CN110930187A - Store visitor crowd mining method, device, equipment and medium - Google Patents
Store visitor crowd mining method, device, equipment and medium Download PDFInfo
- Publication number
- CN110930187A CN110930187A CN201911134828.5A CN201911134828A CN110930187A CN 110930187 A CN110930187 A CN 110930187A CN 201911134828 A CN201911134828 A CN 201911134828A CN 110930187 A CN110930187 A CN 110930187A
- Authority
- CN
- China
- Prior art keywords
- information
- store
- visiting
- gps
- user
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0241—Advertisements
- G06Q30/0251—Targeted advertisements
- G06Q30/0259—Targeted advertisements based on store location
Landscapes
- Business, Economics & Management (AREA)
- Engineering & Computer Science (AREA)
- Accounting & Taxation (AREA)
- Development Economics (AREA)
- Strategic Management (AREA)
- Finance (AREA)
- Game Theory and Decision Science (AREA)
- Entrepreneurship & Innovation (AREA)
- Economics (AREA)
- Marketing (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
本申请公开了一种店铺到访人群挖掘方法、装置、设备和介质,涉及用户到访预测技术。具体实现方案为:根据用户的历史位置信息和店铺的位置信息,确定历史特定时间段内所述店铺的到访人群;获取所述到访人群中每个用户在所述历史特定时间段之前预设时间内的线上信息和GPS打点信息,并确定每个GPS打点信息对应的店铺到访便利度;利用所述到访人群中每个用户的线上信息、GPS打点信息及其对应的店铺到访便利度构建模型特征,并基于所述模型特征训练到访预测模型;其中,所述到访预测模型用于预测用户到访店铺的概率,以对店铺到访人群进行挖掘。本申请实施例可以更加准确地挖掘出店铺推出活动时的可能到访人群,从而提高广告投放的转化率和投放效果。
The present application discloses a method, device, device and medium for mining shop visitors, which relate to user visit prediction technology. The specific implementation scheme is as follows: according to the historical location information of the user and the location information of the store, determine the visitor crowd of the store in a historical specific time period; Set the online information and GPS check information within the time, and determine the convenience of visiting the store corresponding to each GPS check information; use the online information, GPS check information and its corresponding store of each user in the visiting crowd Visiting convenience constructs model features, and trains a visiting prediction model based on the model features; wherein, the visiting prediction model is used to predict the probability of a user visiting a store, so as to mine the crowd of store visitors. The embodiment of the present application can more accurately discover the possible visiting crowds when the store launches an activity, thereby improving the conversion rate and the effect of advertisement placement.
Description
技术领域technical field
本申请涉及互联网技术领域,尤其涉及一种用户到访预测技术,具体涉及一种店铺到访人群挖掘方法、装置、设备和介质。The present application relates to the field of Internet technologies, in particular to a user visit prediction technology, and in particular to a method, device, device and medium for mining crowds of store visitors.
背景技术Background technique
伴随着技术的发展,传统的广告主不再满足于粗放式投放广告等优惠活动,他们希望将广告更准确的投放给有需求的人群,从而提高广告投放的ROI。有些比较先进的广告主更是会实际监测广告带来的到访人群,从而判断广告投放的效果。With the development of technology, traditional advertisers are no longer satisfied with the extensive advertising and other preferential activities. They hope to deliver advertisements to the people in need more accurately, thereby improving the ROI of advertising. Some more advanced advertisers will actually monitor the visitors brought by the advertisement to judge the effect of the advertisement.
目前,传统广告主在进行广告投放活动的时候,线下往往是圈选一定的区域进行广告投放,线上相应的可能会增加一些人群属性进行相对更准确的广告投放。但是,这些方法仍然比较粗放,确定的可能到访人群的准确性并不高,从而影响广告投放的转化率和投放效果。At present, when traditional advertisers carry out advertising activities, they often circle a certain area for advertising offline. Correspondingly, online may add some crowd attributes for relatively more accurate advertising. However, these methods are still relatively extensive, and the accuracy of determining the possible visitor groups is not high, thus affecting the conversion rate and delivery effect of advertising.
发明内容SUMMARY OF THE INVENTION
本申请实施例提供一种店铺到访人群挖掘方法、装置、设备和介质,以提高店铺投放广告的转化率和投放效果。Embodiments of the present application provide a method, device, device and medium for mining shop visitors, so as to improve the conversion rate and delivery effect of advertisements placed in stores.
第一方面,本申请实施例提供了一种店铺到访人群挖掘方法,包括:In the first aspect, an embodiment of the present application provides a method for mining crowds of shoppers, including:
根据用户的历史位置信息和店铺的位置信息,确定历史特定时间段内所述店铺的到访人群;According to the historical location information of the user and the location information of the store, determine the visitor crowd of the store within a specific historical time period;
获取所述到访人群中每个用户在所述历史特定时间段之前预设时间内的线上信息和GPS打点信息,并确定每个GPS打点信息对应的店铺到访便利度;Obtain the online information and GPS check-in information of each user in the visiting crowd within the preset time period before the historical specific time period, and determine the convenience of visiting the store corresponding to each GPS check-in information;
利用所述到访人群中每个用户的线上信息、GPS打点信息及其对应的店铺到访便利度构建模型特征,并基于所述模型特征训练到访预测模型;Utilize the online information of each user in the visiting crowd, GPS check information and its corresponding store visit convenience to construct model features, and train a visit prediction model based on the model features;
其中,所述到访预测模型用于预测用户到访店铺的概率,以对店铺到访人群进行挖掘。Wherein, the visit prediction model is used to predict the probability of the user visiting the store, so as to mine the people who visit the store.
上述申请中的一个实施例具有如下优点或有益效果:在线上信息的基础上,还结合GPS打点信息,并确定每个GPS打点信息对应的店铺到访便利度,结合线上信息、GPS打点信息及其对应的店铺到访便利度构建模型特征,训练出到访预测模型,使得该模型对用户到访的概率预测更加准确,利用该模型来挖掘出店铺推出活动时候的可能到访人群,从而帮助广告主实现更准确的广告投放,提高广告投放的转化率和投放效果。An embodiment in the above-mentioned application has the following advantages or beneficial effects: on the basis of online information, also in conjunction with GPS dosing information, and determine the convenience of store visits corresponding to each GPS dosing information, in combination with online information, GPS dosing information and its corresponding store visit convenience to build model features, train a visit prediction model, so that the model can predict the probability of user visits more accurately. Help advertisers achieve more accurate advertising and improve the conversion rate and delivery effect of advertising.
可选的,所述线上信息至少包括:用户的搜索信息、画像信息和用户终端的APP安装信息。Optionally, the online information includes at least: user search information, portrait information, and APP installation information of the user terminal.
可选的,所述确定每个GPS打点信息对应的店铺到访便利度,包括:Optionally, the determining the convenience of visiting the store corresponding to each GPS check information includes:
根据路网信息和所述店铺的位置信息,计算所述店铺周围路网上不同位置至所述店铺的到达时间,根据所述不同位置的到达时间刻画到达店铺的等时圈信息,其中,不同等时圈上的位置至所述店铺的到达时间不同;According to the road network information and the location information of the store, the arrival time from different locations on the road network around the store to the store is calculated, and the isochronous information of the store arriving at the store is depicted according to the arrival time at the different locations, wherein different equal The arrival time from the position on the hour circle to the store is different;
根据所述每个GPS打点信息所属的等时圈,确定所述每个GPS打点信息对应的店铺到访便利度。According to the isochronous circle to which each GPS check information belongs, the store visit convenience corresponding to each GPS check information is determined.
上述申请中的一个实施例具有如下优点或有益效果:由于用户是否到访与到店的便利程度有关,因此,利用路网信息刻画出店铺的等时圈,利用等时圈,也即到店时间来衡量店铺到访便利度,并让模型进行学习,从而利用训练好的模型实现店铺到访人群的准确挖掘。An embodiment in the above application has the following advantages or beneficial effects: since whether the user visits the store is related to the convenience of visiting the store, the road network information is used to describe the isochronous circle of the store, and the isochronous circle is used to describe the store's isochronous circle. Time to measure the convenience of store visits, and let the model learn, so as to use the trained model to achieve accurate mining of store visitors.
可选的,所述根据所述每个GPS打点信息所属的等时圈,确定所述每个GPS打点信息对应的店铺到访便利度,包括:Optionally, according to the isochronous circle to which each GPS check information belongs, determine the convenience of visiting the store corresponding to each GPS check information, including:
根据所述每个GPS打点信息所属的等时圈,以及每个GPS打点信息对应的节假日和天气信息,确定所述每个GPS打点信息对应的店铺到访便利度。According to the isochronous circle to which each GPS check information belongs, and the holiday and weather information corresponding to each GPS check information, the convenience of visiting the store corresponding to each GPS check information is determined.
上述申请中的一个实施例具有如下优点或有益效果:除了到店时间会影响用户是否到访之外,节假日和天气的信息也会影响,因此,该节假日和天气的信息也可以作为店铺到访便利度的确定依据,从而进一步提高模型预测的准确度。One of the embodiments in the above application has the following advantages or beneficial effects: in addition to store arrival time that affects whether a user visits or not, information on holidays and weather also affects information on holidays and weather. Therefore, the information on holidays and weather can also be used as store visits. The basis for determining the convenience, thereby further improving the accuracy of the model prediction.
可选的,所述利用所述到访人群中每个用户的线上信息、GPS打点信息及其对应的店铺到访便利度构建模型特征,包括:Optionally, using the online information of each user in the visiting crowd, GPS check-in information and their corresponding store visits convenience to build model features, including:
利用所述每个GPS打点信息发生的时间维度信息,构建每个GPS打点信息的时序特征;Utilize the time dimension information that each GPS dotting information occurs to construct the time sequence feature of each GPS dotting information;
利用所述到访人群中每个用户的线上信息、GPS打点信息及其对应的时序特征和店铺到访便利度构建模型特征。The model features are constructed by using the online information of each user in the visiting crowd, the GPS check-in information and their corresponding time series features and store visit convenience.
上述申请中的一个实施例具有如下优点或有益效果:根据每个GPS打点信息发生的时间维度信息构建其时序特征,以在时间上对GPS打点信息进行区分,进一步对特征的构建进行细化,以实现精准学习和预测。An embodiment in the above-mentioned application has the following advantages or beneficial effects: construct its time sequence feature according to the time dimension information that each GPS dotting information occurs, to distinguish the GPS dotting information in time, and further refine the construction of the feature, for accurate learning and prediction.
第二方面,本申请实施例还提供了一种店铺到访人群挖掘装置,包括:In a second aspect, an embodiment of the present application also provides a device for excavating crowds of people visiting a store, including:
到访人群确定模块,用于根据用户的历史位置信息和店铺的位置信息,确定历史特定时间段内所述店铺的到访人群;The visiting crowd determination module is used to determine the visiting crowd of the store in the historical specific time period according to the historical location information of the user and the location information of the store;
信息处理模块,用于获取所述到访人群中每个用户在所述历史特定时间段之前预设时间内的线上信息和GPS打点信息,并确定每个GPS打点信息对应的店铺到访便利度;The information processing module is used to obtain the online information and GPS check information of each user in the visiting crowd within the preset time before the historical specific time period, and to determine the convenience for visiting the store corresponding to each GPS check information Spend;
特征构建与模型训练模块,用于利用所述到访人群中每个用户的线上信息、GPS打点信息及其对应的店铺到访便利度构建模型特征,并基于所述模型特征训练到访预测模型;The feature building and model training module is used to construct model features using the online information, GPS check-in information and corresponding store visit convenience of each user in the visiting crowd, and train visiting prediction based on the model features Model;
其中,所述到访预测模型用于预测用户到访店铺的概率,以对店铺到访人群进行挖掘。Wherein, the visit prediction model is used to predict the probability of the user visiting the store, so as to mine the people who visit the store.
第三方面,本申请实施例还提供了一种电子设备,包括:In a third aspect, an embodiment of the present application also provides an electronic device, including:
至少一个处理器;以及at least one processor; and
与所述至少一个处理器通信连接的存储器;其中,a memory communicatively coupled to the at least one processor; wherein,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行本申请任意实施例所述的店铺到访人群挖掘方法。The memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to enable the at least one processor to perform the store visit described in any embodiment of the present application Crowd mining methods.
第四方面,本申请实施例还提供了一种存储有计算机指令的非瞬时计算机可读存储介质,所述计算机指令用于使所述计算机执行本申请任意实施例所述的店铺到访人群挖掘方法。In a fourth aspect, the embodiments of the present application further provide a non-transitory computer-readable storage medium storing computer instructions, the computer instructions being used to cause the computer to perform the store visitor crowd mining described in any embodiment of the present application method.
上述申请中的一个实施例具有如下优点或有益效果:在用户的搜索信息、画像信息和用户终端的APP安装信息等线上信息的基础上,还结合GPS打点信息、路网信息、店铺位置、节假日与天气等线下信息,利用线下信息来衡量用户到店的便利程度,对模型特征进行细化,从而训练出更准确的到访预测模型,利用该模型来挖掘出店铺推出活动时候的可能到访人群,帮助广告主实现更准确的广告投放,提高广告投放的转化率和投放效果。An embodiment in the above application has the following advantages or beneficial effects: on the basis of online information such as the user's search information, portrait information and APP installation information of the user terminal, it is also combined with GPS management information, road network information, store location, Offline information such as holidays and weather, use offline information to measure the convenience of users to the store, and refine the model features, so as to train a more accurate visit prediction model, and use this model to dig out the store’s launch event. It can help advertisers to achieve more accurate advertising and improve the conversion rate and delivery effect of advertising.
上述可选方式所具有的其他效果将在下文中结合具体实施例加以说明。Other effects of the above-mentioned optional manners will be described below with reference to specific embodiments.
附图说明Description of drawings
附图用于更好地理解本方案,不构成对本申请的限定。其中:The accompanying drawings are used for better understanding of the present solution, and do not constitute a limitation to the present application. in:
图1是根据本申请第一实施例的店铺到访人群挖掘方法的流程示意图;1 is a schematic flowchart of a method for mining crowds of shop visitors according to a first embodiment of the present application;
图2是根据本申请第二实施例的店铺到访人群挖掘方法的流程示意图;2 is a schematic flowchart of a method for mining crowds of shop visitors according to a second embodiment of the present application;
图3是根据本申请第三实施例的店铺到访人群挖掘装置的结构示意图;3 is a schematic structural diagram of a store visitor crowd mining device according to a third embodiment of the present application;
图4是用来实现本申请实施例的店铺到访人群挖掘方法的电子设备的框图。FIG. 4 is a block diagram of an electronic device used to implement the method for mining crowds of store visitors according to an embodiment of the present application.
具体实施方式Detailed ways
以下结合附图对本申请的示范性实施例做出说明,其中包括本申请实施例的各种细节以助于理解,应当将它们认为仅仅是示范性的。因此,本领域普通技术人员应当认识到,可以对这里描述的实施例做出各种改变和修改,而不会背离本申请的范围和精神。同样,为了清楚和简明,以下的描述中省略了对公知功能和结构的描述。Exemplary embodiments of the present application are described below with reference to the accompanying drawings, which include various details of the embodiments of the present application to facilitate understanding, and should be considered as exemplary only. Accordingly, those of ordinary skill in the art will recognize that various changes and modifications of the embodiments described herein can be made without departing from the scope and spirit of the present application. Also, descriptions of well-known functions and constructions are omitted from the following description for clarity and conciseness.
图1是根据本申请第一实施例的店铺到访人群挖掘方法的流程示意图,本实施例可适用于在店铺推出活动时对可能的到访人群进行挖掘,以提高广告投放转化率的情况。该方法可由一种店铺到访人群挖掘装置来执行,该装置采用软件和/或硬件的方式实现,优选是配置于电子设备中,例如服务器或计算机设备等。如图1所示,该方法具体包括如下:FIG. 1 is a schematic flowchart of a method for mining shop visitors according to the first embodiment of the present application. This embodiment can be applied to mining potential visitors when a shop launches an event to improve the conversion rate of advertisement placement. The method can be performed by a shop visitor crowd mining apparatus, the apparatus is implemented by means of software and/or hardware, and is preferably configured in an electronic device, such as a server or a computer device. As shown in Figure 1, the method specifically includes the following:
S101、根据用户的历史位置信息和店铺的位置信息,确定历史特定时间段内所述店铺的到访人群。S101. Determine, according to the historical location information of the user and the location information of the store, the visiting crowd of the store in a historical specific time period.
为了挖掘店铺到访人群,需要训练出能够对用户是否到访进行预测的到访预测模型,而模型的训练需要获取样本数据。本申请实施例中,则是利用曾经到访过店铺的到访人群作为样本,从该到访人群的相关数据中构建模型特征进行训练。In order to mine store visitors, it is necessary to train a visit prediction model that can predict whether users will visit, and the training of the model needs to obtain sample data. In the embodiment of the present application, the visiting crowd who has visited the store is used as a sample, and the model features are constructed from the relevant data of the visiting crowd for training.
其中,所述历史特定时间段可以是任一时间段,该时间段也可以是任一长度的时间段,可以根据样本数据的数量以及实际需要进行配置。至于哪些属于到访用户,则可以根据用户的历史位置信息和店铺的位置信息来确定。例如,若在历史特定时间段内,历史位置信息与店铺的位置信息相匹配的用户则属于到访用户,所有的到访用户则构成了所述到访人群。The historical specific time period may be any period of time, and the period of time may also be a period of any length, which may be configured according to the quantity of sample data and actual needs. As for which ones belong to the visiting users, it can be determined according to the historical location information of the users and the location information of the stores. For example, if a user whose historical location information matches the location information of the store within a specific time period in history belong to visiting users, all the visiting users constitute the visiting group.
S102、获取所述到访人群中每个用户在所述历史特定时间段之前预设时间内的线上信息和GPS打点信息,并确定每个GPS打点信息对应的店铺到访便利度。S102: Acquire online information and GPS check information of each user in the visiting crowd within a preset time period before the historical specific time period, and determine the convenience of visiting the store corresponding to each GPS check information.
在确定到访人群之后,还需要确定利用到访人群的哪些信息来构建模型特征。众所周知,现有技术中通常会根据店铺的位置在线下圈定一定的区域,对该区域的人群进行广告投放,有些现有技术还可能在此基础上增加一些人群属性,以提高广告投放的准确度。然而,单一的在店铺周围基于位置来确定广告投放人群,是非常片面的,即使是综合人群属性信息,也只能在小范围内适当提高准确度,仍然无法满足当下对店铺到访人群的挖掘需求。而在本申请实施例中,则是结合了线上和线下信息的多种因素,能够在很大程度上提高效率和到访人群挖掘的准确性。After determining the visiting population, it is also necessary to determine which information of the visiting population is used to construct the model features. As we all know, in the prior art, a certain area is usually delineated offline according to the location of the store, and advertisements are placed on the crowd in the area. Some existing technologies may also add some crowd attributes on this basis to improve the accuracy of advertisement placement. . However, it is very one-sided to determine the advertising crowd based on the location around the store. Even if the attribute information of the crowd is comprehensive, the accuracy can only be appropriately improved in a small range, which still cannot satisfy the current mining of store visitors. need. However, in the embodiment of the present application, various factors of online and offline information are combined, which can greatly improve the efficiency and the accuracy of visiting crowd mining.
具体的,所述线上信息至少包括:用户的搜索信息、画像信息和用户终端的APP安装信息。其中,用户的搜索信息是指用户在互联网上搜索过的query信息,画像信息是根据大数据统计得到的用来描述不同用户特点的信息,而用户终端的APP安装信息则是指用户在其终端上安装有哪些APP。而上述query信息、画像信息和APP安装信息都是对该用户到访店铺的预测有关联的信息,从中可以获知用户感兴趣的内容,用户的特点和属性等,并作为到访预测的依据。Specifically, the online information includes at least: user search information, portrait information, and APP installation information of the user terminal. Among them, the user's search information refers to the query information that the user has searched on the Internet, the portrait information is the information obtained based on big data statistics to describe the characteristics of different users, and the APP installation information of the user terminal refers to the user's APP installation information on the user's terminal. What apps are installed on it. The above query information, portrait information and APP installation information are all information related to the prediction of the user's visit to the store, from which the content of the user's interest, the characteristics and attributes of the user, etc. can be obtained, and used as the basis for the visit prediction.
此外,GPS打点信息作为线下信息的一种,也对用户的到访预测起作用。其中,GPS打点信息是指通过互联网获取到的用户的实时位置信息,也即用户曾经到过哪里,或者路过哪里等位置信息,例如可以是经纬度信息。而由于对用户是否到访进行预测时,用户到访的便利程度也可以作为考虑的依据,例如,若到访便利程度较低,那么该用户到访的可能性就越低,反之亦然。因此,本申请实施例中除了结合线上信息之外,还结合了线下的GPS打点信息,并确定每个GPS打点信息对应的店铺到访便利度,以作为构建模型特征的数据基础。In addition, GPS dotting information, as a kind of offline information, also plays a role in the user's visit prediction. Wherein, the GPS dotting information refers to the real-time location information of the user obtained through the Internet, that is, the location information such as where the user has been or where he passed by, for example, it may be latitude and longitude information. When predicting whether a user will visit, the convenience of the user's visit can also be considered as a basis. For example, if the convenience of the visit is low, the possibility of the user's visit is lower, and vice versa. Therefore, the embodiments of the present application not only combine online information, but also combine offline GPS check information, and determine the convenience of store visit corresponding to each GPS check information, as a data basis for building model features.
在一种实施方式中,所述确定每个GPS打点信息对应的店铺到访便利度,包括:In one embodiment, the determining the convenience of visiting the store corresponding to each GPS check information includes:
根据路网信息和所述店铺的位置信息,计算所述店铺周围路网上不同位置至所述店铺的到达时间,根据所述不同位置的到达时间刻画到达店铺的等时圈信息,其中,不同等时圈上的位置至所述店铺的到达时间不同;According to the road network information and the location information of the store, the arrival time from different locations on the road network around the store to the store is calculated, and the isochronous information of the store arriving at the store is depicted according to the arrival time at the different locations, wherein different equal The arrival time from the position on the hour circle to the store is different;
根据所述每个GPS打点信息所属的等时圈,确定所述每个GPS打点信息对应的店铺到访便利度。According to the isochronous circle to which each GPS check information belongs, the store visit convenience corresponding to each GPS check information is determined.
其中,根据路网信息即可获取店铺周围的通行道路,以店铺为中心,向各个通行道路进行辐射,确定出每个通行道路上的一些随机的位置点,以及这些位置点至店铺的到达时间,就可以依据到达时间刻画出等时圈,同一等时圈上的位置点至店铺的到达时间相同或相近,不同等时圈上的位置点至店铺的到达时间则不同,或相差较远。位于不同等时圈上的GPS打点,由于其至店铺的到达时间是不同的,因此,其对应的店铺到访便利度也不同,故可以根据等时圈来确定每个GPS打点信息对应的店铺到访便利度。Among them, the traffic roads around the store can be obtained according to the road network information, radiating to each traffic road with the store as the center, to determine some random locations on each traffic road, and the arrival time from these locations to the store , the isochronous circle can be depicted according to the arrival time. The arrival time from the location point on the same isochronous circle to the store is the same or similar, and the arrival time from the location point on the different isochronous circle to the store is different or far away. GPS dotting on different isochronous circles has different arrival times to stores, so the corresponding stores have different access conveniences. Therefore, the corresponding store for each GPS dosing information can be determined according to the isochronous circles. Ease of access.
S103、利用所述到访人群中每个用户的线上信息、GPS打点信息及其对应的店铺到访便利度构建模型特征,并基于所述模型特征训练到访预测模型,其中,所述到访预测模型用于预测用户到访店铺的概率,以对店铺到访人群进行挖掘。S103. Use the online information, GPS check-in information and the corresponding store visit convenience of each user in the visiting crowd to construct a model feature, and train a visit prediction model based on the model feature, wherein the The visit prediction model is used to predict the probability of a user visiting a store, so as to dig out the people who visit the store.
通过结合线上与线下信息构建模型特征,避免了现有技术中的单一特征的准确率不高的问题,训练出来的到访预测模型的准确度更高。By combining online and offline information to construct model features, the problem of low accuracy of a single feature in the prior art is avoided, and the trained visit prediction model has higher accuracy.
本申请实施例的技术方案,在线上信息的基础上,还结合线下的GPS打点信息,并确定每个GPS打点信息对应的店铺到访便利度,结合线上信息、GPS打点信息及其对应的店铺到访便利度构建模型特征,训练出到访预测模型,使得该模型对用户到访的概率预测更加准确,利用该模型来挖掘出店铺推出活动时候的可能到访人群,从而帮助广告主实现更准确的广告投放,提高广告投放的转化率和投放效果。The technical solutions of the embodiments of the present application, on the basis of online information, also combine offline GPS check information, and determine the convenience of store visit corresponding to each GPS check information, combine online information, GPS check information and their corresponding The convenience of store visits is based on the characteristics of the model, and the visit prediction model is trained, so that the model can predict the probability of user visits more accurately, and the model can be used to dig out the possible visiting groups when the store launches activities, so as to help advertisers. To achieve more accurate advertising, improve the conversion rate and delivery effect of advertising.
图2是根据本申请第二实施例的店铺到访人群挖掘方法的流程示意图,本实施例在上述实施例的基础上进一步进行优化。如图2所示,该方法具体包括如下:FIG. 2 is a schematic flowchart of a method for mining people visiting a store according to a second embodiment of the present application. This embodiment is further optimized on the basis of the above-mentioned embodiment. As shown in Figure 2, the method specifically includes the following:
S201、根据用户的历史位置信息和店铺的位置信息,确定历史特定时间段内所述店铺的到访人群。S201 , according to the historical location information of the user and the location information of the store, determine the visiting crowd of the store in a historical specific time period.
S202、获取所述到访人群中每个用户在所述历史特定时间段之前预设时间内的线上信息和GPS打点信息。S202: Acquire online information and GPS check information of each user in the visiting group within a preset time period before the historical specific time period.
其中,所述线上信息至少包括:用户的搜索信息、画像信息和用户终端的APP安装信息。Wherein, the online information at least includes: the user's search information, portrait information and APP installation information of the user terminal.
在模型训练时,还可以将所述画像信息和用户终端的APP安装信息先进行embedding(嵌入层),然后再作为模型的输入进行训练。而对于用户的搜索信息,则可以先对其进行筛选,也即通过特定的接口获取原始搜索信息中与店铺广告或活动内容的相似度,对于相似度达到一定阈值的原始搜索信息,再结合其时间维度信息进行划分,得到带有时序特征的搜索信息,也即不同时间段的搜索信息,让模型根据时序特征对搜索信息进行区分,并按照不同的权重进行学习,从而实现模型特征的进一步细化,提高模型预测的准确度。During model training, the portrait information and the APP installation information of the user terminal can also be embedded (embedding layer) first, and then used as the input of the model for training. As for the user's search information, it can be filtered first, that is, the similarity between the original search information and the store advertisement or activity content can be obtained through a specific interface. Divide the time dimension information to obtain search information with time series features, that is, search information in different time periods, let the model distinguish the search information according to the time series features, and learn according to different weights, so as to further refine the model features. to improve the accuracy of model predictions.
S203、根据路网信息和所述店铺的位置信息,计算所述店铺周围路网上不同位置至所述店铺的到达时间,根据所述不同位置的到达时间刻画到达店铺的等时圈信息,其中,不同等时圈上的位置至所述店铺的到达时间不同。S203, according to the road network information and the location information of the store, calculate the arrival time from different locations on the road network around the store to the store, and describe the isochronous circle information arriving at the store according to the arrival time at the different locations, wherein, The arrival time to the store varies from location on the isochronous circle.
S204、根据所述每个GPS打点信息所属的等时圈,以及每个GPS打点信息对应的节假日和天气信息,确定所述每个GPS打点信息对应的店铺到访便利度。S204, according to the isochronous circle to which each GPS check information belongs, and the holiday and weather information corresponding to each GPS check information, determine the convenience of visiting the store corresponding to each GPS check information.
在上述实施例的基础上,本实施例在确定店铺到访便利度的过程中,除了结合等时圈信息之外,还结合了节假日和天气信息。具体的,是否处于节假日期间,以及当前的天气情况,对用户到店的便利程度都是存在影响的。例如,若处于节假日期间,人们不仅有时间,而且更加乐于来到商店或店铺购买所需商品,因此,节假日期间的到店便利程度就更高;而遇到刮风或下雨等恶劣天气时,到店便利程度自然就更低,反之则更高。因此,在考虑等时圈信息之外,还结合节假日和天气信息来确定店铺到店便利度,并以此来构建模型特征进行学习,让模型可以根据用户实时的GPS打点信息、当前的节假日和天气信息,以及其他线上信息,综合预测出用户到店的概率,从而实现精确的到访用户挖掘。On the basis of the above-mentioned embodiment, in the process of determining the convenience of visiting the store in this embodiment, in addition to the isochronous circle information, the holiday and weather information are also combined. Specifically, whether it is a holiday or not, and the current weather conditions have an impact on the convenience of the user to the store. For example, during the holidays, people not only have time, but also are more willing to come to the store or store to buy the goods they need, so the convenience of visiting the store during the holidays is higher; while in bad weather such as wind or rain , the convenience of getting to the store is naturally lower, and vice versa. Therefore, in addition to considering the isochronous circle information, the convenience of the store to the store is also determined by combining the holiday and weather information, and then the model features are constructed for learning, so that the model can be based on the user's real-time GPS information, current holidays and Weather information, and other online information, comprehensively predict the probability of users coming to the store, so as to achieve accurate visitor user mining.
S205、利用所述每个GPS打点信息发生的时间维度信息,构建每个GPS打点信息的时序特征。S205, using the time dimension information of the occurrence of each GPS dotting information to construct a time sequence feature of each GPS dotting information.
其中,时间维度信息可以是指获取到每个GPS打点信息的时间,或者是GPS打点信息发生的时间。每个GPS打点信息的时间维度信息都不同,而不同时间的GPS打点信息对用户到访预测的影响又是不同的。例如,如果某用户在一个月之前的GPS打点信息处于店铺周围,或者到店的便利度很高,但并不代表一个月之后这个用户到店的概率仍然高,这只能表明一个月前用户到店的概率高。The time dimension information may refer to the time when each GPS dotting information is obtained, or the time when the GPS dotting information occurs. The time dimension information of each GPS check information is different, and the impact of GPS check information at different times on the user's visit prediction is different. For example, if a user's GPS check information was around the store one month ago, or the convenience of arriving at the store was high, it does not mean that the probability of the user coming to the store a month later is still high, which only indicates that the user a month ago The probability of arriving at the store is high.
因此,需要根据时间维度信息来构建每个GPS打点信息的时序特征,也即,从时间这一维度,按照时间的远近,将不同的GPS打点信息进行划分,并通过时序特征的方式来表示,并加以区分。而且,不同时序特征的GPS打点信息的权重可以是不同,时间发生在近期的打点信息的权重可以更高,反之则更低,从而让模型对不同发生时间的GPS打点信息具有区分的能力,并学习其中的特征和规律,以便更准确地进行预测。Therefore, it is necessary to construct the time series feature of each GPS dotting information according to the time dimension information, that is, from the time dimension, according to the distance of time, different GPS dotting information is divided, and expressed by the way of time series features, and distinguish. Moreover, the weights of GPS dosing information of different time series features can be different, and the weight of the dotting information that occurred in the near future can be higher, and vice versa, so that the model has the ability to distinguish the GPS dotting information of different occurrence times, and Learn the features and patterns in it to make more accurate predictions.
S206、利用所述到访人群中每个用户的线上信息、GPS打点信息及其对应的时序特征和店铺到访便利度构建模型特征,并基于所述模型特征训练到访预测模型。S206. Use the online information and GPS check information of each user in the visiting crowd and their corresponding time series features and store visit convenience to construct model features, and train a visit prediction model based on the model features.
其中,所述模型例如可以是DCN(Deep&Cross Network,深度交叉网络)模型。Wherein, the model may be, for example, a DCN (Deep&Cross Network, deep cross network) model.
本申请实施例的技术方案,在用户的搜索信息、画像信息和用户终端的APP安装信息等线上信息的基础上,还结合GPS打点信息、路网信息、店铺位置、节假日与天气等线下信息,利用线下信息来衡量用户到店的便利程度,对模型特征进行细化,从而训练出更准确的到访预测模型,利用该模型来挖掘出店铺推出活动时候的可能到访人群,帮助广告主实现更准确的广告投放,提高广告投放的转化率和投放效果。The technical solutions of the embodiments of the present application are based on online information such as user search information, portrait information, and APP installation information of the user terminal, as well as offline information such as GPS management information, road network information, store location, holidays, and weather. information, use offline information to measure the convenience of users to the store, refine the model features, so as to train a more accurate visitor prediction model, use this model to dig out the possible visitors when the store launches activities, help Advertisers can achieve more accurate advertising and improve the conversion rate and delivery effect of advertising.
图3是根据本申请第三实施例的店铺到访人群挖掘装置的结构示意图,本实施例可适用于在店铺推出活动时对可能的到访人群进行挖掘,以提高广告投放转化率的情况。该装置可实现本申请任意实施例所述的店铺到访人群挖掘方法。如图3所示,该装置300具体包括:3 is a schematic structural diagram of a store visitor crowd mining device according to a third embodiment of the present application. This embodiment is applicable to mining possible visiting crowds when a store launches an event to improve the conversion rate of advertisement placement. The device can implement the method for mining crowds of shop visitors described in any embodiment of the present application. As shown in FIG. 3, the
到访人群确定模块301,用于根据用户的历史位置信息和店铺的位置信息,确定历史特定时间段内所述店铺的到访人群;The visiting
信息处理模块302,用于获取所述到访人群中每个用户在所述历史特定时间段之前预设时间内的线上信息和GPS打点信息,并确定每个GPS打点信息对应的店铺到访便利度;The
特征构建与模型训练模块303,用于利用所述到访人群中每个用户的线上信息、GPS打点信息及其对应的店铺到访便利度构建模型特征,并基于所述模型特征训练到访预测模型;The feature building and
其中,所述到访预测模型用于预测用户到访店铺的概率,以对店铺到访人群进行挖掘。Wherein, the visit prediction model is used to predict the probability of the user visiting the store, so as to mine the people who visit the store.
可选的,所述线上信息至少包括:用户的搜索信息、画像信息和用户终端的APP安装信息。Optionally, the online information includes at least: user search information, portrait information, and APP installation information of the user terminal.
可选的,所述信息处理模块302包括:Optionally, the
信息获取单元,用于获取所述到访人群中每个用户在所述历史特定时间段之前预设时间内的线上信息和GPS打点信息;an information acquisition unit, used for acquiring online information and GPS check-in information of each user in the visiting crowd within a preset time period before the historical specific time period;
等时圈刻画单元,用于根据路网信息和所述店铺的位置信息,计算所述店铺周围路网上不同位置至所述店铺的到达时间,根据所述不同位置的到达时间刻画到达店铺的等时圈信息,其中,不同等时圈上的位置至所述店铺的到达时间不同;The isochronous circle characterization unit is used to calculate the arrival time from different locations on the road network around the store to the store according to the road network information and the location information of the store, and describe the arrival time of the store according to the arrival time of the different locations. Time lap information, wherein the arrival times from the positions on the different isochronous laps to the store are different;
店铺到访便利度确定单元,用于根据所述每个GPS打点信息所属的等时圈,确定所述每个GPS打点信息对应的店铺到访便利度。The store visit convenience determination unit is configured to determine the store visit convenience corresponding to each GPS check information according to the isochronous circle to which the GPS check information belongs.
可选的,所述店铺到访便利度确定单元具体用于:Optionally, the store visit convenience determining unit is specifically used for:
根据所述每个GPS打点信息所属的等时圈,以及每个GPS打点信息对应的节假日和天气信息,确定所述每个GPS打点信息对应的店铺到访便利度。According to the isochronous circle to which each GPS check information belongs, and the holiday and weather information corresponding to each GPS check information, the convenience of visiting the store corresponding to each GPS check information is determined.
可选的,所述特征构建与模型训练模块303具体用于:Optionally, the feature construction and
时序利用所述每个GPS打点信息发生的时间维度信息,构建每个GPS打点信息的时序特征;The time sequence utilizes the time dimension information that each GPS dotting information occurs to construct the time sequence feature of each GPS dotting information;
利用所述到访人群中每个用户的线上信息、GPS打点信息及其对应的时序特征和店铺到访便利度构建模型特征。The model features are constructed by using the online information of each user in the visiting crowd, the GPS check-in information and their corresponding time series features and store visit convenience.
本申请实施例提供的店铺到访人群挖掘装置300可执行本申请任意实施例提供的店铺到访人群挖掘方法,具备执行方法相应的功能模块和有益效果。本实施例中未详尽描述的内容可以参考本申请任意方法实施例中的描述。The store visitor
根据本申请的实施例,本申请还提供了一种电子设备和一种可读存储介质。According to the embodiments of the present application, the present application further provides an electronic device and a readable storage medium.
如图4所示,是根据本申请实施例的店铺到访人群挖掘方法的电子设备的框图。电子设备旨在表示各种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。电子设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本申请的实现。As shown in FIG. 4 , it is a block diagram of an electronic device of a method for mining crowds of shoppers according to an embodiment of the present application. Electronic devices are intended to represent various forms of digital computers, such as laptops, desktops, workstations, personal digital assistants, servers, blade servers, mainframe computers, and other suitable computers. Electronic devices may also represent various forms of mobile devices, such as personal digital processors, cellular phones, smart phones, wearable devices, and other similar computing devices. The components shown herein, their connections and relationships, and their functions are by way of example only, and are not intended to limit implementations of the application described and/or claimed herein.
如图4所示,该电子设备包括:一个或多个处理器401、存储器402,以及用于连接各部件的接口,包括高速接口和低速接口。各个部件利用不同的总线互相连接,并且可以被安装在公共主板上或者根据需要以其它方式安装。处理器可以对在电子设备内执行的指令进行处理,包括存储在存储器中或者存储器上以在外部输入/输出装置(诸如,耦合至接口的显示设备)上显示GUI的图形信息的指令。在其它实施方式中,若需要,可以将多个处理器和/或多条总线与多个存储器和多个存储器一起使用。同样,可以连接多个电子设备,各个设备提供部分必要的操作(例如,作为服务器阵列、一组刀片式服务器、或者多处理器系统)。图4中以一个处理器401为例。As shown in FIG. 4, the electronic device includes: one or
存储器402即为本申请所提供的非瞬时计算机可读存储介质。其中,所述存储器存储有可由至少一个处理器执行的指令,以使所述至少一个处理器执行本申请所提供的店铺到访人群挖掘方法。本申请的非瞬时计算机可读存储介质存储计算机指令,该计算机指令用于使计算机执行本申请所提供的店铺到访人群挖掘方法。The
存储器402作为一种非瞬时计算机可读存储介质,可用于存储非瞬时软件程序、非瞬时计算机可执行程序以及模块,如本申请实施例中的店铺到访人群挖掘方法对应的程序指令/模块(例如,附图3所示的到访人群确定模块301、信息处理模块302和特征构建与模型训练模块303)。处理器401通过运行存储在存储器402中的非瞬时软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现上述方法实施例中的店铺到访人群挖掘方法。As a non-transitory computer-readable storage medium, the
存储器402可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据实现本申请实施例的店铺到访人群挖掘方法的电子设备的使用所创建的数据等。此外,存储器402可以包括高速随机存取存储器,还可以包括非瞬时存储器,例如至少一个磁盘存储器件、闪存器件、或其他非瞬时固态存储器件。在一些实施例中,存储器402可选包括相对于处理器401远程设置的存储器,这些远程存储器可以通过网络连接至实现本申请实施例的店铺到访人群挖掘方法的电子设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。The
实现本申请实施例的店铺到访人群挖掘方法的电子设备还可以包括:输入装置403和输出装置404。处理器401、存储器402、输入装置403和输出装置404可以通过总线或者其他方式连接,图4中以通过总线连接为例。The electronic device for implementing the method for mining crowds of store visitors according to the embodiment of the present application may further include: an
输入装置403可接收输入的数字或字符信息,以及产生与实现本申请实施例的店铺到访人群挖掘方法的电子设备的用户设置以及功能控制有关的键信号输入,例如触摸屏、小键盘、鼠标、轨迹板、触摸板、指示杆、一个或者多个鼠标按钮、轨迹球、操纵杆等输入装置。输出装置404可以包括显示设备、辅助照明装置(例如,LED)和触觉反馈装置(例如,振动电机)等。该显示设备可以包括但不限于,液晶显示器(LCD)、发光二极管(LED)显示器和等离子体显示器。在一些实施方式中,显示设备可以是触摸屏。The
此处描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、专用ASIC(专用集成电路)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。Various implementations of the systems and techniques described herein can be implemented in digital electronic circuitry, integrated circuit systems, application specific ASICs (application specific integrated circuits), computer hardware, firmware, software, and/or combinations thereof. These various embodiments may include being implemented in one or more computer programs executable and/or interpretable on a programmable system including at least one programmable processor that The processor, which may be a special purpose or general-purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device an output device.
这些计算程序(也称作程序、软件、软件应用、或者代码)包括可编程处理器的机器指令,并且可以利用高级过程和/或面向对象的编程语言、和/或汇编/机器语言来实施这些计算程序。如本文使用的,术语“机器可读介质”和“计算机可读介质”指的是用于将机器指令和/或数据提供给可编程处理器的任何计算机程序产品、设备、和/或装置(例如,磁盘、光盘、存储器、可编程逻辑装置(PLD)),包括,接收作为机器可读信号的机器指令的机器可读介质。术语“机器可读信号”指的是用于将机器指令和/或数据提供给可编程处理器的任何信号。These computational programs (also referred to as programs, software, software applications, or codes) include machine instructions for programmable processors, and may be implemented using high-level procedural and/or object-oriented programming languages, and/or assembly/machine languages calculation program. As used herein, the terms "machine-readable medium" and "computer-readable medium" refer to any computer program product, apparatus, and/or apparatus for providing machine instructions and/or data to a programmable processor ( For example, magnetic disks, optical disks, memories, programmable logic devices (PLDs), including machine-readable media that receive machine instructions as machine-readable signals. The term "machine-readable signal" refers to any signal used to provide machine instructions and/or data to a programmable processor.
为了提供与用户的交互,可以在计算机上实施此处描述的系统和技术,该计算机具有:用于向用户显示信息的显示装置(例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给计算机。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。To provide interaction with a user, the systems and techniques described herein may be implemented on a computer having a display device (eg, a CRT (cathode ray tube) or LCD (liquid crystal display) monitor) for displaying information to the user ); and a keyboard and pointing device (eg, a mouse or trackball) through which a user can provide input to the computer. Other kinds of devices can also be used to provide interaction with the user; for example, the feedback provided to the user can be any form of sensory feedback (eg, visual feedback, auditory feedback, or tactile feedback); and can be in any form (including acoustic input, voice input, or tactile input) to receive input from the user.
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)和互联网。The systems and techniques described herein may be implemented on a computing system that includes back-end components (eg, as a data server), or a computing system that includes middleware components (eg, an application server), or a computing system that includes front-end components (eg, a user's computer having a graphical user interface or web browser through which a user may interact with implementations of the systems and techniques described herein), or including such backend components, middleware components, Or any combination of front-end components in a computing system. The components of the system may be interconnected by any form or medium of digital data communication (eg, a communication network). Examples of communication networks include: Local Area Networks (LANs), Wide Area Networks (WANs), and the Internet.
计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。A computer system can include clients and servers. Clients and servers are generally remote from each other and usually interact through a communication network. The relationship of client and server arises by computer programs running on the respective computers and having a client-server relationship to each other.
根据本申请实施例的技术方案,在用户的搜索信息、画像信息和用户终端的APP安装信息等线上信息的基础上,还结合GPS打点信息、路网信息、店铺位置、节假日与天气等线下信息,利用线下信息来衡量用户到店的便利程度,对模型特征进行细化,从而训练出更准确的到访预测模型,利用该模型来挖掘出店铺推出活动时候的可能到访人群,从而帮助广告主实现更准确的广告投放,提高广告投放的转化率和投放效果。According to the technical solutions of the embodiments of the present application, on the basis of online information such as the user's search information, portrait information, and APP installation information of the user terminal, GPS check-in information, road network information, store location, holidays, weather, etc. are also combined. offline information, use offline information to measure the convenience of users to the store, refine the model features, so as to train a more accurate visitor prediction model, and use this model to dig out the possible visitors to the store when the event is launched. Thereby helping advertisers to achieve more accurate advertising, improve the conversion rate and delivery effect of advertising.
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本发申请中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本申请公开的技术方案所期望的结果,本文在此不进行限制。It should be understood that steps may be reordered, added or deleted using the various forms of flow shown above. For example, the steps described in the present application can be performed in parallel, sequentially or in different orders, and as long as the desired results of the technical solutions disclosed in the present application can be achieved, no limitation is imposed herein.
上述具体实施方式,并不构成对本申请保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本申请的精神和原则之内所作的修改、等同替换和改进等,均应包含在本申请保护范围之内。The above-mentioned specific embodiments do not constitute a limitation on the protection scope of the present application. It should be understood by those skilled in the art that various modifications, combinations, sub-combinations and substitutions may occur depending on design requirements and other factors. Any modifications, equivalent replacements and improvements made within the spirit and principles of this application shall be included within the protection scope of this application.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911134828.5A CN110930187A (en) | 2019-11-19 | 2019-11-19 | Store visitor crowd mining method, device, equipment and medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911134828.5A CN110930187A (en) | 2019-11-19 | 2019-11-19 | Store visitor crowd mining method, device, equipment and medium |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110930187A true CN110930187A (en) | 2020-03-27 |
Family
ID=69850286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911134828.5A Pending CN110930187A (en) | 2019-11-19 | 2019-11-19 | Store visitor crowd mining method, device, equipment and medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110930187A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111353828A (en) * | 2020-03-30 | 2020-06-30 | 中国工商银行股份有限公司 | Method and device for predicting number of people arriving at store from network |
CN112561569A (en) * | 2020-12-07 | 2021-03-26 | 上海明略人工智能(集团)有限公司 | Dual-model-based arrival prediction method and system, electronic device and storage medium |
CN113869963A (en) * | 2021-11-01 | 2021-12-31 | 北京深演智能科技股份有限公司 | Method and device for intelligently predicting user presence situation and data processing equipment |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106767835A (en) * | 2017-02-08 | 2017-05-31 | 百度在线网络技术(北京)有限公司 | Localization method and device |
CN108460622A (en) * | 2018-01-30 | 2018-08-28 | 深圳冠思大数据服务有限公司 | Interactive advertising system under a kind of line |
KR20190102501A (en) * | 2018-02-26 | 2019-09-04 | 주식회사 지니웍스 | Apparatus and method for recommending online event advertisement |
-
2019
- 2019-11-19 CN CN201911134828.5A patent/CN110930187A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106767835A (en) * | 2017-02-08 | 2017-05-31 | 百度在线网络技术(北京)有限公司 | Localization method and device |
CN108460622A (en) * | 2018-01-30 | 2018-08-28 | 深圳冠思大数据服务有限公司 | Interactive advertising system under a kind of line |
KR20190102501A (en) * | 2018-02-26 | 2019-09-04 | 주식회사 지니웍스 | Apparatus and method for recommending online event advertisement |
Non-Patent Citations (1)
Title |
---|
位和: "如何批量制作交通等时圈", 《HTTPS://ZHUANLAN.ZHIHU.COM/P/36708679》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111353828A (en) * | 2020-03-30 | 2020-06-30 | 中国工商银行股份有限公司 | Method and device for predicting number of people arriving at store from network |
CN111353828B (en) * | 2020-03-30 | 2023-09-12 | 中国工商银行股份有限公司 | Method and device for predicting number of people coming to store at website |
CN112561569A (en) * | 2020-12-07 | 2021-03-26 | 上海明略人工智能(集团)有限公司 | Dual-model-based arrival prediction method and system, electronic device and storage medium |
CN112561569B (en) * | 2020-12-07 | 2024-02-27 | 上海明略人工智能(集团)有限公司 | Dual-model-based store arrival prediction method, system, electronic equipment and storage medium |
CN113869963A (en) * | 2021-11-01 | 2021-12-31 | 北京深演智能科技股份有限公司 | Method and device for intelligently predicting user presence situation and data processing equipment |
CN113869963B (en) * | 2021-11-01 | 2023-11-07 | 北京深演智能科技股份有限公司 | Method and device for intelligently predicting user presence condition and data processing equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220019341A1 (en) | Map information display method and apparatus, electronic device, and computer storage medium | |
CN112036668B (en) | Water consumption prediction method, device, electronic equipment and computer readable medium | |
CN111538904A (en) | Method and device for recommending interest points | |
CN111210656B (en) | Method and device for predicting free parking space of parking lot, electronic equipment and storage medium | |
KR20210087889A (en) | Method, electronic device and storage medium for testing autonomous driving system | |
CN110851738B (en) | Method, device and equipment for acquiring POI state information and computer storage medium | |
CN112000893B (en) | Resident region prediction method, device, equipment and storage medium | |
CN111612249A (en) | Method, apparatus, device and storage medium for predicting human flow | |
US11719550B2 (en) | Method and apparatus for building route time consumption estimation model, and method and apparatus for estimating route time consumption | |
CN112269930B (en) | Regional heat prediction model and regional heat prediction method and device | |
CN110705800A (en) | Mixed travel route determination method, device, device and storage medium | |
CN111310987A (en) | Method, device, electronic device and storage medium for predicting vacant parking space in parking lot | |
CN110930187A (en) | Store visitor crowd mining method, device, equipment and medium | |
CN111986490A (en) | Road condition prediction method and device, electronic equipment and storage medium | |
CN112016326B (en) | A method, device, electronic device and storage medium for identifying map area words | |
CN109844732B (en) | Use user transitions over time to determine geolocation of IP addresses | |
US20210239480A1 (en) | Method and apparatus for building route time consumption estimation model, and method and apparatus for estimating route time consumption | |
CN110737849A (en) | Recommended method, device, device and storage medium for travel plan | |
CN113569159A (en) | Recommendation method and device for enterprise stores and storage medium | |
CN106469205B (en) | Method and device for determining geographical location information of user | |
CN114417192B (en) | Method, device, equipment, medium and product for updating POI (Point of interest) state | |
CN111047107B (en) | Road traffic time prediction method, device, electronic equipment and storage medium | |
US11983712B2 (en) | Location modeling using transaction data for validation | |
CN111753037A (en) | Information representation method, device, electronic device and storage medium | |
CN111757272A (en) | Prediction method, model training method and device for subway congestion degree |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200327 |