgacttcgac tttctccgtg ctgtccgtgt acaggtacag 40
<210>53
<211>16
<212>DNA
<213> Artificial sequence
<220>
<223> H626R FAM Probe (mutant)
<400>53
tggcgtggtc cgtgtc 16
<210>54
<211>17
<212>DNA
<213> Artificial sequence
<220>
<223> M502V FAM Probe (mutation)
<400>54
tccccactgg ggggggt 17
<210>55
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> A546D ABY Probe (Normal) -NN complementation
<400>55
agggctcgga aggcttcatt 20
<210>56
<211>22
<212>DNA
<213> Artificial sequence
<220>
<223> H572R ABY Probe (Normal) -NN complementation
<400>56
acatcctgaa ataccacatt gg 22
<210>57
<211>16
<212>DNA
<213> Artificial sequence
<220>
<223> G623D ABY Probe (Normal) -NN complementation
<400>57
cacaaatggc gtggtc 16
<210>58
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> A546D JUN Probe (mutation) HH complementation (complement)
<400>58
agggctcgga agtcttcatt 20
<210>59
<211>22
<212>DNA
<213> Artificial sequence
<220>
<223> H572R JUN Probe (mutation) HH complementation (complement)
<400>59
acatcctgaa ataccgcatt gg 22
<210>60
<211>16
<212>DNA
<213> Artificial sequence
<220>
<223> G623D JUN Probe (mutation) HH complementation (complement)
<400>60
cacaaatgac gtggtc 16
<210>61
<211>41924
<212>DNA
<213> Intelligent people
<400>61
agagggaaca gaagcatcta ggagagattt ggaaagaaca cctgcaggat cttggtgact 60
gattgcacgt gggggaccag agagcaggga caggcaaaac tgaatgcaag gtttccaacc 120
ttgagcggca ccacaggcaa gaatgaagaa atgaagaagg ggagctggac gaaagagcca 180
agggatttct gcattttgga atgaattgct gctgggtggt gtccatttcc ctgaaggcct 240
ttatcctacg tgcaagaaaa ctcgtgggaa gcagaggaaa ggcatgtgta agccaacaat 300
catctgtggg catccttcca ctaaagtatt tgaggtcagg caactaaagc aacctcaaaa 360
gtgcctctgg attcttctta gatattttag ctgagccaaa tcaatgaaac tctcatgaaa 420
aatcggtttc cctggaaaat gaaattgggt tctaaccaac aagtagcatt tggcaggccc 480
tgattaagaa agccagtgtt tggagaagtt gtgaaaacag ccaagtcatt taagaaacta 540
aacactgggg cctaatgcca ttctagggct gcgacggctg ttctgttccc atcaattgca 600
gagcccgaag cctcaagttt gttttaagtt cctgccatta caaacctgtc gattatccca 660
gcctcccttg cgggctttga aaagagagaa gaatggaagg tgactgtggc caatttcccc 720
tccctgtcca gtgtgtggaa gacactgaat atgcaactac tgaccttgtg cctgggcatc 780
ttgaaggtct tccacaaagt gagctgggcc tcagcggaag atgagagttc ctctgtggtc 840
acttcactgg tacacatttt caggtgtatt tcgtttcttc catgcctaca taaattgaat 900
cctctgttaa ccacctctga gctcatagct atttaacatg accctgtagt cctgtgcata 960
caaatcacct tgggatctgg tgaaaatgca gattcagtgg gtcttgggag gttgggaggt 1020
tataagattc cacgtttctt catgagagct agaaaaaata aataaataaa taaaaaattt 1080
ttaaattttc cacatttcta atgaactctg gggttgtgct gatgatgctg ttttgcagat 1140
cacattttga gtggcaagac tgtggaaaat ccttgagaaa tcaatccaaa atcccctaaa 1200
tggtactaca atcacacctt aatgttagta aactgagatg tttcttacct ttatttgtaa 1260
catggaaaaa acaattactg tatatgaagt accattctaa gttctgtgtg ttacacaagg 1320
gatggcaatt ttccccaaaa tttgattcac atcttttcat ttggatatct cttgccaaaa 1380
ctcacctttt tttctcccta gcaagtcttg gggagctgaa ttttaagagc tctttattta 1440
gctatatggt ggcctctgaa aatgattttg actgtatctt ctgtctccat gtatgcccaa 1500
gcatcaccag gaactttagg gagtaaggaa aaggcaggcc tggtgtcagc tgggctgcag 1560
atgccagctc tcccaccaac aggcccagaa ccagtttctt tcctaggttc ctttgtgaag 1620
aacttgttgg aactactaat ttatcatgat gcataaagct tgttgtcata ccctacagta 1680
ttattttcaa aacctgaatg tttttggtga cctttcatgt gccacaaaat gtaaaagcag 1740
tcatttttta aaaagtgctt gaaaaagtct agtaaagatt cttccaagca agcctcactt 1800
tctcctgttt agattgttta atctggaagg aaaaaattct ttctcaaatg acagggtttc 1860
tggtgctctg tgtttgcctg gttggctctg ggtcatctgg ggatggaggg tccctgctct 1920
tacctccagc agcatcactc ttgtctccaa agaagcagca acctcaggtg ggagaatggt 1980
tatactcaca gcattctgct tttcatgttt gaaagagggg atgggtggtg gggcatggat 2040
gtgggatttt aaaaaaatat ctaaaccata aataaagtat tactgcaatc tctttactga 2100
gctcatggaa aaactcaagt catcgaatgt tagttttgca gactggagaa gtgaggtcca 2160
gtgaacttgc ttgacttgcc ctaaatcttg ctagagagag agctggaacc agatggcagg 2220
gctcctggcc tcttacatac aaggagcatt tttcctagaa actgcaatgc agccaaattc 2280
tactggtctc aggggaaact tgttctggga gtcagcctga gcttgaatcc ctttgggttc 2340
ttcccattat cctatgccaa gcagtcatgc tgaaaccgag aaatgttttg ctttcaataa 2400
atgaaatgag cattttcaga taattatttc tgtagttgct caaaactatc atattgtttc 2460
attgaaccct actatataga acaatgactg gggagaggta ataataataa tagcaatgca 2520
tatttattgg ccattttact tgaattgtat catgtaatct agtttagagt cctgtgaggt 2580
aggttttatt atcctctcta tgaggttgaa taacttgccc aagaccacac agctaggaag 2640
tagaaagact ggtatttgaa cccatcttct ccttttcttc tccttcctcc tcctcctctc 2700
ttccaacacc tgctcccaag gaagctcatc cagtgcatga ctttagctac cacctgctcg 2760
tagtggtgac tcaaatctgc atctccaatc ctcataccta tcctgagctc aagacctttg 2820
aatatagctc cctcctgtcc atccctcctg gaaatgcagg tggcttgttc acacataatg 2880
tgaacacaaa tggagcactc tcctcacaca cccaaatgtg caccttcacc agcgtgccca 2940
gcacaggcat cccttcctgc cagctatgag cctcgaggtt agctctactc cccctcccta 3000
accctgcatg cccaaggggt ttccaagtct aatcaatgct accactaaaa tctcccatac 3060
acctgttccc tcctctccac tagcttgatc actccccatg caggccctca gttgctttat 3120
gctctcagta ggccctcctc cagtgcccac actctctccc ttctccttcc caccttcttt 3180
ctaccagagt tctaacctct ccaagccccg cttgtctttt tctttccctg gctgccatcc 3240
taactcgccc cttcccttct cagacaagct tctacatgct actcatctct ccatcaaacc 3300
accatattcg ggctttggcc atctgctctc cacagccaag tccccagtgg cctctctgct 3360
tctgacacag tgaaagccat tcagatctgt cttgttggca gcattcctca ctttgagcag 3420
cgccctccta ctaggatacc cctccttgac tacaacccca cattctctacttcctgggct 3480
cttctgtcac tggaggatga ctcccaggtg tgaatcttca tcccgcgtcc ctcactcaag 3540
cccccgatcc tcatatccag ctttatcctc atgggatgct tcaccaggat gagtcataag 3600
cacctcagac tcagggtgtc ccaaaccact catctacctg gcaagcctgc actctgcatg 3660
tgcctcattc tgaacatggc accatcacct gctgcaatgt ccagaccaca aacaccctac 3720
aatatccttg actctccttt ctccccttct ccctgtatac agactccaaa ttctattgag 3780
actattacct cctacacccc tcacatttgc ccagccttcc ccatctctgc ctctaccacc 3840
atagttcaag ctctcccatg gtcccttcct ggttacctgt tcttcttgcc tccttaagcc 3900
tctcatgaca ctggccatgt cacttgcctc cacccatcac ccgctaggct cttagctgga 3960
gtctgggccc tgctaccttc ctccccttct tccctaccct tgactccacc tccctgtgct 4020
tcagccaacc agataacttg agtttcgtga atgcatgcct cagtttacct gattaactca 4080
ttttcatctt tcaggcctca gagcaggtat caccctgtca gggccaggtg cctcttctta 4140
gctcccaaag ccccagctac tcttcatgga acatcattgg cttgggctac ggatcttccc 4200
aaattggagc tttttcacaa agggcttagg tctcactcat tctattaatc catctgtgtc 4260
tccccagggc tagcagtgcc aagtaactga caggtgatta atagatgctt gggtaagtat 4320
cacctcttta ccatgtgaca atttgtttac ctgccttgag ctcctccagg gcaggactct 4380
tgcctttgca gaatctatct ggcaggtact gttgcagaga tgtttactga agaagggaat 4440
gaattagtac caaggtgagg accccaccct tccccacggg ctccaaaagc agcttagagc 4500
ccaacaaaac ctgccccaca tttttggcgt ttctgtggat cacacgattt actcatctgt 4560
ctttcaatga gcatgacagg tggggtgggg gtggagggat tagagattga ggagctgggg 4620
agggtggtca gctcctgggg tgcagaaaca agtctgatgg gccatggtgt tctgggaatc 4680
agcactgcct cccctcaccc ctccctgcag tgttttgtag cctcaagatc agtgagggaa 4740
tcttcgggcc cccagcatgc aggaccgaag cccccgagac agctgtccct cagtcccaag 4800
gtccccattt ggaagcagcc acaggaggcc taagggacct atacccttgg tttgaggaag 4860
actgtggcga gggagagagg gagggagggc tggcagtgag ggcaagggct gggaaaactg 4920
agcacgggca cagtgcggga gcgggtgggt gcccagggca gccaggggcg cacgggttgg 4980
gaggcgccag gcggcccgcc ctccttgcac gggccggccc agcttccccg cccctggcgt 5040
ccgctccctc ccgctcgcag cttacttaac ctggcccggg cggcggaggc gctctcactt 5100
ccctggagcc gcccgcttgc ccgtcggtcg ctagctcgct cggtgcgcgt cgtcccgctc 5160
catggcgctc ttcgtgcggc tgctggctct cgccctggct ctggccctgg gccccgccgc 5220
gaccctggcg ggtcccgcca agtcgcccta ccagctggtg ctgcagcaca gcaggctccg 5280
gggccgccag cacgggtaag ccgagccgcc tggccagggg ctgcggaagg tcaggtagtc 5340
ggggctcgga gcgcaagccg ctgggggcat tgaactgggc tgggggcgca ggggacaaag 5400
cccgaactaa aaaccttgca gcatggagcg ctcggacacc agccctgcac gcggtggaag 5460
gagagaggga gggaggtgga ggaccatgga gggaaagcgg gaggccgccg ctttgtagaa 5520
gggagtgggg aagtggacca gagactttcg acgcaggcca agagcctgag acggacagcg 5580
ctttcagctt ctcctcccag ccactgcaga aagggggaaa tggcaactct ttggccataa 5640
tcaccgtggg agggtgccaa gggcaaagcc cacccagcag tacacctatt ccaacccagc 5700
caggcccccg gccagcgact ccagacaaga acctgggcca cacacggtgg cagcatctaa 5760
ggtgccccag gctcctgtgc tcctggccag gccctgcact cagacactgc tggcacccga 5820
cactgctctc tgggtacagc aagggcaatg tggcacttct tgtcctgccc gatgaagagc 5880
aggagaatgc actgggccct cacacacact gttcaaatgg ggaaactgag tcctgagtgg 5940
ttccactttc ccacagtcct gaagtgtgca ctggagccag gattggagtc tgtcttaaag 6000
taatagctgg gtttgtaaat gtaggacact atcattgcag gaattccttt gagaccctga 6060
agatgtgttg gctttaggag acaaactcaa gcagaaggtc tggtctgata gtggccctaa 6120
tactgaccca ggcagaggca ggcaacattt ctacctcaaa aaccaggcca tacctgcgtc 6180
acaaataccc aggctttgct gcagcttcca gcctacctgg ttgcaccaac ttctttttca 6240
taactaggta aaactatata tgagtagaat cttgtagtga ctcctcagag gaagcctaaa 6300
taccatcggg gtctggcgtt cacacccaca agcaatgccc aaacctccaa gagactgggc 6360
agatctgtgc tcaaatcaaa actcattgtt gggggtgata gagttgactt cacaggccct 6420
gaaagtcttg gctccttgca ctaggagtgc tctgggtacg ggtacaggct gccccttgta 6480
gggcatagtt gctcttgttt cctctacttg tggctttatg gtctaggcct ttcaggagtt 6540
tggggctctg gcggagaggg cctgctggga gcacatctgg ccaccctgca gagtgaaatc 6600
aaaccaggcc tggctgcaac ctcaacaccc tcctggaaag aggagaatac tggggatatc 6660
ctggggtctt tctggaagtg ggagaatcag ctttgacttg ggcagtgtgc agaatagagt 6720
gaggggggat gtcagaaaga tgagagggat atgaggcctc aacatcaaaa tgcaagcacc 6780
tggcattttt attatctctg cccacctctc cgttggtctc tctgcctttc ctgccaatga 6840
attgtgttat gtttgggtgc ctcaatttgc ctaggagggt tctatttctt ctgtatcttc 6900
gccactaagt caggagaaga tccttatagc atgccctgca acagtgtcac ctgtaagggc 6960
atctctctgc acagccacag tgaaggatcc tcaaaggtat tgagggcttt ccatcaagag 7020
ccatctttac agcaaacctc tttcccttca gagcccagaa gagtgctgac cagctggaaa 7080
acagggtttt tttcttaaat gcagatgctc ttgattatga gttccagata ttagatcaac 7140
ttccccacca tacccctgca ggcaaagcct cttaattagc ttcctgcagc acagctggaa 7200
aggcctattg taatctgtga tgggcagagt aatctaagaa gtcacaggag cacccctgtc 7260
ccagtagaat ctggatgcgc aggcacatga accatggcaa aatggttgca ggcacagttg 7320
tatttactct gatctaactg tccctgttaa tgccacaggg ctgcctggcc tggcacacag 7380
ggctgtggcg ccttgtgcaa atggataacg ttgttctagc tccagccttt cattcaaagt 7440
gaaaactgtt agaaagggaa ggaaaacttt gctattttaa ggaattgtag cgtgctgcct 7500
gatatgaagg aagaaataac agctgtgcct tgcttgtgcg cagcactcga ttgccgcttt 7560
tgctttcgac ctcaccacaa cacagtgaga tctactgttc atgttcccat tttacaggag 7620
gtgaaactgc agcttagtga ggtagagagt gacttagttc agacacagaa tgctgttggg 7680
agagtaataa ctatgatatg gtctcttgac tcccagctat atctgtgttg ctatagggaa 7740
ggggaaaaat aatactgaaa gagaagtaaa aatacaatca cacttccaaa catcaaccac 7800
caaaaactga actgaatttc ctgaagcact tggttttcaa atctaagctg aacatcaatg 7860
ctgttattct tgaggcccag aagcaacttg ctcatttcaa ttaagcttca gcatgaactt 7920
cctatgtaca cagcccaccc acactccccg atgtgagaag gagagggtca cagccgcccc 7980
cagcctctgc tgctgccaca aggacagcag cagtggaaac attcagcaaa ggaatgttgg 8040
agccacatcc acaagagact cactgaagat tcgccaaacg cctacggaaa gtggcaggga 8100
attcattgac agtaattgtt tcctgcttga tcagattgaa gagcttctgg gattctgtaa 8160
caataaatag gaccgggggc tggagtatgg ccagcaagga ctcttcaggg gttattcagg 8220
gactgtctaa cctgtgaatc ctaggcagca aacagaaacc aggtattcag aaatctggag 8280
gatttggtca ggcccagcta ggactaggga ggcatgggcc tctgctggct gtggtccctt 8340
ctccagcctt cacttctctt gtccctagat ccttacatgg attcattaat gctcattgtc 8400
cctcctgggc ccactcactt tcacctgttg aacaaaaaac tggccaagag gtgacagtca 8460
tatcaccgca gaagagacag ggcagagaaa tgaaggggca gaatggactc ccacccaaaa 8520
gcctgactct gaatatttga gaattgttca agttcctgca gaggaatcat gatggggaca 8580
gtaggtgtag tttttactgc aatattggtg tcttcttaac aaatacgctg cacatcaagt 8640
gatgtctgtg gatggcattc ttaaagtaac agggaaattg atgttaaaga aatacttcat 8700
cctttgggtg atacctgaag ttctctgagc ttggaggtct tgtgaaagcc ctcagtattg 8760
tttgttttat ttgctttcct ctgacttgtg attcagtcag atgcatgcct gcctctggct 8820
caggaagatc aaccctctcc tgactgacca cgcctctcct gactgaccac gtagcacagc 8880
agcttcctttccctaggggc tcctaatgaa gctttcacaa tcacctggcc tgagcacagt 8940
ttgggtcagg acttggtata cttgaaaaaa acatgcaaaa ccaaaatcct gtggttctgg 9000
aaaaggcttc ttagcagaac ccccagacat ttacactctg ctttttcaca gggtccctga 9060
ggattctttg gatctgggta gtttggggag cagtattttc aacaagttca tttcgtgctc 9120
cttctacacc ctgcctggat gctaggcccc atctagaatg tgaacaacag aacaaggcag 9180
aacacttgtc ctcaaggttc tgttgagtgt tagatgcaga gaagagacac cccccacctc 9240
cccgcatcac ttacaggaat tctgtttgga acccaacatc aaataaggac cgtatccact 9300
gtcagaggat gggaagcagc atgtcatctg ggacattgga gaaaggctcc tgggggaagt 9360
gggacttgag ctgtgatcta agtaatgaac aactgagagt taaatgggag agcatcccct 9420
atcagggtcc tgagagcaac cagccatggt ttaaaccagc tataaagcct cgggtttata 9480
ggatagacag taacaatggc ttgtctttgg gagccaagca gctggtccag gcatgcagag 9540
catgtctgta tggagagctg cctgagagat gcttttgttt acacttatca attgcccatg 9600
tcaaagaagg atatgtacat gaagttacat cagtatgtaa gagagatttt aacaattttt 9660
gcaggggaag ctttcatggg ggctgatggg aatctaggta aacagaacca aagtctaaac 9720
ccaagatatc cccagtacca agactgaaat gactctctcc tctatctcta gaaagttcca 9780
gtgacccaag gaggcaaaca cgatgggagt cattaaagtg gggtggacgt gctgatcatc 9840
ttcctaattc tgctgctttt gttttcagcc ccaacgtgtg tgctgtgcag aaggttattg 9900
gcactaatag gaagtacttc accaactgca agcagtggta ccaaaggaaa atctgtggca 9960
aatcaacgtg agtatctgta accagccagg agaccaagct gtatgcacgc tggctgcagt 10020
tccccagggc ctgggccagc cttctagaag gtcaggttgc ctaaaaagcc atgaagatgc 10080
atgtgcgaac atgtctggga cctgcgtgct agggagtggc atttttagga agctggccaa 10140
ttttgttttg catttttaag gctgctgaca agacttggag acatttttca gggctggttt 10200
gggtttgcaa gaaacatgaa acactgcgtg tgtgtgtgtg tgtgtgtgtt tctcaatcct 10260
cataaaataa tacagatatg cagtggagaa gccaccagca tgtgactctg gaaaagaaag 10320
cccattggtg aatctgtact aaagaatgcc atccctatct tacagtccta aggtaaacac 10380
cccaaaaaga cttagagcac taaacatatg cagattatga gacagcatag catataatat 10440
ttgcacagac ttcctcattc aaaccctagc tctacctggg ccagtcgatt catctttaga 10500
accctccatt gctttacctg aaaagttcgt ataacaaaag gacccacctt atggggttgt 10560
tacaaggatt gaatgaaata atgtacataa gagactgaat atggtgccca gcatatatca 10620
gtgctcaata aatgctagct actattatta ttatcaccct agatttgcaa atctagacca 10680
cacaagcaga agtaagagtg ccaacggggt gtggaccagt gtggttacaa tagggcttgt 10740
tgatgtctgt ttcagcaagg agggaggcag cttttacccc actgcccagc tccctggtgg 10800
aatcaggtgc atgttctaac aattctgggg aaacctaatc tgttttggca ctgtcaacag 10860
atctcaaagc tggctgtctc ctatagctag gaagatgtgt atgacaaatc tcctgagcca 10920
cttgtgaagg cctgaccttc ctcctgtctc catacataat gggatgatta agaaactcta 10980
agccactctc ttaagcactt ttcaatgtta gggattttta agtttattgt tgtgacattg 11040
cttttgagca gacatctcct ccaatttaat agccaactga aagaagagaa aatgctcttt 11100
ccttaaactg tatgtggaaa taaatattcc aatgtgtgac cctgattatg ttaggcaatt 11160
agcaatccta atatgaattg agggaagttg ggattcatgg cacagctggg gagataccag 11220
cagtccctgg gagcctgtcc agggcaggtc catggcagct tgctccatgc ctgattgaca 11280
gcccagcctg caagctaaaa gttgagtgag ctaggaggac acactgccaa gattcagcta 11340
acagacaccc agcgatattc ttgctgctat gaacaaaagg agactatgca aattatacac 11400
cacccattct tccaggatgc ctgacttaaa aaataagaaa aaagatgggc cgggcacagt 11460
ggctcacgcc tgtaatccca acactttggg aggccgaggt gggcggatca caaggtcagg 11520
agacagagac catcctggct aacatggtga aaccccgtct ctactaaaaa aatacaaaaa 11580
tattagcggg cgtggtggcg ggcacctgta gtcccagcta ctcgggaggc tgaggcagga 11640
gaatggcgtg aacctgggag gcggagcttg cagtgagcca agatcgtgcc actgcagtcc 11700
agcctgggtg acagagtgag acaccgtctc aaaaaaaaaa aaaaaaaaag aaaagaaaac 11760
ctttagtact gattgatttt ttcccatgtg tgtatattat ctactcaaat taacaattaa 11820
ttacttaatt aaacacaaag ccaggcctca cctaattgct tcttggaagg tgaccagagt 11880
gctagtgcca agcaaacaac tcttctatat ctcaagagcc ctgggcttca gagggccatc 11940
ttttttgtta attcaagttt ctctgaaaat ggagacccgt ttatgatgac aagctggcta 12000
cagggtagca tctgccacac tgtttcgggg gtgccgctgg gctgaagcat ttgcccagct 12060
agttaacaat agctcgataa cattccctat cagtgtccag gctgagaata ctgtcagtga 12120
tgagtcgcct tggctcttgt acctgtatct ttgtgtgcca ggacaaggca caagcaacag 12180
agctgtgtgt tgccaaaatg ttcctgatga gcaggtcaac ccctcggggg caggtttgga 12240
tatgataatg tggtgatgtg gtggcgcagc tcccttaccc agtgagcaca aggggagtcc 12300
tctaggaaaa ggaagaaatg tctggatgag gtggggagat ggggttcaga gtggactcag 12360
gcaaagcccg atgcccagtc ccagctgttg gcctagtctc acaaagccag aaggatatga 12420
catttacatt caactcttga atttgtggcc actgctttgg gcaacttcaa agagagaaaa 12480
tgaagataga aaaatattat ttgatataaa acttctagga caagagaggc ccttcctgga 12540
acattacatg tagtattagg aaggtggagc tgccctggaa aagatccaga gaactcagag 12600
agaggaagag gtggaaccca tctctgttct tgtagagagc tcagtaagag tggcttggca 12660
gggctcctgt gtacctgaga ccaagaccag tgaggaggct actgtctgac caccatacgg 12720
tcagaattca gtgccatggg tggtcaggtg ggaaggggag aggactgtgc tggctggagt 12780
tgatgttatc ctggggaaag taggtcccta gatgccttta gttgagtgag gagcagactg 12840
ggaaatggga gcacagtagt ggttggggca aaaaggactg tctctgcatg aggtccatag 12900
gcagttggaa ttttctcagc aagactccag agaaggaggc tggagcagag gtgtatgttg 12960
ggatgaaaag gagtaaagta tcatggggga ggaggcagct caggttgtca agggtcaaga 13020
aaccagaagg agaatttcac cttggaagca gacaacgggt accaagcata caggggaata 13080
ctttgtggtg agaggtcaca cagagataca ggagccgacc tggtgagaca ggagcctgga 13140
gccacctgcc tgcttttgtg aggccccaga ctccactgct atcatcaggt gaagctctgt 13200
tgcctgcaca caaaagcttt tctgcattta caaagagaga agggcctgag tttctggtgc 13260
aatgcgtcaa gctgacatat ggactttatt acaggaagtg gttaccagtg ggtccctatt 13320
tagtggctgt tattgtgaat tttattgttc ggaaattcac tttagcattt atttcagatc 13380
ctaaatagca ccggagtgat acaatggcta atcaaacaaa gagggctgtg gggagcagac 13440
agtcagcatc cccctctgtg atttcaggcc ctggtttgat tagtagccat aaaatttttt 13500
acgtgtggca ctttgagcaa aggtgcagga aattgtggtc aggaagcctg gctgcctctc 13560
gacaggcttc ctttgtgcta gccccaggga gaggaggcct atttaacagc caagtccaag 13620
ttgacatcat gggactggaa tagtcatagc aggagctcag acatcataaa cgtggcatag 13680
ggagggctgg tggaggagct agcgggtatg ggtggcagct attcattcca aaagtcttga 13740
aattgtttca cgagcaacac atttcacaag tgcgaagccc ttctctggag ccaagatgag 13800
ctggcagagc actcctgttt ctctagtagc aagtgttcct ttgcccaggg gcaaaaatat 13860
taatactcct tcagcactgc attaatgctt aaagatttaa cttttaaaga gatcagctgg 13920
tgcatggtcg agcttttcca tcagctggca gggctttttc agtaggtgtc cttctgggca 13980
gggcactggg gacagctgac gtgaaggtga agaagagctg tcgttttcct cccttatatc 14040
ccacaacctt ggtcccaaga ggaaaaaaaa gaagatggtg agaagtcatc caagcagacc 14100
ccagacccat actagtgcct cctttcctgt ttcatatccc tgtgcagcca gctgggatct 14160
cttgaataat ctgctctggg ggcactgaga ttggacatac accaaacagc ggagatcgac 14220
caaacgcctc tgttgggcag tgtttcctga gggttctgtc ccattctgta aactaggagg 14280
ctgactagct gacaaggaat tttattctgt tgggtattta catgaaccta tgtgccacct 14340
ggggtaagac cctgtggtag gtagaaacat gacttcccaa aaatgtccac atcctaatct 14400
ctaattctgt aaatatattc ccttactgga aaaagagact ttgcaggtgt gattaaatta 14460
aggatcataa gagggagaga ttatccagga ttatttgatg agtctaatat aatcatcagg 14520
gtacttaaaa gagggaggca ggctgtgcct ggtggttcac gcctttaatc ccagcacttt 14580
gggagactga ggcgagcggg tcacgaggac aggagttgga gaccagcctg accaacatgg 14640
tgaaactccc cctctagtaa aaaaaaaaat acaaaaatta gccaggcatg gtggtacaca 14700
cctgtaatcc cagctactca ggaggctgag gcgggagaat tgcttgaacc caggaggcag 14760
aggttgtggt gagctgagat cgcaccactg ccctccagcc tgggcaacag agcaagactc 14820
catctcaaaa aaaaaaaaag agggaggcag tgggatcaga gtcagagaag gcaacgtgat 14880
gatgaaagct gacatttgag tgatgcaacc acaagccaag gaatgcaggc agcttctcaa 14940
agctggaaag gacgagcaat ggattcttcc ctacagcctc tgtgaggaat gcagcctttg 15000
attttaaccc cataaggccg atttctgact ctagcctctg gaattgtaag ataatttgca 15060
tgatctcaag ccactaaatt tgtggtaatt tgtcacagaa agcaatggga agccaacaca 15120
ggccttattt gttgacttat agatgcattt ttctttattt caatgtactt ttatcaatgg 15180
tctcatgtag ggtattgctt tcaatgaaga tattaacata gtttcaactt taaggtttat 15240
atctggagtt tctttagaag cttcacaact gaccacttag taaacagtaa gcatctgtta 15300
agtgcttctc atatgtaagt tcattcaatt ctcacaatca cactataaga taaatatgat 15360
tattagccca tttacagatg aggagacagg ctcaaaagac ttttatgcaa cctggtcaaa 15420
gtcattcact ggtaagctga ggaggtctgt ccacttcctt ttgctgcccc cagggggtat 15480
caagcctggc agttagtgtc agcgacttag gaggtgaaca agtgagcagg cctgtaggac 15540
ctggctaaac tgccccaggt ctctgtctac agcctcaaac ctgtggctgt gggtcccaga 15600
gacaaggcct cctcagcatc agagaaggat gcctttgtct cagggtcatc aaccttctcc 15660
aggttgctca ccccctgctg taaaggggat ccccaagacc gctcatcaga caaggagctt 15720
gggaactgag gagacacagt cagcctccag gagtgcccaa aatgccctca catgctgcat 15780
acagattgcc acaaataaag tacatccaca ttctgaagac tctgtcctca tcaccaacca 15840
ggctggcccc tggtgagggc tgtagtggtt gaggcctttg ttggtagaca gtaggttaaa 15900
gcaagccatg attttctatt gggaggcttc agaatcagct cagctgtgtt tccaagacca 15960
ggagggcaga aagcaaacca tcccaggcaa gcagtccatg ggccatgtca gatgtctaga 16020
cgttatgggt ctgtgtttgc tctgccattc ctctcggaaa ctatgatgcc ctgtatggtt 16080
taccttcagt cacaggtgac tggcctacag ggccattcct tgttccaacg acttctcgag 16140
tataattaat ccccaggcat ttacggccag agcagccggc caaatccgtg aagtgcagtg 16200
gttgttttaa attatattaa cttcttggaa acttatttta gggagagaaa actcagtact 16260
tctctctatc caatcttgag taaaaatgtt agaagggact ggtggagagc ctcccagaca 16320
tccctacaca tagactttgg gttgacatta tctctttgca ccttccttga aactttcttc 16380
taaattaggt gccttcccta atttaggcac cttcccagta ctagtctgtg acctgttagg 16440
aaccaggcca cacagcagga gttgagtggc agggagtgag cattattgcc tgagctccgc 16500
ctcctgtcag atcagcagtg gcattagatt ctcatagcag tccgaatact attgtgaact 16560
gtgcgtgtaa gggatctagc ttgtgcattc cttatgagaa tctaatgccc gatggtctga 16620
gatggaagag tttcatacca aaaccacccc ttccccctgc caccatctgg ggaaatattg 16680
tctaccacga aactgatccc tggtgccaaa aaggttgggg accgctgtcc taagggatct 16740
gctttttctg acctgaggtt tttctttatt agactgtatc tggctgagga gaagcctgaa 16800
gcctttaatc ggaacagctt tggctgatga gattagattc agaaaccaac agattggtct 16860
tttctatgca gggaagccta ggaactgggg ggctatggct gggaagcccc ctattgtttc 16920
catcctttcc tatgttcatc ctggaggaat ggcatcagac ccatgcctct gtgattgctc 16980
ccagcccatc caaccacagc atctatgttc tgcctgggac cagggccagg gagcatggca 17040
cactgagctg agtataagga gagtggagca ggccactgcc agcccagaaa attttggtca 17100
aagttgcctg aaatcttctc agccttcgat tcacagctgc tctctgctgc tctggggcca 17160
tgcagaccag ttcagaaaag agttaatttg ttggggcagt tggaggcagg tggactgcca 17220
gctttgacac cttcccagcc cacaggctgc tgcactgggg ctgaaggcgt ggctaacccc 17280
tgcacaccta gagagtgaca gagatgccag actgggcagc aggaaggcaa gaggattaag 17340
agagagcttc ctggctgaaa gccacactcg gttaaccagg aaaaagccct tggcacgaga 17400
agactcagtg gcctgaggga ctgagccttg gttgttgggc atgtgctgca taagccatcc 17460
atgtgtgaca gtagagtgta gtccagccac tgtgggacat gggtgctgaa agaccacatg 17520
gagaggaaca gtgagtgctg acaagggcta gccttgatca ctttggagac accccctgtg 17580
tcttctagat gtcagacttt ccaaatctgt ctgctatcct ccaaacgtgc attttcaaga 17640
gcaatggaaa aaggattgga cttgatggaa tgcagcaaga gtcctaggtc tgttactacc 17700
tacctatgac cttaagaaac tccttcaccc ctcagaaccc ttacagcttt ctttctgatt 17760
ctatcctgag ttactctact ccaagctgag acttttctgc ttagatctat cccttcctcc 17820
taaaccccca acctccattt ctcctggtgt ctttctttac acacccctca gcatacacac 17880
acacctagcc acaggaacca atgagttaat atttgaggag ttggttttct tttgtcctca 17940
atgagatcct ggtgaggcca cttgagctgt tcagctccct tgcggtattt tggggatgga 18000
actcagaagc caacaatata gaaaaagagt ctttggccag ctttcccagg ggctccatgc 18060
catagagagt actgcacccg tgtgcacagg gggccctgac atgaggactt tgaggataac 18120
actattcctc caactctgct tcagcatctc catggatttt cacacagaca ctttaggaaa 18180
gaaactaagt ttggggggac ttgacctaat cccacatcac agccccagta atacagccct 18240
ggaatttatc acagaaagcc tagaatccca tgcatatccc atgcatatgc atccctagtc 18300
ctatgggttc aaggcttgga gctctccctg gatttagctg ggaaaagttg gcagacagtt 18360
cttctctgtc ttctagaaat atggactaga atcgtgagtg tgagattgca agtaactttt 18420
aaaatcatct agtttaactt caccccattt catagaccaa gaaactgaga ccagagagag 18480
aaatggactt tcaagttcac cctgctagtt actgatggat cacaagtcaa atctcctgat 18540
tctagcactg tttctcttac accacaccac ctttgaaagt gtgtcaatca aatcttactt 18600
tagttgcaga ggatgacttt agtttctgaa gataaaattg tgagtcaatc aagatgagtc 18660
ccaagacaat agcctgttta gcccttataa gttcagggat gaaaggttag aaagaaacag 18720
gatggaagga ggactggaga aaaaaacaaa agaggaagga aggaggagga agcaaacagg 18780
aaaaaaaaag aatgtgcata gcttgtcact cctcagtcat ttcctgggag cccatttcta 18840
gcaaagtgac agctgcaact ccctggccac ctgagcatct tagctgatct gtctctgaaa 18900
caccccctgg agaacagatg aatcaggctt catcttcgct taactaagtc ttccctgaga 18960
cgactccatt taaatgaaca agagcaggat ttcctgggca cactgagagc accttccaga 19020
ggcccctcca gagccctaaa gcctgtattt cttccagtcg gcctgtttct ttcctggtga 19080
tgtcattaaa cgccctttga gagtcccaca gtgagcagtt ctgcggtaaa acccgctgca 19140
attaaagtct gagtcctttc ctgtctcaaa gggcatattc atatagaaga aaggaaaagg 19200
aaggactggc tgtttgcatt tggttccagg cctgttgagt agaggtcgtg ctcactccac 19260
cgaaggtaca gggtagcctt cagcagaacc tggggatttg gttttaagca agtctttctt 19320
aggtgtgggc tttcagaaca cttccttcct tgcaatatta tttgaaattc tcagtgtttt 19380
agccgtcccc agaatattgg ttcgttaaag ctgtgtattt cagatctcca gacagtggtc 19440
actgtttgta tattttcaat ttcaaaccag aaaacaaaag ttcttattga ttactttttt 19500
tatttaaaaa ataaaaagta agtatcttcg taagaggagc tttgttttaa ttttaaagtt 19560
taaaatttga ttgtgaagac agagaaaaac ttgatgattg tagatatatt cccctctttg 19620
gctattcaat cagagaacta gaaaatcatg agagatttaa tgaccactgc ctgatacaca 19680
tatgtgtttt acagatgagg aaactgagac ccagagagat gatgaaattg gctgaggatg 19740
gcccagctgg tcagtgaaag actcagagcc agagctggtg cagggctctt tctattcctt 19800
cctgttccct ttcaggaaca ctcaccatcg gctttcctgt gaataatgtt gagataaaat 19860
ccttggtgca ttatgttttc tagtcacaac attgactagg ctgccagagt cctctgttct 19920
cccagttggt tggctgtagg tgttggcagc cgccaggagc attctacaga acagaggagg 19980
agtgagactc tccttgctca ggaaaggcag acctatgact tagcaaataa ctcctaagag 20040
gagagtgttt cacccaccat tcctcttcct tggctgtgga ggcaacttag tggagagggg 20100
ccagatgacc tgtgaggaac agtgaagccc tgcctaacac aatgtatggt tgtcttgtta 20160
cagagtcatc agctacgagt gctgtcctgg atatgaaaag gtccctgggg agaagggctg 20220
tccagcaggt gaatgaatcc tccgggcctt gcctgttggt gtgggtggaa gggaatggtg 20280
ggagagagga gtacccacat aaaaggcagc agagtgtgaa tgggggcagt ggcacaagga 20340
catggcattc tccccacgtg cccactggcc ccaggctcta tgcgaggggc tgaggaatgg 20400
aagctggaaa cagcgcattt cctgagctgc tcctcctggc ctccttacca cactggtgga 20460
gtagactcca actgtggcct gtccatgccc ttcccagcag gcacaggctc aggctcaggc 20520
tcttggcctc tgcctctggc tgggagtgat tctaaacaca tccagcaggg tcagcctgat 20580
agcccatcag tttccgatca gctctgctag agagccgatg ggatgtggga ggagggggtc 20640
actggtgggc tggcaacccc aagccatccc catctccctc tgtgtctaaa cttggccctt 20700
tggagttcgg tagggagaag agccataggc caggtgggct cacccagagt cagcagagag 20760
tcccacaaat ggttgcactg ggcgaaagac agcatggcac ctgtgaattt tattagagct 20820
tttcttttag tgctacacac aagtgactgt acaggggagt tagtattttg ttttaatttt 20880
gaaatagagt catcttttgg tatctgcggg ggattgattc taggacccat tctaggatgc 20940
catatcctca gatgttcaag tccctgatat aaagtggtat agtatttgca tgtaatctat 21000
gcatattctt ccatgtactt taaatcatct caagattact tataatacca aatataatgt 21060
aaatcctatg taagtagttg ttataccctc ttttaaattt ttgtattatc ttttattgta 21120
tttcaaaaaa tatttttggt ccatgtttag ttgaatctgt gggtgaagaa cccacagata 21180
cgaagggcca actgtattgg ctattttttt agttaagaat gtgagactga ggccaggcgc 21240
agtggctcat gcctttgatt ccagcacttt gggaggccaa gaggggacga tcacctgagc 21300
caagaattcg agaccagcag cccgtgcaac atagtgagac cttgtctctt aaagattgtg 21360
agactgggct gggcacggtg gctcacgcct gtaatcctag cactttggga ggccaaggca 21420
ggtggatcaa ctgaggtcag gagtttgaga tcagcctggc taacatagtg aaactctgtc 21480
tctactaaaa atacaaaaaa attagctggg tgtggtggtg ggcgcctata atcccagcta 21540
ctcaggaggc tgaggcagga gaatcgcttg tatccaggag gcggaggttg cagtgagctg 21600
agatagggcc gttgcactcc agcctgggca agaagagcaa aactccatct caaaaataaa 21660
taaataaata aataaataaa tcatgagact gagacataac aggaaggagg gcaatttggt 21720
tggttccaag gttcctagag tatgtgatgg gagaggttgg tgcgggtggg gccatggagg 21780
tactgactca agtggaggga caggtgggga aatgggatgg gaaaagaaga ttgaccttag 21840
aaggggagct caacctctga accctaattt cagacccttc aaaatgaata ttaagctcat 21900
tttggtctaa gaaacaaaaa acaaatgaac atgaaactca ttttggtctt ataaggtctg 21960
agaaacccct tctaaacttc aagctgcttt aagaaataac attttattac ctgcaaatac 22020
acacagtact ttggagattt ataatagtct cttattctaa tagaagccat tagggaacca 22080
gtttcaataa acaggtaaat ctgtaagact agtttgtaat taggatatct gtttccagtg 22140
tccattcctg cctctgttat ctaaatgtct gggaacaaga gctgtgctct gctgtgttta 22200
aaatgattaa aaatcaccaa ttagttgagt tcacgtagac aggcatttga cttattgagt 22260
tgttttaaga agactataac aagccttaag ccccccagaa acagcctgtc tttgggcttt 22320
cccacatgcc tcctcgtcct ctccacctgt agatgtaccg tgctctctgt cagagaaggg 22380
agggtgtggt tgggctggac ccccagaggc catccctcct tctgtcttct gctcctgcag 22440
ccctaccact ctcaaacctt tacgagaccc tgggagtcgt tggatccacc accactcagc 22500
tgtacacgga ccgcacggag aagctgaggc ctgagatgga ggggcccggc agcttcacca 22560
tcttcgcccc tagcaacgag gcctgggcct ccttgccagc tgtgagatga cctccgtctg 22620
cccgggggac tcttatgggg aactgcctta cttccccgag gggtgggcat gatgaatggg 22680
agtctgcagt catttcctac tgtttcagga agctttctcc ttaacccctt agaaaaggct 22740
gtggaacttg agctaaaata tgtcttacca ggttgcgtct aatgcccccc gttccctact 22800
gggcagaaag acttgggtgc ttcctgagga gggatccttg gcagaagaga ggcctgggct 22860
cacgagggct gagaacatgt ttcccagagt tgcaaggacc catctcttaa acacagagtc 22920
tgcagcccct aactgacacc ctgtccttcc tcctaggaag tgctggactc cctggtcagc 22980
aatgtcaaca ttgagctgct caatgccctc cgctaccata tggtgggcag gcgagtcctg 23040
actgatgagc tgaaacacgg catgaccctc acctctatgt accagaattc caacatccag 23100
atccaccact atcctaatgg ggtaggggat ccccagccat actgcatggc ccttggtgca 23160
taatgaaccc atttctgttc catgtgtggg ctggtttctg gggtttaagc tgtagacaac 23220
ccaccctctt tgtgcctgct tctccttggg ccctctattc cacagcttgt ggaacccaca 23280
ttttgctact gtgtttgaaa acactgtttt ctcctcccgg ggctttggga ctatgcctct 23340
gttgtgttga ctgctcatcc ttgctgcttc tctgggcaga ttgtaactgt gaactgtgcc 23400
cggctgctga aagccgacca ccatgcaacc aacggggtgg tgcacctcat cgataaggtc 23460
atctccacca tcaccaacaa catccagcag atcattgaga tcgaggacac ctttgagacc 23520
cttcgggtaa gggactgccc tgggtggagg cccaggcttg ggacacattg cctcccaaga 23580
ggggcctagc aggaactctt ctgcaggaga ggtagaggat ggctcctgta ggggaacata 23640
gagcaggttc ccctgaatgc ccttgaacat ggagaattca ttgaccagac attcagcttg 23700
acctaacctg tgaaattctc catcttcttt ataaagtgtt cccttccttg cctcccctgg 23760
aaaggtcagt ggtgtgtggc tgcagcagca cagtgtcctc tgagccctgg acctgcactg 23820
tggcttccag aggtggcagt tcccacatgg ggtactagaa taaatggcct atcaggctgt 23880
gtgtgctttg ggatcacatg tccccaccct aggaccctgg ttccaaccat acgcatgttc 23940
tcttggagcc cagaacagca gagaagccac cagtgtggac acagaagtca agggtctgat 24000
ttccagcctg gcttctgact gctctggggc cgcaggaata cggttccttc ccccatgccc 24060
agcaggcatt tgtcttacaa ctggagggga aggcatgttc ctcttggcaa ggactgctca 24120
ggaggaagtg gaggcaggct gccctgtcag ggtttttgcc ttgattcaag gagaacttcc 24180
taaccacaaa ggatacaagt gggagtgagg cggaccctcc ctagagatct ccaacacaga 24240
gagacaaaca cgctggggct ggctggcact gacaggcctc gcaggtgtgg atggctgtta 24300
gctgggagct tcgctgtcta agctcctctc ccatgctttt cttctgggtt gctcgaagga 24360
cgggggtctg caagaaaatg atgttcccac atagttggca gcacgtgaac agcaattgat 24420
ccctttgcat cacctcctct tactgtttag atttggtaaa tatttcttcc ttccctcttc 24480
tgaccctcca ttttgccgat ctttccttct tataacacat acttactagg tacctgctac 24540
ttcccgggtg ggcctatgtg ccaggagtat agaggtgaac aaggaaggca aagttctatt 24600
ctcagtagag ctaatactct atctggagag agacaacaaa caaatcaaca aggtagccag 24660
gggctgtgat aatttatgtc aagtgggcag gtaaatcggg agtgacagta gtgcagggag 24720
gattggaaag tcagggagtt ctctctggag gaggtggctt ttgatctgca gcctaaagga 24780
tgagaatggg tccattatac aaaatgctgg ggcaagagca cacccagtag aggggagagt 24840
aatagcaaag gctcagggca ggaagggcaa gggagaggcc agtgggtgag gtcacatgtg 24900
aagggcatac aatgggcaaa gacaaggcca gagtggccag gcccaatcct ccaggacttg 24960
cagacctggg aaagagtgca tctccatcct gggagcagca ggaaaccact caggccttta 25020
gaagatcctt ctggcagctg tgtagagaat gggtggtgtg atccttccat gcatgggctc 25080
atgtacgtga ttaccagtaa ctgtcgagtg acagtgtgag gagggctgca agccatgagt 25140
gtaggcacag cagacagact cacctttgtc tggcggtgag atggggtggg aagtgtgcca 25200
agttgacctc ccaaagaaat gatattttag tggaagaatg aatagaatca gagaagcaaa 25260
gtaagaggga agagcagaga ggacagcagg gacaaggact tgggggcagg aagaggaaag 25320
gcaggttaag gacatgaaag atggccaggc tggctggagc tcaggcccag caaggccccc 25380
tgggggccat ggtcatgggt gagcttgggt ttggcttctg ttttcgtctt gggcttctgt 25440
gaaagcctcg agcccttgcg gggaaccagt gaagctgtgt gtgcatcttc tgtggggagt 25500
gccagagtct tcagggagca ctccatcttc tctcctcccc acaggctgct gtggctgcat 25560
cagggctcaa cacgatgctt gaaggtaacg gccagtacac gcttttggcc ccgaccaatg 25620
aggccttcga gaagatccct agtgagactt tgaaccgtat cctgggcgac ccagaagccc 25680
tgagaggtga gcatcctttg gctcctgctg ctgcctcatt tgtgcagcta gattgagccc 25740
aagacctgct ctggtccaag atgaacatac cacctgccat gaggtgaccc tcaggatatc 25800
cactgcagcc atgggctggg gtcatcctgt cctgttgctt cagctaaccg tgtctctagc 25860
agccacacta ctctgagggc tgactacaga atccagcagc ttttgtctgg gagagctgga 25920
ctgaagagag gcatagctgg agacccatag ctggccctgg ccagaaacag ggagagtgaa 25980
aggctggaat agccaaggcc agagcaaggc taataggtag agcaacagct tacaggtgtg 26040
ggggtggcag atactggcac ccttgaaatg gattcctcat gcccacgctt cactattctt 26100
ctctgtggct aggggattta tggataaacc aaaattacag ttaaaaacca gccataggcc 26160
aggcacagtg actcacgcct ttaatatcag cactttggga ggacaaggtg ggcggatcac 26220
ctgagatctg gaatttgaga ccagcctggc caacatggcg aaaccccatc tctactaaaa 26280
atacaaaaat tagctgggca tggtggtggg cacctgtaat cccagttact caggggctga 26340
ggcaggagaa ccacttgaac ccaggaggtg gaggttgcag tgagccaagc ttgcaccact 26400
gcactccagc ctgggtgaca cagcgacact ccgtctcaag aaaaaaaaaa aaaaaaacag 26460
ttatagtagt caacttttga ctctccattt cagatttcgt catgccctcc tcaatgagct 26520
gctaagttag gcagtgcatt gattattgct gcaggagagg gaaggaagga gctaacgtgt 26580
tttcacatgt tttccttttg gagatgagaa aggaggactc tgccttcccc ctaccctgcc 26640
cctttctact ccaggacctc tgaaaggcca tgagcacaaa gctgctgcct gagtcccctg 26700
aaatgcaggg tacgccccag gtctctgatg taccccacca cacttttcct ctcaaacata 26760
ttccaggatc acttgatttc ttttgaatct atttaaaccc accgtgtcaa tgtgctatat 26820
aaaatgtcta atgcatttca gacaccctat acatctatac atttaaagtg ttctccttct 26880
atctgtgcag ggatgggaaa gggcatattt ctgaaagcac agatgggaag acgggatttg 26940
ttccgtgtcc aggtgattat ggtacctcta tgcgcctggc cggcactggg gacagaggcc 27000
atgaaaatga atacagcaca gcctttgcct ccaagaaact taagacctag tagaaatggc 27060
aggctttaaa acaggttgtt gggatctgat ttggtgagtg caatgacaga gatactcaca 27120
gcacaaaatg gggaatgagg gcgggcattg ggacacacat agccttaagg ggcccaaagg 27180
cttttagaac tgtattccct attaaaacat gatttgcaca gagcacattc tttgctttgg 27240
agacctcaga actccttact ataggccggg catggttata atcccagcac tttgggaagc 27300
caaggcgggc agatcacttg aggctgagag ttcaagacca gcctggccaa catggtaaaa 27360
ccccgtctct actaaaaata caaaaattag ctgggtgtgg tggtggccac ctgtaatccc 27420
agctactcag gaggctgagg taggagaatc acttgaacct gggaggcaga agttgcaata 27480
agcccagatc atgccactgc actccagcct gggcaacaaa gctagactct ctcaaaagaa 27540
aaaaacaaaa caaaacaaaa caaaacaaaa aaaactcctt attataaact gtaagaaaaa 27600
aaaggcccct acttcgtccc ttttgcaaat ctgccttttc ctactcacta accagctggt 27660
tcagagcaag gacactctgt ttggtgccat cgctgcagac tggaaggaag aggtccttgc 27720
cccacaccca acagtctcct gctgttaccg gcaggttggc aggcaggcag gcgagaagca 27780
gccagggctg gtggtgtgtc cagtttgaag actagtttcc agccctggcc ctgctcaccc 27840
tccaagtggc cctggcaggt tcctctacca catcgtggac ttcaccttcc ttctctaaga 27900
agctcaatcc ccaaggcctc attcccatag gccttctcac cctttttctt tccctctggc 27960
tgaatgtggc cagcacgggc ttccaaggcc atcaactcgt ctgcagcagc cccatgcctt 28020
gcagggcctc agagcttcct cctgcctatg acagtgtggt tttggttccc acacttggga 28080
tcagattgaa actcgcctcc gtggtgagaa tatgggacat agagcctcgg tgaccttggt 28140
gagcagcagt ccaggccacc tgctcagcct ggggttgggg ggggctcctc ctccttgact 28200
ggtccttgca tttgcctcca tccagcctgt ctgggctctc cgaggcaatg gagaccagca 28260
ggagtcacga tgggtcagga gccccctttg ggcctcagcc ctgccctgcc ccctaaagta 28320
gcacttggat aagcaaataa attattatac ttactattta tgggtgtggt gaatgggatg 28380
gcaaaggcca agtcttactg atcaccaaac cttaagatat atcctggcag ctagtagacc 28440
cttgggctaa atgaacagaa aactggacaa ataaagtgta cacaaataac tcaaagctgt 28500
catttgtaca cttttcgtct tttcctacta cagtttacat ttttataaag gtgagtagat 28560
ttctaaaatc ccgtggtagg ctctcttgag tttttcttgt atccctgaag ttcagctaca 28620
aataagctaa tcactaacat ttgttgagca tttactctgt tgtcaggccc cgtgccgagt 28680
gctttaggtt cagaatttca tgtcatcccc acagcagccc taggagatga atgcaattct 28740
tatgtccact tgactgataa ggaagttgag gttcaaagag gctaaatgac tctcccaggg 28800
tcccacagct ggaaagtggc cacagggccc cagctggttt tctagggcag caggcagaag 28860
gcgaggagga tctgggccct gtggtgcccc agcctcatct gagggtcctc atctgagaga 28920
acaggatcct cacagcatgg gcaggctgca agtggtccct gaggttatcg tggagtggac 28980
cctgacttga cctgagtctg tttggacccc agacctgctg aacaaccaca tcttgaagtc 29040
agctatgtgt gctgaagcca tcgttgcggg gctgtctgta gagaccctgg agggcacgac 29100
actggaggtg ggctgcagcg gggacatgct cactatcaac gggaaggcga tcatctccaa 29160
taaagacatc ctagccacca acggggtgat ccactacatt gatgagctac tcatcccaga 29220
ctcaggtagg ccaggcctcc gggggccttg gccctgcctg gcccaccatc tcttctgcca 29280
tcctttgtgg cgggggaggg gaaattcaga gatctttggg cgacttccct gcctggaccc 29340
agctcacagc ttctcggcca ctgcaaatgt gtgggttgtg accagactga tgtgtcttga 29400
gcttcaggct tgcaagtgca gtggagaggc agtggggagc tattgaaggg gtctggggac 29460
agactcaatc acagaggcct ttcagaagat ctgcctgctg tgcatgggca aagagggcca 29520
cttgctgacc tcagagcatg tgctttctca gtagtgccca agctgtccca tggtcactga 29580
cccagttaga atgactgaat ggactttggc ttgtgtctca ttaggaatcc tagccccatt 29640
ctagtcttcc agtgagatct gtccatgagt gaaggaatct cacaggaaaa aacaaaatgc 29700
ttctatgggt gtggttgctg gccttatcta caccacagaa gccatcacac agactgtctt 29760
tcttcccatt gttagaatgt gccctgacca agcagcccac agggcctggg acagaggctg 29820
atctctgcct aactgagctc acctctcctc cctctcctcc tgactggtta gattttctag 29880
gtgactgttc ccctgatgac acaagcccgc tgggccccag cagtgtttag aggggttgtt 29940
gactcacgag atgacattcc tgctgatgtg tgtcatgccc tggggtggat gaatgataaa 30000
tgaaaacagc gcttttaact tttgaaccca ctttctcctt ccttgtagcc aagacactat 30060
ttgaattggc tgcagagtct gatgtgtcca cagccattga ccttttcaga caagccggcc 30120
tcggcaatca tctctctgga agtgagcggt tgaccctcct ggctcccctg aattctgtat 30180
tcaaaggtaa catggggaag gcatccctgt tagattgtcc ctggaggcag cttccccacc 30240
cctgtcacct ccacaacact ctccgattta cagcacccca tgggacatta gaacttccac 30300
tcagctcaac caaaagcaga tgtgacttca gcagaaactt cagaggctct gttgtttcat 30360
taggcagtgc agagaatgcc tttggggagc cgttcctcag aactcaagac ttgacatctg 30420
ggaggcagcc gttcctcaga actcaagact tgacatctgg gagagcagag cattcccttg 30480
cctttctatt tgcagggtca cttgccaatg tatagtcaag aggtcagagt gagggtacag 30540
ctgagctgca gccccaggaa ggcagagaag ggggccaagt tgtgtgcgtg cctgcccttc 30600
cctcttaggg caaaactcca aacacccttg attatctgga tcttctttaa ttctccatag 30660
aagataccag atgttaagga atattggcag cttcacttgg tttctcaatc cctgtttcca 30720
aactcaagga gggatgggct ttttcactgt atttatctct catcactctc ttcattgcag 30780
gagcacatct ctctggacct aaccatcacc ctttcttgta gatggaaccc ctccaattga 30840
tgcccataca aggaatttgc ttcggaacca cataattaaa gaccagctgg cctctaagta 30900
tctgtaccat ggacagaccc tggaaactct gggcggcaaa aaactgagag tttttgttta 30960
tcgtaatgta agttctgggt cctaaatcat gctcctggga agctccttac tgtgggactt 31020
gtattagtgt aaaaaaaaat gtcctcaata agcaggagtt tgcatgagaa ctggttgctg 31080
acaaggaagg aaataatttc tggaaaatat agataacaaa atgagatcct gcagaaggat 31140
tggaatctct ttttctggag gcctttgaga ataaaccaca caattatcca acctgtattg 31200
tgaaggaata agtccttctt gaattcagga attaacacct gggaggaggg atggagttca 31260
gactctttct gagcttatga gaagagaagc cccctaaact aaaatacagc cctccttggt 31320
ccaaaaggtg ccttctctct tctgctgtat cttctttgtt ttcaaaccca acagttaccc 31380
tggaaatcaa aaaggaagta caactcaaca tagctcttgc ctgggaccaa ccagcaccat 31440
ttggctaaag atggttatca tctgttaaac aaagaaataa ataaatgggt tcaacgtatt 31500
tatttcaaca ttgtcaatgg acctcatgtg taactgatat tctcattatg ggacctctgt 31560
gtgactttat tggggcctct ctaaccgttc tttccttaag gaagaccatt tattgtttta 31620
tttcctggag aaaatacatc attttatccc agccttaata acccatccca gtgtatactc 31680
cttcatcttc atggataatg accctgctac atgctctgaa caaatcagga ggcccctcgt 31740
ggaagtataa ccagtccttt ctttctctgt ccctcttctg tgcagagcct ctgcattgag 31800
aacagctgca tcgcggccca cgacaagagg gggaggtacg ggaccctgtt cacgatggac 31860
cgggtgctga cccccccaat ggggactgtc atggatgtcc tgaagggaga caatcgcttt 31920
aggtaattag ttccatcccc gggtggagct tctgcccagt ggtcatgctg gagtgggatg 31980
tggggcccca gctatttgtc aagctttctt ctaccttggg gattcaatta acactagcag 32040
tgcactgctg cgaccttcca gacttgggat ggggaaaagg caagggtcgc cttgaaagct 32100
tacattggga agaagggtta cttctaagag tgtaatcttc acatgcatgg gaagcaggga 32160
ggggggacta catttttatg actgaagtgc aaggaaaaca tcaccctctc attgtaaagc 32220
tccaagtgag ccaagagcac atagtttaca gtgcacgatg agcctctcac tctctgcgca 32280
gtatctgttt attgcaactg aagcaccctt gtgagtttgt tttcttgccc ggctatctcc 32340
atttctgact tgctcattca ccttggggtg ctgtcatatt gaatgtttcc ctgtcactga 32400
cttcagccac ctgcacaagg gcttggagac cacacccctc tgccctccca gaatcatatc 32460
cctggaggct cagctagtct ctgggtcagc catacctctg ccctttcttt tccctccttt 32520
ctcctgtggc ctctgacgtc tggccattta acagagctta gcatttttgc tgggtggaga 32580
gagctggagc ctggaatcac tccctctttg tgcatacgga gggcatgaaa accaaggtgt 32640
gtgcattcca gtggcctgga ctctactatc ctcagtggtg aggtatttaa ggaaaatacc 32700
tctcagcgtg gtgaggtatt taaggaaaat acctgttgac aggtgacatt ttctgtgtgt 32760
gtatctacag catgctggta gctgccatcc agtctgcagg actgacggag accctcaacc 32820
gggaaggagt ctacacagtc tttgctccca caaatgaagc cttccgagcc ctgccaccaa 32880
gagaacggag cagactcttg ggtaaagacc aacttaagta cacgtctcca tttttctaaa 32940
gtagtgatcc ctcagggccc cagcagcaaa cagttggcac atcaaggatt gacttgaagg 33000
gattttatga caagactatt agtgaaagag tgggcgggac taaaggaact agcaaaggat 33060
gaggccaacc agggactagc aaccctggga agcctttact acccctaggc ctgggggaat 33120
gggaggatga gagcaggaac cagggaggtc atgagccttg gacaagggca cagaacagca 33180
gccagagcca tgtgcagcca gccactgtca gaaccatgca agggggacca ctcagcgccc 33240
cagcctccct ctcagacagt tgccatctgg gtctcttgtt ggctgatgcg agagcaggag 33300
ggagcccact gatgcagttc atagagctca gcctcctggg caggaaaccg ggcagagagg 33360
agtagaaaag aattaagggt ggctgcgacc agcccagtca ctgaggcacg tttcccactg 33420
gagacctatg agcacagtga taataaagcc agttacctgc actgactatc cctccagaca 33480
aaagctttcc caagaagtta gtcatggctc tgagagatct agttgaggat gtttggcagg 33540
ggatctagtg gttacgggtg gctaagaaaa atgaggaagg taagagtatc ttgcagcctg 33600
tgttgggagg attaaatagg atgccacaca cagggccagg cagacagcct ggtcagtaat 33660
agccatgacg atgggggcgg ggggagcagg aatgggagttgcagtgttta gctcagatgc 33720
atgcctgtga gagatgcttc cactctcaca gaaagatgag accaaggaaa aggaggagga 33780
agaggaagga ccttgacaaa ccttggggcc cacattgtct acacctccct tcctgctcta 33840
gagcagaata gaaagttcag gttgcaggca gctctaagtt gaattcgtgt cctgtttaat 33900
tttctttatt gctaaatgaa tgcctgtgtc tgtgatgctg acgtatgttc ctaaggagag 33960
gggagaagtt cattctgaac ataaactttt catcctctct ctgtccagca agaatggaat 34020
attccccaag tggcctgagc cagcttggct ttctttttgt tttcaattat gtgggagttg 34080
aggaggggga tgggaaaagc ttcccaaaca caccctcccc caggcctgag gcacccctgg 34140
gggacagaga gtgttagagg ttggtacagg tgttagagat attgaaagga catcccatgc 34200
accccagggg ctggtgtggc tctgtacttc caggcaatat tttgtggaag gggaaccttg 34260
tcagctccag gttgtggatg tttgaaaatc agttggtacc cagtggctcc atcctctggc 34320
aggcatgtgg atttgtcaat aaccaagtga actctccaaa ataagttaaa acttcctccc 34380
ttctcagttt caagatgctg gaaatagctg ttcataagcc ctggggaaat ttagcccttt 34440
ggctggtaat gggagtatcc gagatgagag ggcagctgga aactttcgga atgacctccc 34500
acacttaatt tgggaaatgc ctctgcacct ttatgggcaa ccagatgcct gccccagttg 34560
ctggagacac tgatgtgggc tgaaaggaat gctgagacgt gacgaggaga gatgctgcgg 34620
agggaatatc cccctcagcc ctgacctcat cggctccatg gctcctccac agtacagctg 34680
tctactcttt taagttctcc cttcaggaaa tagccatctc aaacagaatg tgcatttgag 34740
ggcagaatgt gtaaatattg cactactgtg ttataaccgt caggagccat gctgatgatg 34800
aaacgtccca gatgccggtg ctggaaaggt ccctggcttt ccaagcaaat atttatctca 34860
tggaaacatg agtcatactc acagaggagt atggattaac tccttctcag cagccaggga 34920
gcccagcatc ccagacagca tatttaaccc agaggccaac tgactgctgg ggcagatttg 34980
tggtcatgaa catgtgcttt gtgtcctctg accattagac agattgtggg tcacaacgtt 35040
gagtatacag tgggagctta ataagtgctt attccctggg cagggagttc ttcatttcag 35100
gggtgaccac ttacatcttc tcctctgggc cctccttgac caggctaatt accattcttg 35160
ggattaactc tatctccttt tcccgcaacc tgcaggagat gccaaggaac ttgccaacat 35220
cctgaaatac cacattggtg atgaaatcct ggttagcgga ggcatcgggg ccctggtgcg 35280
gctaaagtct ctccaaggtg acaagctgga agtcagcttg gtaagtgtcc tgcaaatcaa 35340
aggctggcta aatttcccca gggcagggct ccaggacata tctcaccccc aggatggaat 35400
tatacacaca caaccttcaa gttgcagccc gaatctctga gtgtaattcg tccaaagaaa 35460
aagagaaaag agaagagggt cttcagggaa atcaagtgag atcatagtta gacatgagta 35520
agaacttcca gatttacaag ggaatagagc atctgatttg gcatctgaga gaggctatta 35580
gatcttcctt ctcttaagga ggttgtaggc aactagttat gtgactgaag agatcagtct 35640
gtactcacac catcccaccc cccaaaccca gggcttcact gagttgtacc atgaaccaga 35700
ccatcccaag aggctttttg agttctgaca cttgctctgt gagccttccc ttgctctgca 35760
cattgatgat ataactttgt aactgcacta agagtgttcc taaagcagat agccagccga 35820
gctccagaaa tctccctggc tgcacctgca gaggccactg acccctctgt ggagggaccg 35880
ctcttcagtg tgtggctggc ttctactctc tgctcctctc tcttggtctt cagccatcca 35940
ttgctcacca gtttctcacg aggagcatag gaagatatgc atgtagggag gtaggcacgg 36000
ggatgacttg tttgacttta gcaggtcatt caagaatctc ctcgcacctg gtttcagatg 36060
ctggggtcct gtctgtcaca ggcttctgtg cctcctaccc ccttgagttt gtcacatggc 36120
ccttcaggaa ggcctgagat agatttgccc tgggtgggcc tcctatgaga aaatcttaag 36180
tgaggcaccc aggcaaaatg gaaagagcct tttgcccaga gcaggaagcc tgtcttccat 36240
ttccagctgt tccacctact tagcttaaaa gaggcacttc gcctgtcttc agtctcagtc 36300
tcagtctcct cttctgtgga atgggacaat aatatctact ctccttatca tacactgctg 36360
tgaggactga gtggatcaca caaaaaagca ttatgtaaat tgcaaagtgc taaatccaca 36420
caggagattt gaattaatcc accacactga aggtctgtca agggcaggga ctgtttcatt 36480
caccagagta tccccagtct aacacaggac ttggcatatg aaaagtgttc agtaggccgg 36540
gtgcagtggc tcatgcctgt aatcccagca ctttgggagg ccaaagtggg cggatcatct 36600
gaggtcagga gttcaagtcc agcctggcca acgtggtgaa accacatctc tactaaaaat 36660
acaaaattag ctgggcgtgg tggcacatgc ctgtaatcac agctactctg gaggctgagg 36720
caggagaatc acttgaaccc aggaggcgga ggttgcagtg agtcgagatc atgccactgc 36780
actccagcct gggcgacaag attgaaactc catctcaaaa acaaagaaca aggaaaaaaa 36840
cgaaaactgt tcagtaaaca cttgctgaat gaataaaata aatatataaa tgtataaata 36900
aatgctctac tttcaaccac tactctgtttttcttttaga aaaacaatgt ggtgagtgtc 36960
aacaaggagc ctgttgccga gcctgacatc atggccacaa atggcgtggt ccatgtcatc 37020
accaatgttc tgcagcctcc aggtaagtgt cgcatcccca ctgactctgc agccagtcct 37080
tttcttcatg tggcagttgg tggagagaag aaaaactgtt ctaaacaatg atgagaataa 37140
catgtaattg tgatagttaa actgtgccta tgtgactgat tgcagagtga attgggagct 37200
gttggttttg aatgcaccac actaaggaat gtgaggacac attgctcttt gcggagttgc 37260
ccagctatat tagctcccct cggacacagc ccagttttct gtattcgcgt ggatgctgtc 37320
cgcgcgattc ccagcactcc tcttacagca tctcacctca gtgtatgttc cttgcctcca 37380
gtgcagttga acctcagtcc tgcctctcct catgtgtgca ttcacctttc ttggtgctct 37440
ctccccatgg gccaagttct accatgagtt atgaaacatt atggagaaaa catgtctttg 37500
gaaatgtgag ccagaaagcc caccagtgcc cctcagtcac ggttgttatg aatgacatgc 37560
taatggtttc actctggtca aacctgcctt ttctttcctc ttcagccaac agacctcagg 37620
aaagagggga tgaacttgca gactctgcgc ttgagatctt caaacaagca tcagcgtttt 37680
ccagggtaag atgcctgcta ggtttgcgcc tagcctgagc agcctcaggt cctctgtttg 37740
ggccatagag gagcctctcc agcccctgtc ttccttggct gctccccagg gctctcttaa 37800
aacttctccc cactcccact gaggcatcct cagccccagc ctgtgtcaaa ttcagagtaa 37860
agaaccaagg caactccctg gctttcatgg gccaaagcgc aggctttcac accgaggcct 37920
ctgagcctca gatcatgggg aagtcactgc tggagagaac agacatagct ctggaagcca 37980
tctgcccaag agggcagccc atcccaagtt catcttacag tggccaggcc tgccctgagc 38040
cggggcctct gggtcactct tctgctgtcc atggcattgc ccatcctggg tgaggctggg 38100
gctctcctgg gcactgtatg tattctggat acagggatac tgggctcgct atgtgtgtgg 38160
agccatccct tccttgcccc agccccacct ccctctcaaa ccctctctgg ctctttctga 38220
gcttcctttc ctgctcccca gcttgcccag tgctcagtgc cccacttggc tcttttgcta 38280
cttcgggtca ggtggagcct cttgggaatg tgaagtgcct tacagaaaga ttgcacttca 38340
agaggagagg ctgcagggag ccatcctaaa cccagaggcc tggagcttac tgtgtcactt 38400
tacttttgta cacaggggtc tccttagtgc cctcgagaag gattcttggc cctgagcttc 38460
tactcctgag gccacctctg tgcagcccca gctccctcaa ctctaggctg tagtctcagt 38520
gggaaagcct ggcttggggg tctcctagga atgtccacct gaaggcacac ttgatagggg 38580
cttgcacaac ttatgtctgc caaggccacc tgaggaactc cctggtgcct ataagttcca 38640
ccttcccctt cctcttcctc gccccagcat tttttctgag taggggtggc aatgggcaaa 38700
gccattgtca taagcagttg caggtataac tttcactaga aaacctgaca ccttgtgttt 38760
tctttcaggc ttcccagagg tctgtgcgac taggtgagtc tggtctgggt ttgaagtcat 38820
tgcagacctg tttaggcctt acccccaagc aagcccaagc ctgccatctg ctgtatatag 38880
ataagaacat catggtgcag taaaagaagc ctggcctttg gagtcagaac agcagggtga 38940
cttggggtca gacccagagc accccatttc cttctctgta agatgaggat aataagagta 39000
acaacctttt agggttaagg tgagttttca gcttaggaag tctgggaata ttgcaaaggg 39060
cttggcagga acccatggtg aggatctagt tccaagttga taggtacaga aaaccagaac 39120
atcgggcctt gagtaaagag tgaagtttca caaaccacaa agcacctgct atgtgcagga 39180
gagcatggca gaaggaggct gcttggccct ggtccttgag attctgacag tgtcctagac 39240
agacatgggg agatctgcac ctatttgacg ttaccaactt ctctttttca gcccctgtct 39300
atcaaaagtt attagagagg atgaagcatt agcttgaagc actacaggag gaatgcacca 39360
cggcagctct ccgccaattt ctctcagatt tccacagaga ctgtttgaat gttttcaaaa 39420
ccaagtatca cactttaatg tacatgggcc gcaccataat gagatgtgag ccttgtgcat 39480
gtgggggagg agggagagag atgtactttt taaatcatgt tccccctaaa catggctgtt 39540
aacccactgc atgcagaaac ttggatgtca ctgcctgaca ttcacttcca gagaggacct 39600
atcccaaatg tggaattgac tgcctatgcc aagtccctgg aaaaggagct tcagtattgt 39660
ggggctcata aaacatgaat caagcaatcc agcctcatgg gaagtcctgg cacagttttt 39720
gtaaagccct tgcacagctg gagaaatggc atcattataa gctatgagtt gaaatgttct 39780
gtcaaatgtg tctcacatct acacgtggct tggaggcttt tatggggccc tgtccaggta 39840
gaaaagaaat ggtatgtaga gcttagattt ccctattgtg acagagccat ggtgtgtttg 39900
taataataaa accaaagaaa catacgtcct gtgtgcatgg tacagtgtgc tgacctgagg 39960
ccgtcatgct cctccacacc tcaattctgc tctggagaag ctcagaaagg agccccgagg 40020
gatggttttg gggagattcc agcagccagc cctcagacag ccagacagct catgggggtt 40080
tgagcctgtc tttgccaaac aggtttttat ttcaccctcc tccggtcctg gggtttcaag 40140
ttttcagtgt tgccttcacc ccgcacttta ttcctcttat tacttggaag taccttccct 40200
ccagcatggt gatcccctgc ctgtgtgctg gacttttgag tcctcagcac caacctgtga 40260
agtggttgcc agcataatcc cattatgcag atgaggagac caaggcccag ggaagggaga 40320
accaccagca gcacgtaaaa tagctgagct gggactggaa ctcacacctc ctgactctca 40380
gtgaccacca ctgacaacag cataagtcca ggttttccag gcccatcccc tctgtgccaa 40440
cccacattca gattccttcc ccggctcccg taatctctgg catctagaat atcctcagga 40500
ctctgagagg tgatatcatg tggttgtggt gccattgccc cctacctgtg tggcctgggg 40560
ccagtcatgt gacctcccag ggtctcctct tctgtaatag ggagatgacc gtcacatcta 40620
cttcatgggt ccatcgtgag gatgaaatga gatgatctat ataaaatgct tggtacaaca 40680
ttaggtggcc ttatttttat cctgccgtct gggactgctc aggatcaatg cgccagagag 40740
cctttatttg tgtctttccc acaggtgggc tggcccactt tcctagagaa tgggacagac 40800
ctccttccca cccacaccca tctctgccaa ggctgattca ctccagcagg cggagctcat 40860
ttcacttcat ggaaccaatg acccaaagat atatccccag cactactgct ggtcagtcca 40920
ctgctgctgg gaatacagca atggtagtgg cagacagagg ccctctctta aatagcttcc 40980
agtctgagga aagagagata tgacatcaat ccattaaaat cattcatcca ttggttccac 41040
aaatatttgt tgagggctac ctatgtgcac ccccatgtta gaccctgggg aatagacatg 41100
tcattctcat gaggcttctc tactgatggg ggggaagaga attgtcaacc agataatggc 41160
actacagcct gtgtgttctt agtgactctg aggatagcac tgtggttctg tgacagataa 41220
tgaaggattt ggaagcagga atgcccagga gctcccagaa gtgggaagag atgagaggaa 41280
tggaaggaac ttacctgaag gtgaaggcat caggctaggg gaccaaggga gaaggtgtcc 41340
tgagaggtaa ggcttaacct tgggtgtgaa ttcagttccc gtcactctcc catagctctg 41400
tcctgctgtt cccacctccc ctgcagccat gcgggcttgg gcggctagtg agggccttgc 41460
tcatgctggg tatcctatgc tatgcttcac tttgagcacc taaaatacac acactgcact 41520
ttaccaagat gacctcggaa accaaagagg tgatcagcat aagttttaaa gacccttaaa 41580
tttaaagtaa aaatcactac aggatccatt ataaatgcca aacactaaga tgtgtgtttc 41640
cagttctccc cttcatttgt ccctgccact ccctgccctg actttgcccc accccctagt 41700
aatgtgggct ccactctatg ctccaaactc tccctggaga gaaatcctcc ctgtggttga 41760
ggacaaggcg cagccttccc ctcccaccaa agaaggtcag attccctttt ttggttccta 41820
accatccata ccccttcttt tctcatgaag actcgggcta agcattcatt agggctgcca 41880
tctggaggat ggacccttag agctgagggg ccagcactgt gtgt 41924
<210>62
<211>683
<212>PRT
<213> Intelligent people
<400>62
Met Ala Leu Phe Val Arg Leu Leu Ala Leu Ala Leu Ala Leu Ala Leu
1 5 10 15
Gly Pro Ala Ala Thr Leu Ala Gly Pro Ala Lys Ser Pro Tyr Gln Leu
20 25 30
Val Leu GlnHis Ser Arg Leu Arg Gly Arg Gln His Gly Pro Asn Val
35 40 45
Cys Ala Val Gln Lys Val Ile Gly Thr Asn Arg Lys Tyr Phe Thr Asn
50 55 60
Cys Lys Gln Trp Tyr Gln Arg Lys Ile Cys Gly Lys Ser Thr Val Ile
65 70 75 80
Ser Tyr Glu Cys Cys Pro Gly Tyr Glu Lys Val Pro Gly Glu Lys Gly
85 90 95
Cys Pro Ala Ala Leu Pro Leu Ser Asn Leu Tyr Glu Thr Leu Gly Val
100 105 110
Val Gly Ser Thr Thr Thr Gln Leu Tyr Thr Asp Arg Thr Glu Lys Leu
115 120 125
Arg Pro Glu Met Glu Gly Pro Gly Ser Phe Thr Ile Phe Ala Pro Ser
130 135 140
Asn Glu Ala Trp Ala Ser Leu Pro Ala Glu Val Leu Asp Ser Leu Val
145 150 155 160
Ser Asn Val Asn Ile Glu Leu Leu Asn Ala Leu Arg Tyr His Met Val
165 170 175
Gly Arg Arg Val Leu Thr Asp Glu Leu Lys His Gly Met Thr Leu Thr
180 185 190
Ser Met Tyr Gln Asn SerAsn Ile Gln Ile His His Tyr Pro Asn Gly
195 200 205
Ile Val Thr Val Asn Cys Ala Arg Leu Leu Lys Ala Asp His His Ala
210 215 220
Thr Asn Gly Val Val His Leu Ile Asp Lys Val Ile Ser Thr Ile Thr
225 230 235 240
Asn Asn Ile Gln Gln Ile Ile Glu Ile Glu Asp Thr Phe Glu Thr Leu
245 250 255
Arg Ala Ala Val Ala Ala Ser Gly Leu Asn Thr Met Leu Glu Gly Asn
260 265 270
Gly Gln Tyr Thr Leu Leu Ala Pro Thr Asn Glu Ala Phe Glu Lys Ile
275 280 285
Pro Ser Glu Thr Leu Asn Arg Ile Leu Gly Asp Pro Glu Ala Leu Arg
290 295 300
Asp Leu Leu Asn Asn His Ile Leu Lys Ser Ala Met Cys Ala Glu Ala
305 310 315 320
Ile Val Ala Gly Leu Ser Val Glu Thr Leu Glu Gly Thr Thr Leu Glu
325 330 335
Val Gly Cys Ser Gly Asp Met Leu Thr Ile Asn Gly Lys Ala Ile Ile
340 345 350
Ser Asn Lys Asp Ile Leu Ala ThrAsn Gly Val Ile His Tyr Ile Asp
355 360 365
Glu Leu Leu Ile Pro Asp Ser Ala Lys Thr Leu Phe Glu Leu Ala Ala
370 375 380
Glu Ser Asp Val Ser Thr Ala Ile Asp Leu Phe Arg Gln Ala Gly Leu
385 390 395 400
Gly Asn His Leu Ser Gly Ser Glu Arg Leu Thr Leu Leu Ala Pro Leu
405 410 415
Asn Ser Val Phe Lys Asp Gly Thr Pro Pro Ile Asp Ala His Thr Arg
420 425 430
Asn Leu Leu Arg Asn His Ile Ile Lys Asp Gln Leu Ala Ser Lys Tyr
435 440 445
Leu Tyr His Gly Gln Thr Leu Glu Thr Leu Gly Gly Lys Lys Leu Arg
450 455 460
Val Phe Val Tyr Arg Asn Ser Leu Cys Ile Glu Asn Ser Cys Ile Ala
465 470 475 480
Ala His Asp Lys Arg Gly Arg Tyr Gly Thr Leu Phe Thr Met Asp Arg
485 490 495
Val Leu Thr Pro Pro Met Gly Thr Val Met Asp Val Leu Lys Gly Asp
500 505 510
Asn Arg Phe Ser Met Leu Val Ala Ala IleGln Ser Ala Gly Leu Thr
515 520 525
Glu Thr Leu Asn Arg Glu Gly Val Tyr Thr Val Phe Ala Pro Thr Asn
530 535 540
Glu Ala Phe Arg Ala Leu Pro Pro Arg Glu Arg Ser Arg Leu Leu Gly
545 550 555 560
Asp Ala Lys Glu Leu Ala Asn Ile Leu Lys Tyr His Ile Gly Asp Glu
565 570 575
Ile Leu Val Ser Gly Gly Ile Gly Ala Leu Val Arg Leu Lys Ser Leu
580 585 590
Gln Gly Asp Lys Leu Glu Val Ser Leu Lys Asn Asn Val Val Ser Val
595 600 605
Asn Lys Glu Pro Val Ala Glu Pro Asp Ile Met Ala Thr Asn Gly Val
610 615 620
Val His Val Ile Thr Asn Val Leu Gln Pro Pro Ala Asn Arg Pro Gln
625 630 635 640
Glu Arg Gly Asp Glu Leu Ala Asp Ser Ala Leu Glu Ile Phe Lys Gln
645 650 655
Ala Ser Ala Phe Ser Arg Ala Ser Gln Arg Ser Val Arg Leu Ala Pro
660 665 670
Val Tyr Gln Lys Leu Leu Glu Arg Met Lys His
675 680

Claims (21)

1. A reaction mixture for detecting corneal dystrophy in a subject, the reaction mixture comprising a labeled probe comprising a sequence selected from the group consisting of SEQ ID NOs: 25-30, 36 and 54.
2. The reaction mixture of claim 1, further comprising a corresponding labeled probe comprising a sequence selected from the group consisting of SEQ ID NOs: 19-24, 33 and 50.
3. The reaction mixture of claim 2, wherein the labeled probe is selected from the group consisting of SEQ ID NOs: 25-30, 36 and 54; and/or the corresponding labeled probe consists of a sequence selected from the group consisting of SEQ ID NO: 19-24, 33 and 50.
4. The reaction mixture of any one of claims 1 to 3, wherein the reaction mixture comprises a labeled TGFBI G623D probe comprising the nucleotide sequence of SEQ ID NO: 36; and a labeled TGFBI M502V probe comprising the sequence of SEQ ID NO: 30.
5. The reaction mixture of any one of claims 1 to 4, wherein the labeled probe is fluorescently labeled.
6. The reaction mixture of any one of claims 1 to 5, wherein each of the labeled probes comprises a different probe and is independently labeled with VIC, FAM, ABY, or JUN.
7. The reaction mixture of any one of claims 1 to 6, further comprising at least one amplification primer pair for amplifying TGFBI gene sequences from a biological sample from the subject.
8. The reaction mixture of any one of claims 1 to 7, further comprising:
(a) a corresponding forward primer comprising a sequence selected from SEQ ID NOs: 7-12 and 41; and
(b) a corresponding reverse primer comprising a sequence selected from SEQ ID NOs: 13-18 and 47.
9. A reaction kit comprising (a) a reaction mixture according to any one of claims 4 to 8, and (b) one or more labeled probes for one or more TGFBI mutations selected from R124S, a546D, H572R and H626R, separate from the reaction mixture.
10. The reaction kit of claim 9, wherein the one or more labeled probes are selected from the group consisting of seq id NOs: 19. 25, 20, 26, 21, 27, 23, 29, 50 and 54.
11. The reaction kit of claim 9, wherein the reaction kit comprises a labeled TGFBIR124S probe comprising the sequence of SEQ ID NO: 19 or 25.
12. The reaction kit of claim 9, wherein the reaction kit comprises a labeled TGFBI a546D probe comprising the sequence of SEQ ID NO: 20 or 26.
13. The reaction kit of claim 9, wherein the reaction kit comprises a labeled TGFBI H572R probe comprising the sequence of SEQ ID NO: 21 or 27.
14. The reaction kit of claim 9, wherein the reaction kit comprises a labeled TGFBIH626R probe comprising the sequence of SEQ ID NO: 23. 29, 50 or 54.
15. The reaction kit of claim 8, further comprising a third amplification primer set.
16. A method for detecting corneal dystrophy, comprising:
(a-1) amplifying a first TGFBI gene sequence from a biological sample from a subject using a reaction mixture comprising at least a first amplification primer pair and a set of at least two detection probes;
(B-1) hybridizing the first detection probe and the second detection probe in the set of at least two detection probes with the first TGFBI gene sequence having the G623D mutation and the second TGFBI gene sequence having the M502V mutation, respectively; and
(C-1) detecting one, two or more mutations in TGFBI gene sequence based on hybridization of the first detection probe and the second detection probe to the first TGFBI gene sequence and the second TGFBI gene sequence, respectively.
17. The method of claim 16, wherein the reaction mixture comprises the reaction mixture of any one of claims 1 to 8.
18. The method of claim 16 or 17, further comprising:
(a-2) amplifying a third TGFBI gene sequence from the biological sample, wherein the reaction mixture further comprises a third label probe for a third TGFBI mutation selected from the group consisting of R124S, a546D, H572R and H626R;
(B-2) hybridizing the third label probe with the third TGFBI gene sequence; and
(C-2) detecting a mutation in the third TGFBI gene sequence based on hybridization of the third detection probe to the third TGFBI gene sequence.
19. The method of any one of claims 18, wherein amplifying the first TGFBI gene sequence (a-1) and amplifying the second TGFBI gene sequence (a-2) are performed separately.
20. The method of claim 18, wherein said hybridizing (B-1) and said hybridizing (B-2) are performed separately.
21. The method according to any one of claims 18 to 20, wherein the detection (C-1) and the detection (C-2) are carried out separately.
CN201880033645.1A 2017-04-10 2018-04-10 Method for multiplex detection of alleles associated with corneal dystrophy Active CN110945126B (en)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US201762483588P 2017-04-10 2017-04-10
US62/483,588 2017-04-10
US201762573537P 2017-10-17 2017-10-17
US62/573,537 2017-10-17
US201862624661P 2018-01-31 2018-01-31
US201862624660P 2018-01-31 2018-01-31
US62/624,661 2018-01-31
US62/624,660 2018-01-31
PCT/US2018/026962 WO2018191304A1 (en) 2017-04-10 2018-04-10 Methods for multiplex detection of alleles associated with corneal dystrophy

Publications (2)

Publication Number Publication Date
CN110945126A true CN110945126A (en) 2020-03-31
CN110945126B CN110945126B (en) 2024-04-26

Family

ID=63792919

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880033645.1A Active CN110945126B (en) 2017-04-10 2018-04-10 Method for multiplex detection of alleles associated with corneal dystrophy

Country Status (8)

Country Link
US (1) US11905560B2 (en)
EP (1) EP3610015A4 (en)
JP (2) JP7303113B2 (en)
KR (1) KR102701188B1 (en)
CN (1) CN110945126B (en)
AU (1) AU2018250570A1 (en)
CA (1) CA3059591A1 (en)
WO (1) WO2018191304A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102241836B1 (en) * 2019-06-14 2021-04-21 솔젠트 (주) Genetic polymorphism testing using dual check oligo
CN118240929A (en) * 2020-07-28 2024-06-25 首都医科大学附属北京同仁医院 Kit for detecting TGFBI gene mutation
CN113848327A (en) * 2021-09-18 2021-12-28 天津市眼科医院 Marker composition for high myopia risk prediction and high myopia auxiliary diagnosis and application thereof
CN116024335A (en) * 2023-02-14 2023-04-28 福建佰孟医学科技有限公司 A kind of corneal dystrophy gene mutation detection primer composition, kit and detection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5962332A (en) * 1994-03-17 1999-10-05 University Of Massachusetts Detection of trinucleotide repeats by in situ hybridization
US20090305394A1 (en) * 2006-01-18 2009-12-10 Medigenes Co., Ltd. Dna chip for diagnosis of corneal dystrophy
US20120208196A1 (en) * 2009-10-30 2012-08-16 Mitsuharu Hirai Probe for Detecting Polymorphism in MPL Gene and Use of the Probe
JP2013502215A (en) * 2009-08-18 2013-01-24 コリア アドバンスド インスティチュート オブ サイエンス アンド テクノロジィ Nucleic acid chip for diagnosing multi-spot metal deposited nanostructured array corneal dystrophy and method for producing the same
CN105899681A (en) * 2013-11-15 2016-08-24 阿维利诺美国实验室股份有限公司 Methods for multiplex detection of alleles associated with ophthalmic conditions

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101320943B1 (en) * 2010-04-20 2013-10-23 연세대학교 산학협력단 Pharmaceutical Composition for Preventing and/or Treating of Corneal Dystrophy Associated with TGFBI Gene Mutation and Its Screening Method
KR101258166B1 (en) * 2010-09-01 2013-04-25 연세대학교 산학협력단 Pharmaceutical Composition for Preventing and/or Treating of Corneal Dystrophy Associated with TGFBI Gene Mutation and Its Screening Method
KR101125212B1 (en) * 2010-10-01 2012-03-21 (주)아벨리노 System for diagnosis of avellino corneal dystrophy
KR20160088028A (en) * 2015-01-15 2016-07-25 정정원 Method and kit for monitoring TGFBI-linked corneal dystrophy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5962332A (en) * 1994-03-17 1999-10-05 University Of Massachusetts Detection of trinucleotide repeats by in situ hybridization
US20090305394A1 (en) * 2006-01-18 2009-12-10 Medigenes Co., Ltd. Dna chip for diagnosis of corneal dystrophy
JP2013502215A (en) * 2009-08-18 2013-01-24 コリア アドバンスド インスティチュート オブ サイエンス アンド テクノロジィ Nucleic acid chip for diagnosing multi-spot metal deposited nanostructured array corneal dystrophy and method for producing the same
US20140243222A1 (en) * 2009-08-18 2014-08-28 Avellino Co., Ltd. Multi-spot metal-capped nanostructure array nucleic acid chip for diagnosing of corneal dystrophy and preparation method thereof producing same
US20120208196A1 (en) * 2009-10-30 2012-08-16 Mitsuharu Hirai Probe for Detecting Polymorphism in MPL Gene and Use of the Probe
CN105899681A (en) * 2013-11-15 2016-08-24 阿维利诺美国实验室股份有限公司 Methods for multiplex detection of alleles associated with ophthalmic conditions

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CERYS J. EVANS ET AL.: "Genotype-Phenotype Correlation for TGFBI Corneal Dystrophies Identifies p.(G623D) as a Novel Cause of Epithelial Basement Membrane Dystrophy" *
CONNIE CHAO-SHERN ET AL.: "Evaluation of TGFBI corneal dystrophy and molecular diagnostic testing" *
FLORENCE NIEL-BUTSCHI ET AL.: "Genotype-phenotype correlations of TGFBI p.Leu509Pro, p.Leu509Arg, p.Val613Gly, and the allelic association of p.Met502Val-p.Arg555Gln mutations" *
JUAN CARLOS ZENTENO ET AL.: "Clinical and genetic features of TGFBI-linked corneal dystrophies in Mexican population: Description of novel mutations and novel genotype–phenotype correlations" *
LI ZENG ET AL.: "TGFBI Gene Mutation Analysis of Clinically Diagnosed Granular Corneal Dystrophy Patients Prior to PTK: A Pilot Study from Eastern China" *
R. LAKSHMINARAYANAN ET AL.: "Clinical and Genetic Aspects of the TGFBI-associated Corneal Dystrophies" *

Also Published As

Publication number Publication date
US20200040397A1 (en) 2020-02-06
AU2018250570A1 (en) 2019-11-21
KR20200017386A (en) 2020-02-18
EP3610015A1 (en) 2020-02-19
JP2020516280A (en) 2020-06-11
KR102701188B1 (en) 2024-08-30
JP2023116533A (en) 2023-08-22
US11905560B2 (en) 2024-02-20
JP7303113B2 (en) 2023-07-04
CA3059591A1 (en) 2018-10-18
EP3610015A4 (en) 2021-05-19
WO2018191304A1 (en) 2018-10-18
CN110945126B (en) 2024-04-26

Similar Documents

Publication Publication Date Title
US20230348984A1 (en) Methods for multiplex detection of alleles associated with ophthalmic conditions
JP2023116533A (en) Methods for multiplexed detection of alleles associated with corneal dystrophies
KR20100037592A (en) Genetic variants on chr 15q24 as markers for use in diagnosis, prognosis and treatment of exfoliation syndrome and glaucoma
CA2947109A1 (en) Biomarkers and combinations thereof for diagnosing tuberculosis
KR102624979B1 (en) B4GALT1 variants and their uses
US6566061B1 (en) Identification of polymorphisms in the PCTG4 region of Xq13
CN105734070A (en) Corin gene variant and application thereof
JP2003235573A (en) Diabetic nephropathy marker and its use
KR20240159455A (en) Treatment of cerebrovascular disease using neurogenic locus notch homolog protein 3 (NOTCH3) preparations
KR20220066752A (en) Single nucleotide polymorphisms associated with immunity of African indicine breeds and their application
KR102327623B1 (en) SNP for asthma diagnosis and asthma diagnosis method using the same
CN111278851A (en) Solute carrier family 14 member 1(SLC14a1) variants and uses thereof
JP2004500833A (en) Novel lipid binding protein 3
ZA200409420B (en) Methods and compositions for diagnosing and monitoring transplant rejection
JP2003135080A (en) Novel gene and encoded protein

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant